Appendix A.

THE DE RHAM-WITT COMPLEX AND ADDITIVE CHOW GROUPS OVER A FIELD: THE CHARACTERISTIC 2 CASE

KAY RÜLLING

The main theorems of [Rül07b] (see also [Rül07a]) were stated only for fields of characteristic $\neq 2$. This originates in the use of [HM04, Thm 4.2.8] which was only for odd primes. In this appendix it is explained that thanks to [Cos08] the results of [Rül07b] extend directly to the characteristic 2 case. I thank Amalendu Krishna and Jinhyun Park for the opportunity to detail this extension here.

A.1. Let $(\mathbb{W}_S \Omega_A^{\bullet})_S$ denote the big de Rham Witt complex from [Hes15], where A is a ring and S is running through all truncation sets. It comes with the maps d, F_n , V_n , restriction, and multiplication. For $m \geq 1$ we set $\mathbb{W}_m \Omega_A^{\bullet} := \mathbb{W}_{\{1,...,m\}} \Omega_A^{\bullet}$ and for a fixed prime p we denote the p-typical de Rham-Witt complex by $W_n \Omega_A^{\bullet} :=$ $\mathbb{W}_{\{1,p,...,p^{n-1}\}} \Omega_A^{\bullet}$. Note that in general $d \circ d$ is not zero in $\mathbb{W}_S \Omega_A^{\bullet}$. Denote by $\mathbb{W}_S \Omega_{A/\mathbb{Z}}^{\bullet}$ the Witt complex from [Hes15, Rem 4.8] (with $k = \mathbb{W}(\mathbb{Z})$); it is the initial object in the category of Witt complexes with $\mathbb{W}(\mathbb{Z})$ -linear differential. Note that $\mathbb{W}_S \Omega_{A/\mathbb{Z}}^{\bullet}$ is always a dga, in particular we have $d \circ d = 0$. Furthermore, if A contains a field, then $\mathbb{W}_S \Omega_{A/\mathbb{Z}}^{\bullet} = \mathbb{W}_S \Omega_A^{\bullet}$ see [Hes15, Rem 4.2, c)]; if A is an \mathbb{F}_p -algebra, then the p-typical de Rham-Witt complex is the one from Bloch-Deligne-Illusie. Also note in case A is an \mathbb{F}_p -algebra or a \mathbb{Q} -algebra, then we have a decomposition

(A.1.1)
$$\mathbb{W}_{S}\Omega^{\bullet}_{A} = \prod_{(j,p)=1} \mathbb{W}_{\mathcal{P} \cap S/j}\Omega^{\bullet}_{A},$$

as in [Rül07b, Thm 1.11]. (Indeed, in this case the construction of the V-complex in [Rül07b, Prop 1.2] goes through and the same proof as in [Rül07b, Thm 1.11] shows that it is the initial object in the category of Witt complexes as in [Hes15] and that it decomposes as in (A.1.1).)

Theorem A.2 ([Rül07b, Thm 3.20] for char(k) \neq 2). Let k be a field. Then there is an isomorphism

$$\mathbb{W}_m \Omega_k^n \xrightarrow{\simeq} \mathrm{CH}^{n-1}(\mathbb{A}_k^1 | (m+1) \cdot \{0\}, n), \quad m \ge 1,$$

where the right hand side is the additive Chow groups of Bloch-Esnault. Furthermore, via this isomorphism, the maps d, F_n , V_n , restriction and multiplication on the de Rham-Witt side correspond to \mathcal{D} , \mathcal{F}_n , \mathcal{V}_n , restriction, and *, on the Chow side, as defined in [Rül07b, Def-Prop 3.9].

Thanks to [Cos08], which was not at disposal when [Rül07b] was written, the proof of *loc. cit.* goes through, also for p = 2. We will explain this in more detail in the following.

A.3. We fix a prime p. Let A be a $\mathbb{Z}_{(p)}$ -algebra and denote by A[x] the polynomial ring in the variable x. Then the group $W_n \Omega^q_{A[x]/\mathbb{Z}}$ (resp. $W_n \Omega^q_{A[x,1/x]/\mathbb{Z}}$) is freely

The author is supported by the DFG Heisenberg Grant RU 1412/2-2.

generated by elements of the following type:

$$\begin{split} a[x]^{j}, & a \in W_{n}\Omega_{A/Z}^{q}, j \geq 0 \text{ (resp. } j \in \mathbb{Z}), \\ b[x]^{j-1}d[x], & b \in W_{n}\Omega_{A/Z}^{q-1}, j \geq 1 \text{ (resp. } j \in \mathbb{Z}), \\ V^{s}(a[x]^{j}), & a \in W_{n-s}\Omega_{A/Z}^{q}, s \in \{1, \dots, n-1\}, j \geq 1 \text{ with } (j,p) = 1 \\ & \text{ (resp. } j \in \mathbb{Z} \setminus p\mathbb{Z}), \\ dV^{s}(b[x^{j}]), & b \in W_{n-s}\Omega_{A/Z}^{q-1}, s \in \{1, \dots, n-1\}, j \geq 1 \text{ with } (j,p) = 1 \\ & \text{ (resp. } j \in \mathbb{Z} \setminus p\mathbb{Z}). \end{split}$$

