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Abstract

Triangulated Categories of Motives over fs Log Schemes
by
Doosung Park
Doctor of Philosophy in Mathematics
University of California, Berkeley
Professor Martin Olsson, Chair
In this thesis, we construct triangulated categories of motives over fs log schemes with
rational coefficients and formulate its six operations formalism. For these, we introduce pw-

topology and log-weak equivalences to study the homotopy equivalences of fs log schemes.
We also introduce equivariant cd-structures to deal with descent theory of motives more

systematically.
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Introduction

0.1. This thesis is devoted to constructing the triangulated categories of motives over fs
log schemes with rational coefficients and their six operation formalism. Throughout the
introduction, let A be a fixed ring. For simplicity, assume also that every log scheme we deal
with in the introduction is a noetherian fs log schemes over the spectrum of a fixed prime
field or Dedekind domain.

Construction

0.2. As illustrated in [CD12, 16.2.18], A'-weak equivalences and the étale topology “gener-
ate” the right homotopy equivalences needed to produce the motivic cohomology. However,
in the category of fs log schemes, we may need more homotopy equivalences. For example,
consider morphisms
y 4 xhs
of fs log schemes satisfying one of the following conditions:
(a) f is exact log smooth, and g is the verticalization XV — X of f.

(b) f is the identity, and g is a pullback of A, : Ay; — Ap where u : M — spec P is a
proper birational morphism of monoschemes.

(c) f is the identity, the morphism g : ¥ — X of underlying schemes is an isomorphism,
and the homomorphism
8P s
MY,@ — M X.9(y)
of groups is an isomorphism for any point y of Y.

(d) f is the projection S x Ay — S, and g is the O-section S X pty — S X Ay where pty
denotes the reduced strict closed subscheme of Ay whose image is the origin.

For each type (a)—(d), we should expect that g : Y — X is homotopy equivalent over S in
some sense because the Betti realization of g seems to be homotopy equivalent over the Betti
realization of S. It is not clear that Al-weak equivalences and the étale topology can make
such morphisms of the types (a)—(d) as homotopy equivalences.

0.3. Thus we decided to introduce new topologies and new weak equivalences.



(1) The piercing topology on the category of fs log schemes is the Grothendieck topology
generated by the morphism
Spec Z H Ay — A
where the morphisms SpecZ — A! and Ay — A! used above are the 0-section and
the morphism removing the log structure respectively.

(2) The winding topology on the category of fs log schemes is the Grothendieck topology
generated by the morphisms
A@ : AQ — A P

where 0 : P — () is a Kummer homomorphism of fs monoids.

(3) The pw-topology on the category of fs log schemes is the minimal Grothendieck topol-
ogy generated by strict étale, piercing, and winding covers.

We choose these for technical reasons. The new weak equivalences are log-weak equivalences,

and see (|1.7.2)) for the description.

0.4. Our construction of the triangulated category of motives over fs log schemes using the
above notions is roughly as follows. Let S be a fs log scheme, and let ft/S denote the
category of fs log schemes of finite type over S. The starting category is

D1 (Shyw (f2/5, A))

(see [CD12, 5.3.22, 5.1.4] for the definitions). We invert all the log-weak equivalences in
this category. Then we consider the localizing subcategory of this generated by twists and
motives of the form Mg(X) for ezact log smooth morphisms X — S. The resulting category

is denoted by
Diog pw (S, A).

We do not attempt to write this as DM(S,A) because it is not clear whether they are
equivalent or not when S is a usual scheme.

Six operations

0.5. Our next goal is to develop the Grothendieck six operations formalism. Let .7 be a
triangulated, fibered over the category of fs log schemes. The formalism should contain the
following information.

(1) There exists 3 pairs of adjoint functors as follows:
ff: 70 = 7(X): fi, f: X = 5 any morphism,
fi: 7(X)= 7(S): f',f: X — S any separated morphism of finite type,

(®, Hom), symmetric closed monoidal structure on .7 (X).

(2) There exists a structure of a covariant (resp. contravariant) 2-functors on f — fi,

fr fi(resp. f= f* f= 1)

vi



(3)

There exists a natural transformation

ay: fi = fa
which is an isomorphism when f is proper. Moreover, « is a morphism of 2-functors.

For any separated morphism of finite type f : X — S, there exist natural transfor-
mations

HK ®s L — fi(K ®@x f*L),
Homg(fiK, L) = f.Homx (K, f'L),
f'Homg(L, M) = Homx(f*L, f'M).
Localization property. For any strict closed immersion ¢ : Z — S with complementary
open immersion j, there exists a distinguished triangle of natural transformations as
follows:
.0 ad . ad . .4 O . .
Jij —id — i,3" — g1y (1]
where ad’ (resp. ad) denotes the counit (resp. unit) of the relevant adjunction.

Base change. Consider a Cartesian diagram

X -, x

bl
s —2— S

of fs log schemes. Assume that one of the following conditions is satisfied: f is strict,
f is exact log smooth, g is strict, or g is exact log smooth. Then there exists a natural
isomorphism

g — fig".
Lefschetz duality. Let f : X — S be an exact log smooth morphism of fs log schemes
of relative dimension d, and let j : XV/f — X denote its verticalization of X via f.
Then there exist natural isomorphisms

Ju" Fl(=d)[=2d] = [,
F' == g™ (d)[2d).

Here, the formulations (1)—(5) are extracted from [CD12, Introduction A.5.1]. In (2.9.1)),

(1)-(6

borrowing a terminology from [CD12, 2.4.45], we introduce the notion of log motivic trian-
gulated category. The following is our first main theorem.

Theorem 0.6 (2.9.3|in the text). A log motivic triangulated category satisfies the properties
) in (0.5)), the homotopy properties (Htp—5), (Htp—6), and (Htp-7), and the purity.

0.7. We do not prove (7) in for log motivic triangulated categories. In [Nak97, 5.1],
the proper base change theorem is proved in the context of the derived category of Kummer
log étale sheaves with a more general condition than that of our formalism (6), but we do
not know that such a generalization is possible to our situation.

vil



Verification of the axioms

0.8. Our second main theorem is as follows.

Theorem 0.9 (2.9.4] in the text). Assume that A is a Q-algebra. Then the category
Diogpw(—, A) is a log motivic triangulated category..

0.10. With (0.6), we see that Dyggpu(—, A) satisfies the properties (1)—(6) in (0.5)), the
homotopy properties (Htp-5), (Htp-6), and (Htp-7), and the purity.

Poincaré duality

0.11. The following is a weaker version of (7) in (0.5)).

(7) Poincaré duality. Let f: X — S be a vertical exact log smooth morphism of fs log
schemes of relative dimension d. Then there exist a natural isomorphism

fi=d)-2d] = f*.

One of the main obstacles is not only to prove that it is an isomorphism but also to construct
it. Since the construction exists locally, to circumvent this obstacle, we extend log motivic
triangulated categories to diagrams of fs log schemes. Here, a diagram of fs log schemes
means a functor from a small category to the category of fs log schemes. For this, we adopt
Ayoub’s algebraic derivator in [Ayo07]. Our third main theorem is as follows.

Theorem 0.12 ((10.7.2 in the text). A log motivic triangulated category satisfies (7) in
1) if

(i) it can be extended to diagrams of schemes,
(ii) it satisfies the axioms of ((9.1.2]) and strict étale descent.

0.13. By (9.5.3), Diogpw(—, A) can be extended to diagrams of fs log schemes, and it satisfies
(9.1.2) and strict étale descent. Thus it satisfies (7)” in (0.11)).

Organization

0.14. Construction part. In Chapter 1, we first review the notion of premotivic triangulated
categories. We develop an equivariant version of cd-structures, and we discuss descent and
compactness using this. After dicussing localizing subcategories and Bousfield localizations
for premotivic triangulated categories, we construct the category Djog (S, A) as explained

in .

0.15. Siz operations part. In Chapter 2, we review properties of morphisms in [Ayo07] and
[CD12]. Many properties of morphisms in them are trivially generalized to properties for
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strict morphisms. We end this chapter by introducing the notion of log motivic triangulated
categories.

In Chapter 3, we discuss results on log schemes and motives that will be needed in the
later chapters.

In Chapter 4, we construct purity transformations. Let f : X — S be a vertical exact
log smooth morphism of fs log schemes of relative dimension d. Unlike the case of usual
schemes, the diagonal morphism

X=X xsX

of underlying schemes is not a regular embedding in general. Hence we cannot apply the
theorem of Morel and Voevodsky [CD12, 2.4.35]. To resolve this obstacle, we assume that
the diagonal morphism X — X xg¢ X has a compactified version of an exactification

XS5 F o5 XxgX

in some sense. Then ¢ becomes a strict regular embedding, so when f is a proper exact log
smooth morphism, we can apply [loc. cit] to construct the purity transformation

fy — J(d)[2d].

We discuss this construction even if the exactification does not exist in Chapter 10.

In Chapter 5, we introduce the notions of the semi-universal and universal support prop-
erties, which are generalizations of the support property for non proper morphisms. Then we
prove that Kummer log smooth morphisms satisfy the semi-universal support property. We
next prove that morphisms satisfying the semi-universal support property enjoy some good
properties. Then we prove the semi-universal support property for Ay : Ayz — Ay where
0 : N — N@& N denotes the diagonal morphism and the projection Ay X pty — pty. We end
this chapter by proving the support property under the additional axiom (ii) of (2.9.1]).

In Chapter 6, we develop various homotopy properties. In particular, the proof of the
assertion that for morphisms of types (c) and (d) in (0.2), the morphisms

in Dypg (S, A) are log-weak equivalences is given.

0.16. Verification of the axioms part. In Chapter 7, we prove the localization property for
various premotivic triangulated categories in the order of structural complexity. In the course
of proof, we introduce the dimensional density structure, which is applied to showing that
the union of dividing and Zariski cd-structure is reducing with respect to the dimensional
density structure. We also introduce log”’-weak equivalences for future usage.

In Chapter 8, consider the projection g : S X pty — S where S is a fs log scheme with a
fs chart N. The main purpose of the first two sections is to construct the functor

gy - Dlogm,pw(eSm/(Y X ptN),A) — Dlogm,pw(eSm/S, A),

which is the left adjoint of ¢g*. To show this, we show that various morphisms are isomor-
phisms or log”’-weak equivalences. This enable us to show that ¢g* is conservative, and then

X



we reduce the axiom (ii) of (2.9.1) to (5.5.5). We also discuss (Htp-1), (Htp-2), (Htp-3),
and (Htp-4) for Djygp(—, A). This completes the proof that Djug pw(—, A) is a log motivic
triangulated categories.

0.17. Poincaré duality part. In Chapter 9, we select axioms of algebraic derivators to define
the notion of premotivic triangulated prederivators. We prove several consequences of the
axioms. Then as in Chapter 1, we discuss localizing subcategories and Bousfield localizations.
We end this chapter by showing that Djyg pw(—,A) can be extended to eSm-premotivic
triangulated prederivators.

In Chapter 10, we introduce the notion of compactified exactifications. Applying these to
various transformations defined in Chapter 4, we construct the Poincaré duality for vertical
exact log smooth separated morphism f : X — S with a fs chart having some conditions, and
we show the purity. Then we collect the local constructions of purity transformations using
the notion of premotivic triangulated prederivators, and we discuss its canonical version.

Terminology and conventions

0.18. General terminology and conventions.
(1) Let A be a ring throughout this thesis. We often assume that A is a Q-algebra.

(2) When S is an object of a full subcategory .# of the category of fs log schemes, we say
that S is an .¥’-scheme.

(3) When f is a morphism in a class & of morphisms of a category, we say that f is a
Z-morphism.

(4) If we have an adjunction a : C & D : 3 of categories, then the unit id — fSa is
denoted by ad, and the counit a8 — id is denoted by ad'.

(5) We mainly deal with fs log schemes. The fiber products of fs log schemes and fiber
coproducts of fs monoids are computed in the category of fs log schemes and fs monoids
respectively unless otherwise stated.

(6) An abbreviation of the strict étale topology is sét.

0.19. Terminology and conventions for monoids.

(1) For a monoid P, we denote by Spec P the set of prime ideals of P. Note that K
(P — K) for ideals K of P gives one-to-one correspondence between Spec P and the
set of faces of P.

(2) A homomorphism @ : P — @ of monoids is said to be strict if § : P — @Q is an
isomorphism.

(3) A homomorphism 6 : P — @ of monoids is said to be locally ezact if for any face G
of @, the induced homomorphism Fy-1(g) — Q¢ is exact.



(4)

(4)
(5)

(6)

Let 6 : P — @ be a homomorphism of monoids. A face G of @ is said to be @-critical
if 071(@) = 671(Q*). Such a face G is said to be mazimal 0-critical if G is maximal
among f-critical faces.

A homomorphism 6 : P — @ of monoids is said to be vertical if the cokernel of 6
computed in the category of integral monoids is a group. Equivalently, 6 is vertical if
0(P) is not contained in any proper face of Q.

Terminology and conventions for log schemes.

For a monoid P with an ideal K, we denote by Ap) the closed subscheme of Ap
whose underlying scheme is Spec Z[P]/Z[K].

For a sharp monoid P, we denote by ptp the log scheme App+).

For a log scheme S, we denote by S the underlying scheme of S, and we denote by
M the étale sheaf of monoids on S given by S.

For a morphism f : X — S of log schemes, f denotes the morphism X — S of
underlying schemes.

For a morphism f : X — S of fs log schemes, we say that f is a monomorphism if it is a
monomorphism in the category of fs log schemes. Equivalently, f is a monomorphism
if and only if the diagonal morphism X — X xg¢ X is an isomorphism.

For a morphism f : X — § of fine log schemes and a point x € X, we say that f is
vertical at x if the induced homomorphism

Mg pa) = Mx,
is vertical. Then the set
X/l .= {z € X : f is vertical at 2}

is an open subset of X, and we regard it as an open subscheme of X. The induced
morphism X'/ — S is said to be the verticalization of f, and the induced morphism
Xver/f — X is said to be the verticalization of X via f.

Terminology and conventions for monoschemes.

For a monoid P, we denote by spec P the monoscheme associated to P defined in
[Ogul4, 11.1.2.1].

For a monoscheme M (see [Ogul4, 11.1.2.3] for the definition of monoschemes), we
denote by A, the log scheme associated to M defined in [Ogul4, Section I11.1.2].

x1



Chapter 1

Construction

1.1 Premotivic categories

1.1.1. Through this section, we fix a category . with fiber products and a class of morphisms
P of .# containing all isomorphisms and stable by compositions and pullbacks.

1.1.2. In this section, we will review Z-premotivic triangulated categories and exchange
structures formulated in [CD12, Section 1]. First recall from [CD13, A.1] the definition of
Z-primotivic triangulated categories as follows.

Definition 1.1.3. A Z-premotivic triangulated category 7 over . is a fibered category
over . satisfying the following properties:

(PM—1) For any object S in ., 7 (S) is a symmetric closed monoidal triangulated category.

(PM—-2) For any morphism f: X — S in ., the functor f* is monoidal and triangulated, and
admits a right adjoint denoted by f,.

(PM-3) For any &-morphism f : X — S, the functor f* admits a left adjoint denoted by fj.
(Z-BC) P-base change: For any Cartesian square

!

X’%

!

s 2 s
in . with f € &, the exchange transformation defined by
x ad * Lk ~ * ok ad’ *
Ex: fig" — fig"f fo — [if 9" fs — g fi
is an isomorphism.

(P-PF) P-projection formula: For any &-morphism f : X — S, and any objects K in .7 (X)
and L in .7 (9), the exchange transformation defined by

Ex: fi(K ®x f'L) % £(f 1K @x L) =5 fif (£K ®s L) “5 £,K @5 L

1



is an isomorphism.

We denote by Homg the internal Hom in .7 (S).

Remark 1.1.4. Note that the axiom (PM-2) implies

(1) for any morphism f : X — S in . and objects K and L of .7 (S), we have the natural
transformation
() @x (L) = f1(K @ L) (1.1.41)

with the coherence conditions given in [Ayo07, 2.1.85, 2.1.86].

(2) for any morphism f: X — S in ., we have the natural transformation
f[(ls) = 1x
with the coherence conditions given in [Ayo07, 2.1.85].

Definition 1.1.5. Let .7 be a &-premotivic triangulated category.

(1) Let f: X — S be a Z-morphism in .. Then we put Mg(X) = fylx in 7 (S). It is
called the motive over S represented by X.

(2) A cartesian section of .7 is the data of an object Ag of 7 (5) for each object S of .7
and of isomorphisms

[(As) — Ax

for each morphism f: X — S in ., subject to following coherence conditions:

(i) the morphism id*(Ag)* — Ag is the identity morphism,
(i) if g : Y — X is another morphisms in ., then the diagram

g*f*(AS) —— g"Ax — Ay

; I

(9f)*(As) = » Ay

in 7 (Y) commutes.

The tensor product of two cartesian sections is defined termwise.

(3) A set of twists T for .7 is a set of Cartesian sections of .7 stable by tensor product.
For short, we say also that .7 is 7-twisted .

1.1.6. Let 7 be an object of 7. Then it defines a section ig for each object S of ./, and for
an object K of .7(5), we simply put

K{i} = K ®gis.

Then when 7,7 € 7, we have

K{i+j} = (K{i}){5}-

2



Note also that by (1.1.4(1)), for a morphism f : X — S in .#, we have the natural isomor-
phism
SrEH{iy) — (fFEO){i}-
1.1.7. Let .7 be a &-premotivic triangulated category. Consider a commutative diagram
x I x

o

g
S —— S
in .. We associates several exchange transformations as follows.

(1) We obtain the exchange transformation
frg. =5 gL f"
by the adjunction of the exchange transformation
fid* 25 g fr.

Note that it is an isomorphism when f is a &-morphism by (Z-BC).

(2) Assume that f is a &-morphism. Then we obtain the exchange transformation
. ad o1 BEx=! x 1 pr ad o
Ex: fyg. — frg S fy = [if 9. Sy — 9. fy-

3) Assume that Jx and g/ have right ad'oint& denoted by g! and gl! res ectively. If the
exchange transformation

Frg. =5 glf"
is an isomorphism, then we obtain the exchange transformation

ad 1% 1 % 1 ad

B 5" % ¢.f"9" 55 o Folg 5 g f
(4) For objects K of .7 (X) and L of .7(S), we obtain the exchange transformation
Ex: f.K @5 L% fof (f.K @5 L) <> fu(f f.K @x f'L) 5 fu(K @x f'L).

(5) For objects K of .7 (S) and L of .7 (X), we obtain the natural isomorphism
Ezx: Homg(K, f.L) — fuHomyp(f*K, L)

by the adjunction of ((1.1.4.1)).



(6) Assume that f is a &-morphism. For objects K and L of .7(S) and K’ of .7 (X), we
obtain the exchange transformations

f*Homg(K,L) 2% Homx(f*K, f*L),

Homs(fK', L) 2% f.Homx (K, f*L)
by the adjunction of the &?-projection formula.

(7) Assume that f is a &-morphism and that the diagram is Cartesian. Then we obtain
the exchange transformation

Ex: Mg (X') = fﬁle S fﬁ,gl*lx 2, g filx = g"Ms(X).

Note that it is an isomorphism.

(8) Assume that f and g are &2-morphisms and the the diagram is Cartesian. Then we
obtain the exchange transformation

Bz Ms(X x5 S") = figif*1s =% fif*gsls
25 B(ly ®x frgls) 25 fily ®g gile = Ms(X) @ Mg(S')

Note that it is an isomorphism.

(9) Assume that .7 is 7-twisted and that f is a &-morphism. For ¢ € 7 and an object
K of 7(X), we obtain the exchange transformation

Ex

Ex: fy(K{i}) = fi(K ®x f*1s{i}) = (f.K){i}.

Note that it is an isomorphism.

(10) Assume that .7 is 7-twisted. For ¢ € 7 and an object K of .7(X), we obtain the
exchange transformation

Ex: (fEK){i} =5 f.K ®g1s{i} =5 f.(K ®x [*1s{i}) = fo.(K{i}).

If twists are ®-invertible, then it is an isomorphism since its right adjoint is the natural
isomorphism

S =i}) — (f*L){—i}
where L is an object of .7 (95).

1.2 Equivariant cd-structures

1.2.1. Through this section, we fix a category .. We also assume that A is a Q-algebra.



Definition 1.2.2. Let S be an .¥-scheme, let &2 be a class of morphisms of .% containing
all isomorphisms and stable by compositions and pullbacks, and let ¢t be a topology on .
such that every t-covering consists of &-morphisms.

(1) We denote by
PSh(Z /S, A)

the category of presheaves of A-modules on the category of &2 /S-schemes.

(2) We denote by
Sh,(22/S,A)

the category of t-sheaves of A-modules on the category of &2 /S-schemes.

Definition 1.2.3. (1) Let A be a set with a left action of a group G. Then we denote
by A% the subset of A fixed by G.

(2) Let F be a sheaf on a site C with a left action of a group G. Then we denote by F/G
the colimit of the diagram induced by the G-action
FxG=F
in the category of sheaves on C. Note that for any sheaf F’ on C, we have
Home(F/G, F') = (Home(F, F'))¢.
Here, the right action of G on Home(F, F') comes from the left action of G on F.

(3) Asin [CD12, 3.3.21], for any object K of C(PSh(Z?/S,A)) or C(Sh,(Z?/S,A)) with a
left G-action where t is a topology on .#, we denote by K¢ the complex im px where
px : K — K denotes the morphism defined by the formula

1
r)=— ST
p(x) 7 g;g
Then we get the morphisms
K% K¢S K
whose composition is pgk.

Definition 1.2.4. Recall from [Ayo07, Section 4.5.3] that the ¢yp-topology on .7 is the
minimal Grothendieck topology such that the empty sieve is a covering sieve for the initial
object (). Note that a presheaf F' on .7 is a tg-sheaf if and only if F(0)) = x.

Definition 1.2.5. We will introduce an equivariant version of cd-structures in [Voel0a] as
follows. An equivariant cd-structure (or ecd-structure for abbreviation) P on . is a collection
of pairs (G, ) where G is a group and C' is a commutative diagram

X -2y x
LV
N

of .-schemes with G-actions on X over S and on X’ over S’ such that



(i) ¢ is G-equivariant over g,
(i) if G 2 G and C = (', then (G,C) € P if and only if (G',C") € P.

For a pair (G,C) € P, C is called a P-distinguished square of group G. The tp-topology is
the Grothendieck topology generated by tg-topology and morphisms of the form

X[[s =5 (1.2.5.1)

for (G,C) € P. If G is trivial for any element of P, then P is a cd-structure defined in
[VoelOa, 2.1].

1.2.6. In [VoelOa] and [VoelOb], analogous results of the Brown-Gersten theorem ([BG73])
for Nisnevich topology and cdh-topology are studied by introducing cd-structures. For in-
stance, if we take P as the collection given in (|1.2.8{(4)), then we recover the Nisnevich
cd-structure. In [CD12, §3.3], it is applied to study descents in triangulated categories of
motives over usual schemes.

However, there is a topology like the étale topology that cannot be obtained by any
cd-strucutres. In [loc. cit], descent theory for the étale topology (and more generally the
h-topology) is discussed with equivarient versions of distinguished squares but without cd-
structures. The reason why we introduce ecd-structures here is to study descent theory for
such a topology more systematically.

1.2.7. From now on, in this section, fix a fs log scheme §. Then we assume that .% is a full
subcategory of the category of noetherian fs log schemes over S such that

(i) . is closed under finite sums and pullbacks via morphisms of finite type,

(ii) if S belongs to . and X — S is strict quasi-projective, then X belongs to .7,
(iii) if S belongs to .7, then S x A, belongs to . for every fs monoscheme M,
(iv) If S belongs to ., then S is belongs to .&.

Definition 1.2.8. Consider a Cartesian diagram

X L, x
C= lf’ lf
S —— S
of .#-schemes and a group G acting on X over S. We have several ecd-structures as follows.

