# Springer correspondence via Borel-Moore homology

Andreas, Erik, Gaëtan, Ziqian

12 sep 2024







Springer correspondence via Borel-Moore homology Nontrivial Example in type A

## Example in type A

Nontrivial example of Springer fibre in type  $A_2$ 

Let  $\mathfrak{g} = \mathfrak{sl}_3$  with flag variety  $\mathcal{F}\ell(3)$ . Consider the nilpotent

$$A = egin{pmatrix} 0 & 0 & 1 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{pmatrix} \in \mathfrak{g}.$$

Any flag preserved by A lies in the following two families

$$\begin{aligned} \{ \langle \varepsilon_1 \rangle \subset \langle \varepsilon_1, \lambda \varepsilon_2 + \mu \varepsilon_3 \rangle \subset \langle \varepsilon_1, \varepsilon_2, \varepsilon_3 \rangle : \lambda, \mu \in \mathbb{C} \}, \\ \{ \langle \lambda \varepsilon_1 + \mu \varepsilon_2 \rangle \subset \langle \varepsilon_1, \varepsilon_2 \rangle \subset \langle \varepsilon_1, \varepsilon_2, \varepsilon_3 \rangle : \lambda, \mu \in \mathbb{C} \}. \end{aligned}$$

These families are isomorphic to  $\mathbb{P}^1$  and intersect in a single point corresponding to the (standard) flag  $\langle \varepsilon_1 \rangle \subset \langle \varepsilon_1, \varepsilon_2 \rangle \subset \langle \varepsilon_1, \varepsilon_2, \varepsilon_3 \rangle$ . Hence, one can visualize  $\mathcal{F}\ell(3)^A$  as two spheres  $S^2$  glued together at a single point. Springer correspondence via Borel-Moore homology Nontrivial Example in type A

## Example in type A

#### Example continued

This space has two irreducible components, and so  $H^2(\mathcal{F}\ell(3)^A)$  has dimension 2. In fact,  $H^2(\mathcal{F}\ell(3)^A)$  we will see later that it is the unique 2-dimensional irreducible representation of  $S_3$ ! Moreover, this action is not coming from an  $S_3$ -action on  $\mathcal{F}\ell(3)^A$ .

## Springer resolution

Let  $\mathfrak{g}$  be any simple Lie algebra, and denote by  $\mathcal{N}$  the variety of nilpotent elements (i.e.  $x \in \mathfrak{g}$  such that ad  $x: \mathfrak{g} \to \mathfrak{g}$  is nilpotent). In the case of  $\mathfrak{g} = \mathfrak{sl}_n$ , the variety  $\mathcal{N}$  consists of the nilpotent matrices in the usual sense : the ones with characteristic polynomial equal to  $t^n$ .

## Springer resolution

Define

$$ilde{\mathcal{N}} := \{(x, \mathfrak{b}) \in \mathcal{N} imes \mathcal{F}\ell : x \in \mathfrak{b}\}.$$

The projection  $\mu \colon \tilde{\mathcal{N}} \to \mathcal{N}$  is called the *Springer resolution*.

Note that the map is similar to the Grothendieck-Springer space  $\pi: \tilde{\mathfrak{g}} \to \mathfrak{g}$ . More on this later.

Springer correspondence via Borel-Moore homology Springer resolution

# Springer resolution

#### Proposition

The map  $\mu \colon \tilde{\mathcal{N}} \to \mathcal{N}$  is a resolution of singularities, i.e. The variety  $\tilde{\mathcal{N}}$  is smooth, The map  $\mu$  is proper, There is a dense open subset  $U \subset \mathcal{N}$  such that the restriction to  $\mu^{-1}(U)$  is an isomorphism.

## Sketch proof

For the first part, note that the projection  $\tilde{\mathcal{N}} \to \mathcal{F}\ell$  is a vector bundle over a smooth variety. For the second part, the fibers of  $\mu$  are the Springer varieties, which are compact as they are closed subsets of the (compact) flag variety. For the last part, regular nilpotent elements are contained in a unique Borel subalgebra.

