ERRATUM: THE GENERALIZED DE RHAM-WITT COMPLEX OVER A FIELD IS A COMPLEX OF ZERO-CYCLES

KAY RÜLLING

At the end of the proof of [Ru07, Th. 3.6], page 148, line 4, I use a residue theorem [Ru07, Th. 2.19] to conclude. But there is a gap as Deligne pointed out to me, since the theorem [Ru07, Th. 2.19] is stated for smooth projective curves over a base field k, whereas in the proof of [Ru07, Th. 3.6] I use it for normal projective curves. In this erratum I show that after a slight modification of the definition of the residue, which replaces [Ru07, Def. 2.15], together with the results [HuKu94, Th. 1, Th. 4] the residue theorem in fact holds for regular projective curves. Furthermore the calculation of the residue in the course of the proof of [Ru07, Th. 3.6] is adjusted. These modifications are enough to conclude exactly as in [Ru07] and in particular Theorem 3.6 of [Ru07] and all other results are true and remain unchanged.

I am deeply grateful to Pierre Deligne for pointing out this mistake.

Let k be a field of characteristic exponent $p \neq 2$, S a finite truncation set, C a regular curve over k (i.e. a one dimensional regular, integral, separated scheme of finite type over k), K = k(C) the function field of C and $P \in C$ a closed point.

The following construction is from [HuKu94], page 88.

Denote $k(K^{p^n})$ by K_n , $n \in \mathbb{N}$. Viewing K as a constant sheaf on C and \mathcal{O}_C , $K_n \subset K$ as subsheaves we define $C_n = \mathbf{Spec}(\mathcal{O}_C \cap K_n)$. Thus we obtain maps

$$C = C_0 \rightarrow C_1 \rightarrow C_2 \rightarrow \cdots$$
.

Since $k(\mathcal{O}_C^{p^n}) \subset (\mathcal{O}_C \cap K_n) \subset \mathcal{O}_C$ it is clear that these maps induce isomorphisms of the underlying topological spaces and that each C_n is a separated integral scheme of finite type over k with function field K_n . Denote by P_n the image of P in C_n . Then for almost all n, C_n is smooth over k and $k(P_n)$ is the separable closure of k in k(P), by [HuKu94, Th. 1, Th. 4]. Now [Ru07, Def. 2.15] must be replaced by the following definition (we use the notation of the article).

Definition-Proposition 1 (cf. [Ku86], 17.4.). Let n be a natural number such that for all $n' \geq n$ (in the above notation) $C_{n'}$ is smooth over k and $k(P_{n'})$ is the separable closure of k in k(P). We write $\kappa_n = k(P_n)$ and $K_n = k(C_n) = k(K^{p^n})$. Finally we denote by \widehat{K}_n the completion of K_n in P_n . Now the choice of a local parameter t in P_n determines a unique continuous isomorphism $\kappa_n((t)) \stackrel{\cong}{\to} \widehat{K}_n$ of fields over k (this is an isomorphism over k, since $\kappa_n \supset k$ is separable) and we have a natural inclusion $\iota: K_n \hookrightarrow \kappa_n((t))$. Take $\omega \in \mathbb{W}_S\Omega_K^q$, then we define the residue of ω in P to be

(1)
$$\operatorname{Res}_{P,S}(\omega) = \operatorname{Res}_{P}(\omega) = \operatorname{Tr}_{\kappa_n/k} \left(\operatorname{Res}_{t,S}^{q} \left(\iota(\operatorname{Tr}_{K/K_n}(\omega)) \right) \right) \in \mathbb{W}_{S} \Omega_k^{q-1},$$

where the $\operatorname{Res}_{t,S}^q$ on the right hand side, is the residue on $\mathbb{W}_S\Omega^q_{\kappa_n((t))}$ from [Ru07, Def. 2.11]. The residue is well defined, i.e. independent of the choice of the local parameter t and the number n.

The proof is exactly the one from [Ru07, Def. 2.15], except that we have to mention, that by the choice of n, K_n is separable over k and thus by [Ku86, 5.10. Th.] $K_{n+1} = k(K_n^p) \subset K_n$ is purely inseparable of degree p.