(1) Recall from [VoelOb] that C' is called an additive distinguished square (with trivial
G)if X'=0and S=X1I5"

(2) Recall from [VoelOb] that C' is called a plain lower distinguished square (with trivial
G) if f and g are strict closed immersions and S = f(X) U g(5").

(3) Recall from [VoelOb] that C' is called a Zariski distinguished square (with trivial G)
if f and g are open immersions and S = f(X) U g(5"),

6



(4)

Recall from [VoelOb] that C' is called a strict Nisnevich distinguished square (with
trivial G) if f is strict étale, g is an open immersion, and the morphism f~!(S —
g(S5") = S —g(9') is an isomorphism. Here, S — g(5’) is considered with the reduced
scheme structure.

C'is called a Galois distinguished square of group G if X’ = §" = (), f is Galois, and
G is the Galois group of f.

C' is called a dividing distinguished square (with trivial G) if X’ = 5" =0 and f is a
surjective proper log étale monomorphism.

C' is called a piercing distinguished square (with trivial G) if C' is a pullback of the
Cartesian diagram

ptN E— AN

l l (1.2.8.1)

SpecZ — Al

of .#-schemes where the lower horizontal arrow is the O-section and the right vertical
arrow is the morphism removing the log structure.

C' is called a quasi-piercing distinguished square (with trivial G) if C' is a plain lower
distinguished or C' has a decomposition

X — X

L

Y —— Y

o

S — 8

such that the upper square is a plain lower distinguished square and that the lower
square is a piercing distinguished square or a pullback of the Cartesian diagram

pty —— Ay

l l (1.2.8.2)

ptN2 — AN XAl AN

where the lower horizontal arrow is the O-section and the right vertical arrow is the
diagonal morphism of Ay — A! removing the log structure.

For n € N*, let p,, be an n-th root of unity. Then C is called a winding distinguished
square of group G if X’ = 5" =), f is a pullback of the composition

Ag x SpecZju,] = Ag 2 Ap



where the first arrow is the projection, n € Nt and 6 : P — @ is a Kummer
homomorphism of fs monoids such that the Galois group of Ay x Spec Q[u,] over
Ap x SpecQ exists, and G is the Galois group.

By (1.2.5)), we obtain the additive, plain lower, Zariski, strict Nisnevich, dividing, piercing,
quasi-piercing, Galois, and winding ecd-structures and topologies.

Definition 1.2.9. Let P be an ecd-structure on .. As in [Voel0al, we introduce the notions
of complete, reqular, and bounded ecd-structures as follows.

(1)
(2)
(3)

A P-simple covering is a covering that can be obtained by iterating coverings of the
form (|1.2.5.1]).

P is called complete if any covering sieve of an object X # () of . contains a sieve
generated by a P-simple covering.

P is called regular if for any (G, C) € P, C is Cartesian, S” — S is a monomorphism,
and the induced morphism of tp-sheaves

(P(X) X pisry (p(X)/G) [T p(X) = p(X) x0) (p(X)/G)

is surjective where p(S) denotes the representable ¢p-sheaf of sets of S.

Recall from [VoelOa, 2.20] that a density structure on .# is a function which assign
to any object S of . a sequence Dy(S), Di(S) ... of family of morphisms to S with
the following conditions:

(i) (0 — S) € Dy(9) for all S,
(ii) isomorphisms belong to D; for all i,
(iti) Disi C Dy,
(iv) if g: Y - X isin Dy(X) and f: X — S isin D;(5), then gf : Y — S isin
D;(5).

Let D.(—) be a density structure. Then (G,C) € P is called reducing (with respect
to D,) if for any ¢ > 0, and any X{ € D;(X’), S, € D;i+1(5), Xo € D;11(X), there
exist Xy € D;y1(X), a distinguished square of G

/

e
Ol - lf/ lf
S 25 5
of .#-schemes over S, and a G-equivariant morphism C; — C which coincides with

the morphism S; — S on the right corner and whose other respective components
factor through X{, Sj, Xo.

A G-equivariant morphism (G',C") — (G,C') of P-distinguished squares is called a
refinement if the morphism is the identity on G and the identity on the right corner.
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(7) Let D.(—) be a density structure. Then P is called bounded by D.(—) if every element
of P is reducing with respect to D,(—) and that for any object X of ., there exists
n such that any element of D,,(X) is an isomorphism.

Definition 1.2.10. For a noetherian scheme S, recall from [VoelOb] the standard density
structure Dy(S) as follows. An open immersion U — S is in Dy(S) if for any irreducible
component Z; of S — U, there is an irreducible component S; of S containing Z; such that
dim S; > d + dim Z;.

Then for an .#-scheme X, we denote by D;(X) the family D;(X). It is again called the
standard density structure.

1.2.11. The notions of complete, reqular, and bounded ecd-structures will be used in (|1.3.6)).
Hence let us study these notions for the ecd-structures defined in ((1.2.8]).

Proposition 1.2.12. The additive, plain lower, Zariski, and strict Nisnevich ecd-structures
are complete, reqular, and bounded by the standard density structure.

Proof. 1t follows from [VoelOb, 2.2]. O

Proposition 1.2.13. The piercing, quasi-piercing, Galois, and winding ecd-structures are
complete.

Proof. 1t follows from [VoelOb, 2.5]. O
Proposition 1.2.14. The quasi-piercing cd-structure is reqular.

Proof. Consider a commutative diagram

x4 x
C= lf/ lf
S —— S
of .#-schemes. If it is a plain lower distinguished square, we are done by . Hence we
may assume that C' has a decomposition
X L, x
bk

Yy 2y
|
g —= 83

such that the upper square is a plain lower distinguished square and the lower square is a
pullback of ((1.2.8.1)) or (1.2.8.2]). We want to show that the induced Cartesian diagram

X — X
l ld (1.2.14.1)

, /g/ngl
X XS/X —)XXSX



of .#-schemes where d denotes the diagonal morphism is again a quasi-piercing distinguished
square.
Since p is a strict closed immersion, we have

X = (X Xg X) XYXSY,d’ Y,

X' X7 X' = (Y/ X g Y/) XyxgY (X Xg X)
where d' : Y — Y XgY denotes the diagonal morphism. Thus (1.2.14.1)) is a pullback of the
Cartesian diagram
Y ——— Y
l ld' (1.2.14.2)

, , ,!J"ng”
Y' XY —— Y xXgY

of .#-schemes via pxp: X Xxg X — Y xgY. Then the remaining is to show that (|1.2.14.2))

is a quasi-piercing distinguished square. By definition, ([1.2.14.2)) is a pullback of (1.2.8.2)) or
the Cartesian diagram

ptN E— AN
lid lid (1.2.14.3)
pty —— Ay

where the horizontal arrows are the 0-section. The square (|1.2.8.2)) is a quasi-piercing distin-
guished square by definition, and the square (|1.2.14.3)) is a plain lower distinguished, which
is a quasi-piercing distinguished square. Thus (1.2.14.2)) is a quasi-piercing distinguished
square. ]

Proposition 1.2.15. The quasi-piercing cd-structures is bounded by the standard density
structure.

Proof. Consider a quasi-piercing distinguished square

X -2y x

¢= lf’ lf

S —2 59

of .#-schemes. As in the proof of [VoelOb, 2.11], if we replace X by the scheme-theoretic
closure of the open subscheme f~1(S’ — S), we get another quasi-piercing distinguished
square which is a refinement of the original one. Then the same proof of [VoelOb, 2.12] can
be applied to our situation. O

Proposition 1.2.16. The union of the additive and Galois ecd-structures is reqular.
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Proof. The additive structure is regular by [VoelOb, 2.2]. Thus as in the proof of [CD12,
3.3.19], the question is equivalent to the assertion that for any additive and Galois sheaf of
sets F' and any Galois cover f: X — S, the function

F(S) = F(X)¢

induced by f*: F(X) — F(Y) is a bijection. This follows from the fact that the cokernel of
the induced functions

FIX) 2 F(Xxs X)=F(XxG)=2F(X)xG
is exactly FI(X)¢. O
Proposition 1.2.17. The union of the plain lower and winding ecd-structures is reqular.

Proof. Let f: X — S be a winding cover, which is a pullback of the composition
Ao % Spec Z{i,] = Ao % Ap

where the first arrow is the projection, n € N* and 6 : P — @ is a Kummer homomorphism
of fs monoids such that the Galois group G of Ag x Spec Q[u,,] over Ap x Spec Q exists. We
denote by

w(9) : QOZL/(n) = ¢: QO ZL/(n)
the homomorphism induced by g. We have

Xxs X=X,

geG

where X, denotes the graph of the automorphism X — X induced by g € G.
We will show that X, is a closed subscheme of X xg X. We put Q' = Q @ Z/(n). It
suffices to show that for any g € G, the homomorphism

QopQ =@, (a,0)—a+e(g)0)
is strict. Composing with the isomorphism
QaorQ —»Qaq, (ab)w (aplg)D),
it suffices to show that the summation homomorphism
QorQ —Q

is strict. It follows from ([1.2.18)) below.
Then as in the proof of [CD12, 3.3.19], the question is equivalent to the assertion that for

any plain lower and winding sheaf of sets F' and any winding cover f : X — S, the function

F(S) = F(X)¢
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induced by f*: F(X) — F(Y) is a bijection. The function

F(X xg X —>HF

gelG

is injective since I’ is a plain lower sheaf, so the conclusion follows from the fact that the
cokernel of the compositions

F(X) =3 F(X xs X) = [[ F(X,

geG
is exactly FI(X)%. O

Lemma 1.2.18. Let 0 : P — @ be a Kummer homomorphism of fs monoids. Then the
summation homomorphism n : Q ®p Q — Q is strict.

Proof. The homomorphism 7 : Q ©p Q ® Q is surjective, so the remaining is to show that
d is injective. Choose n € N* such that ng C 0(P). For any q € Q, n(q, —q) = (ng,0) +
(0, —ngq) = 0 because ng € (P). Thus (¢, —q) € (Q @p Q)* since Q ®p Q is saturated. Let
()’ denote the submonoid of QQ ©p @) generated by elements of the form (g, —q) for ¢ € Q5P.
Then Q' C (Q ®p Q)*, and Q/Q" = Q. The injectivity follows from this. O

Proposition 1.2.19. The Galois and winding ecd-structures are bounded by the standard
density structure.

Proof. 1f follows from [VoelOb, 2.9]. O

Theorem 1.2.20. Any combination of unions of the additive, plain lower, Zariski, strict
Nisnevich, quasi-piercing, additive+Galois, and plain lower+winding ecd-structures is com-
plete, regqular, and bounded by the standard density structure.

Proof. 1t follows from ([1.2.12)), (1.2.13)), (1.2.14)), (1.2.15)), (1.2.16), (1.2.17), (1.2.19), and
[Voel0a, 2.6, 2.12, 2.24]. 0

Definition 1.2.21. The Grothendieck topology on . generated by the strict étale, piercing,
and winding topologies is called the pw-topology , and the Grothendieck topology on .%
generated by the strict étale, quasi-piercing, and winding topologies is called qw-topology .

1.2.22. By [CD12, 3.3.26], the strict étale topology is the minimal Grothendieck topology
generated by the strict Nisnevich and Galois topologies, and the additive topology is coarser
than the strict étale topology. Thus the strict étale topology and qw-topology are unions of
topologies in (|1.2.20)).

12



1.3 Descents

1.3.1. Through this section, we fix a full subcategory .# of the category of noetherian fs log
schemes satisfying the conditions of ((1.2.7)). We also assume that A is a Q-algebra.

Definition 1.3.2. Let S be an .%’-scheme, let &2 be a class of morphisms of .# containing
all isomorphisms and stable by compositions and pullbacks, and let ¢ be a topology on .
such that every t-covering consists of &-morphisms.

(1) eSm/S denotes the category of .#-schemes exact log smooth over S. The class of
exact log smooth morphisms in . is denoted by eSm.

(2) 1Sm/S denotes the category of .-schemes log smooth over S. The class of exact log
smooth morphisms in .% is denoted by [Sm.

(3) ft/S denotes the category of .#-schemes of finite type over S. The class of exact log
smooth morphisms in .% is denoted by ft.

(4) For any presheaf F' on &2/S, we denote by Ag(F) the A-free presheaf
(X € ft/S) = AF®)

Then we denote by AL(F) its associated t-sheaf.

(5) For any &Z-morphism X — S, we denote by AL(X) the free sheaf in Shy(Z?/S,A)
represented by X — S.

(6) We denote by C(Sh¢(22/S, A)) the category of unbounded complexes in Sh(Z?/S, A).
An object C of this category is called a complex in Sh,(Z?/S, A).

(7) We denote by K(Sh;(2/5S, A)) the category of unbounded complexes in Sh,(Z/S, A)
modulo the chain homotopy equivalences.

(8) If 2" = (Zi) be a simplicial .-scheme over S, then we denote by A%L(.2") the asso-
ciated complex
= A (2 = AY(Z20) 20—

(9) Recall from [CD12, 5.1.9] that a complex C' in Shy(Z?/S, A) is said to be t-local if for
any Z-morphism X — S and any n € Z the induced homomorphism

Hom s, (/5,4 (As(X)[n], C) = Hompsn,(2/5,0)) (Ag(X)[n], C)

(10) Recall from [CD12, 5.1.9] that a complex C' in Shy(Z/S, A) is said to be t-flasque if
for any &-morphism X — S, any t-hypercover Z° — X, and any n € Z the induced
homomorphism

Hom s, (25,4 (As(X)[n], C) = Homg sn,(2/s.0)) (As(2)[n], C)

is an isomorphism. Note that by [CD12, 5.1.13], C is t-local if and only if C' is
t-flasque.
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1.3.3. We refer to [CD12, 3.2.5] for the definition of ¢-descent . For example, a complex K
in PSh(Z2/S, A) satisfies t-descent if and only if K is t-flasque by definition.

Definition 1.3.4. Let S be an .’-scheme, let & be a class of morphisms of .% containing
all isomorphisms and stable by compositions and pullbacks, and let P be a ecd-structure on
/S. We put t = tp for brevity. We denote by BCp the union of the family of bounded
complexes of the form

AG(X")%[n] — Ag(X)%[n] & AG(T")[n] — Ag(T)[n]

for P-distinguished squares of group G

X - x

ol

T T
of .-schemes over S and n € Z and the family of bounded complexes of the form
Ms(0)[n]
for n € Z. A complex C'in Shy(Z?/S, A) is said to be BCp-local if
Hompsn, (/5,0 (D, €) = 0
for any object D of BCp.

1.3.5. Many results in [VoelOa] can be trivially generalized to ecd-structures and complexes
of presheaves of A-modules. The following theorem is such an example.

Theorem 1.3.6. Let S be an . -scheme, and let K be a presheaf of complexes of A-modules
on /S, and let P be a ecd-structure on % /S. Consider the following conditions.

(i) K(0) =0, and for any P-distinguished square of G

X — X

]

77— T
of L -schemes over S, the diagram

K(T) — K(T')

| |

K(X)¢ —— K(X"¢
is homotopy Cartesian in the derived category of A-modules.
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(i) The image of K in D(PSh(Z2/S,A)) is BCp-local.
(i1i) The image of K in D(PSh(Z2/S,\)) is tp-local.

Then we have the implication (i) < (it). When P is a complete, reqular, and bounded, we
also have the implication (ii) < (it3).

Proof. The equivalence of (i) and (ii) follows from the point 1 of [VoelOa, 3.8] with the
generalization (1.3.5). When P is complete, regular, and bounded, the equivalence of (ii)
and (iii) follows from the points 2 and 3 of [VoelOa, 3.8] with the generalization (1.3.5). O

Corollary 1.3.7. Let S be an .#-scheme, and let K be an object of D(PSh(Z2/S,A)). If
P is a complete, reqular, and bounded ecd-structure on ., then the following conditions are

equivalent.

(i) For any morphism p:T — S of .#-schemes, and for any P-distinguished square

x4 x
b
T ——T

of ./ -schemes with a G-action, the commutative diagram

pp' K —— p.g.g'v'K
lad lad
(p*f*f*p*K)G a_d> (p*h*h*p*K)G
is homotopy Cartesian where h = fg'.
(i) K satisfies tp-descent.

Proof. By definition, the condition (i) is equivalent to the condition that and for any objects
and E of D(PSh(22/S, A)), the presheaf of complexes of A-modules

RHOIH(E, Rrgeom(_a K))

on .7/S (see [CD12, 3.2.11.3, 3.2.15] for the definitions) satisfies the condition (i) of ([1.3.6)).
Then by the implication (i) < (iv) of (loc. cit), it is equivalent to the condition that

RHOm(E, Rrgeom(_a K))

satisfies t p-descent over . /S. Finally, it is equivalent to the condition (ii) by [CD12, 3.2.18].
[l

Corollary 1.3.8. Let S be an .-scheme, let K be an object of D(PSh(Z2/S,A)), and
let P be a union of the additive, plain lower, Zariski, strict Nisnevich, quasi-piercing, ad-
ditive+Galois, and plain lower+winding ecd-structures. Then the conclusion of 18
satisfied.

Proof. Tt follows from ((1.3.7)) and ({1.2.20)). O
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1.4 Compactness

1.4.1. Through this section, we fix a category .¥ and a class of morphisms & of .’ containing
all isomorphisms and stable by compositions and pullbacks.

Definition 1.4.2. Let .7 be triangulated category which admits small sums. Recall from
[CD12, 1.3.15] the following definitions.

(1) An object X of .7 is called compact if the functor Hom 7 (X, —) commutes with small
sums.

(2) A class G of objects of 7 is called generating if the family of functors
Homy(X[n], _)

for X € G and n € Z is conservative.

(3) 7 is called compactly generated if there exists a generating set G of compact objects

of .

Definition 1.4.3. Let .7 be a &-premotivic triangulated category over .#.

(1) We say that .7 is generated by &7 and 7 if for any object S of ., the family of objects
of the form

Ms(X){i}
for a Z-morphism X — S and ¢ € 7 generates 7 (.59).

(2) We say that .7 is compactly generated by & and T if 7 is generated by &2 and 7 and
for any &Z-morphism X — S and ¢ € 7, Mg(X){i} is compact.

(3) We say that .7 is well generated if 7 (S) is well generated in the sense of [NeeOl,
8.1.7] for any object S of ..

(4) We say that .7 is well generated by & and 7 if 7 is well generated and generated by
& and T.

Note that .7 is compactly generated by & and 7 if and only if .7 is generated by & and 7
and compactly 7-generated in the sense of [CD12, 1.3.16].

1.4.4. Let .7 be a well generated &-premotivic triangulated category over .. Recall from
[CD12, 1.3.17] that a family of objects G of .7 generates .7 if and only if .7 is the localizing
subcategory of .7 generated by G.

1.4.5. Assume that . be a full subcategory of the category fs log schemes satisfying the
conditions of (1.2.7)). Assume also that A is a Q-algebra. Let P be any combination of unions
of the additive, plain lower, Zariski, strict Nisnevich, quasi-piercing, additive+Galois, and
plain lower+winding ecd-structures. Then BCp in is a bounded generating family for
tp-hypercovering in Shy, (ft, A) in the sense of [CD12, 5.1.28]. We will use this in (1.7.5)).
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1.5 Localizing subcategories

1.5.1. Through this section, we fix a category . and classes of morphisms &' C & of
< containing all isomorphisms and stable by compositions and pullbacks. We fix also a
T-twisted Z-premotivic triangulated category 7 well generated by & and 7.

For an object S of ., we denote by Fg /g the family of motives of the form

Ms(X){i}

for 2’-morphism X — S and twist ¢ € 7. Then we denote by .7 (Z'/S) the localizing sub-
category of 7 (5) generated by Fu /g, and we denote by 7 (') the collection of 7 (2'/S)
for object S of .. The purpose of this section is to show that .7 (') has a structure of
P'-premotivic triangulated category.

1.5.2. For a &-morphism X — S, we denote by My ,s(X) the image of Mg(X) in Ty,
and we denote by py the inclusion functor

TP = 7.

Then the set of twists 7 for .7 gives a set of twists for 7 (). It is denoted by 7 again.
Since 7 is well generated by &2 and 7 by assumption, .7 (4?') is well generated by &’ and
7. By [Nee0l, 8.4.4], p; has a right adjoint

p T = T (P
since py respects small sums. For any object S of ., we denote by
pis: T(P']S) 7= T(S) : pi
the specification of p; and p* to S.
1.5.3. Let X and S be objects of .. Consider a diagram

T7(2'/X) T(P'/S)

Pu,XlTp} pa,slTpg
T(X)

# T (S)

such that « is left adjoint to 5. Suppose that o maps Fgr /s into 7 (£'/S) and that o
commutes with twists. Then we define

ap: T(PIX) = T(P')S),

as agr = psaps x and Bgr = pyPpys. We often omit &' in ag and g for brevity.

17



Proposition 1.5.4. Under the notations and hypotheses of ,
(1) o commutes with py, i.e., pysam = apix,

(2) agp is left adjoint to B,

Proof. (1) The counit
Pt SPSOPEX — Py X

is an isomorphism since py g is fully faithful and the essential image of apy x is in the essential
image of ps ¢. This proves the statement.

(2) We will show this by constructing the unit and counit. The unit

. d
id a_> Bg/agz/

is constructed by

. d d d'—1 *
id == pxpsx — pxBapsx = pxBpsspsapsx.

Here, the third arrow is defined and an isomorphism by (1). The counit

069216321 & id

is constructed by
% * ad’ & ad’ ad~1 .
Psapyx PxBps.s — PsBpys — pspss — id.

Here, the third arrow is defined and an isomorphism since py g is fully faithful. These two
satisfy the counit-unit equations, so a4 is left adjoint to S . O

Proposition 1.5.5. Consider a commutative diagram

X 9 x

Il
s 25 S
of L -schemes. Assume that g* and g"* commutes with p* and that the exchange transforma-

tion
AN ES

* Ezx
g f« — fi9

1s an isomorphism. Then the exchange transformation

Ex / /
e S

18 also an isomorphism.

18



Proof. Since p* is essentially surjective, it suffices to show that the natural transformation

* * Ex / 1% %
9o fa, 1 Psr — f*,,@’g(@’pS’

is an isomorphism. By the condition that ¢* and ¢* commutes with p*, it is equivalent to
the assertion that the natural transformation

ko k Ex * *
Px9" fe = px fid
is an isomorphism. This follows from the other condition. n

1.5.6. We will define operations (fy o for f € &', f5, fi», ®, and Hom) and prove the
axioms of &’-premotivic categories for .7 as follows.

(1) For any object S of .7, we put 1g g = ps sls. We often omit &’ in the notation for
brevity.

(2) Construction of fy oz for f € P, fi, and f, . By (1.5.4)), we have adjunctions

foo: T(P)X) ——= T(2/S): fL

fo: T(2]X) == T(2/5): fo

where in the first one, we assume that f € &’'. Then by (loc. cit), fy » for f € &'
and f}, commute with py.

(3) Functoriality of f5,,. Let f: X — S and ¢ : Y — X be morphisms in .#. Then the
natural isomorphism

G I — ([9)
is constructed by
* % * ok ad’ *x % Lk ~ * *
P59 pesPst prs — psg [ pss — ps(fg) pys-

The usual cocycle condition for f7,, follows from the usual cocycle condition for f*.
Thus .7 is a fibered category over .¥.

(4) Construction of ®. For an object S of . and objects K and L of 7 (2'/S), we
denote by K ®4/g L the object

ps(prsK ®g pysL)

in 7(2'/9).
(5) Monoidality of pys. The morphism

p1.5(K @15 L) — (pp.sK) ®g (py,sL)
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is constructed by

% ad’
pi,sPs(ps,s K s pysL) — (ps.sK) ®s (ps,sL). (1.5.6.1)

We will show that it is an isomorphism. To show this, since .7 (Z’/S) is well generated
by & and T, it suffices to show that the morphism

p1.5(Mgzys(V) @1ys M ys(W)) — (py.sMa1/s(V')) @s (03,5 Mzr75(V))

is an isomorphism for &?’-morphisms V" — S and W — S. It follows from the
commutative diagram

pi.s(Moys(V) @115 Mg js(W)) —— (pgsMzr/s(V)) ®s (pgsMzr/s(V))
Ms(v X9 W)
in 7(9).
We can similarly construct the isomorphism
pi.s(1zr/s) — 1g.