For A[x] and p odd this is [HM04, Thm 4.2.8], for p = 2 this follows from [Cos08, Thm 4.3] (one has to observe that the functor P constructed in this references sends a $W(\mathbb{Z})$ -linear p-typical Witt complexes over A to a $W(\mathbb{Z})$ -linear p-typical Witt complex over A[x] and that it preserves surjections); the result for A[x, 1/x] is deduced from this as in [Rül07b, Thm 2.1], where the reference to [Rül07b, Prop 1.18] should be replaced by [Hes15, Thm C].

Theorem A.4 ([Rül07b, Thm 2.6] for char(k) \neq 2). Let L/k be a finite field extension. Then there exists a trace map

$$\operatorname{Tr}_{L/k}: \mathbb{W}_S \Omega^{\bullet}_L \to \mathbb{W}_S \Omega^{\bullet}_k$$

which satisfies the properties (i) - (v) from [Rül07b, Thm 2.6], furthermore [Rül07b, Prop 2.7] holds.

Proof. The proof is the same as in *loc. cit.*, once we made the following remarks: [Rül07b, Lem 1.20] holds for any \mathbb{F}_p -algebra A with the same proof; [Rül07b, Lem 2.3] also holds for p = 2, this follows from [III79, I, Prop 3.2, 3.4] and a limit argument; [Rül07b, Prop 2.4] holds with the same proof also for p = 2 once the reference to [Rül07b, Thm 2.1] is replaced by A.3 above.

A.5. Let p be a prime and A a $\mathbb{Z}_{(p)}$ -algebra. For a finite truncation set S we define

$$\operatorname{Fil}_{S,j} := \operatorname{Ker}(\mathbb{W}_S \Omega^{\bullet}_{A[[t]]/\mathbb{Z}} \to \mathbb{W}_S \Omega^{\bullet}_{A[[t]]/(t^j)/\mathbb{Z}}), \quad j \ge 1$$

and

$$\mathbb{W}_{S}\hat{\Omega}^{\bullet}_{A((t))/\mathbb{Z}} = \varprojlim_{j} \mathbb{W}_{S}\hat{\Omega}^{\bullet}_{A((t))/\mathbb{Z}}/\mathrm{Fil}_{S,j}.$$

Then any element in $\mathbb{W}_S \hat{\Omega}^{\bullet}_{A((t))/\mathbb{Z}}$ can be uniquely written as in [Rül07b, (2.9.1)] and we can define

$$\hat{\operatorname{Res}}_{t,n}^q: W_n \hat{\Omega}_{A((t))/\mathbb{Z}}^q \to W_n \Omega_{A/\mathbb{Z}}^{q-1}$$

as in [Rül07b, (2.9.2)]. (Using A.3, the proof is similar as in [Rül07b, Lem 2.9].)

We define $\operatorname{Res}_{t,n}^q$ as the composition

$$W_n\Omega^q_{A((t))/\mathbb{Z}} \xrightarrow{\operatorname{can.}} W_n\hat{\Omega}^q_{A((t))/\mathbb{Z}} \xrightarrow{\operatorname{Res}^q_{t,n}} W_n\Omega^{q-1}_{A/\mathbb{Z}},$$

and if A contains a field and S is a finite truncation set, then we define

$$\operatorname{Res}_{t,S}^q : \mathbb{W}_S \Omega^q_{A((t))} \to \mathbb{W}_S \Omega^{q-1}_A$$

as in [Rül07b, Def 2.11], using that in this case we have $\mathbb{W}_S \Omega_A^{\bullet} = \mathbb{W}_S \Omega_{A/\mathbb{Z}}^{\bullet}$ and that the decomposition (A.1.1) also extends to $\mathbb{W}_S \hat{\Omega}$.

APPENDIX

For any $\mathbb{Z}_{(p)}$ -algebra A the map $\operatorname{Res}_{t,n}^q$ satisfies the properties (i) - (viii) of [Rül07b, Prop 2.12] and [Rül07b, Lem 2.14] holds; if A contains a field the same holds for $\operatorname{Res}_{t,S}^q$, S any finite truncation set. (The case $\operatorname{Res}_{t,n}^q$ is proven as in *loc. cit.*, the case $\operatorname{Res}_{t,S}^q$ follows from this. Note however, that even in the case where A contains a field, the proof of property (iv) and of Lemma 2.14 uses the reduction to a torsion free $\mathbb{Z}_{(p)}$ -algebra. Since for p = 2 the absolute de Rham-Witt complex is not a dga, we prefer to work with the $\mathbb{W}(\mathbb{Z})$ -linear complex.)