# Example of Springer resolution

#### Example in $\mathfrak{sl}_2$

Consider 
$$\mathfrak{g} = \mathfrak{sl}_2$$
. Let  $A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in \mathfrak{g}$  and note that  $P_A(t) = t^2 + \det(A)$ . Hence,

$$\mathcal{N} = \{A \in \mathfrak{g} : \det(A) = 0\}$$

and it can be identified with a singular conic in  $\mathbb{C}^3$ . The space  $\tilde{\mathcal{N}}$  can be identified with the set of pairs  $(x, \mathfrak{b})$  where  $x \in \mathcal{N}$  and  $\mathfrak{b}$  is a line that contains x. Remember that for each regular nilpotent element of  $\mathfrak{g}$ , there is a unque Borel subalgebra that contains it. As a consequence, the Springer resolution  $\mu \colon \tilde{\mathcal{N}} \to \mathcal{N}$  crushes the zero section  $\mathbb{P}^1 \cong \mathcal{F}\ell \subset \tilde{\mathcal{N}}$  to a point.

Springer correspondence via Borel-Moore homology Springer resolution

## Draw picture

## Steinberg varieties

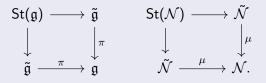
In the previous talk, we saw the Grothendieck-Springer space

$$ilde{\mathfrak{g}} = \{(x,\mathfrak{b})\in\mathfrak{g} imes\mathcal{F}\ell:x\in\mathfrak{b}\}$$

with the projection  $\pi \colon \tilde{\mathfrak{g}} \to \mathfrak{g}$ .

## Definition

We define the *big Steinberg variety* St(g) and the *small/nilpotent Steinberg variety* St(N) as the pullbacks



Springer correspondence via Borel-Moore homology Steinberg varieties

## Steinberg varieties

Explicitly,

$$\begin{split} \mathsf{St}(\mathfrak{g}) &= \{(x,\mathfrak{b}_1,\mathfrak{b}_2) \in \mathfrak{g} \times \mathcal{F}\ell^2 : x \in \mathfrak{b}_1 \cap \mathfrak{b}_2\},\\ \mathsf{St}(\mathcal{N}) &= \{(x,\mathfrak{b}_1,\mathfrak{b}_2) \in \mathcal{N} \times \mathcal{F}\ell^2 : x \in \mathfrak{b}_1 \cap \mathfrak{b}_2\}. \end{split}$$

#### Fact (Bruhat decomposition)

There is a bijection between W and the G-orbits of  $\mathcal{F}\ell \times \mathcal{F}\ell$ .

For  $w \in W$ , denote by  $Y_w$  the corresponding *G*-orbit. For  $(\mathfrak{b}_1, \mathfrak{b}_2) \in \mathcal{F}\ell \times \mathcal{F}\ell$ , we write  $\mathfrak{b}_1 \xrightarrow{w} \mathfrak{b}_2$  and say that  $\mathfrak{b}_1$  is *in relative position* w to  $\mathfrak{b}_2$  if  $(\mathfrak{b}_1, \mathfrak{b}_2) \in Y_w$ .

## Decomposition of Steinberg varieties

For  $w \in W$ , we define

$$\begin{split} \mathsf{St}_w(\mathfrak{g}) &:= \{ (x, \mathfrak{b}_1, \mathfrak{b}_2) \in \mathsf{St}(\mathfrak{g}) : \mathfrak{b}_1 \xrightarrow{w} \mathfrak{b}_2 \}, \\ \mathsf{St}_w(\mathcal{N}) &:= \{ (x, \mathfrak{b}_1, \mathfrak{b}_2) \in \mathsf{St}(\mathcal{N}) : \mathfrak{b}_1 \xrightarrow{w} \mathfrak{b}_2 \}. \end{split}$$

By the Bruhat decomposition, we obtain stratifications

$$\operatorname{St}(\mathfrak{g}) = \bigsqcup_{w \in W} \operatorname{St}_w(\mathfrak{g}), \quad \operatorname{St}(\mathcal{N}) = \bigsqcup_{w \in W} \operatorname{St}_w(\mathcal{N}).$$

# Decomposition of Steinberg varieties

## Proposition

The projections

$$egin{aligned} & s_{\mathfrak{g},w}\colon \operatorname{St}_w(\mathfrak{g}) o Y_w \ & s_{\mathcal{N},w}\colon \operatorname{St}_w(\mathcal{N}) o Y_w \end{aligned}$$

carry the structure of a vector bundle : over a point  $(\mathfrak{b}_1, \mathfrak{b}_2) \in Y_w$ , the fibres of  $s_{\mathfrak{g},w}$  and  $s_{\mathcal{N},w}$  are  $\mathfrak{b}_1 \cap \mathfrak{b}_2$  and  $[\mathfrak{b}_1, \mathfrak{b}_1] \cap [\mathfrak{b}_2, \mathfrak{b}_2]$  respectively.