We will show below that — ® 2,5 — gives a closed symmetric monoidal structure on
T (2'/S). With this structure, one can check that the coherence conditions given in
[Ayo07, 2.1.79, 2.1.81] are satisfied, i.e., the functor p; ¢ is monoidal.

Functoriality of ®. The natural transformation
(= Qs =) @zrys — —> — Qs (— Qs —)

is constructed by the composition

* * ad’ *
P5(ps.505(ps.s K @5 py.sL) @s py.sN) —ps((ps,s K @s pysl) @s pysN)
= p5(prsK @s (pysL ®s pysN))

CLd/_l

—ps(prsK ®s pysps(prsK ®s pgsN))

for objects K, L, and N of 7 (Z'/S). Here, the first and third arrows are defined and
isomorphisms since (|1.5.6.1]) is an isomorphism, so the composition is an isomorphism.
We can construct similarly isomorphisms

K®zpslapys — K, lgsQ@ps K — K

in 7(2'/S). The coherence conditions given in [Ayo07, 2.1.79, 2.1.81] for — ® /s —
follows from the coherence conditions for —®g —. Thus — ® /g — gives a symmetric
monoidal structure on .7 (£'/S).
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(7)

Construction of Hom For an object S of ., and objects K and L of 7 (S5), we
construct the internal Hom
HOmy//S(K, L)

by
psHoms(pysK, pysL).

Then —® g/ K is left adjoint to Hom g /s(K, —), 50 —® /5 — is a closed symmetric
monoidal structure on 7 (2'/5).

Monoidality of f7,,. Let f : X — S be a morphism in .. For objects K and L of
7 (9), the isomorphism

f;z/K ®0’ //S f;z/L % f}/(K ®(1 //S L)

is constructed by the composition

P5(py.spsf pr.s K ®s pyspsf pysl) < ps(fp1.s K @s pyspsf pssl)
s 05 a5 K ®s frpusL)
= psf (prsK ®5 pysL)
= 05 S prsps(pesK ®s pysL)

in 7(2'/S). The first and second arrows are defined and isomorphisms since f*
commutes with py, and the fourth arrow is an isomorphism since ([1.5.6.1)) is an iso-
morphism.

We can similarly construct the isomorphism
T (Loprys) — Lo sr.

The coherence conditions given in [Ayo07, 2.1.85, 2.1.86] for these follows from the
coherence conditions for f*. Thus the functor

[+ T(2)S) — =7@@/5')
is monoidal.

Proof of (27'-BC). The &’-base change property for .7 (') follows from (1.5.5)).

Proof of (#'-PF). Let f: X — S be a #-morphism. For objects K of 7 (X) and L
of 7(9), we want to show that the morphism

% Ezx
fr.o/(K @a1/x [o L) — fi.00 K Q)5 L

is an isomorphism. Since py is fully faithful and monoidal, applying py s to the above
morphism, it suffices to show that the morphism

* EZB
Ji(psx K ®@x fTpysL) — fipsx K ®g pysL

is an isomorphism. This follows from the &-projection formula for .7 .
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(11)

1.5.7.

(i)
(i)

1.6

1.6.1.

Twists. The set of twists 7 on .7 induces a set of twists on .7 (2?). It is also denoted
by 7.

Thus we have proven that

T (') is a T-twisted Z-premotivic triangulated category,
T (') is well generated by &’ and 7.

Bousfield localization

Through this section, we fix a category . and class of morphisms & of .% containing

all isomorphisms and stable by compositions and pullbacks. We fix also a 7-twisted &2-
premotivic triangulated category .7 well generated by & and 7. For any object S of ., we
also fix an essentially small family of morphisms #s in .7 (5) stable by twists in 7, f; for
Z-morphism f, and f*. The collection of #4 is denoted by # .

Definition 1.6.2. Let S be an object of ..

(1)
(2)
(3)

We denote by Ty s the localizing subcategory of .7 (S) generated by the cones of the
arrows of #.

We denote by 7 (S)[# '] the Verdier Quotient 7 (S)/Ty s. Then we denote by
T [# 1] the collection of 7 (S)[# '] for object S of ..

We say that an object L of .7 (.5) is # -local if
Hom 7g)(K,L) =0

for any object K of .7(S) which is the arrow of a morphism in . Equivalently,
Hom 7g)(K,L) =0

for any object K of Ty .

We say that a morphism K — K’ in .7 (S) is a #'-weak equivalence if the cone of the
morphism is in Ty g. Equivalently, the induced homomorphism

Hom 7 sy (K", L) — Hom (s (K, L)

is an isomorphism for any # -local object L of .7(S). This equivalence follows from
[Nee01, 9.1.14].

1.6.3. The purpose of this section is to show that Z[# '] has a structure of a T-twisted
ZP-premotivic triangulated category. Let S be an object of .. First note that 7 (S)[# ]
is well generated by [NeeOl, Introduction 1.16] and that it is generated by & and 7. Then
T(S)[# 7Y is well generated by & and 7. By [Nee01, 9.1.19], we have the adjunction

ns: 7(S) ——= T(S)[#']:Og
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of triangulated categories where mg denotes the Verdier quotient functor and Og denotes the
Bousfield localization functor. Note that by [Nee01, 9.1.16], the functor Oy is fully faithful,
and its essential images are exactly # -local objects of .7 (5).

For any &-morphism X — S, we put

Ms7w(X> = Ws(MS(X))
Then we denote by
T T ——= TW1:0

the collection of the functors mg and Og.
Because # is stable by f; for &-morphism f and f*, if f : X — S is a &-morphism,
then the functor

fif "= Ms(X) ®s —

preserves # . Thus it preserves .7y g. This means that the functor
K®g —

preserves # -weak equivalence for any object K of .7(S5).
Note also that a morphism K — K’ in 7 (5) is a #'-weak equivalence if and only if the
induced morphism 7gK — 7gK' in 7 (S)[# '] is an isomorphism.

1.6.4. Let X and S be objects of ., and consider a diagram

T (X) ? T(9)
Affoc 7wl
T (X)W TS ]

such that « is left adjoint to 5. Suppose that a maps the cones of #x into 7 y and com-

mutes with twists. Then [ preserves # -local objects, so a preserves # -weak equivalences.
Then we define
ay  T( X)W — TS w,

By : TS — T (X) 7]
as ay = mgaOx and By = mxFOx. We often omit # in ay and [y for brevity.
Proposition 1.6.5. Under the notations and hypotheses of ,
(1) o commutes with 7, i.e., Tsa = aymx,
(2) cvy is left adjoint to By,

Proof. (1) For any object K of .7 (X), the morphism K — Oxnx K is a # -weak equivalence,
so oK — aOxnmx K is a # -weak equivalence since « presrerves # -weak equivalences. Then
the morphism mga K — msaOxmx K is an isomorphism, i.e., Tgox = ayTx.
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(2) We will show this by constructing the unit and counit. The unit
. ad
id — @Waw

is constructed by

. d'—1 d d
id a—) Wxﬁx a_) WXﬁOéOX a_> WxﬂOSﬂ'Son)(.

Here, the first arrow is defined and an isomorphism since Qg is fully faithful. The counit
ad' .
047/57/ —id

is constructed by
ad~?! ad ad .
WsoéOXﬂxﬁOS — 7'['304505 — 71'505 — id.

Here, the first arrow is defined and an isomorphism by (1). These two satisfy the counit-unit
equations, so ay is left adjoint to By . n

Proposition 1.6.6. Consider a commutative diagram

X L x

[

S —4— S
of ./ -schemes. Assume that g* and g™ commutes with O and that the exchange transforma-
tion 5
g fe — fog”
1s an isomorphism. Then the exchange transformation
* Ex / %
Gy e — Faw Gy
18 also an isomorphism.

Proof. Since O is fully faithful, it suffices to show that the natural transformation

Ezx / /
Os gy e — Ost i G

is an isomorphism. By the condition that ¢* and ¢* commutes with O, it is equivalent to
the assertion that the natural transformation

* Ex *
g f:Ox — f;g/ Ox
is an isomorphism. This follows from the other condition. O

1.6.7. Now we will show that Z[# '] is a &-premotivic triangulated category by con-
structing f; for f € &, f*, fi, ®, and Hom.
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(1)
(2)

(4)

(5)

For any object S of .7, we put 1g» = mglg. We often omit # in 1gy for brevity.

Constructions of fyy for f € &, f;,, and f.y. The functors f; for f € & and f*
preserve #, so by (1.6.5]), we have the adjunctions

fow 2 T X)W = TSP £

o ZX)W —= TS W fow
where in the first one, we assume that f is a &-morphism. Then by (loc. cit), f;»
for f € & and f,, commute with 7.

Functoriality of f;,. Let f: X — S and g:Y — X be morphisms in .#. Then the
natural isomorphism

gy fy — (f9)y

is constructed by

* * ad}! % % ~ *
g Ogms [*Og — mgng* [*Os — man(fg)* Os.

Here, the first arrow is an isomorphism since g* preserves # -weak equivalence and
the unit

. ad

id — OSITF S/

is a W -weak equivalence. The usual cocycle condition for f}, follows from the usual
cocycle condition for f*. Thus Z[# ~!] is a fibered category over ..

Construction of ®. For an object S of . and objects K and L of 7 (2'/S), we
denote by K ®g» L the object

Ts(OsK ® OgL)
in 7(9)[# 1.
Functoriality of ®. Then the natural transformation
(— Qsy —) Qs — = — Qs (— Qs —) (1.6.7.1)
is constructed by the composition

ad~1

Ts(OSWS(OSK Xg OsL) XRg OsN) — WS(OSK X OSL X OSN)

2 15(OsK @5 Osms(OsL @5 OgN))

for objects K, L, and N of 7 (S)[#~!]. Here, the first arrow is defined and an
isomorphism because mg and ®g preserve # -weak equivalence and the morphism

OsK ®S OsL a_d> OSWS(OSK ®S OsL)
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is a # -weak equivalence. Similarly, the second arrow is an isomorphism, so ((1.6.7.1])
is an isomorphism.

We can similarly construct isomorphisms
K®S,W 15—>K, 15@577/[(—)[(

in 7 (S)[# ~']. The coherence conditions given in [Ayo07, 2.1.79, 2.1.81] for —®g 4 —
follows from the coherence conditions for — @ —. Thus — ®g» — gives a monoidal
structure on 7 (S)[# ']

Construction of Hom. For an object S of ., and objects K and L of 7(S), we
construct the internal Hom
HOWl&y/(K, L)

by
WSHomg(S) (OSK, OSL)

Then — ®gy K is left adjoint to Homgy (K, —), so — ®gy — is a symmetric closed
monoidal structure on 7 (S)[# 1.

Monoidality of f*. Let f: X — S be a morphism of .#-schemes. For any objects K
and L of 7 (S)[# '], we construct the morphism

K Qs L — [(K @sy L) (1.6.7.2)
by the composition
Tx(Oxmx ffOsK ®@x Oxnx f*Og L) L Tx(ffOsK ®@x Oxmx f*OxL)
s rx (fFOsK @x [OxL)
— x [(OsK ®@x f*OxL)
s o fH(Osms(OsK @y £ OgL)).

The first and second arrows are defined and isomorphisms since 7x and ®g preserve
W -weak equivalences and the unit

. d
id a_> OX’/TX

is a # -weak equivalence. The fourth arrow is an isomorphism by the same reason.
Thus (|1.6.7.2)) is an isomorphism.

We can similarly construct the isomorphism

I (lsw) — 1xp.

The coherence conditions given in [Ayo07, 2.1.85, 2.1.86] for these follows from the
coherence conditions for f*. Thus the functor

for TS = T (X)W

is monoidal.
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(8)

(9)
(10)

(11)

1.6.8.

(i)
(ii)

1.7

1.7.1.

Monoidality of w. For an object S of ., and objects K and L of 7 (S)[."!], we
construct the morphism

7TS(K Xg L) — mgK Ks,w gL
by the composition
WS(K Rg L) a_d> WS(OSWSK Xs L) a_d) 7TS(057T5K Xg OS’R'SL).

Here, the arrows are isomorphisms since mg and ®g preserve # -weak equivalences
and the unit

. ad

id — (9571' S

is a # -weak equivalence.

We can similarly construct the isomorphism
7Ts(15> ;> 1S,W-

Note that the coherence conditions given in [Ayo07, 2.1.85, 2.1.86] are satisfied, i.e.,
the functor

ms: T(S) = T(S)[#
is monoidal.
Proof of (22-BC). The &-base change property for .7 [# ] follows from ((1.6.6].

Proof of (2-PF). The &-projection formula for .7 [# '] can be obtained by applying
7 to the &-projection formula for .7 since 7 is monoidal and essentially surjective.

Twists. The set of twists 7 on 7 induces a set of twists on 7 [# ~!|. Tt is also denoted
by 7.

Thus we have proven that
TW 1] is a P-premotivic triangulated category,
T W 1] is well generated by & and 7.

log-localization

Throughout this section, we fix a full subcategory .# of the category of noetherian fs

log schemes satisfying the conditions of ((1.2.7)).

Definition 1.7.2. For an .#-scheme S, we will consider the following situations for mor-
phisms

vy Sy x Ly

of .#-schemes.
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(a) The morphism f is of finite type, the morphism g is the identity, and the morphism
h is the projection Aj, — Y.

(b) The morphism f is of finite type, the morphism g is the identity, and the morphism
h is a dividing cover.

(¢) The morphism f is log smooth, the morphism g is an exact log smooth morphism, and
the morphism A is the verticalization YV — Y of X via fg.

(d) The morphism f is log smooth, the .#-scheme X has a neat fs chart P, and the
morphism g is the projection
X XAp AQ — X

where the homomorphism 6 : P — @ is a locally exact vertical homomorphism of
fs monoids such that ¢ is an exact log smooth morphism. The morphism h is the
morphism

X XAp AQG — X XAp AQ

induced by the localization () — Q¢ where GG is a maximal #-critical face of Q.

Let .7 be a T-twisted &7-premotivic triangulated category over .. Then let #j1 g (resp.
Wiog s, 1€SP. Wiogr.s, 1€SP. Wiog s) denote the family of morphisms

Ms(Y'){i} — Ms(Y){i}

in .7 (S) where i € 7 and the morphism Y’ — Y is of the type (a) (resp. of the types (a)—(b),
resp. of the type (b), resp. of the types (a)-(d)). Note that #u: (resp. Hog, 1€8p. Hlog) is
stable by the operations fy for f € ft (vesp. f € ft, resp. f € [Sm) and f*. To ease the
notations, we often remove #  in the notations. For example, we write log-weak equivalences
instead of #,,-weak equivalences.

Definition 1.7.3. Let ¢ be a topology on . such that any t-covering consists of morphisms
of finite type. Consider the category

D1 (She(ft/S, A))

(see [CD12, 5.3.22, 5.1.4] for the definitions). It is a ft-premotivic triangulated category.
They are also denoted by D1 4(ft, A) and Da14(ft, A).

Let & be a class of morphisms of . containing all isomorphisms and stable by compo-
sitions and pullbacks and contained in the class ft, and let # be an essentially small family
of morphisms in Dy ,(ft, A) containing A'-weak equivalences and stable by fy for f € &
and f*. Then we denote by

Dy .(ft, A)

the category obtained by inverting # -weak equivalences as in (|1.6.2)).

We also denote by
Dy (2, A)
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the localizing subcategory of Dy ,.,(ft,A) obtained by applying (1.5.1) to the inclusion
7 C ft.

If t' is another topology on .# finer than ¢, then we have an adjunction
Qyr . Sht(ft,A) : Sht/(ft, A) L

where ay denotes the sheafification functor and ¢ denotes the inclusion functor. From this,
we obtain the adjunction

a;f, : D«//Jg(@,/\) <:> Dyﬁy(ﬁ,/\) DAy

of &-premotivic categories.

1.7.4. By (1.4.5) and [CD12, 5.1.32|, the ft-premotivic triangulated category
qu(ft7 A)

is compactly generated by ft and 7, so it is well generated by ft and 7. Then (|1.5.2)) and
(1.6.3)), if & is a class of morphisms of . containing all isomorphisms and stable by com-
positions and pullbacks and contained in the class ft, then the &-premotivic triangulated
category

DAl,pw(¢@7 A>7 Dlog’,pw(¢@7 A>7 Dlog,pw(gZ,A)
are well generated by & and 7.

1.7.5. By the proofs of [CD12, 5.2.38, 5.3.39], the ft-premotivic triangulated categories

DAl,qw(fta A)7 Dlog’,qw(fta A); Dlog,qw(ft7 A)

are compactly generated by ft and 7. Thus if & is a class of morphisms of .% containing all
isomorphisms and stable by compositions and pullbacks and contained in the class ft, then
the &-premotivic triangulated category

DAl,qw(@a A); Dlog’,qw(yv A), Dlog,qw<¢@a A)

are compactly generated by & and 7.

The above method is not applicable for Djyy ., (1Sm, A) since we cannot apply for
the pw-topology. To show that it is compactly generated by [Sm and 7, we will circumvent
this obstacle by showing that the morphism

a;w : Dlog/pw(lSm, A) — Dlog/,qw(ZSm, A)

of [Sm-premotivic triangulated categories is an isomorphism under some assumption as
follows.
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1.7.6. Let S be an .-scheme, and let K be an object of Doy 1 (ft/S, A). For any commu-
tative diagram

X Ly x
C= lf’ lf
T 25T
of S-schemes over S, we denote by L¢ x the homotopy pullback in Dyoyr 1 (ft/S, A) of the
lower right corner of the commutative diagram
P’ K —" p.g.gp K
l“d lad (1.7.6.1)

Pt SO K S p<hih*p K
where p: T — S is the structural morphism and h = fg’. Then we denote by

qo :p«p'K — Lok
the induced morphism in Dyyyr o, (f£/5, A).

Proposition 1.7.7. Under the notations and hypotheses of , assume that C is a
piercing distinguished square. If K is plain lower flasque, then the morphism qc s an

isomorphism, i.e., the diagram (1.7.6.1)) is homotopy Cartesian in Doy (ft/S, A).

Proof. Note that K satisfies the pw-descent by [CD12, 5.3.30]. Let C” denote the commuta-
tive diagram

X — X

| |

X' XT/X, E— XXTX

where the vertical arrows are the diagonal morphisms and the horizontal arrows are induced
by g and ¢’. We put Xy = X, and we denote by (X;);en the Cech cover associated to
Xo — T. Asin the proof of [Voel0a, 5.3], it suffices to show that gcy,.x, i is an isomorphism
in Dyogr pu(1Sm /S, A) for all 4.

The diagram C’ is a pullback of , which has the decomposition

pty — Ay

-

ANEBZ

~+ v

pth —t> AN XAl AN
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where
(i) each square is Cartesian,

(ii) ¢ denotes a pullback of the diagonal morphism A' — A? via the morphism Ay2 — A2
removing the log structure,

(iii) M denotes the fs monoscheme which is the gluing of
spec(Nz & N(z7'y)),  spec(Ny & N(y~'z))

along spec(Nx @ Z(z~1y)),
(iv) u : spec(Nz @ Z(z'y)) — M denotes the obvious open immersion of fs monoschemes,

(v) v : M — spec(Nx @ Ny) denotes the obvious proper birational morphism of fs
monoschemes,

(vi) ¢ denotes the 1-section.

Then C" has a decomposition

X — X

| |

y! .Y (1.7.7.1)

J» |

X' XT/X/ E— XXTX

such that the upper square is a plain lower distinguished square and a and o’ are dividing
covers. Since we inverted log-weak equivalences, the adjunctions

! Ix

. ad . ad
id — a,a*, id — adLa

are isomorphisms. Thus if we denote by C” the upper diagram of (1.7.7.1)), then it suffices
to show that gcry,x, k is an isomorphism. It follows from (1.3.8)) since C” is a plain lower
distinguished square. O]

1.7.8. In (7.6.2)), we will show that the essential image of the functor
U Dlog/,pw(lSm, A) — Dlog’,pw(fta A)

satisfies the plain lower descent. Let K be an object in its essential image, and let C' be a
Cartesian diagram

X - x

o

N
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of .#-schemes over S. When C'is a plain lower distinguished square, by ([1.3.8)), the condition
(i) of (1.3.7)) for C' is satisfied. When C' is a piercing distinguished square, by (1.7.7]), the
condition (i) of (1.3.7) for C is satisfied, and when C'is a pullback of ((1.2.8.2)), the condition

(i) of (1.3.7) for C' is satisfied by the proof of (1.7.7). Thus the condition (i) of (1.3.7)
for C' when C' is a quasi-piercing distinguished square is satisfied, so by (1.7.7)), C satisfies

qw-descent. Then [CD12, 5.3.30] implies that the functor
U * Diog' pu (15, A) = Diggr gu(1Sm, A)
is an equivalence of [Sm-premotivic triangulated categories. This implies that the functor
Uy Dy pu (P, ) = Diggr qu(1Sm, A)

is an equivalence of Z-premotivic triangulated categories for W = Wiy, #iog and & =

lSm,eSm.
In particular, for such # and &, by (1.7.5)), Dy (22, A) is compactly generated by &

and 7.

1.7.9. One of the purposes of this thesis is to study the eSm-premotivic triangulated category
Diogpw(€Sm, A). For brevity, it is also denoted by Djpg pw(—, A).
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Chapter 2

Properties of premotivic triangulated
categories

2.0.1. Through this section, fix a base fs log scheme §. Then fix a full subcategory .# of
the category of noetherian fs log schemes over § such that

(i) .7 is closed under finite sums and pullbacks via morphisms of finite type,

(ii) if S belongs to . and X — S is strict quasi-projective, then X belongs to .7,
) if S belongs to ., then S x A, belongs to . for every fs monoscheme M,
) If S belongs to ., then S is belongs to .,
)

(v) for any separated morphism f : X — S of .%-schemes, the morphism f : X — S of
underlying schemes admits a compactification in the sense of [SGA4, 3.2.5], i.e., we
have a factorization

(iii

(iv

X—>Y—>S

in . such that the first arrow is an open immersion and the second arrow is a strict
proper morphism.

We also fix a class & of morphisms of .% containing all strict smooth morphisms of .#-
schemes and stable by compositions and pullbacks. Then we fix a &-premotivic triangulated
category .7 .

For example, as in [CD12, 2.0], S can be the spectrum of a prime field or Dedekind
domain, and then .¥ can be the category of noetherian fs log schemes over S.

2.0.2. In [Ayo07] and [CD12], the adjoint property, base change property, A'-homotopy
property, localization property, projection formula, purity, t-separated property, stability,
and support property are discussed. Many of them can be trivially generalized to properties
for strict morphisms. We also introduce base change properties for non strict morphisms
and other homotopy properties. In the last section, we introduce the notion of log motivic
triangulated categories, which will be the central topic in later chapters.
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2.1 Elementary properties

2.1.1. Recall from [CD12, §2.1, 2.2.13] the following definitions.
(1) We say that .7 is additive if for any .#-schemes S and S’, the obvious functor

F(SILS) — T(S) x T(S")

is an equivalence of categories.

(2) Let f : X — P be a proper morphism of .-schemes. We say that f satisfies the
adjoint property, denoted by (Adj;), if the functor

fo: T(X) = 7(S)

has a right adjoint. When (Adj;) is satisfied for any proper morphism f, we say that
T satisfies the adjoint property, denoted by (Adj).