[Ru07, Rem 2.16] remains unchanged, in [Ru07, Rem 2.17] write C_n instead of $C^{(p^n)}$, [Ru07, Prop. 2.18] remains unchanged. [Ru07, Th. 2.19] now becomes

Theorem 2. Let C be a regular projective curve over k with function field K. Then

$$\sum_{P \in C} \operatorname{Res}_P(\omega) = 0, \text{ for all } \omega \in \mathbb{W}_S \Omega_K^q, \, q \ge 1.$$

(Notice, that $\operatorname{Res}_P(\omega) = 0$, if ω has no pole in P, thus the sum is finite.)

The proof remains the same, except that at the beginning we insert the following sentence: Since $\operatorname{Res}_P(\omega)$ is non-zero for only a finite number of points we can assume by [HuKu94, Th. 1, Th. 4] and [Ru07, Rem. 2.16] that C is smooth over k and the points P with $\operatorname{Res}_P(\omega) \neq 0$ are étale over k. In the original proof a line like this appears on page 139, line (-12) to (-10), this one has to be cancelled.

We want to take the opportunity to correct a misprint. The formula on page 139, line (-3) should be

$$\operatorname{Res}_{P}(\omega) = \sum_{j} \operatorname{Res}_{Q_{j}}(\omega_{j}) \text{ in } W_{n}(\bar{k}),$$

where the Q_j 's are the preimages of P in $C \times_k \bar{k}$.

Now in the proof of [Ru07, Th. 3.6] the first paragraph remains unchanged and the beginning of the second, line (-15) to line (-9) on page 146, has to be replaced with the following (we use notation of the article):

Take $P \in \nu^{-1}(y_n = 0) \cap \Sigma$ and denote $\kappa = k(P)$. Write K for the function field of \widetilde{C} and $K_i = k(K^{p^i})$, $i \geq 0$. Furthermore denote $\mathbf{Spec}(\mathcal{O}_{\widetilde{C}} \cap K_i)$ by \widetilde{C}_i and let P_i be the image of P in \widetilde{C}_i . Choose $l \geq 0$, such that for all $l' \geq l$ $\widetilde{C}_{l'}$ is smooth over k and $\kappa_{l'} := k(P_{l'}) \supset k$ is separable. Let e_P be the ramification index of P over P_l and $f_P = [\kappa : \kappa_l]$ and write

$$e_P = p^r, \quad f_P = p^s, \quad [K:K_l] = p^j.$$

Then by [Ku86, 5.10 Th., a)] and [Se68, I, §4, Prop. 10]

$$(3.6.1) j = r + s \ge l.$$

(In the article we wrongly wrote an equal sign here.)

Now in the following calculation, line (-8) on page 146 to line (-8) on page 147, replace $F^{j}(P)$ by P_{l} , K_{j} by K_{l} and κ_{j} by κ_{l} , but the j's appearing in the powers of p (such as $p^{j(n-1)+r}$ etc.) stay the same. Then the whole proof of the formula in (3.6.3) goes through, since $x^{p^{j}} \in K_{l}$ for $x \in K$.

Finally at the end of the proof of [Ru07, Th. 3.6], page 148, line 4, one now refers to Theorem 2 instead of [Ru07, Th. 2.19].

The rest of the paper remains unchanged.

ERRATUM: THE GENERALIZED DE RHAM-WITT COMPLEXOVER A FIELDIS A COMPLEX OF ZERO-CYCLE8

References

- [HuKu94] R. Hübel, E. Kunz, On algebraic varieties over fields of prime characteristic. Arch. Math. (Basel) 62, no. 1, 1994, 88-96.
- [Ku86] E. Kunz, Kähler differentials. Advanced Lectures in Mathematics. Braunschweig/Wiesbaden: Friedr. Vieweg & Sohn. VII, 1986.
- [Ru07] K. Rülling, The generalized de Rham-Witt complex over a field is a complex of zero-cycles. J. Algebraic Geom. 16, 2007, 109-169.
- [Se68] J.-P. Serre, Corps locaux. Deuxième édition. Hermann, Paris, 1968.

Universität Duisburg-Essen, Essen, FB6, Mathematik, 45117 Essen, Germany $E\text{-}mail\ address$: kay.ruelling@uni-essen.de