Remark A.6. For an \mathbb{F}_p -algebra A, the residue $\operatorname{Res}_t : W_n \Omega_{A((t))}^q \to W_n \Omega_A^{q-1}$ was also constructed in [Kat80, §2, Prop 3] using algebraic K-theory and Bloch's approach to the de Rham-Witt complex.

Theorem A.7 ([Rül07a, Thm 2] for char(k) \neq 2). Let C be a connected regular projective curve over a field k with function field K = k(C). Let S be a finite truncation set. Then

$$\sum_{P \in C} \operatorname{Res}_{P}(\omega) = 0, \quad for \ all \ \omega \in \mathbb{W}_{S}\Omega_{K}^{q}, \ q \ge 1,$$

where the sum is over all closed points in C and $\operatorname{Res}_P : \mathbb{W}_S \Omega_K^q \to \mathbb{W}_S \Omega_k^{q-1}$ is defined as in [Rül07a, Def-Prop 1] (using $\operatorname{Res}_{t,S}^q$ from A.5 and Tr from A.4.)

Proof. The same proof of [Rül07a, Thm 2], [Rül07b, Thm 2.19] goes through once we made the following remarks: the proof of the well-definedness of Res_P is the same as in [Rül07b, Def-Prop 2.15] since [Rül07b, Lem 1.16] holds in general; [Rül07b, Prop 2.18] holds with the trace from Theorem A.4; at the end of the proof of [Rül07b, Thm 2.19] (on page 140/141) an element is lifted to $\mathbb{W}_S \Omega^1_{A((t))}$, with $A = \mathbb{Z}_{(p)}[z_a, z_b, z_c]$, replace this by the following argument (at least if p = 2): first observe that the looked for vanishing can be reduced to the *p*-typical case by the definition of Res_P ; then lift the element $\omega_{2,P}$ to the $W(\mathbb{Z})$ -linear complex $W_n \Omega^1_{A((t))/\mathbb{Z}}$ and proceed as in the proof using the Res_t from A.5.

Proof of Theorem A.2. The proof of [Rül07b, Thm 3.20] (see also [Rül07a]) goes through once we made the following remarks: in [Rül07b, Lem 3.5] replace $\mathbb{W}_m \Omega_A^r$ by $\mathbb{W}_m \Omega_{A/\mathbb{Z}}^r$ (at least if p = 2); at the end of the proof of [Rül07b, Thm 3.16] (on page 148) refer to Theorem A.7 instead of [Rül07b, Thm 2.19]; in [Rül07b, Lem 3.15] observe that if char(k) = 2, then $\mathcal{DD}(\alpha) = 0$, since in $K_2^M(k)$ we have $\{a, a\} = \{-1, a\} = 0$, and similar also $\mathcal{F}_r \mathcal{DV}_r = \mathcal{D}$; this implies that [Rül07b, Prop 3.17] also holds if char(k) = 2; for the rest of the proof of [Rül07b, Thm 3.20] use A.4 for properties of the trace and A.3 instead of [Rül07b, Thm 2.1].

References

- [Cos08] Viorel Costeanu. On the 2-typical de Rham-Witt complex. Doc. Math., 13:413–452, 2008.
- [Hes15] Lars Hesselholt. The big de Rham-Witt complex. Acta Math., 214(1):135–207, 2015.
- [HM04] Lars Hesselholt and Ib Madsen. On the De Rham-Witt complex in mixed characteristic. Ann. Sci. École Norm. Sup. (4), 37(1):1–43, 2004.
- [III79] Luc Illusie. Complexe de Rham-Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. (4), 12(4):501–661, 1979.
- [Kat80] Kazuya Kato. A generalization of local class field theory by using K-groups. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27(3):603–683, 1980.

KAY RÜLLING

- [Rül07a] Kay Rülling. Erratum to: "The generalized de Rham-Witt complex over a field is a complex of zero-cycles" [J. Algebraic Geom. 16 (2007), no. 1, 109–169; mr2257322]. J. Algebraic Geom., 16(4):793–795, 2007.
- [Rül07b] Kay Rülling. The generalized de Rham-Witt complex over a field is a complex of zerocycles. Journal of Algebraic Geometry, 16(1):109–169, 2007.

FREIE UNIVERSITÄT BERLIN, ARNIMALLEE 7, 14195 BERLIN, GERMANY $E\text{-}mail\ address:\ \texttt{kay.ruelling@fu-berlin.de}$