(3) Let t be a topology on . generated by a pretopology ty on .. We say that T is
t-seperated, denoted by (t-sep), if for any tg-cover {u; : X; — S}ier of S, the family
of functors (fF);es is conservative.

2.1.2. Let t be a topology on .¥ generated by a pretopology tg on .¥ such that any ty-cover
is consisted with Z-morphisms. Assume that .7 satisfies (¢-sep) and that .7 is generated
by & and 7. Let S be an .-scheme, and let &?'/S be a class of &-morphisms X — S such
that for any &-morphism ¢ : Y — S, there is a t-cover {u; : Y; — Y },c; such that each
composition gu; : Y; — Sisin &'/S. In this setting, we will show that the family of objects

of the form
Ms(X){i}

for morphism X — S in &’/S and i € T generates .7 (.5).
Since 7 is generated by & and 7, the family of functors

Hom o 5)<M5( ){Z} ) Homy(x)(lx{l'L f*<_>>

for &Z-morphism f : X — S and i € 7 is conservative. By assumption, there is a tg-cover
{u; : X; = X},er such that each composition fu; : X; — S is in &?'/S. Applying (t-sep),
we see that the family of functors

Hom 7 (x,) (uj1x{i}, uj f*(=)) = Homgs)(Ms(X;){i}, —)
for Z-morphism f: X — S, j € I, and i € 7 is conservative. This implies the assertion.

Proposition 2.1.3. Let t be a topology on ¥ generated by a pretopology toy on . such that
any to-cover is consisted with &?-morphisms. Assume that  satisfies (t-sep) and that T is
well generated by &2 and 7. Let S be an .-scheme, and let {u; : S; — Stier be a ty-cover.
Then 7 (S) is the localizing subcategory of 7 (S) generated by the essential images of w;y for
1€ 1.
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Proof. We denote by £’'/S the class of morphisms of the form

where ¢ € I and the first arrow is in &?. Then for any &-morphism Y — S, we have the
Cartesian diagram
Y xgS; — Y

-

of .#-schemes. From this diagram, we see that the hypotheses of ([2.1.2)) is verified. Then
by (loc. cit) and (1.4.4), 7 (S) is the localizing subcategory of .7 (S) generated by objects
of the form

Ms(X){e}
for morphism X — S in &’/S and ¢ € 7. The conclusion follows from this. O

2.2 Localization property

2.2.1. Let i : Z — S be a strict closed immersion of .#-schemes, and let j : U — S be its
complement. Recall from ([1.1.3) that .7 satisfies (Z?-BC). According to [CD12, 2.3.1], we
have the following consequences of (Z-BC):

Definition 2.2.2. We say that .7 satisfies the localization property, denoted by (Loc), if
1) 7(0) =0,
(2) For any strict closed immersion i of .#-schemes and its complement j, the pair of

ek ex\ - . ., ey ad .. . .
functors (j*,¢*) is conservative, and the conunit i*i, — id is an isomorphism.

2.2.3. Assume that 7 satisfies (Loc). Consequences formulated in [CD12, §2.3] and in the
proof of [CD12, 3.3.4] are as follows.

(1) For any closed immersion i of .#-schemes, the functor i, admits a right adjoint .

(2) For any closed immersion ¢ of .#-schemes and its complement j, there exists a unique
natural transformation 0; : 4,i* — j37*[1] such that the triangle

A ST PN ANl
is distinguished.
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(3) For any closed immersion i of .¥-schemes and its complement j, there exists a unique
natural transformation 9; : j,j* — 4,i'[1] such that the triangle

it D id 2% g 2 i)
is distinguished.

(4) Let S be an .#-scheme, and let S,.; denote the reduced scheme associated with S.
The closed immersion v : S,.; — S induces an equivalence of categories

v T(S) = T (Sred)-

(5) For any partition (S; —= S)scr of S by locally closed subsets, the family of functors
(v} )ier is conservative.

(6) The category 7 is additive.

(7) The category 7 satisfies the strict Nisnevich separation property (in the case of usual
schemes, note that (Loc) implies the cdh separation property).

(8) For any .#-scheme S and any strict Nisnevich distinguished square

x L, x
b
T 25T
of & /S-schemes, the associated Mayer-Vietoris sequence
peluhp" K — pifs f 0" K © prgyg™p" K — pp" K — pyhyh™p" K[1]

is a distinguished triangle for any object K of .7 (S) where h = f¢' and p denotes the
structural morphism 7" — S.

2.3 Support property

Definition 2.3.1. Following [CD12, 2.2.5], we say that a proper morphism f of .’-schemes
satisfies the support property, denoted by (Supp;), if for any Cartesian diagram

x4 x
o
S —— S
of .-schemes such that ¢ is an open immersion, the exchange transformation
Ex:gif, — fug;

is an isomorphism. We say that 7 satisfies the support property (resp. the strict support
property), denoted by (Supp) (resp. (sSupp)), if the support property is satisfied for any
proper morphism (resp. for any strict proper morphism).
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2.3.2. In this section, from now, we assume that for any morphism f : X — S of .#’-schemes,
the morphism f : X — S admits a compactification in the sense of [SGA4, 3.2.5], i.e., we
have a factorization

X—>Y—>S§S

in . such that the first arrow is an open immersion and the second arrow is a strict proper
morphism.

2.3.3. Let f: X — S be a separated morphism of .#-schemes. Then choose a compactifi-

cation
X—=5=S

of f. Then following [Chi99, 5.4, f can be factored as

X X x5 9 xg 5L 8

where
(i) f1 denotes the morphism induced by X — X and X — S,
(ii) fo denotes the morphism induced by X — 5’
(iii) f3 denotes the projection.

The morphisms f; and f3 are proper, and the morphism f; is an open immersion. Hence we
can use the argument of [CD12, §2.2]. A summary of [loc. cit] is as follows.

Assume that 7 satisfies (Supp). For any separated morphism of finite type f: X — §
of .#-schemes, we can associate a functor

fii 7(X) = 7(9)

with the following properties:

(1) For any separated morphism of finite types f : X — Y and g : Y — Z of .#-schemes,
there is a natural isomorphism

(9 — afi
with the usual cocycle condition with respect to the composition.

(2) For any separated morphism of finite type f : X — S of .#-schemes, there is a natural

transformation

f I f *
which is an isomorphism when f is proper. Moreover, it is compatible with composi-
tions.

(3) For any open immersion j : U — S, there is a natural isomorphism

S = Ji

It is compatible with compositions.
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(4)

For any Cartesian diagram

X 25 X

o

S —2— S
of .#-schemes such that f is separated of finite type, there is an exchange transfor-
mation

Ex:g'fi— fig"

compatible with horizontal and vertical compositions of squares such that the dia-
grams

gh = flg* g h = flg”
;L l * ;L Ez~! l
g f = flgt g flg
of functors commutes when f is proper in the first diagram and is open immersion in
the second diagram.

For any Cartesian diagram

X 2o X

T

S —2— S
of .#-schemes such that f is separated of finite type and g is a &Z-morphism, there is
an exchange transformation

Ex:gfi — fig,

compatible with horizontal and vertical compositions of squares such that the dia-
grams

gfl === hay  g:fl 5 fig;
Ezx ~
gfi —— fugi  oufi —— fig;

of functors commutes when f is proper in the first diagram and is open immersion in
the second diagram.

For any separated morphism of finite type f : X — S of .#-schemes, and for any
K e 7(X)and L € 7(S), there is an exchange transformation
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compatible with compositions such that the diagrams

AK ®s L 22 fi(K @x f*L) HK @5 L 22 fi(K ®x f*L)

I 5 I 5

FK ®s L —E% f(K oy f*L) K ©sL 225 f(K @x L)

of functors commutes when f is proper in the first diagram and is open immersion in
the second diagram.

(7) Assume that .7 satisfies (Adj). For any separated morphism of finite type f : X — §
of .#-schemes, the functor f; admits a right adjoint

' 7(8) = T(X).

2.4 Homotopy properties

Definition 2.4.1. Let S be an .¥-scheme. Let us introduce the following homotopy prop-
erties.

Htp-1) Let f denote the projection AL — S. Then the counit
S

.
fif” 25 id
is an isomorphism.

(Htp—2) Let f: X — S be an exact log smooth morphism of .#-schemes, and let j : XV — X
denote the verticalization of X via f. Then the natural transformation

. . ad
Jeged™ — [
is an isomorphism.

(Htp-3) Let S be an .-scheme with a fs chart P, let § : P — @ be a vertical homomorphism
of exact log smooth over S type (see (3.1.2)) for the definition), and let G be a @-critical
face of (). Consider the induced morphisms

S xup Aoy 2 S xa, Ao B S.
Then the natural transformation
R 4 «
fegsd* == ff
is an isomorphism.

(Htp—4) Let f: X — S be a dividing cover of .’-schemes. Then the unit
id % £
is an isomorphism.
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(Htp-5)

(Htp-6)

(Htp-T7)

2.5

Let f: X — 5 be a morphism of .#’-schemes with the same underlying schemes such
that the induced homomorphism M?f(x) — M%gx is an isomorphism for all x € X.
Then f* is an equivalence of categories. is an isomorphism.

Let S be an .’-scheme, let f : S x Ay — S denote the projection, and let 7 : S X pty —
S x Ay denote the 0-section. Then the natural transformation

fofs 2L pir

is an isomorphism.

Assume that .7 satisfies (Supp). Under the notations and hypotheses of (Htp-3), the
natural transformation

Fged* f =S fip

is an isomorphism.

. Note that the right adjoint versions of (Htp-1), (Htp-2), and (Htp-3) are as follows.

Under the notations and hypotheses of (Htp—1), the unit
. ad *
id— f.f

is an isomorphism.

Under the notations and hypotheses of (Htp—2), the natural transformation
x ad . ey opx
fm =51

is an isomorphism.

Under the notations and hypotheses of (Htp-3), the unit
x ad <k ok
Lo " — [u3:J7

is an isomorphism.

Purity

Definition 2.5.1. Let S be an .-scheme, let p denote projection Al — S, and let a denote
the zero section S — Ag. Then we denote by 15(1) the element p;a.1g[2], and we say that
T satisfies the stability property, denoted by (Stab), if 15(1) is ®-invertible.

Remark 2.5.2. Note that our definition is different from the definition in [CD12, 2.4.4], but
if we assume (Loc) and (Zar-Sep), then they are equivalent by the following result.
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Proposition 2.5.3. Assume that 7 satisfies (Loc), (Zar-Sep), and (Stab). Let f: X — S
be a strict smooth separated morphism of . -schemes, and leti : S — X be its section. Then
the functor

fﬁi*
s an equivalence of categories.

Proof. Tt follows from the implication (i)<(iv) of [CD12, 2.4.14]. O

Definition 2.5.4. Let f : X — S be a separated &?-morphism of .#-schemes. We denote
by a the diagonal morphism X — X x¢ X and py the second projection X xg X — X. Then
we put

X = Doyl
If we assume (Adj), then we put

Qf = a'ps.
Note that Y is left adjoint to 2.

Definition 2.5.5. Let f : X — S be a &-morphism of .-schemess. Assume that (f is
proper) or (f is separated and .7 satisfies (Supp)). Consider the Cartesian diagram

XxgX 25 X

lpl lf
x 1 .5

of #-schemes, and let a : X — X Xg¢ X denote the diagonal morphism. Following [CD12,
2.4.24], we define the natural transformation

~ FEx
Py fi — fipnas — fipaga. = [y

The right adjoint of p; is denoted by
ar: Qpf — f

Definition 2.5.6. Let f be a &-morphism of .#-schemes, and assume that (f is proper)
or (f is separated and .7 satisfies (Supp)). We say that f is pure, denoted by (Pury), if the
natural transformation p is an isomorphism. Note that if we assume (Adj), then f is pure
if and only if q; is an isomorphism. We say that .7 satisfies the purity, denoted by (Pur), if
T satisfies (Pury) for any exact log smooth separated morphism f.

Remark 2.5.7. Note that our definition is different from the definition in [CD12, 2.4.25]
in which the additional condition that Y, is an isomorphism is assumed. However, if we
assume (Loc), (Zar-Sep), and (Stab), then the definitions are equivalent by ([2.5.3)).

Theorem 2.5.8. Assume that J satisfies (Htp—1), (Loc), and (Stab). Then T satisfies
(sSupp).
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Proof. The conditions of the theorem of Ayoub [CD12, 2.4.28] are satisfied, and the same
proof of [loc. cit] can be applied even if S is not a usual scheme. The consequence is that
the projection Py — S is pure for any .-scheme S. Then the conclusion follow from the
proof of [CD12, 2.4.26(2)]. O

Theorem 2.5.9. Assume that T satisfies (Htp—1), (Loc), (Stab), and (Supp). Then any
strict smooth separated morphism s pure.

Proof. As in the proof of (2.5.8)), PL, — S is pure for any .#-scheme S. Then the conclusion
follows from the proof of [CD12, 2.4.26(3)]. O

Theorem 2.5.10. Assume that 7 satisfies (Htp-1), (Loc), (Stab) and (Supp). Consider a
Cartesian diagram

X L x

T

g —2= S
of L -schemes such that f is strict smooth separated and g is separated. Then the exchange
transformation

frgl =5 fian
s an isomorphism.
Proof. 1t follows from ([2.5.9) and the proof of [CD12, 2.4.26(3)]. O

2.6 Base change property

2.6.1. Consider a Cartesian diagram

X L, x

b

S —— 5
of .#-schemes. When f is proper, let us introduce the following base change properties.
(BCy,) The exchange transformation ¢* f, — f¢" is an isomorphism.
(BC-1") For all f and g such that f is strict and proper, (BCy ) is satisfied.

(BC-27) For all f and g such that f is an exact log smooth morphism and proper, (BCy,) is
satisfied.

(BC-3") For all f and g such that g is strict and f is proper, (BCy,) is satisfied.
(BC4") For all f and g such that ¢ is a &-morphism and f is proper, (BCy,) is satisfied.
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On the other hand, when f is just assumed separated but 7 satisfies (Supp), we have the
following base change properties.

BCy,4) The exchange transformation ¢* fi — f/¢"* is an isomorphism.

BC-1) For all f and g such that f is strict, (BCy,) is satisfied.

BC-2) For all f and g such that f is an exact log smooth morphism, (BCy ) is satisfied.
BC-3) For all f and g such that g is strict, (BCy,) is satisfied.

BC-4) For all f and g such that g is a &-morphism, (BCy ) is satisfied.

Proposition 2.6.2. If .7 satisfies (Loc), then (BCy,) is satisfied for all f and g such that
f is a strict closed immersion.

Proof. Tt follow from the proof of [CD12, 2.3.13(1)], but we repeat the proof for the conve-
nience of reader. Let i’ denote the complement of f’. Then by (Loc), the pair (f™*, h"*) of
functors is conservative, so it suffices to show that the natural transformations

* %k ad * *
g fe — " 9",
h/*g*f* a_d> h/*f;gl*

. . . . . . . ad .
are isomorphisms. The first one is an isomorphism since the counits f*f, — id and

1 fr oy id are isomorphisms by (Loc), and the second one is an isomorphism by ([2.2.1(4)).
]

Proposition 2.6.3. If 7 satisfies (Supp), then the property (BC-n) implies (BC-n’) for
n=1,234.

Proof. 1t follows from (2.3.3(4)). O
Proposition 2.6.4. If 7 satisfies (Supp), then the category 7 satisfies (BC—4’).
Proof. 1t follows from (2.6.3) and (Z7-BC). O

Proposition 2.6.5. Assume that

(i) T satisfies (Loc) and (Supp),

(ii) for any #-scheme S, the projection Py — S is pure.
Then the category 7 satisfies (BC-1).

Proof. The conditions of [CD12, 2.4.26(2)] are satisfied, and the same proof of [loc. cit] can
be applied even if S is a fs log scheme. n

Proposition 2.6.6. Assume that J satisfies (Loc), (Supp), and (Zar-Sep). Then the cate-
gory 7 satisfies (BC-3).
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Proof. By (2.6.3)), it suffices to show (BC-3’). Consider a Cartesian diagram

x L x
s
s —2— S
of .#-schemes such that ¢ is strict and that f is proper. By (Zar-Sep), the question is

Zariski local on ', so we reduce to the case when S’ is affine. Then the morphism g is
quasi-projective, so we reduce to the cases when

(1) g is an open immersion,
(2) g is a strict closed immersion,
(3) g is the projection Py — S.
In the cases (1) and (3), we are done by (BC-4), so the remaining is the case (2). Hence

assume that ¢ is a strict closed immersion.
Let h : 8" — S denote the complement of g, and consider the commutative diagram

/

g

X L X I X
R
e R

of #-schemes where each square is Cartesian. Since the pair (g, h;) generates 7 (X) by
(Loc), it suffices to show that the natural transformations

9 fege = [L9" 0 g FDG — flg"hy

are isomorphisms. The first arrow is an isomorphism by (Loc), and the second arrow is an

isomorphism by (Supp) and (£?-BC). This completes the proof. O
Proposition 2.6.7. Assume that 7 satisfies (Loc). Consider a plain lower distinguished
square

XL X

Il

g —= S

of S -schemes, i.e., f and g are closed immersions such that f(X)U g(X) = S', and the
diagram is Cartesian. We put h = fg'. Then for any object K of 7(S), the commutative
diagram
K —“ f.f*K
lad lad
9:.9° K _ad h.h*K
in 7 (S) is homotopy Cartesian.
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Proof. Let u : S” — S denote the complement of g. Then u factors through X by assump-
tion, and let u' : S” — X denote the morphism. and consider the commutative diagram

/
g ’
X' y X +—— X"
\

R
S <

S/ 9 u N

where each square is Since the pair (g*,u*) of functors is conservative, it suffices to prove
that the diagrams

oK —“= g LK oK > uffK

Je [ Jo

9 g.9" K —ad g*hh*K u*g.g" K _ad uw*h.h*K
are homotopy Cartesian. The first diagram is isomorphic to

g K — K

b

gK — K

by (Loc) and (2.6.2)), and it is homotopy Cartesian. For the second diagram, since its
lower horizontal arrow is an isomorphism by (£2-BC), it suffices to show that the natural
transformation

ut 2 K
is an isomorphism. Since u = fu', we have the natural transformations

U/*f* a_d> u/*f*f*f*K a_d’> U/*f*K,
whose composition is an isomorphism. The second arrow is an isomorphism by (Loc), so the
first arrow is also an isomorphism. O]
2.7 Projection formula

Definition 2.7.1. For a proper morphism f : X — S of .#’-schemes, we say that f satisfies
the projection formula, denoted by (PFy), if the exchange transformation

is an isomorphism for any objects K of .7 (X) and L of .7(S). We say that .7 satisfies the
projection formula, denoted by (PF), if (PF) is satisfied for any proper morphism f.
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2.7.2. Assume that .7 satisfies (PF) and (Supp). Let f: X — Y be a separated morphism
of .#-schemes. Then by the proof of [CD12, 2.2.14(5)], the exchange transformation
fK ©x L =5 f(K @y ['L)

is an isomorphism for any objects K of 7 (X) and L of .7(S). If we assume further (Adj),
then by taking adjunctions of the above exchange transformation, we obtain the natural
transformations

Homg(fiK,L) = f.Homx (K, f'L),
f'Homx (L, M) — Homx(f*L, f'M).
for any objects K of 7 (X) and L and M of .7(5).

2.8 Orientation

Definition 2.8.1. Let p : E — S be a vector bundle of rank n of .-schemes, and let
19 : S — E denote its 0-section. Then an isomorphism

tg 1 pyio. —> 1s(n)[2n]
is said to be an orientation of E. When .7 satisfies (Adj) and (Stab), we denote by
ty : 1g(—n)[—2n] — ipp*

its right adjoint.
Recall from [CD12, 2.4.38] that a collection t of orientations for all vector bundles £ — S
of .-schemes with the compatibility conditions (a)—(c) in [loc. cit] is said to be an orientation

of .

2.8.2. Note that by (2.5.3)), if 7 satisfies (Loc), (Zar-Sep), and (Stab), then any vector
bundle has an orientation.

2.9 Log motivic categories

Definition 2.9.1. Let .7 be a eSm-premotivic triangulated category. Borrowing a termi-
nology from [CD12, 2.4.45], we say that 7 is a log motivic triangulated category if

(i) 7 satisfies (Adj), (Htp-1), (Htp-2), (Htp-3), (Htp—4), (Loc), (két-Sep), and (Stab).
(ii) for any .-scheme S with the trivial log structure, the morphism S x Ay — S x A!

removing the log structure satisfies the support property.

2.9.2. In [CD12, 2.4.45], motivic triangulated category is defined, and in [CD12, 2.4.50], the
six operations formalism is given for motivic triangulated cateogires. Following this spirit,
we introduced our notion of log motivic triangulated category, which will satisfy the log
version of the six operations formalism (1)—(5) in (0.5).

Now, we state our main theorems.
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Theorem 2.9.3. A log motivic triangulated category satisfies the properties (1)-(6) in ,
the homotopy properties (Htp—5), (Htp—6), and (Htp-7), and (Pur).

Theorem 2.9.4. The eSm-premotivic category Diog pw(—, A) is a log motivic triangulated
category.

2.9.5. Here is the outline of the proofs of the above theorems. Let .7 be a log motivic
triangulated category over .&.

(1) In (2.6.3), (2.6.4)), (2.6.5)), and (2.6.6), we have proven that 7 satisfies (BC-1), (BC—
3), and (BC—4).

(2) In (5.3.4)), we will show that .7 satisfies (PF).
(3) In (5.6.5)), we will show that 7 satisfies (Supp).
(4) In 6 1. 9, we will show that 7 satisfies (Htp-5).
(5) In (6.2.1]), we will show that 7 satisfies (Htp—6).
(6) In (6.3.1]), we will show that .7 satisfies (Htp-T7).
(7) In , we will show that .7 satisfies (BC-2).
(8) In (10.5.5), we will show that .7 satisfies (Pur).
9) Dlog pw( ,\) satisfies (sét-Sep) and (Stab) by construction.
(10) In (7.5.3), we will show that Dy (—, A) satisfies (Loc).
(11) In , we will show that Djog u(—, A) is compactly generated by eSm and 7. This

1mphes (Adj) by [CD12, 1.3.20].

(12) In (8.3.3)), we will show that Dj,g 0 (—, A) satisfies (Htp-1), (Htp-2), (Htp-3), and
(Htp—4).

(13) In (8.4.3)), we will show that Djogpu(—, A) satisfies the axiom (ii) of (2.9.1]).
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Chapter 3

Some results on log geometry and
motives

3.1 Charts of log smooth morphisms
Definition 3.1.1. Let f : X — S be a morphism of fine log schemes with a fine chart
f: P — (). Consider the following conditions:

(i) 0 is injective, the order of the torsion part of the cokernel of #8P is invertible in Oy,
and the induced morphism X — § x,, Ag is strict étale,

(i) @ is locally exact,

(iii) @ is Kummer.
Then we say that

(1) 0 is of log smooth type if (i) is satisfied,

(2) 0 is of exact log smooth type if (i) and (ii) are satisfied,

(3) 0 is of Kummer log smooth type if (i) and (iii) are satisfied,
Definition 3.1.2. Let S be a fine log schemes with a fine chart P. Let 8 : P — @ be a
homomorphism of fine monoids. Consider the following conditions:

(i) 0 is injective and the order of the torsion part of the cokernel of 68 is invertible in
OS?

(ii) @ is locally exact,
(iii) @ is Kummer.
Then we say that
(1) 0 is of log smooth over S type if (i) is satisfied,
(2) 6 is of exact log smooth over S type if (i) and (ii) are satisfied,
(3) 6 is of Kummer log smooth over S type if (i) and (iii) are satisfied,
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Proposition 3.1.3. Let f : X — S be a morphism of fs log schemes, and let P be a fs chart
of S. If f is log smooth, then strict étale locally on X, there is a fs chart 0 : P — Q of [ of
log smooth type.