# Decomposition of Steinberg varieties

## Proposition

The projections

$$egin{aligned} &s_{\mathfrak{g},w}\colon \operatorname{St}_w(\mathfrak{g}) o Y_w\ &s_{\mathcal{N},w}\colon \operatorname{St}_w(\mathcal{N}) o Y_w \end{aligned}$$

carry the structure of a vector bundle : over a point  $(\mathfrak{b}_1, \mathfrak{b}_2) \in Y_w$ , the fibres of  $s_{\mathfrak{g},w}$  and  $s_{\mathcal{N},w}$  are  $\mathfrak{b}_1 \cap \mathfrak{b}_2$  and  $[\mathfrak{b}_1, \mathfrak{b}_1] \cap [\mathfrak{b}_2, \mathfrak{b}_2]$  respectively.

Furthermore,  $St_w(\mathfrak{g})$  and  $St_w(\mathcal{N})$  are smooth connected varieties of dimensions dim  $\mathfrak{g}$  and dim $(\mathcal{N})$  respectively. It follows that  $St(\mathfrak{g})$  and  $St(\mathcal{N})$  are equidimensional.

## Example of Steinberg varieties

#### Example of $\mathfrak{g} = \mathfrak{sl}_2$

In this case  $W \cong S_2 = \{e, s\}$  and  $\mathcal{F}\ell \cong \mathbb{P}^1$ . We have

$$\begin{split} Y_e &= \{ (\mathfrak{b}_1, \mathfrak{b}_2) \in \mathcal{F}\ell^2 : \mathfrak{b}_1 = \mathfrak{b}_2 \} \cong \mathcal{F}\ell \\ Y_s &= \{ (\mathfrak{b}_1, \mathfrak{b}_2) \in \mathcal{F}\ell^2 : \mathfrak{b}_1 \neq \mathfrak{b}_2 \} \\ \mathrm{St}_e(\mathfrak{g}) \cong \tilde{\mathfrak{g}} \\ \mathrm{St}_s(\mathfrak{g}) &= \{ (x, \mathfrak{b}_1, \mathfrak{b}_2) \in \mathfrak{g} \times \mathcal{F}\ell^2 : x \in \mathfrak{b}_1 \cap \mathfrak{b}_2, \mathfrak{b}_1 \neq \mathfrak{b}_2 \} \\ \mathrm{St}_e(\mathcal{N}) \cong \{ (x, \mathfrak{b}) \in \mathcal{N} \times \mathcal{F}\ell : x \in \mathfrak{b} \} = \tilde{\mathcal{N}} \\ \mathrm{St}_s(\mathcal{N}) &= \{ (x, \mathfrak{b}_1, \mathfrak{b}_2) \in \mathcal{N} \times \mathcal{F}\ell^2 : x \in \mathfrak{b}_1 \cap \mathfrak{b}_2, \mathfrak{b}_1 \neq \mathfrak{b}_2 \} \end{split}$$

We want to check the dimensions of the components. The orbit  $Y_s$  has dimension 2.

# Example of Steinberg varieties

#### Example of $\mathfrak{g} = \mathfrak{sl}_2$ continued

We have already seen that  $\tilde{\mathcal{N}}$  is indeed 2-dimensional, and we have that dim  $\tilde{\mathfrak{g}} = \dim \mathfrak{g} = 3$ .

The dimensions of  $\operatorname{St}_s(\mathfrak{g})$  and  $\operatorname{St}_s(\mathcal{N})$  follow from the fact that two distinct flags  $\mathfrak{b}_1$  and  $\mathfrak{b}_2$  are 2-dimensional vector spaces in a vector space of dimension 3, hence the intersection has dimension 1. It follows that dim  $\operatorname{St}_s(\mathfrak{g}) = 1 + 2 = 3$ 

As distinct Borel subalgebras have distinct nilpotent radicals,  $[\mathfrak{b}_1, \mathfrak{b}_1]$  and  $[\mathfrak{b}_2, \mathfrak{b}_2]$  are two distinct lines and so their intersection is trivial. It follows that dim  $St_s(\mathcal{N}) = 0 + 2 = 2$ .