Proof. By [Ogul4, 1V.3.3.1], there is a fine chart 6 : P — @ of f of log smooth type. We
may further assume that @) is exact at some point z of X by [Ogul4, 11.2.3.2]. Then @Q is
saturated since ) = My , is saturated, so 0 is a fs chart. n

Proposition 3.1.4. Let f : X — S be a morphism of fs log schemes, let x be a point of
X, and let P be a fs chart of S exact at s := f(x). If f is exact log smooth (resp. Kummer
log smooth), then strict étale locally on X, there is a fs chart 0 : P — Q of f of exact log
smooth type (resp. Kummer log smooth type).

Proof. Let us use the notations and hypotheses of the proof of . When f is exact, by
the proof of [NO10, 3.5], the homomorphism 6 is critically exact. Then by [Ogul4, 1.4.6.5],
6 is locally exact. Thus we are done for the case when f is exact log smooth.

When f is Kummer, the homomorphism ﬂxw — ﬂg,s is Kummer. Thus the homo-
morphism @ is Kummer since P is exact at s and @ is exact at . This proves the remaining
case. [

Proposition 3.1.5. Let g : " — S be a strict closed immersion of fs log schemes, and let
f' o X" —= 5" be a log smooth (resp. exact log smooth, resp. Kummer log smooth) morphism
of fs log schemes. Then strict étale locally on X', there is a Cartesian diagram

X -2y X
b
s —2= s
of fs log schemes such that f is log smooth (resp. exact log smooth, resp. Kummer log smooth,).

Proof. Let 2’ be a point of X', and we put s’ = f'(2’) and s = g(s’). We can choose a fs
chart P of S exact at s by [Ogul4, 11.2.3.2]. Then P is also a fs chart of S’ exact at 5. By

(3.1.3) and (3.1.4]), there is a fs chart 6 : P — @ of log smooth type (resp. exact log smooth
type, resp. Kummer log smooth type) such that the induced morphism

X' — 5" %, Ag
is strict étale. Then by [EGA, IV.18.1.1], Zariski locally on X', there is a Cartesian diagram

X — 9 .x

bl

S’ XAp AQ g—) SXAP AQ

such that A is strict étale and ¢” denotes the morphism induced by ¢g. The remaining is to
put f = ph where p: S x4, Ag — S denotes the projection. n
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3.2 Change of charts

3.2.1. Let S be a fine log scheme, let o : P — I'(S, Mg) and o : P' — I'(S, Mg) be fine
charts of S, and let s be a geometric point of S. Assume that one of the following conditions
is satisfied:

(a) « is neat at s,

(b) « is exact at s, and P'®P is torsion free.
In this setting, strict étale locally on S near s, we will explicitly construct a chart o” : P" —
['(S, Mgs) and homomorphisms 5 : P — P” and ' : P — P” such that o’ = a and
a///B/ — O/.

By [Ogul4, 11.2.3.9], strict étale locally on S near s, there exist homomorphisms

k:P =P ~v:P — M
such that o/ = a o kK + «. Consider the homomorphisms
B:P— P®P® aw—(a,0),
g P — P®P% a— (k(a),a),
" P P 5 T(S, Mg), (a,b)— ala)+ (D)

of fs monoids. Then o’ = a and o’ = /. The remaining is to show that «” is a chart of
S. This follows from the fact that the morphism

Aﬁ . AP@Plgp —> AP

is strict. So far we have discussed the way to compare charts of S. In the following two
propositions, we will discuss the way to compare charts of birational morphisms.

Proposition 3.2.2. Let S be a fs log scheme with fs charts o : P — T'(S, Mg) and o :
P = T'(S,Mg), and let & : P' — Q' be a homomorphism of fs monoid with a homomorphism
0 Q' — P8P such that ¢ o 0’ = id. Assume that P is neat at some geometric point
s € S. We denote by k the composition

P — Mg, — P

where the first (resp. second) arrow is the morphism induced by o (resp. /). Consider the
coCartesian diagram

PP

oo
Q —=Q

of fs monoids. Then strict étale locally on S, there is an isomorphism

S X Apr AQI = XAp AQ.

20



Proof. Choose homomorphisms 3, 5/, and o’ as in (3.2.1). Consider the commutative dia-
gram

P pgper
lgf l . (3.2.2.1)
Q 5 Qape
of fs monoids where 6” and ¢’ denote the homomorphisms
0" : P®P® — Q& P*% (a,b) — (6(a),b),
§:Q — Q&P  aw (k(a),p(a)).
We will show that the above diagram is coCartesian. The induced commutative diagram

pree P pep g prep

l@/gp l@//gp

Qe 9 (ep @ prep

of finitely generated abelian groups is coCartesian. Hence from the description of pushout
in the category of fs monoid, to show that is coCartesian, it suffices to show that
the images of n and ¢ generate Q @ P'8?. This follows from the fact that <’ : Q' — @ is
surjective.

We also have the coCartesian diagram

p L5 pgper

Pk

Q25 Q@ per

of fs monoids where ¢ denotes the first inclusion. Then we have isomorphisms S x,, Ag =
S XAPGBP’gP AQ@Q/gp Y XAp AQ. O

Proposition 3.2.3. Let S be a fs log scheme with fs charts o : P — T'(S, Mg) and o :
P = T'(S,Mg), and let v’ : M" — spec P’ be a birational homomorphism of fs monoschemes.
Assume that P is neat at some point s € S. Consider the Cartesian diagram

M —— M

spec P 2% spec P’
of fs monoschemes where k denotes the homomorphism defined in . Then there is an

1somorphism
S XA pr AM/ =) XAp AM
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Proof. Let spec )’ — M’ be an open immersion, and let spec @) — M denote the pullback
of it via v : M — M’. Then by (3.2.2)), there is an isomorphism

S XAP, AQ/ ) XAp AQ.

Its construction is compatible with any further open immersion spec )} — spec @ — M’,

~

so by gluing the isomorphisms, we get an isomorphism S Xy, Ayp =S Xy, Ay O

3.3 Sections of log smooth morphisms

Lemma 3.3.1. Let f : X — S be a log étale morphism of fs log schemes, and leti: S — X
be its section. Then 1 is an open immersion.

Proof. From the commutative diagram

S L X NS
! |
X %5 X xg X 25 X

of fs log schemes where
(i) a denotes the diagonal morphism,
(ii) po denotes the second projection,
(iii) each square is Cartesian,

it suffices to show that a : X — X xX¢ X is an open immersion. Since the diagonal morphism
X—=>XxgX

is radiciel, it suffices to show that a is strict étale by [EGA, IV.17.9.1]. Asin [EGA,IV.17.3.5],
the morphism a is log étale. Thus it suffices to show that a is strict. We will show this in
several steps.

(I) Locality on S. Let g : S — S be a strict étale cover of fs log schemes, and we put
X' = X xg 8. Then the commutative diagram

X — X’ X g1 X’

| |

X — X xg X

of fs log schemes is Cartesian, so the question is strict étale local on S.
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(IT) Locality on X. Let h : X’ — X be a strict étale cover of fs log schemes. Then we have
the commutative diagram

X/XSX,

<k
X Y X xg X!
L
X —— X xg X
of fs log schemes where
(i) the small square is Cartesian,
(ii) a” denotes the diagonal morphism,

(iii) A" and A" denote the morphism induced by h: X' — X.

Assume that a” is strict. Then o’ is strict since A" is strict, so a is strict since h is a strict
étale cover. Conversely, assume that a is strict. Then o’ is strict, so a” is strict. Thus the
question is strict étale local on X

(IIT) Final step of the proof. By [Ogul4, 1V.3.3.1], strict étale locally on X and S, we have
a fs chart 6 : P — @ of f such that

(i) 0 is injective, and the cokernel of 6P is finite,
(ii) the induced morphism X — S X4, Ag is strict étale.

Hence by (I) and (II), we may assume that (X, S) = (Ag,Ap). Then it suffices to show that
the diagonal homomorphism
AQ — AQ Da P AQ

is strict. To show this, it suffices to show a @ (—a) € (Q ®p Q)* for any a € (. Choose
n € Nt such that na € P#P. Because the summation homomorphism

ng@ng PsP — peEP

is an isomorphism, the two elements (na) @ 0 and 0 & (na) of Q ®p @ are equal. Thus
n(a @ (—a)) = 0. Since @ Gp Q is a fs monoid, we have a ® (—a) € Q ®p Q. This means
a® (—a) € (Qdp Q)" since n(a® (—a)) = 0. O

Lemma 3.3.2. Let f : X — S and h : Y — X be morphisms of fine log schemes. Assume
that h is surjective. If h and fh are strict, then f is strict.

Proof. By [Ogul4, 111.1.2.10], it suffices to show that the induced homomorphism
ms’m — MX,E

of fine monoids is an isomorphism for any point x of X. Since h is surjective, we can choose
aray y € Y whose image in X is . Then we have the induced homomorphisms

M&m — MX@ — my@
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of fine monoids. The second arrow (resp. the composition of the two arrows) is an isomor-
phism since h (resp. fh) is strict. Thus the first arrow is also an isomorphism. O

Lemma 3.3.3. Let f: X — S be a morphism of fine log schemes. Then there is a maximal
open subscheme U of X such that the composition U — X 4 S is strict.

Proof. Let U denote the set of points x € X such that the induced homomorphism
MS,W — MX,E

of fine monoids is an isomorphism. If U is open in X, then by [Ogul4, 111.1.2.10], U is the

maximal open subscheme U of X such that the composition U — X 7, S is strict. Thus the
remaining is to show that U is open.

By [Kat00, 1.5], there is a strict étale morphism h : Y — X of fine log schemes such that
the image of h contains U and that fh is strict. Let V' denote the image of h, which can be

considered as an open subscheme of X. Then by (3.3.2)), the composition V' — X 4 Sis
strict where the first arrow is the open immersion. Thus V' C U by the construction of U.
Then V = U, and in particular U is open in X. O]

Lemma 3.3.4. Let S be a fs log scheme such that the underlying scheme S is henselian,
leti: Z — S a strict closed immersion of fs log schemes, and let f : X — S be a log étale
morphism of fs log schemes. Then any partial section s : Z — X of X — S can be uniquely
extended to a section S — X.

Proof. The graph morphism ¢ : Z — Z xg X of S is a section of the projection Z xg X — Z,
so t is an open immersion by . We denote by U the set of points z of X such that the
induced homomorphism

M S, (@) — M X7

is an isomorphism. Then by the proof of (3.3.3), U is an open subset of X, and we consider
it as an open subscheme of X. Since t is strict, ¢ factors through Z xg U, so we have the

commutative diagram
U

Z %S
of fs log schemes. Then since S is henselian, there exists a section of f’ extending s’, which
makes a section of f extending s. Hence the remaining is the uniqueness of a section.
If & :S — X is a section of f extending s, then by , it is an open immersion, so
s’ should factor through U. The morphism U — S is strict étale, so a section s’ is unique
since S is henselian. O

Lemma 3.3.5. Let f : X — S be a Kummer log smooth separated morphism of fs log
schemes, and let 1 : S — X be its section. Then i is a strict reqular embedding.
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Proof. Since i is a pullback of the diagonal morphism d : X — X xg¢ X, it suffices to show
that d is a strict regular embedding. The new question is strict étale local on X and S, so
we may assume that f has a fs chart § : P — @ of Kummer log smooth type by (3.1.4).
Then # : P — Q is Kummer, so by , the summation homomorphism Q) — Q) ®p Q) is
strict. Thus the first inclusion Q ®p Q — @ is also strict. In particular, the first projection
p1 - X Xg X — X is strict smooth. Then d is the section of a strict smooth separated
morphism, so d is a strict regular embedding. O

Lemma 3.3.6. Let 0 : P — @ be a Kummer homomorphism of fs monoids, and let n :
Q) — P be a homomorphism of fs monoids such that nf = id. If Q) is sharp, then 6 is an
1somorphism.

Proof. Let q € @ be an element not in §(P). Since 6 is Q-surjective, we can choose n € N*
such that ng = 0(p) for some p € P. Then

n(q —0n(q)) = 0(p) — Ond(p) =0,

so ¢ — 0n(q) € Q* since Q is saturated. Then g — 0n(q) = 0 since @ is sharp, which proves
the assertion. N

3.4 Log étale monomorphisms

Proposition 3.4.1. Let f: X — S be a log étale monomorphism of fs log schemes, and let
P be a fs chart of S. Then Zariski locally on X, there exists a chart 0 : P — Q) of f with
the following properties:

(1) the induced morphism X — S xa, Ag is an open immersion,

(i1) 08P : P& — Q2P is an isomorphism.

Proof. Let x be a point of X. By [Oguld IV.3.3.1], there is a strict étale neighborhood
g : X' — X of z such that fg has a fs chart ' : P — Q' of log étale type. Let 2’ € X’ be
a point over z. By [Ogul4, 11.2.3.1], we may further assume that the chart Q' — My is
exact at /. We may also assume that g is a strict étale cover because the question is Zariski
local on X.

We put @ = P N Q. Then @ is a fs monoid by Gordon’s lemma [Ogul4, 1.2.3.17],
and the induced homomorphism P — Q%P is an isomorphism. The inclusion Q — @' is
Kummer since the inclusion P#? — % is Kummer, so replacing S — Ap by Sx4,Ag — Ag,
we may assume that 6’ is Kummer.

Since f is a monomorphism, the diagonal morphism X — X xg¢ X is an isomorphism,
so the morphism X’ xx X' — X’ xg X’ induced by f is an isomorphism. Consider the
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commutative diagram

of fs log schemes where d denotes the diagonal morphism. Since d is an immersion, u is
immersion, so v is an immersion. Consider the factorizaton

X xg X% XX XY X xg X

of v where X’ xI* X’ denotes the fiber product computed in the category of fine log schemes.
Then w is an immersion since v is an immersion.

If ' is not an isomorphism, then let a € Q" — 0'(P) be an element. For some n € N we
have na € P. Then the monoid

Q// = Ql @i]gt !

is not saturated since (a,—a) ¢ Q" but n(a,—a) = 0 € @Q”. Thus for any morphism
t:Speck — Agr gr+y where k is a field, the pullback T" — Spec k of the induced morphism

A(Q//sat ,Q'/+) —) A(QH’Q//+)

via t is not an isomorphism. This contradicts to the fact that w is an immersion. Thus 6’
is an isomorphism. Then fg¢ is strict, so f is strict by since ¢ is a strict étale cover.
Thus f is a strict étale monomorphism, which is an open immersion by [EGA, IV.17.9.1].
This completes the proof. O

Corollary 3.4.2. Let (f; : X; — S)ier be a finite family of log étale monomorphisms such
that each X; is quasi-compact, and let P be a fs chart of S. Then there is a birational
morphism w : M — specP of fs monoschemes such that for each i, the induced morphism

X; XAp AM — S XAp AM

18 open immersion. We may also assume that u is proper.

Proof. Note that the question is Zariski local on each X;. By , for each ¢, Zariski
locally on X;, there is a homomorphism 6; : P — @Q; of fs monoids such that 6" is an
isomorphism and that the induced morphism X; — S x,, Ag, is an open immersion.

Choose a fan ¥ of the dual lattice (P8P)Y such that for each element o of 3, thereis i € [
such that o C Q)Y. Let M denote the monoscheme associated to the fan ¥. Then for each 1,
the induced morphism X; X, Ay — S X, Ag is open immersion.

If we choose a fan ¥ such that its support is equal to (P8P)Y, then u : M — specP is
proper. ]
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Corollary 3.4.3. Let f : X — S be a proper log étale monomorphism of fs log schemes
such that X is quasi-compact, and let g : S — Ap be a fs chart. Then there are a proper
birational morphism M — spec P of fs monoschemes and a commutative diagram

Y—)AM

|
AN

STAP

U

such that the outside diagram and the upper square are Cartesian

Proof. By (83.4.2)), there are a Zariski cover (v; : X; — X);e; with finite I and a proper
birational morphism u : M — specP of monoschemes such that for each ¢ € I, the induced
morphism X; X, Ay — S Xa, Aj is an open immersion. Then the induced morphism

gliXXAPAM—)SXAPAM

is also an open immersion. Since f is proper, ¢’ should be an isomorphism. If we put
Y =5 Xa, Ay, then we get the wanted diagram. O

3.5 Structure of Kummer homomorphisms

Lemma 3.5.1. Let P be a fine monoid such that the group P* is torsion free (e.g. when P
is a fs monoid). Then there is a section P — P of the quotient homomorphism 6 : P — P.

Proof. We follow the proof of [Ogul4, 11.2.3.7]. Since P* is torsion free, we can choose a

section B
n: P* — pep

of #%°. Let p be an element of P, and choose an element p’ € P such that §(p’) = p. Then
0% n(p) = p = 0" (1),

so n(p) —p' € ker §2° = P*. Thus n(p) € P. This means n(P) C P, so 1 induces a section of
0. ]

Lemma 3.5.2. Under the notations and hypotheses of , the homomorphism
AN:PeP*— P

induced by a section n: P — P of 0 and the inclusion P* — P is an isomorphism.
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Proof. Let p be an element of P. Then p = nf(p) + p’ for some p" € P*, so p = A(0(p),p'),
i.e., A is surjective. For the injectivity, let (p;,p2) and (p}, py) be elements of P @ P* such
that A(p1, p2) = A(p}, ph). Then we have

p1 = 0A(p1,p2) = OA(P), ) = ph-
The above two equations implies p, = p),, and this shows the injectivity of \. O

Lemma 3.5.3. Let 0 : P — Q be a homomorphism of fs monoids such that 8 is Kummer,
and for n € Nt let p, : P — P denote the multiplication homomorphism a +— na. Then
there is n € Nt such that in the coCartesian diagram

PLQ

Pl

/
P qQ
of fs monoids, the homomorphism ' is strict, i.e., 0" is an isomorphism.

Proof. By (3.5.1)), there is a section A : P — P of the quotient homomorphism P — P.

Replacing P 2 Q by P Apd @, we may assume that P is sharp.

If ¢'(p) € Q™ for some p € P, then nf(p) € Q*. Thus O(p) € Q*, contradicting to the
assumption that 6 is Kummer. Thus the remaining is to show the surjectivity of .

Choose n € NT such that nQ C 0(P) + Q*. If ¢ € @ is an element, then ng = 0(p) + ¢
for some p € P and ¢’ € Q*. We have

nn(q) —nd'(p) € Q",
so (q) = 0'(p) in Q' because Q' is saturated. This shows the surjectivity of ¢'. O

3.5.4. We will study the structure of Kummer homomorphisms of fs monoids as follows. Let
6 : P — @ be a Kummer homomorphism of fs monoids, and let A\ : P — P be a section of
the quotient homomorphism P — P. Such a section exists by .

By (3.5.3), there is n € N* such that in the diagram

P-2.p—-2,0
I
P N Ny

of fs monoids where each square is coCartesian and pu, : P — P denotes the multiplication
homomorphism a + na, the homomorphism 6’ is strict. Then by (3.5.2]), we obtain the
commutative diagram

PYXPpP —— Q

lﬁn ou'* l

P=Pgpr 2 P Q-

of fs monoids.
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3.6 Generating motives

3.6.1. Throughout this section, we fix a full subcategory .# of the category of fs log schemes
satisfying the conditions (2.0.1]). We also fix a 7-twisted eSm-premotivic triangulated cate-
gory 7 over . generated by eSm and 7 satisfying (Loc) and (sét-Sep).

3.6.2. Let S be an .“-scheme with a fs chart o : P — Mg. We denote by Fg, the family
of motives in .7 (5) of the form

Ms(S" x4, .8, Ag){r}
where

(i) 8" — S is a Kummer log smooth morphism with a fs chart n : P — P’ of Kummer
log smooth type,

(ii) ¢ : P — @ is an injective homomorphism of fs monoids such that the cokernel of &P
is torsion free,

(iii) @ is logarithmic and locally exact,

(iv) r is a twist in 7.

Proposition 3.6.3. Under the notations and hypotheses of , the family Fs . generates
T(S).

Proof. Let f : X — S be an exact log smooth morphism of .-schemes with a fs chart
0 : P — @ of exact log smooth type. It suffices to show that the motive Mg(X){r} is
in (Fg,) where r is a twist in 7. Here, (Fg,) denotes the localizing subcategory of 7T (.5)
generated by Fg,.

(I) Reduction of S. Note first that the question is strict étale local on S by ([2.1.2). Let
1:Z — S be a strict closed immersion of .%-schemes, let j : U — S denote its complement,
and let 5 : P — M denote the fs chart induced by a. Assume that the question is true for
Z and U. Then by (Loc), to show the question for S, it suffices to show that the motive

i*Mz(Z/ XAP/ AQ){T}

with the similar conditions as in (i)—(iv) of is in (Fyzg).

The induced morphism Z" — Z x4, Ap/ is open since it is smooth, and let W denote its
image. Choose an open immersion ¥ — S X, Ap such that W = Z xXg Y and that n®P is
invertible in Oy. By [EGA, IV.18.1.1], we may assume Z’' = W xy S’ for some strict smooth
morphism S’ — Y since the question is Zariski local on Z’. Then we have Z' = Z x4 S’. By
(Loc), we have the distinguished triangle

Ms(UXSS/XAP/AQ) — MS(S/XAP/ AQ) — i*Mz(Z/XAP, AQ) — Ms(U Xss/XAP, AQ)U]

in .7(S), and this proves the question since Mg(U xg .S x4, Ag) and Mg(S" x4, Ag) are
in <./T'.5,a>.
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By the proof of [Ols03, 3.5(ii)], there is a stratification {S; — S} of S such that each
S; has a constant log structure. Hence applying the above argument, we reduce to the case
when « : P — Mg induces a constant log structure.

(IT) Construction of P'. We will use induction on
d := maxrk M5 .
rxeX ’

If d = dim P, then f is Kummer log smooth, so we are done. Hence let us assume d > dim P.

We denote by P’ the submonoid of () consisting of elements p € (Q such that np €
6(P) + Q* for some n € N*. Then P’ is a fs monoid by Gordon’s lemma [Ogul4, 1.2.3.17].
Let 0" : P' — (@ denote the inclusion. Then the cokernel of 68 is torsion free by construction.
We will check the conditions (ii) and (iii) of (3.6.2). Since P'8? = Q#P, ¢ is logarithmic. For
the locally exactness, it suffices to show that 6 P@ — QQ is integral. This follows from
[Ogul4, 1.4.5.3(2), 1.4.5.3(1)]. The remaining is to show that 68 is torsion free.

Let G be a maximal ¢'-critical face of Q. Then we have (Q)f = (P")§ @ (G)§ by
[Ogul4, 1.4.6.6]. Thus, for any ¢ € Q2P such that ng € P8P for some n € N*, the image of
g in P')g & (G)§ should be in P')§. This means ng + p’ € P’ 4+ Q* for some p’ € P’, so
n(g+p) € P+ Q*. Thus ¢+ p € P’ by the construction of P’, so ¢ € P'®°. This proves that
0'8P is torsion free.

(III) Construction of S’. The induced morphism X — S x,, Ap/ is open by [Nak09, 5.7],
and let Y denote its image. Then Y has the chart P’. Note that the induced morphism
Y — § is Kummer log smooth and that the order of the torsion part of the cokernel of n&P
is invertible in Oy-.
The closed immersion Y X, A(pr pr+y — Y is an isomorphism since S has a constant log
structure. Thus the projection
Y X Apr A(Q,Q+) —Y

of underlying schemes is an isomorphism since 6’ : P’ — @ is logarithmic. Consider the
pullback

9+ X Xag Aar) =Y Xap Ao
of the induced morphism o : X — Y x,_, Ag. Since 0 is exact log smooth type, h is strict

étale, so ¢’ is also strict étale. Then there is a unique Cartesian diagram

X Xuo Aoty — Y Xa Ao

| |

S g s Y

of .#-schemes where the right vertical arrow is the projection. The morphism ¢ is automati-
cally strict étale. This verifies the condition (i) of (3.6.2) -, so we have checked the conditions
(1)—(iii) of (loc. cit) for our constructions of P’ and S’
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(IV) Final step of the proof. Then we have the commutative diagram
S/ XAP, AQ — S/ XAP, A(Q7Q+) ;> X XAQ A(Q7Q+) — s X

\
\

~

Y Xap AQen) v Y Xap Ag

~ <~ /
g
S’ > Y

of .#-schemes. Note that the projection p is log smooth by the conditions (ii) and (iii) of
(loc. cit). Let u denote the complement of the closed immersion v : Y x4, Aoy — Y.
Then by (Loc), we have distinguished triangles

pﬁuﬂu*MYXAP,AQ (X) — Ms(X) — pﬁU*U*MYmp,AQ (X) — pﬁuﬁu*MYXA\P/AQ (X)[l],

pﬁUﬁu*]\/fyXAPIAQ(S, XAP, AQ) — ]\/fs(sl XAP, AQ) — pﬁv*v*JWYXAPIAQ(S’ XAP, AQ) — puUﬁu*]\/[yxAplAQ(s, XAP, AQ)[H
Let r be a twist in 7. We have isomorphisms
3 Il
() MYXAP/AQ (X)= MYXAP/A(Q7Q+)(X Xao Ag.oh))

(Q,Q1) (S/ XAP’ A(QaQJr))
= U*MYXAP,AQ(S/ XAP/ AQ),

= MYXAP,A

and Mg(S" xa,, Ag) is in (Fgq) by definition. Moreover, by induction on d,
prugu’ My, no(X),  ppugt™ My, 0o (S" Xa, Ag){r}

are in (Fg,). Thus from the above triangles, we conclude that Mg(X){r} is also in (Fg,).
[

Corollary 3.6.4. Assume that T satisfies (Htp—3). Let S be an #-scheme with a fs chart
a: P — Mg. Consider the family of motives in 7 (S) of the form

Ms(S"){r}

where r is a twist and S" — S is a Kummer log smooth morphism with a fs chart 0 : P — P’
of Kummer log smooth type. Then the family generates 7 (5).

Proof. Let 8" — S be a Kummer log smooth morphism with a fs chart § : P — P’ of
Kummer log smooth type, let 8 : P’ — (@ is a logarithmic, locally exact, and injective
homomorphism of fs monoids such that the cokernel of 6P is torsion free, and let G be a
#'-critical face of ). Then the induced morphism

MS(S/ XA prAg AQG) - MS<S/ X AprAg AQ)
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in .7 (S) is an isomorphism by (Htp-3). Since the induced morphism
S’ X Apr,Ags AQG — S

is Kummer log smooth and has the fs chart P — Q¢ of Kummer log smooth type, we are
done. 0
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Chapter 4

Purity

4.0.1. Throughout this chapter, we fix a full subcategory . of the category of fs log schemes
satisfying the conditions of (2.0.1). We also fix a eSm-premotivic triangulated category
satisfying (Adj), (Htp-1), (Loc), and (Stab).

4.1 Thom transformations

Definition 4.1.1. Let f : X — S be a morphism of .#-schemes, and let i : S — X be its
section. Assume that ¢ is a strict regular embedding. We have the following definitions.

(1) BsX denotes the blow-up of X with center 5,

(2) Bs(X x A') denotes the blow-up of X x Al with center S x {0},
(3) DsX = Bs(X x Al) — BgX,

(4) NgX denotes the normal bundle of S in X.

The morphisms S % X L S induces the morphisms DgS — DgX — DgS, which is
S x Al = DgX — S x A (4.1.1.1)
since DgS = S x Al

Definition 4.1.2. Let h: X — Y and ¢g: Y — S be morphisms of .#-schemes, and we put
f = gh. Consider a commutative diagram

Dy —% D

XT>YXSXT>X

of .#-schemes where a denotes the graph morphism and p, denotes the second projection.
Assume that b is proper. Then we define the following functors:

I % I %
Yy i=Doys, Qypi=apy,  Qgppi=uebgs.
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The third notation depends on the morphisms, so we will use it only when no confusion
arises.
When b is a strict regular embedding, consider the diagrams

Dy b . p—% X Dy —*— Np,D —2— X

[ [ b [ [

Dyx Al =45 Dp D —25 X xA'  Dyx Al —%5 Dp D —25 X x Al (41.21)

: L |

Dy X X

of .#-schemes where
(a) each square is Cartesian,

(b) g denotes the O-section, and «; denotes the 1-section,

(¢) d and sy are the morphisms constructed by (4.1.1.1),
(d) ¢ and 7 denotes the projections.

Then we define the following functors:
Qg,f,D = Uo*ﬂ'*d!S;ﬂ'*, QZ,f,D = UO*G!t;.
Now, assume ug = id. Then we define the following functor:

;,f,D = t/]VXD
Here, tiy_p is the right adjoint of an orientation of Nx D, and it exists by (2.8.2). By (2.5.3),
the functor §7 ; , is an equivalence, and by a theorem of Morel and Voevodsky [CD12,
2.4.35], Qi 7.0 18 also an equivalence. We denote by
Ed I o
9.f,D> 9,.f,D> 9,f,D

the left adjoints (or equivalently right adjoints) of QZ, 5,00 Yy 7oy and Q7 ;) respectively.
When A is the identity morphism, we simply put

Yp=Xpp Qp=Qpp Qpp:=Q b,

d L d R I
Q5 p = rp Upp=Q;p Qjp:=Q%p,

d . \d n . \"n o . yo
YXip i =Xipp, Xfp = XYipp,  Yip = XD

and when a is a strict regular embedding, we simply put

d._ yvd R
Zf T EfaXXSX’ 1} T Z?7X><SX'

These functors are called Thom transformations.
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4.1.3. Under the notations and hypotheses of (4.1.2)), we will frequently assume that uy = id
and there is a commutative diagram

1
PN
X > D >y X

b q2

with the following properties:
(i) w is an open immersion,
(ii) cis a strict closed immersion,

(iii) ro is a strict smooth morphism.

4.2 Transition transformations

4.2.1. In this section, we will develop various functorial properties of Thom transformations.

4.2.2. Under the notations and hypotheses of (4.1.2)), consider a commutative diagram

Ey —S > FE

Dy —bt D &

P S

X —a Y Xg X T) X
of .-schemes, and assume that b and ¢ are proper. Then we have a natural transformation
Tpe: Q58 — Q1D

in the below two cases. This is called a transition transformation. Here, when D =Y xg X,
we put Ty x, g = T for simplicity.

(i) Assume that v, is the identity and that the exchange transformation
i y E5 ot

T,
is defined and an isomorphism. Then the natural transformation Q, ;5 —= Q, ;p is
given by
ok | % % Ba7l | %
U CTy — UpkCV @y — Ui b5
Note that when v is an open immersion and (Supp) is satisfied, then the condition is
satisfied.
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(ii) Assume that the unit id 24, y,v* is an isomorphism. Then the natural transformation

T
QB ik Qg ¢ p is given by

| x Bz ! x ! « % ad”! I x
UgxV0xC Ty — Upsb V15 — Upb' V075 — U0 G5.

(ili) Assume that v is strict étale, vg is the identity, and (Supp) is satisfied. The purity

transformation B
LT,
whose description is given in (4.4.2)) is an isomorphism by [CD12, 2.4.50(3)]. Then
Tp,E

the natural transformation €, s g — 4 ¢ p is given by

% !**(q;})il Plox [
UxC' Ty — UgsCV Gy = U CV @y — Upb G-

Note that Tp g is an isomorphism.

4.2.3. Under the notations and hypotheses of (4.1.2)), let n : X’ — X be a morphism of
¥ -schemes, and we put f' = fn. Consider the commutative diagram

Dj{ A 5

ug
10 X' -

n

D() b >

\ x q2

ug u

X .Y ><3X>a X

a p2

of .#-schemes where the upper layer is a pullback of the lower layer. Then we have the
natural transformations

* Ex * Ex | Ex
N Qo — Qg pom’s  Qopone — 08 p oy Qg p o — 08 0

given by
0 uob'as > g miblas = up, bty — up b'g5
1 ~
oD G > w0k pugs T wouonb'as > maup,b'ah,
g g5t = b p'gs — umeb'as = n'uo.b'a;
respectively. These are called exchange transformations. Here, to define the first (resp.
second, resp. third) natural transformation, we assume the condition (C'E*) (resp. (CE,),

resp. (CE')) whose definition is given below:
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(CE*) The exchange transformation n;b' RENg p* is defined.

(CE,) The exchange transformation 7,b" Ly P« 1s an isomorphism.

(CE") (n is proper) or (7 is separated and (Supp) is satisfied). Moreover, the exchange
transformation ¢4’ Lz, p'qs is defined.
For example, if b is a strict closed immersion, then by (2.6.2)), (CE*) and (CE,) are satisfied.

On the other hand, if 1 is a strict closed immersion, then by (2.6.2), (CE") is satisfied.
When b is a strict regular embedding, we similarly have the natural transformations

d Ex d d Ezx d
77*997]217 Qg,f’,D’n*’ Qg,van* n*Qg,f’,D”

* n

Ezx n * n Ex n
Qg rp — Qg poms Qg pple — 18 1 pr

because the corresponding versions (CE*) and (CE,) are always satisfied since the mor-
phisms d : Dy x A! — Dp,D and e : Dy — Np,D are strict regular embeddings. Since ¢,
is exact log smooth, if (n is proper) or (7 is separated and (Supp) is satisfied), we have the

natural transformation
1 Ex. 1~n

QZ,f’,D’n' — n g.f,D"
When s; is exact log smooth, if (n is proper) or (7 is separated and (Supp) is satisfied), we
also have the natural transformation

d ! Bz 1d
QgJCD’?7 Han,f,D

because the corresponding version (CE') is satisfied. However, s, may not be exact log
smooth morphism. In this case, assume that (Supp) is satisfied and that the conditions of
(4.1.3)) are satisfied. We put I’ = I xp D', and consider the diagram

E
Qg —== 'y p1
lTD’,I’ lTD,I
| !
Q.01 08, 1,0

of functors. The horizontal arrow is defined since the induced morphism Dyl — X x Al is
strict smooth. The vertical arrows are isomorphism by (4.2.2). Now, the definition of

d ! Bz 1+d
Q97f’,D’77 —>an¢@

is given by the composition

| (TD/,I’)71 | Ex ) Tp,r
Qo pom = Qgprn — 0 Qg pr —> 0 1D

Lemma 4.2.4. Under the notations and hypotheses of , the exchange transformation
n E n
Qg,f,Dn* _1‘> n*Qg,f/,D/

18 an isomorphism.
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Proof. It follows from (eSm-BC) because the morphism Np,D — X in (4.1.2.1) is exact log
smooth. n

Lemma 4.2.5. Under the notations and hypotheses of , assume that ug s the identity.
If n is proper, then the exchange transformation

n | Ex lon
Qppom — 1 b

s an isomorphism.

Proof. Note first that QF , , and €} , ,, are equivalences of categories by (2.8.2)). Consider
the natural transformation .
| Z |
77'227f/7D/ — Eg,f,Dn

given by the left adjoint of the exchange transformation
E
Q5,07 = 182 g1

Then consider the commutative diagram

n IS Ex y lon n
Qg,f’,D’n Zg,fﬁD’ n Q97f7DEg,fCD’

| [

! d’ !
O ppEg ol ————— 1

of functors. By , the left vertical arrow is an isomorphism. The right vertical and
lower horizontal arrows are also isomorphisms since Qf . , and Q7 /5, are equivalences of
categories. Thus QF . , and QF ., ,, are equivalences of categories. Then the conclusion
follows from the fact that X7 , 1, is an equivalence of categories. O

Lemma 4.2.6. Under the notations and hypotheses of , assume that ug is the identity.
if qo 1s strict smooth separated and n is separated, then the exchange transformation

| FEx |
Qg.p.0m — N8 10

1s defined and an isomorphism.

Proof. 1t is a direct consequence of ([2.5.10)). [

Lemma 4.2.7. Under the notations and hypotheses of , assume that ug is the identity.
if 7 is an open immersion and (Supp) is satisfied, then the exchange transformation

n | Ez lon
Qg,f’,D’?7 URLYN S

18 an isomorphism.

Proof. 1t is a direct consequence of (Supp). O
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Lemma 4.2.8. Under the notations and hypotheses of , assume that ug s the identity.
if n is separated and (Supp) is satisfied, then then the exchange transformation

n | Ez lon
Qg,f’,D’77 URLYN S

18 an isomorphism.

Proof. 1t follows from (4.2.5) and (4.2.7)). O

4.2.9. Under the notations and hypotheses of (4.1.2)), we have the natural transformations

s e
n
or0 S Q50— Qe pp

whose descriptions are given below. These are called transition transformations again.
(1) The natural transformation
d . Od
T 'Qg,f,D —>Qg7f7D
is given by
x ad * x * *
W*ngAl,fol,DXDW — W*Oél*oéngxAl,foxl,DXDW — Uo*OéngxAl,fol,DXDW
E ~
= QAT = Qg pp.
(2) The natural transformation
-1.0d
(T") Qg0 — Qpp
is given by
x ad * * * *
W*ngAl,fol,DXDW — W*OZO*%ngAl,fol,DXDW — %ngAl,fol,DXDW
Ex ~
— Qo™ — Qg pp.
When (7™)~! is an isomorphism, its inverse is denoted by 7™.
When wug is the identity, we also have the natural transformation
o . o
T gD 7 Qgvf,D
given by the right adjoint of an orientation of NxD. It depends on the orientation.

4.2.10. Under the notations and hypotheses of (4.2.3), consider the commutative diagram

E} - > B
\v()l ‘ \\
/ N / !/
1/)0 DO b, 1/) 7 D q/2 7 X
PO l
E = >y B P K
\ s 72
vo v \
Do a . D —
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of .#-schemes where each small square is Cartesian. Assume that one of the conditions (i)
and (ii) of (4.2.2) is simultaneously satisfied for both (D, E) and (D', E’). Consider the

diagrams

Tp.E Tp.E y Tpr.p |
0. 1.5 > 0,10 Q. 1,67 > Qg .00 Qg p0m > Qg p oM
% TD/,E/ * TD/7E/ T ,
Qg prom” —— Qg p 1) 08y prm —— 080 N Qypr —— Qb

of functors. Here, in the first (resp. second, resp. third) case, we assume the condition (C'E*)
(resp. (CE,), resp. (CEY)) in for n and 7’. We will show that the above diagrams
commute under suitable conditions. If the condition (i) of is satisfied, then note that
vo and vy are the identity, and the assertion can be checked by considering the diagrams

pic'rs — picvas s gty drine —— dotgin. T Vag.
Ex Ex Ex Ex
C/!¢*T; ~ s CI!’QZ)*’U*Q; Ex Ex C!U*p*qgk Ex—! s b'p*qé*
~ Ex
~ C,!’Ul*p*q; Ex~! s bl!p* q; C!¢*Té* ~ s C!¢*’U/* qé* Eo—1
~ ~ Ez~! Ez~!

NIk, % ~ Mo e, w BT g g« 11k ~ oo x BxTl /N 1k
rynt —— Vgt ——= VGt poicry —— poncvT gy —— po.b”q;

Nk ~ N x| Bxl "ok
ryn —— gy —— Vgyn

Ex Ex
o c’!v’;’p!q’g“ Ex~1 s b/!;! C];
Ex
C/!w!r; ~ CI!’Q/)!?}*qs ~

[ 1% %

! ~ 1) Ex=t 11
PoCTy —— Pocv gy —— pobqs

of functors. If the condition (ii) of (loc. cit) is satisfied, then the assertion can be checked
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by considering the diagrams

AP

|
Pivonc'r

E !
— pebv.rs

~ d-1
—— ppbuatgy —— pib'as

Ex Ezx Ex
| | ~ |
v sy b prurs ——— b p*v.otg; Ex
—1

Ex Ezx Ezx ad
VN | BRI Ex sk ok ~ V1 R R ad~1 /1 % %
Vo C 1y —— VW Ytry —— Vo ptgy —— U pTg;
rooNox, o« Bz (BN ~ N s gkox  ad”t N x
vyt —— Yoyt —— BT gt —— Ve

| E | ~ | d—1 |
Vs C 3N ——— b0 rsn, ———— b0 @gn. ——— bgin.

Ex Ex Ex
Vol —EE s Boaprl — s bpulv g 2 bp,gl
Ex~1 ~
VouPouC' T b'pulrl Eo1 o
~ E(L’71

r Noax  Ex
PoxVpC Ty —— Pox

N
b/!

1 1% ~ VI
vy —— poLb v g5

ad~1 |
—— poxb"qy’

’ ! Ex VBN ~ 7N ax Ik, ad~! 7Nk
Vo Ty ————— Yy > Vo™ gy ———— bgy'n
ad ad lad ad
ot s U EBx gty s L Bxo g peol o~ oV, L adTh g
V. Yy —— bbby —— Vipvabary'y —— Vppauo gy —— b p'pugem
Ex—1 Ex—1 Exz~! Ex—1
VIR | Ex noro! I "o 1~ "o 1 ad™t g !
v Y rinay ——— bubrinagy —— Vpvaring —— bpuwtgnag ——— 0 pgsnan
ad’ ad’ ad’ lad/ ad—1
o Ex oo Ex "ot ~ "ot ad~! "ot
vo Yy ——— bupry ———— bpvar; ———— Vpvtey ——— Vpg
VA I -~ ~
UO*n c TZ
Ex
| | E 171 ~ 171 d-1 171
PhonC'Ts z » s —— phbuarte; —— pllgy

of functors. When b is a strict

regular embedding, we similarly have the commutative
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diagrams

x(O)d Td * Td | Td |
77 ngva 77 Qg’f’D ngva/r]* E— Qg’fyDn* Qg7fl7Dl?7' E— Qg:f/»D/n'
d * Td * Td | Td
Qg prom” —— Qg .01 1y o —— Qg0 N p —— Qgpp

(Tn)fl . (Tn)fl Tn)fl
Y ¢—— " p Qg ot <—— Qo Qpp e Qg pt

| [ [ I8

T'n)fl d Tn)fl d | (Tn)fl d
Qg .o’ e Qg o 182y S 8 o Qg pp S Qp

of functors. Here, in the third and sixth diagram, we assume that (n and 7’ are proper) or
(n and 7’ are separated and (Supp) is satisfied).

4.2.11. Under the notations and hypotheses of (4.2.2)), if b and ¢ are strict regular embed-
dings, we have the commutative diagrams

EO > B
\ Dy l k
EO x Al > DEOE
Do x Al s Dp,D ———3 X x Al
E(] 7 NEOE

Dy ﬁ){

Ey x Al DEOE

™ SN —

Dy x Al s Dp,D ——— X x Al

~

of #-schemes as in (4.1.2)). Thus we similarly obtain the natural transformations

d d n n
Qg,f,E — Qg,f,E’ QzmﬁE — Qg,ﬁE
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as in (4.2.2) when one of the conditions (i)—(iii) of (loc. cit) is satisfied. These are again
denoted by Tp g and called transition transformations. We also have the commutative
diagram

Tn)fl d Td
O re £ Qe — Qg rE

lTD’E lTD,E lTD,E

Tn)fl d Td
0.1,D ¢ Q50— QgD

of functors. Note that in the case (iii), the horizontal arrows are isomorphisms as in (loc.
cit). In the case (i), if (Supp) is satisfied, then the horizontal arrows are isomorphisms.

4.2.12. Under the notations and hypotheses of assume that the conditions of (4.1.3)) are
satisfied. Consider the commutative diagram

(T") ™" ~a T
n
a0 S s — Qg g

lTD,I lTD,I lTD,I

Tn)—l d Td
Q.0 e Qgsp — Qopp

of functors. By the proof of [CD12, 2.4.35], the upper horizontal arrows are isomorphisms.
The vertical arrows are isomorphisms by (4.2.2(i)), so the lower horizontal arrows are also
isomorphisms. In particular, the natural transformation

n (Tn)71 d
or0 — Yip

has the inverse T™.

4.2.13. Under the notations and hypotheses of , assume that we have a commutative
diagram

Fy—< s F

o I

Ey—sE \

SN

Dy > D > X

b q2

of #-schemes and that w : I — E and v : E — D simultaneously satisfy one of the
conditions (i)—(iii) of (loc. cit). Then the composition vw : F' — D also satisfies it, and the
diagram

Te,F

Qg,ﬁF ’ Qg,ﬁE
Th AE
Q9,f,D
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of functors commutes.
Assume further that b, ¢, and d are strict regular embeddings. Then we similarly have
the commutative diagrams

Te,F Te,Fr
d » N d n ’ N n
Qgvf,F ’ Qg,f,E Qgﬂf,F ’ Qg,ﬁE
TD,X) AE Tl% AE
d n
Qg,f,D 9,f.D

of functors.

4.3 Composition transformations

4.3.1. Let h: X — Y and g : Y — S be morphisms of .#-schemes, and we put f = gh.
Consider a commutative diagram

of .-schemes. Assume that the exchange transformation

v E5 o (4.3.1.1)

is defined. For example, when the diagram

D —2 D

ol

X b// D//
is Cartesian and the exchange transformation

me 1 Eroop ok
b p*—>q2*p
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is an isomorphism, (4.3.1.1)) is defined. Then the composition transformation
c
Q0 .0n — Qo

is given by

[N/

b’!qg*b"!qé’* ﬂ b/!p Py ~ b!q!Q-

Note that it is an isomorphism when the first arrow is an isomorphism. For example, if
(Supp) is satisfied and p’ is strict smooth separated, then the first arrow is an isomorphism

by (2.5.10)).

4.3.2. Under the notations and hypotheses of (4.3.1)), consider a commutative diagram

T2

of .-schemes. Assume that the exchange transformation
7"/2*6”! ﬂ ¢!,¢)/*
is also defined. Then in the below two cases, we will show that the diagram

C
Qg g —— Q.
lTD’,E’TD”,E” lTD’E (4321)

C
Q0 Qg 1.0n —— QD

of functors commutes where the horizontal arrows are define in (loc. cit).

(i) Assume that the exchange transformations
At 25 Ao, ad S e idt S
are defined and isomorphisms. Assume further that the exchange transformation
o™ p! ﬂ w! v
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is defined. Then the commutativity of (4.3.2.1) is equivalent to the commutativity of
the big outside diagram of the diagram

b/!qé* b"!qé’* Ex bl'p pl*qg* ~ b!qé‘

Ezx Ex
1% /b//' 1% Ezx P 1% %
Mgy b gyt —= s Pt g Bz
Ex EJ:
| 11
! v’*qé*c”'v”*qg* C"w‘v*p’*q”* ¢ U*q;

Mot L1 Ex Mo T % ~ | %
crydiryt ———— Yl ——— ol
of functors. It is true since each small diagram commutes.

(ii) Assume that the units

" //*

. ad . ad
id — v,0*, id — 0™, id LN v

are isomorphisms. Then the commutativity of (4.3.2.1) is equivalent to the commu-
tativity of the big outside diagram of the diagram

1% I Ik ad Mot 1 I I il 1% I ad /! 1% //* ~ 1%
iyl 2y Pty —>01/J¢ it — 2 il — s s
J{ad J{ad lad lad J{ad
Mo I ot S I A 1l s BxTl P51 1 //* ad’ Nt 1k ~ 1! *
v ulryd" ! cYvvapaldiryt —— ¢ vp*clc —— Yoyt ——— cvvrg

I T e I

1 1 d 11 11 1 d’ A
! U/*q/*cu T”* a b/ApAp>k / v/*qé*c// T”* Cl.w ! pl*’U”C"C" T"* a C/A,(/} V! p,*U”T"*
l‘ld71 lad’1 TN TN
] | d | | Ex~! 11 ]
" q/*(,// T//* a " P Ds q’*r” T//* z b/'p‘p/*bilc”‘r'z/* b 0 p/*v”v”*qé/* ~
lad lad lad

| 1o d 1 1o E' -1 1 1o
! q/*(/// " 1}”7”* a ! o'p. q’*c" " U” s z b"p'p’*b;’c”"u”"ui’rg*

I L |

ad~?
b"q b//l // //*q//* ad b"p'p*qz bulvuv//*qé/* Ex~! bl!p!pl*b/*/b//!vi/b//*qg* b!’U*U*q;
l{zd’l l{zd’l lad’l l{zd’l
b’!qé*b”'q”* bI‘P‘P*(]Q b//'q//* b/!p!p/*b/*/b/ﬂq//* b/'plp/*q//* ~ b!q;‘

of functors. It is true since each small diagram commutes.

4.4 Purity transformations

4.4.1. In this section, we will introduce purity transformations and their functorial proper-
ties.
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Definition 4.4.2. Let f : X — S be an exact log smooth morphism of .#-schemes. Assume
that (f is proper) or (f is separated and .7 satisfies (Supp)). We also assume that we have

a commutative diagram

X —— X xg X —5— X

of .#-schemes where
1. bis a strict regular embedding,

2. u satisfies one of the conditions (i)—(iii) of (4.2.2)).

Then we denote by
n n ! *
qf,D:Qf,Df — /7, qu Qf — 7

the compositions

A ot ol I an L f
ANy o P LNy o L N o I T Qs Qo f

respectively. Their left adjoints are denoted by

pip:fe — [Xrp, Pip:fi — [X5)p
respectively.

4.4.3. Let h: X — Y and g : Y — S be separated &-morphisms of .#-schemes, and we
put f = gh. Then we have the commutative diagram

[Py

Xxy X —25 X xg X

Pk

XT>Y><SX7>X

of .-schemes, and the exchange transformation

1w 1 Ex
Py a ‘>§090

is defined by (eSm-BC). Thus by (4.3.1)), we have the composition transformation

C: Qth,f — Qf.
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Then the diagram

Qh'Q,g —2 hrg*
AEm
0,0, th'g
0, Q1 f!
VC
fo! 9f f*

of functors commutes by the proof of [Ayo07, 1.7.3].

4.4.4. Let f : X — S be a separated and vertical &?-morphism of .#-schemes, and let
1:.5 — X be its section. Then we have a commutative diagram

S %

b

x 1 5
of .-schemes where
(i) a denotes the diagonal morphism, and p, denotes the second projection,
(ii) each square is Cartesian.

Consider the diagram
Qpiai' f' —— Qi

e ]

Z'fo' af Z'f*
of functors. It commutes since the big outside diagram of the diagram

i!f*i!f! ~ Z'f*(fl)' ~ i!f*

|- lEIf d

Yl | px

‘i'pyf' i‘(pra)
Z’!a!pgf! Ex Z‘!a!pllf* ~ Z'f*

of .#-schemes commutes.
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4.4.5. Consider a Cartesian diagram

X -4 x

o

S —2 59

of #-schemes where f is an exact log smooth morphism. Assume that (f is proper) or (f
is separated and (Supp) is satisfied). Then we have the commutative diagram

(l/

p/
X = X X g X =5 X

RN

X —% 5 X xgX — 25 X

of .#-schemes where each square is Cartesian and p, denotes the second projection. We also
denote by p; (resp. p}) the first projection X xg X — X (resp. X’ xg X' — X'). In this
setting, we will show that the diagram

P
f/ 1% _f> f{Ef/g/

[+

Ex 119" %y

T

* Py *
g fy —— g* iy

of functors commutes. It is the big outside diagram of the diagram

! 1%

fig” ﬁplva;g’* > fipyalg

’g’*p1ua*—> ﬁpllg a*_> !/p/mg//*a*

Ex Ex

~

! !
Ez 19 P2y

A

Ex

~

* ~ * Ex
g fs — 9" fipna.

> g*f!p2]ia*

of functors. Thus the assertion follows from the fact that each small diagram commutes.
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Chapter 5

Support property

5.0.1. Throughout this chapter, we fix a full subcategory . of the category of fs log schemes
satisfying the conditions of . We also fix a eSm-premotivic triangulated category
satisfying (Adj), (Htp-1), (Htp-2), (Htp-3), (Loc), (sét-Sep), and (Stab). In §5.6, we assume
also the axiom (ii) of and (Htp4).

5.1 Elementary properties of the support property

5.1.1. We will define the universal and semi-universal support property for not necessarily
proper morphisms, and we will show that our definition coincides with the usual definition
for proper morphisms in (5.1.4). Then we will study elementary properties of the universal
support property. Recall from that any proper strict morphism of .#-schemes satisfies
the support property.

Proposition 5.1.2. Let g: Y — X and f : X — S be proper morphisms of .#-schemes. If
f and g satisfy the support property, then fg also satisfies the support property.

Proof. Consider a commutative diagram

w4y Loy
lj" lj/ lj
y 4o x -t g

of .-schemes where j is an open immersion and each square is Cartesian. Then the conclu-
sion follows from the commutativity of the diagram

Jefige — fudige —— [egudi

5 |

G(f'g)s b y (f9)d!

of functors. n
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Definition 5.1.3. Let f : X — S be a morphism of .’-schemes. We say that f satisfies the

universal (resp. semi-universal) support property if any pullback of the proper morphism
X — X x5S (resp. any pullback of the proper morphism X — X x .S via strict morphism)
satisfies the support property.

Proposition 5.1.4. Let f : X — S be a proper morphism of .#-schemes. Then f satisfies
the universal (resp. semi-universal) support property if and only if any pullback of f (resp.
any pullback of f via strict morphism) satisfies the support property.

Proof. 1f f satisfies the universal (resp. semi-universal) support property, let f': X’ — 5" be
a pullback of f via a morphism (resp. strict morphism) S" — S. Consider the commutative
diagram

(2

X Y X xg8 2 8

R

X —> XxS8§ —"— S

of .-schemes. By assumption, u’ satisfies the support property. Since v’ is strict proper,
it satisfies the support property by . Thus f = v'u’ satisfies the support property by
(5.1.2]).

Conversely, if the support property is satisfied for any pullback of f (resp. for any pullback
of f via strict morphism), we put 7' = X xg S, and let p’' : X xpT" — T" be a pullback
of X — T via a morphism (resp. strict morphism) 7" — 7. The morphism p’ has the
factorization

XxrT' 5 X xgT' 5T
where r denotes the morphism induced by T' — S, and ¢ denotes the projection. Then the
morphism r is a closed immersion since it is a pullback of the diagonal morphism 7" — T'x T,
so r satisfies the support property, and the morphism ¢ satisfies the support property since
it is a pullback of f via the morphism (resp. strict morphism) 77 — 7. Thus by (5.1.2), the
morphism p’ = ¢r satisfies the support property. ]

Proposition 5.1.5. Let f: X — S be a morphism of .-schemes. Then the question that
f satisfies the universal (resp. semi-universal) support property is strict étale local on X .

Proof. Replacing f by X — X xg S5, we may assume that f is an isomorphism. Then the
question is strict étale local on S by (sét-Sep), which implies that the question is strict étale
local on X. O
Proposition 5.1.6. Let g: Y — X and f: X — S be morphisms of .-schemes.

(1) If f is strict, then f satisfies the universal support property.

(2) If f and g satisfy the universal (resp. semi-universal) support property, then fg also
satisfies the universal (resp. semi-universal) support property.
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(3) Assume that g is proper and that for any pullback h of g via strict morphism, the unit
. ad *
id — h.h

is an isomorphism. If fg satisfy the semi-universal support property, then f satisfies
the semi-universal support property.

Proof. (1) It is true since the morphism X — X xS is an isomorphism when f is strict.

(2) The induced morphism p : Y — Y xS has the factorization
VY 5 Y xx X LY xgS

where r denotes the morphism induced by Y — Y and Y — X, and ¢ denotes the morphism
induced by X — S. Any pullback of r (resp. any pullback of r via strict morphism) satisfies
the support property by assumption, and any pullback of ¢ (resp. any pullback of ¢ via
strict morphism) satisfies the support property by assumption since ¢ is a pullback of the
morphism X — X xg.S. Thus by , any pullback of p (resp. any pullback of p via strict
morphism) satisfies the support property, i.e., fg satisfies the universal support property.

(3) Replacing f by X — X x5S, we may assume that f is an isomorphism. The question is
also preserved by any base change via strict morphism to S, so we only need to prove that
f satisfies the support property. Consider the commutative diagram

fl

w2y s U
lj” lj/ lj
y 4o x -t g

of .’-schemes where j is an open immersion and each square is Cartesian. We have the
commutative diagram

Jaf > fid

Jo Jo

Geflglg === 5 f'9)g"* —Z (f9)uilg —E5 (f9):9%: —— f.9.9"]!

of functors, and we want to show that the upper horizontal arrow is an isomorphism. The
right vertical arrow is isomorphisms by assumption, and the third bottom horizontal arrow is
an isomorphism by (eSm-BC). Moreover, the morphism f'g’ : W — U satisfies the support
property by assumption, so the second bottom horizontal arrow is an isomorphism. Thus to
show that the upper horizontal arrow is an isomorphism, it suffices to show the left vertical
arrow is an isomorphism. To show this, we will show that the unit

! Ik

id % glg
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is an isomorphism.
Consider the commutative diagram

. ad NP
id > 9.9

Jo Jo

oy ad !k k] Mk Ik

375 —— 3"9:9"d —— 9.3 —— 93" {9

of functors. The vertical arrows are isomorphisms by , and the lower left horizontal
arrow is an isomorphism by assumption. Moreover, the lower middle and right horizontal
arrows are isomorphisms by (eSm-BC). Thus the upper horizontal arrow is an isomorphism.
O
5.1.7. Let g : 8" — S be a morphism of .-schemes. We will sometimes assume that
(i) for any pullback ¢’ of g, ¢’* is conservative,
(ii) for any commutative diagram
v L,y
o]
X L X
s
S —7— S
of .’-schemes such that each square is Cartesian, the exchange transformation

JApw/ES

E
d*h. =5 hlg
is an isomorphism.

Proposition 5.1.8. Consider a Cartesian diagram

X -2 x

N

S —2 59

of L -schemes. Assume that g satisfies the conditions of . If ' satisfies the universal
support property, then f satisfies the universal support property.

Proof. Replacing f by X — X xg S, we may assume that f is an isomorphism. Then f’
is proper, so it satisfies the support property by (5.1.4)). Since the question is preserved by
any base change of S, it suffices to show that f satisfies the support property.
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Consider a commutative diagram

1% g sV
N
' ) — s X
s
[ — s U f
J
S’ s S

where j is an open immersion and each small square is Cartesian. We want to show that the
natural transformation

. Ex
is an isomorphism. Consider the commutative diagram

. * E . * E *
I P —— Jipiq” —— fluyd

lE’m lEx
% - Ezx * Ezx ! I%
9 s —— g faug —— fig"uy
of functors. The vertical arrows are isomorphisms by (eSm-BC), and the upper left and lower
right horizontal arrows are isomorphisms by the assumption that ¢ satisfies the conditions
of . Moreover, the upper right horizontal arrow is an isomorphism since f’ satisfies

the support property. Thus the lower left horizontal arrow is an isomorphism. Then the
conservativity of ¢g* implies the support property for f. ]

5.2 Conservativity
Lemma 5.2.1. Let F': C — C" and G : C' — C” be functors of categories. Assume that for
any objects X and Y of C, the function
TXY - HOH]C/(FX, FY) — HOII]@/(GFX, GFY)
defined by
f—=Gf
1s bijective. If F' 1is conservative, then GF' s also conservative.

Proof. Let X and Y be objects of C, and let & : X — Y be a morphism in C such that GF«
is an isomorphism. We put = GFa. Choose the inverse of ¢ : GF'Y — GF X of a. Then
id = 7yx (id) = Ty (¢ 0 B) = Ty x(9) o Ty (B),
so Fa = 75y (B) has a left inverse. Similarly, Fa has a right inverse. Thus Fa is an
isomorphism. Then the conservativity of F' implies that « is an isomorphism. O
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5.2.2. Let f: X — S be a Kummer log smooth morphism of .’-schemes with a fs chart
0 : P — @ of Kummer log smooth type. We will construct a homomorphism n : P — P’ of
Kummer log smooth over S type with the following properties.

(i) Let g:S” — S denotes the projection S x4, Apr — S. For any pullback u of ¢, u* is
conservative.

(ii) In the Cartesian diagram
X —L, x
T
s —2> S
of .#-schemes, f’ is strict smooth.

This will be used in the proof of (5.3.1]).

Consider the homomorphisms
AMP—-P®Q, n:P—PPoQ
defined by p — (p,8(p)). Using these homomorphism, we construct the fiber products
S" =S Xpp Apag, S =S5 Xa, Apergg.

Consider the commutative diagram

of .#-schemes where s denotes the morphism constructed by the homomorphism P& Q) — P
defined by (p, q) — p, h denotes the projection, and j denotes the open immersion induced
by the inclusion P & Q — PP & Q.

From s*h* = id, we see that h* is conservative. We will show that g* is also conservative.
By (Htp-3), the composition

* ~ o ek % ad’ *
hyh™ — 943877 9" — Gz9
is an isomorphism, so for F,G € 7(S5), the homomorphism
Homy(gn)(h*F, h*G) — Homg(sl)(g*F, g*G) (*)

is an isomorphism. Then (5.2.1)) implies that ¢* is conservative. The same proof can be
applied to show that for any pullback u of g, u* is conservative.
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The remaining is to show that f’ is strict. The homomorphism @ : P — () factors through
P =P @ Q viap— (p,0(p)) and (p,q) — ¢, so the morphism f : X — S factors through
S’. Consider the commutative diagram

X L x

L

X/l S/

s

S —9 59

of .’-schemes where each square is Cartesian. The morphism X — S’ is strict, so to show
that f’ is strict, it suffices to show that p; is strict. This follows from (|1.2.18)).

5.2.3. Let f : X — S be a Kummer log smooth morphism of .%’-schemes. By , we
can choose a strict étale cover {u; : S; — S}ies such that for each ¢, there is a commutative
diagram

X, 25 X

lfi lf

of .#-schemes such that f; has a fs chart of log smooth type and {v;};c; is a strict étale
cover. Then by , there is a Kummer log smooth morphism satisfying the conditions
(i) and (ii) of (loc. cit). Let g : " — S denote the union of g;u; : S, — S. Then g satisfies
the condition (i) of (loc. cit) by (két-Sep), and g satisfies the condition (ii) of (loc. cit) by
construction.

5.3 Support property for Kummer log smooth mor-
phisms

Proposition 5.3.1. Let f be a Kummer log smooth morphisms of .#-schemes. Then f
satisfies the universal support property.

Proof. By (5.1.5) and (3.1.4]), we may assume that f has a fs chart 6 : P — @ of Kummer log
smooth type. As in (5.2.2)), choose a Kummer log smooth morphism g : $' — S satisfying
the condition (i) of such that the pullback of f via g : S” — S is strict. Since g is an
exact log smooth morphism, the condition (ii) of (loc. cit) is satisfied by (eSm-BC). Now we
can apply , so replacing f by the projection X xg 5" — S’, we may assume that f is
strict. Then the conclusion follows from ([5.1.6(1)). O

Proposition 5.3.2. Let f : X — S and g : Y — X be morphisms of .-schemes such
that g is proper. If f and fqg satisfy the semi-universal support property, then g satisfies the
semi-support property.
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Proof. Consider a commutative diagram

T/

[E
N

of .#-schemes where the small square is Cartesian and « is strict. By , it suffices to
show that [ satisfies the support property for any «. The morphisms « and o' satisfy the
semi-universal support property by (1)) since they are strict, so the morphisms fa and
fga/satisfies the semi-universal support property by (5.1.6(2)). Hence replacing (Y, X, S) by
(T",T,S), we reduce to showing that g satisfies the support property.

Consider a Cartesian diagram

\

7
\
7

T
la
X

W —==Y

L
V — X
of .#-schemes where v is an open immersion. By (3.6.4)), it suffices to show that for any

Kummer log smooth morphism p : X’ — X of .-schemes and any object K of 7 (W), the
homomorphism

Hom 7 (x)(Mx (X"), 149, ) — Homz(x)(Mx (X'), gwyK)
is an isomorphism. It is equivalent to the assertion that
Homg(xf)(lxz,p*vﬁg;f{) — Homy(X/)(le,p*g*wﬁK)

is an isomorphism since Mx(X’) = plx.. By (5.3.1), p satisfies the universal support

property, so fp and gp satisfy the semi-universal support property by (5.1.6(2)). Since p*
commutes with vy, ¢, g, and wy, replacing Y - X — S by Y xx X' = X' — 5, we reduce

to showing that
Hom 7 (x)(1x, v39, K) — Hom 7 x)(1x, gswy K)

is an isomorphism. It is equivalent to showing that

Hom 7 (s)(1s, fv3g9.K) — Homzg)(1s, fugswi K)

is an isomorphism. Hence it suffices to show that the natural transformation
/ Ex
V39, — 9+ Wy

is an isomorphism.
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The induced morphism ¥ — X xg S has the factorization
Y—)XX&S—)XX&S.

The first arrow satisfies the semi-universal support property by assumption, and the sec-

ond arrow satisfies the semi-universal support property by (1)) since it is strict. Thus

the composition also satisfies the semi-universal support property by (2)) Since the

induced morphism X — X xg S also satisfies the semi-universal support property by as-

sumption, replacing (Y, X, S) by (Y, X, X Xg.5), we may assume that f is an isomorphism.
Then there is a unique commutative diagram B

W —==Y

L

V Y- X

[« b

U——+ 8

of .-schemes such that the lower square is also Cartesian. Since v is an open immersion, u
is automatically an open immersion. In the commutative diagram

wflg, —2 fang, —2 fogawy

s I

w(f'g)- = » (f9)ewy

of functors, the upper left arrow and lower arrows are isomorphisms by assumption. Thus
the upper right arrow is an isomorphism. This completes the proof. O

Proposition 5.3.3. Let f : X — S be a proper morphism of .#-schemes satisfying the
semi-universal support. Let g : 8" — S be a Kummer log smooth morphism of . -schemes,
and consider the Cartesian diagram

X 4, x

N

S —2= S
of L -schemes. Then the exchange transformation

Ex
9ifi — fugi

18 an isomorphism.
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Proof. Note first that by , g and ¢ satisfies the universal support property, so f¢’
satisfies the semi-universal support property by (5.1.6(2)). Then f’ satisfies the support
property by . By , there is a Kummer log smooth morphism A : T" — S of
#-schemes such that h* is conservative and that the pullback of g : 8" — S via h is strict
smooth. Note also that h satisfies the universal support property by . Thus replacing
(X', X,8,S) by (X' xsT,X xsT,S" xsT,T), we may assume that g is strict smooth.
The question is Zariski local on S’ since f’ satisfies the support property, so we may
assume that ¢ is a strict smooth morphism of relative dimension d. Choose a compactification

AN L AN &

where j is an open immersion and p is a strict proper morphism of .#-schemes. Consider
the commutative diagram

-/ /
X Ly xr P

X
I
S’ S

N S N

of .-schemes where each square is Cartesian. Since g is strict smooth, as in [CD12, 2.4.50],
we have the purity isomorphisms

g5 — pajs(d)[2d],
g5 — pLji(d)[2d].

with the commutative diagram

g:p., = > pajafi(d)[2d]

[ |

fedly —— [epldi(d)[2d] —— p.fl5i(d)[2d]

of functors. The morphisms p and p’ satisfies the semi-support property by (5.1.6[1)) since
they are strict, so the morphism fp’ satisfies the semi-support property by (2)) Then
f" satisfies the semi-support property by , so the right vertical arrow is an isomor-
phism. Thus the left vertical arrow is an isomorphism. O

Proposition 5.3.4. Let f : X — S be a proper morphism of ./-schemes satisfying the
semi-universal support property. Then f satisfies the projection formula.

Proof. We want to show that for any objects K of 9k and L of Jg, the morphism

LK ®s L 25 f(K @x f°L)

is an isomorphism. By (3.6.4)), it suffices to show that for any Kummer log smooth morphism
g: S — S of .#-schemes, the morphism

[+ K ®g gslgr 22, [(K® frglg)
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is an isomorphism. Consider the Cartesian diagram

X - x
bl
S —2 5 9

of .#-schemes. In the commutative diagram

JK ®s gils b » (K@ frgsls)
VE':C
Ez fo(K @ g, f" 1)
~ \’EI
9:(g" i K ® 1) feg3(g" K ® [ 1g)
9:9" K —2— g.flg"K —22— f.glg"K

of .’-schemes, the upper left vertical and the middle right vertical arrows are isomorphisms
by (eSm-PF), and the lower left horizontal and the upper right vertical arrows are iso-
morphisms by (eSm-BC). Moreover, the lower right horizontal arrow is an isomorphism by
, so the upper horizontal arrow is an isomorphism. O

Proposition 5.3.5. Let f : X — S be a proper morphism of .#-schemes satisfying the
semi-universal support property. Then the property (BCy,) holds for any strict morphism
g:S" = S of S-schemes.

Proof. By (Zar-Sep), we may assume that g is quasi-projective. Then g has a factorization
s TS
where i is a strict closed immersion and p is strict smooth. By (eSm-BC), we only need to

deal with the case when ¢ is a strict closed immersion.
Let h : S” — S denote the complement of g. Then we have the commutative diagram

!

X Ly x M xr
lf/ lf lf”
F YN VR N

of .-schemes where each square is Cartesian. By (Loc), we have the commutative diagram

a

’ 0 s
g fhhs = g f — gt fuglg —— g fhyh(1]

flghihs —T flgt s flgtglg — flghih(1]
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of functors where the two rows are distinguished triangles. To show that the second vertical
arrow is an isomorphism, it suffices to show that the first and third vertical arrows are
isomorphisms.

We have an isomorphism

fohy = hyf.
since f satisfies the support property, so we have

since g*hy = g"h} = 0 by (eSm-BC). Thus the first vertical arrow is an isomorphism. The
assertion that the third arrow is an isomorphism follows from (Loc), which completes the
proof. O]

Proposition 5.3.6. Let g: Y — X and f : X — S be morphisms of .-schemes. Assume
that g is proper and that the unit

id 24, 9:9"
1s an 1somorphism. If g and fg satisfy the semi-universal support propoerty, then f satisfies
the semi-universal support property.

Proof. By (b.1.6(3)), it suffices to show that for any Cartesian diagram

vy L x

el

VY —2— X
of .#-schemes such that A is a strict, the unit

id -2, g.q"

is an isomorphism.

By (5.3.4), for any object K of 7 (X’), the composition
0.9 1y @x K =5 gl(g"1s @x " K) —> g.g" K
is an isomorphism, so we only need to show that the morphism
1x oy g.g* 1x:
in .7 (X’) is an isomorphism. It has the factorization
lx = W1y % hrg.g*1x =5 g h*g" 1x = g.q 1y

in 7 (X’). The second arrow is an isomorphism by assumption, and the third arrow is an

isomorphism by (5.3.5)). Thus the morphism
ad *
1 X — g;g/ 1 X/

in .7 (X') is an isomorphism. O
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5.4 Poincaré duality for a compactification of Ay — Ay
5.4.1. We fix an .¥-scheme S over Ay, and we put
U = Anen Xagay S
where 6 : N — N@® N denotes the diagonal morphism. We want to compactify the projection
h:U—S.

Then we will prove the Poincaé duality for the compactification.

5.4.2. Under the notations and hypotheses of (5.4.1)), consider the lattice L = Zx; & Zux,
and consider the dual coordinates

— AV _ .V
€1 = T, €2 = To.

We denote by T the toric variety associated to the fan generated by
(a) er,ex >0,
(b) e1+ex>0,e1 <0,
(c) eg+e3 >0, e <0.
We give the log structure on (a), (b), and (c¢) by
Nz; ® Nag — Z[wy, 0], N(zi20) = Zlmixg, 27, N(w113) — Zr120, 75 ]
respectively. Then we denote by T' the resulting .’-scheme. Because the support of this fan

is {(e1,e2) : €1 + ex > 0}, the morphism 7" — Ay induced by the diagonal homomorphism
N — Nx; & Nuzy is proper, so we have the compactification

of the morphism Ay2 — Ay. Thus if we put X = 5 x4, T, then we have the compactification

U2 X
le
S

of h. Here, the meaning of compactification is that j is an open immersion and f is proper.
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5.4.3. Under the notations and hypotheses of ((5.4.2)), consider the lattice
(Zxy ® Zxa) Bz (Zyr ® Lys)

with 1 + 29 = y1 + ¥, and consider the dual coordinates
L=y, f=y.
We denote by T” the toric variety associated to the fan generated by
(a) e1,e2, f1,f2 >0, e1+ea = fi + fo,
(b) es+ex=fi+ f2>0, e, fi <0,
(c) e1+ex=fi+ fa>0, e f2 <0.

Then we have an open immersion 77 — T x 1 T. Thus if we denote by T” the .¥-scheme
whose underlying scheme is 7”7 and with the log structure induced by the open immersion,
then we have the open immersion

T — T x gT.

We put D = (X Xg X) XTXANT T

5.4.4. Under the notations and hypotheses of (5.4.3), we denote by T"” the toric variety
associated to the fan generated by

(a) er,eq, f1, /220, e1+ex= fi+ fo, &1 > fi,
(&) er e, fi, /220, e1+ea= fi+ fo, e1 < f,
(b) est+ea=fi+ f2>0, e, f1 <0,
(c) extea=fi+ f2>0, e f2 <O0.
We give the log structure on (a), (a’), (b), and (c) by

Ny; & Ny @ N(z1y; ') = Zlyr, 22, 2195 1],
Ny @ Nyo ® N(ya2y ') = Zlay, yo, yazy ',
N(z129) — Z[z132, 77, 97 Y],
N(2139) — Z[z139, 75", 95 1

respectively. Then we denote by T” the resulting .#-scheme. The supports of this fan and
the fan in (5.4.3)) are equal, so the morphism 7" — 7" induced by the fans is proper. Thus
if we put £ =Y xp T”, we have the proper morphism

v:E—D

of .#-schemes.
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5.4.5. From (j5.4.1)) to (5.4.4]), we obtain the commutative diagram

E

v

D

aa

XT>XX5XT>X

T2

of .-schemes where
(i) pe denotes the second projection,
(ii) a denotes the diagonal morphism, and b and ¢ denotes the morphisms induced by a.

Note that u is an open immersion and that v and p, are proper. The morphism £ — D
satisfies the condition of (4.2.2(2)), and the morphism D — X xg¢ X satisfies the condition
of (4.2.2(1)). Consider the natural transformation

q(])‘:Q(])”,Ef!—>f*

in (4.4.2)). Note that we have Q% , = (—1)[—2]. We also consider the pullback of the above
commutative diagram via i : Z — X where ¢ denotes the complement of j : U — X:

E/

N,

D/

Note that u’ and v’ are isomorphisms.

Proposition 5.4.6. Under the notations and hypotheses of , the natural transforma-
tion i
fF D=2 £
s an isomorphism.
Proof. We put 7 = (1)[2], and let
PG fy — LT
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denote the left adjoint of q7. We have the commutative diagram

),
2N

X

of ./-schemes where

(i) j; and j5 denote the open immersions induced by the convex sets (b) and (c) of (5.4.2)
respectively,

) Z1=U xx (X =U)and Zy =Uj xx (X = U),

(iii) U; and U, denotes the complements of Z; and Z, respectively,
) iy, 1Y, if, ia, 15, and @5 are the closed immersions,

(v) Jj1, 7%, Ja, j5 are the open immersions.

The key property of our compactification is that U; and U] (resp. Uy and US) are log-homotopic
equivalent over S. The meaning is that the morphisms

Ms(Uy) = Ms(Ur),  Ms(Us) = Ms(Us)
in .7 (S) are isomorphisms. More generally, we will show that the natural transformations

" l% % I 1% %

ad . ex px ad C ek px
Segwgngt i T — fuwiit [ fudesdanda dafT — fejadas f (5.4.6.1)

are isomorphisms. To show that the first one is an isomorphism, consider the Mayer-Vietoris
triangle

Fad il = fewdv 7 ®© fagd™ [ = fadudi = fatil™ 1

in 7 (S) where ji" : U] xx U — X denotes the open immersion. It is a distinguished triangle
by (2.2.3)), so it suffices to show that the morphism

favst" = fugeg™ f
is an isomorphism since jj; = j177. It is true by (Htp-3) because
U{ Xx u=U XAN2 A(NQ)F

where F is the face of N? generated by (1, 0). Thus the first natural transformation of (5.4.6.1)
is an isomorphism. We can show that the other one is also an isomorphism similarly.
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Then guided by a method of [Ayo07, 1.7.9], consider the commutative diagram

C px 4 % . o . ey
feindh f* =L fif* = fuigasf* —2— fyindl f*[1]

lp; lp; lp; lp‘; (5.4.6.2)

L d d .o 9 .
feinady 1 =25 fof*'T =25 fuindbf* —2— fuindy frr[1]

of functors. Assume that we have proven that
(1) the rows are distinguished triangles,
(2) the first and third vertical arrows are isomorphisms.

Then the second arrow is also an isomorphism, so we are done. Hence in the remaining, we
will prove (1) and (2).

(1) To show that the second row is a distinguished triangle, by (Loc), it suffices to show
that the composition

Do~ R AP
Jeiauls " — f*]Q*Zé*Zé Jaf = Jedoda f
is an isomorphism. We have shown that the natural transformation
o dr o
fedoeds f* == fefoedonds dsf*
is an isomorphism, and we have fi, = id. Hence, it suffices to show that the unit
« ad .
92195 — id

is an isomorphism where go = f7j5. It is true by (Htp—1) since the morphism Uj — S
is the projection A§ — S.

For the first row, first note that by (sSupp), we have an isomorphism
LY Y | Ry ~ . .l
Jut1t1J1 T L1sly

Hence to show that the first row is distinguished, by (Loc), it suffices to show that
the natural transformation

i diji f* 25 fujugi f*
is an isomorphism. By (sSupp), we have an isomorphism
Fang@ 0 f* = fehsidigi S
and we have shown that the natural transformation
Feiusdit it F =5 fdt f°
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is an isomorphism. Hence it suffices to show that the natural transformation

/AN

1« ad "
G151, 91 — 91101

is an isomorphism where g; = fj]. By (Htp-1), the counit
« ad .
gupg1 — id

is an isomorphism since the morphism U] — S is the projection A} — S, and by

(2.5.3)), the composition

-/ -1

| s ad « ad .
Gigi1iy g1 — gupgy — id
is an isomorphism. Thus the first row is distinguished.

Consider the diagram

Q;,id,E'i!f! — Q;‘L',id7E'i!f! — Q}i",id,Efi!f! — Qfﬁid,E’i!f! — Qf,id,D’i!f! — Qfﬁidi!f! — Qf-icl

|z |z |z | =

i!Q?‘,Ef! ~ m?,Ef! i!Q?Ef! i!Qf,Ef! ’i!Qf,Df! i!fo! as i!f*

of functors. It commutes by (4.2.10), and the natural transformation Q7 57" f e,

z'Q? »f' is an isomorphism by (4.2.5). Thus the composition of arrows in the second
row
qO
i pf i
is also an isomorphism. Then the first vertical arrow of (5.4.6.2) is also an isomor-
phism. The third vertical arrow of ((5.4.6.2)) is also an isomorphism similarly. O

Theorem 5.4.7. Under the notations and hypotheses of , the natural transformation

q7 - f(=D[-2] — f*

18 an isomorphism.

Proof. We put 7 = (1)[2], and let

A

denote the left adjoint of q%. Guided by a method of [CD12, 2.4.42], we will construct

a right inverse ¢; and a left inverse ¢, to the morphism p%. Note first that the natural
transformation

Lf 2 £

is an isomorphism by ([5.4.6)). The left inverse ¢, is constructed by

o —1
P e

bot for 2 frpof, UL pp g D
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To show ¢9 o p} = id, it suffices to check that the outside diagram of the diagram

fi = fif* fy

i W’E\ =

Jom —— fo*fa > oS T [y
of functors commutes since the composition

fo 25 fr S

is the identity. It is true since each small diagram commutes.
The right inverse ¢, is constructed by

D
-

Fef Fe 2L £

To show p} o ¢1 = id, it suffices to check that the composition of the outer cycle starting
from upper f,7 in the below diagram of functors is the identity:

b1 : F7 Y L f fT B BT D fr P

o g LS
§ > « T

d/ \\§ // |
fe, B gy LTt

It is true since each small diagram commutes.
Then from the existences of left and right inverses, we conclude that

PG e — T
is an isomorphism. O

Corollary 5.4.8. Under the notations and hypotheses of , the universal support prop-
erty holds for f: X — S.

Proof. We put E” = F xg V. Consider the Cartesian diagram

1!

Vi ——V
W lﬂ
X%S
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of .#-schemes where p is an open immersion. Then by the above theorem, the support
property for f follows from the commutativity of the diagram

pefy — fun

lp?,E

p(;”,E” f*T[L%

le’l

FEx
e fiT —— fuTu

of functors.
Then because we can choose S arbitrary, f satisfies the universal support property. [

Corollary 5.4.9. Under the notations and hypotheses of the universal support prop-
erty holds for h : U — S.

Proof. The conclusion follows from ([5.4.8)) and ([5.1.6/(1),(2)). O

5.5 Support property for the projection Ay X pty — pty

5.5.1. Let x and y denote the first and second coordinates of N ¢ N respectively, and let .S
be an .#-scheme. Consider the morphisms

h !
S X A(N@N,(m)) — 5 x A(N@N,(xy)) i) S x A(N@N,(z)) — 5 x ptN

of .#-schemes where
(i) h denotes the obvious closed immersion,

(ii) g denotes the morphism induced by

NeN—=Na&N, (a,b)+— (a,a+Db),

(ili) f denotes the morphism induced by

N—N&oN, aw— (a0).

To simplify the notations, we put
X=5x A(N@N7($)), Y =5x A(N®N,(xy))7 T=5x ptN.

Then we have the sequence
XLy Lx Lt

of morphisms of .¥-schemes.
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Proposition 5.5.2. Under the notations and hypotheses of , the morphism gh satis-
fies the semi-universal support property.

Proof. Consider the commutative diagram
X » X
N
T

of .#-schemes where p and ¢ denote the morphisms induced by the homomorphisms

N—-N&N, aw~ (a,a),

N—-N&N, aw— (a,2a),

respectively. By , it suffices to show that p and ¢ satisfy the semi-universal support
property.

The morphism fg satisfies the universal support property by , and the morphism
h satisfies the universal support property by (1)) since it is strict. Thus the morphism
p = fgh satisfies the universal support property by (5.1.6(2)). Hence the remaining is to
show that ¢ satisfies the semi-universal support property.

The morphism ¢ has the factorization

S X Amen @) — S X Amanez () — S X Anan,@) — S X Phy

where

(i) ¢ denotes the morphism induced by the homomorphism

NeNoZ—-NaN, (a,b,c)— (a,b),

(ii) u denotes the morphism induced by the homomorphism

NeNo>NaeNaZ (a,b)— (a,2bb).

We already showed that p satisfies the universal support property. The morphism ¢ satisfies
the universal support property by (5.1.6(1)) since it is strict, and the morphism wu satisfies

the support property by (5.3.1)) since it is Kummer log smooth. Thus by (5.1.6(2)), the
morphism ¢ = put satisfies the universal support property. O

Corollary 5.5.3. Under the notations and hypotheses of , the morphism gh satisfies
the projection formula.

Proof. It follows from ([5.5.2)) and (/5.3.4)). O
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Proposition 5.5.4. Under the notations and hypotheses of , the unit
. ad *
id = (gh).(gh)

18 an isomorphism.

Proof. To simplify the notation, we put v = gh. By (55.5.3)), for any object K of .7 (X), the
composition

vly @x K 25 v,(v* g ®x V' K) = 0,0 K
is an isomorphism, so we only need to show that the morphism
ad *
1y — v0 1y

in .7 (X) is an isomorphism.
We denote by j : U — X the verticalization of X via f. Then we have the Cartesian
diagram

U—45vu
bl
X Y5 X

of .#-schemes, and by (Htp-2), the morphism

1y 2% 571y (5.5.4.1)

in .7 (X) is an isomorphism. In the commutative diagram

d
1x — U*U*lx

Ja Ja

Guilx = v g gty

of functors, the vertical arrows are isomorphisms since the morphism (5.5.4.1)) is an isomor-
Y

phism and v*1x = 1x. The lower horizontal arrow is an isomorphism since vj = j. Thus
the upper horizontal arrow is an isomorphism, which completes the proof. O

Proposition 5.5.5. Under the notations and hypotheses of , the morphism f satisfies
the semi-support property.

Proof. By , the morphism fg satisfies the semi-universal support property. The mor-
phism A satisfies the semi-universal support property by (1)) since it is strict, so by
(5-1.6/(2)), the morphism fgh satisfies the semi-universal support property. Then by
and @, the morphism gh : X — X and f : X — S satisfy the condition of , SO

(loc. cit) implies that f satisfies the semi-universal support property. O
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5.6 Proof of the support property

5.6.1. Throughout this section, we assume (Htp-4) and the axiom (ii) of (2.9.1)) for 7.

Proposition 5.6.2. Let S be an . -scheme with a fs chart N. Then the quotient morphism
f S — S satisfies the support property.

Proof. We have the factorization
SHSxAyLSxP LS

where
(i) i denotes the strict closed immersion induced by the chart S — Ay,
(ii) p denotes the projection,
(iii) M denotes the fs monoscheme that is the gluing of spec N and specN~! along spec Z,
(iv) g denotes the morphism removing the log structure.

Then by (sSupp), ¢ and p satisfies the support property. Hence by ((5.1.2), the remaining is
to show the support property for g. This question is Zariski local on S x P!, so we reduce
to showing the support property for the morphism

S x Ay — S x A
removing the log structure. This is the axiom (ii) of (2.9.1]). O

Proposition 5.6.3. Let S be an .-scheme with the trivial log structure. Then the semi-
universal support property is satisfied for the projection p: S X Ay — S.

Proof. Let q denote the morphism Sx Ay — S x Al removing the log structure. By definition,
we need to show that ¢ satisfies the semi-universal support property. Any pullback of ¢
via strict morphism is the quotient morphism X — X for some .#-scheme X. Thus the
conclusion follows from ([5.6.2)). O

Proposition 5.6.4. Let f : X — S be a morphism of .-schemes, and assume that S has
the trivial log structure. Then f satisfies the semi-universal support property.

Proof. By (5.1.6(3)) and (Htp-3), the question is dividing local on X. Hence by [CLSI11,
11.1.9], we may assume that X has a fs chart N". Then p has a factorization

. A
X 5 X X A 2% X X At 5 X x Ay - X Dy S

where
(i) ¢ denotes the morphism induced by the chart S — Ayr,
(i) 6, : N*°! — N* denotes the homomorphism

(ala sy As—9, CLS,1> = (CLl, sy A2, Qs—1, a371>7
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(iii) g denotes the projection.

The morphism 4 and f satisfy the semi-universal support property by (5.1.6(1)) since they
are strict, and the morphisms Ay, for s = 2,...,r satisfy the universal support property by

(5.4.9). Thus the conclusion follows from the ((5.6.3)) and (5.1.6(2)). O

Theorem 5.6.5. The support property holds for .

Proof. Let f : X — S be a proper morphism of .#-schemes. Consider the commutative
diagram

S
!
—

|><<T><

of .#-schemes where p and ¢ denote the morphisms removing the log structures. Then p and
q satisfy the semi-universal support property by , and f satisfies the semi-universal
support property by ([5.1.6(1)) since it is strict. Thus the composition fq satisfies the semi-
support property by %5_3(2)), and then f satisfies the semi-universal support property by
(15.3.2]). O
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Chapter 6

Homotopy and base change properties

6.0.1. Throughout this chapter, we fix a full subcategory .# of the category of noetherian
fs log schemes satisfying the conditions of (2.0.1), and we fix a log motivic triangulated
category 7 over .&.

6.1 Homotopy property 5

6.1.1. Let f: X — S be a morphism of .#-schemes. In this section, we often consider the
following conditions:

(i) the morphism f X — S of underlying schemes is an isomorphism,
(ii) the induced homomorphism M?E — ﬂ?’; is an isomorphism.

Proposition 6.1.2. Consider the coCartesian diagram

p_1,p

bl

/

Q——Q

of sharp fs monoids such that
(i) 080 is an isomorphism,
(i1) if F' is a face of P such that F Nn(P) = (0), then 0'(F) is a face of ',
(111) if G is a face of Q" such that GNn'(Q) = (0), then G = §'(F) for some face F of P'.

Then the induced morphism

Frh@um@n = Araeo)
satisfies the conditions (i) and (ii) of .
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Proof. By [Ogul4, 1.3.2.3], A(ps ((p+))) has the stratification

U(AF* X ptpr/p)
F

for face F' of P’ such that F'Nn(P) = (0). Similarly, A v (g+)) has the stratification
U(AG* X th’/G)
a

for face @ of Q" such that G Nn(Q) = (0).
Thus by assumption, f is a union of the morphisms

fF : AG’(F)* X th’/Q’(F) — Ape x ptP/F

This satisfies the condition (i) and (ii) of (6.1.1)) because #'8P is an isomorphism. Then the
conclusion follows from [EGA 1V.18.12.6]. O

Proposition 6.1.3. Let f : X — S be a morphism of .-schemes satisfying the conditions

(i) and (ii) of . Then the unit
id— f.f*
18 an isomorphism.

Proof. (1) Locality of the question. The question is strict étale local on S, so we may assume
that S has a fs chart. Since f is an isomorphism, the question is also strict étale local on X,
so we may assume that X has a fs chart.

Let ¢« : Z — S be a closed immersion, and let j : U — S denote its complement. By
(Loc) and (2.6.6), we reduce to the question for X xg Z — Z and X xg U — U. Hence
by the proof of [Ols03, 3.5(ii)], we reduce to the case when S has a constant log structure.
Since f is an isomorphism, we can do the same method for X, and by [Ols03, 3.5(ii)], we
reduce to the case when X has a constant log structure. Hence we reduce to the case when
f is the morphism

S xptyg — S Xptp
induced by a homomorphism 6 : P — (@) of sharp fs monoids. By assumption, #%P is an
isomorphism.

(I) Induction. We will use an induction on n = dim P. If n = 1, then we are done since
P = (@, so we may assume n > 1.

(IIT) Reduction to the case when Q@ = (P + (a))™". Choose generators ay, ..., a, of Q. Then
consider the homomorphisms

P— (P+{(a)))™ — - — (P +{a,...,an)™
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of sharp fs monoids. If we show the question for each morphism
(P + <a1, .. ,ai>)sat — (P + <a1, R ,ai+1))sat,

then we are done, so we reduce to the case when Q = (P + (a))®* for some a € P#P.
(IV) Construction of fans. We put

C=PFy, D=C{Qoq,

and consider the dual cones CV and DV. Choose a point v in the interior of DY. We
triangulate DV, and then we triangulate C'V such that the triangulations are compatible.

Let {A;}iesr denote the set of (n — 1)-simplexes of the triangulation C contained in the
boundary of CV. We put

CY = A+ (), DY =CYnDY,
and we denote by C; and D; the dual cones of C; and D; respectively. Now we put
Pi:CiUng, Qi:Diﬂng, H:<<’U>)J', Y’l:Af—

Then r; is a ray of C since A; is an (n — 1)-simplex, and H is an (n — 1)-hyperplane such
that HNC = HN D = (0) since v is in the interior of DY. For each ¢ € I, we have the
following two cases: C; # D; or C; = D;.

If Cz 7& DZ‘7 then

O’i:<b17"';bn—17ri>7 Di:<b1,...7bn_1,a>

for some by,...,b,—1 € H. Since HNC = HN D = (0), if F (resp. G) is a face of C; (resp.
Di)a then
FNC=(0) & FC(b,...,by_1),

GND=(0) & GC(b,...,.b1).

Thus the coCartesian diagram
P—— P

|

Q— Qi
satisfies the condition of (6.1.2)), so by (loc. cit), the induced morphism
S X Ag, Xa, Ptg — S X Ap, Xy, Dtp (6.1.3.1)
satisfies the conditions (i) and (ii) of (6.1.1).

If C; = D;, then C; = D; = (by,...,b,_1,7;) for some by,...,b,_1 € H, and we can
similarly show that (6.1.3.1]) satisfies the conditions (i) and (ii) of (6.1.1)).
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Let M (resp. N) denote the fs monoscheme that is a gluing of spec P; (resp. spec ;) for
1 € I. Then consider the induced commutative diagram

S X Ay Xy, ptg L>§><AM Xap Dtp

b b

S x ptg > S X ptp

of .#-schemes. We have shown that f’ satisfies the conditions (i) and (ii) of (loc. cit).
Consider the commutative diagram

id ad s fof*

Jo Jo

* ad * %k ~ * Lk
99" —— g fif" 9" —— f.g.9"f

of functors. The vertical arrows are isomorphisms by (Htp—4) since g and ¢’ are dividing
covers. Thus the question for f reduces to the question for f’.

Then using Mayer-Vietoris triangle, by induction on dim P, we reduce to the questions
for (P, Q) = (P;,Q;) for i € I. In particular, we may assume

(P)g = (b1,...,b—1,b;), (Qi)g = (b1,...,b_1,a).

(V) Final step of the proof. We put
F=0b)NP, G={)NQ, P ={b....0)"P, Q=bo... b r,a)"Q.

Consider the commutative diagram

S X ptg — 8 x Awq-o)

AR ;

S xptp —— S x Appp_r)

P \

EXAP’#EXAQ’

o
X
g
2
£
9
I
T
-+
<

where
(i) g denotes the morphism induced by the homomorphism P’ — @ induced by 6
(ii) p denotes the morphism induced by the inclusion P — P,

(iii) j denotes the complement of i,
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(iv) each square is Cartesian.

Then j (resp. j') is the verticalization of S x App_r) (resp. S X Ao g-c)) via p (resp. f'p).
Thus by (Htp—2), the natural transformations

<) eIk k

« ad Cx % « ad
are isomorphisms. From the commutative diagram
P ad , fl f/*p*
Nlad lN

k% ad - Kk ok ~ ) Ik 1%k
3P —=—= g St —— plili"

of functors, we see that the upper horizontal arrow is an isomorphism.
In the commutative diagram

ip < S fLf s L
x |-
fefrept
of functors, the upper right horizontal arrow is an isomorphism by . Thus the diagonal
arrow is an isomorphism. In particular, the morpism

ad %
15 — f*f 15

in Jg is an isomorphism.
For any object K of 95, we have the commutative diagram

K—"5140K —25 ff'1s® K
x lE.T
VETARY

in J5. By (PF), the right vertical arrow is an isomorphism. Thus the diagonal arrow is also
an isomorphism, which completes the proof. O]

6.1.4. So far, we have proven the half of (Htp-5). In the remaining, we will first prove a
few lemmas. Then we will prove (Htp-5).

Lemma 6.1.5. Let 0 : P — @ be a homomorphism of fs sharp monoids such that 6P :
PP — Q% 1s an isomorphism, and let 7 Q — Q be a homomorphism of fs monoids such
that 7' : Q — Q' is Kummer. Then there is a coCartesian diagram

P%Q

b
Pr— Q

of fs monoids.
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Proof. Let P' denote the submonoid of )’ consisting of elements p’ € ()’ such that np’ €
P+Q™ for some n € NT. Since 77 is Kummer, by the construction of pushout in the category
of fs monoids, it suffices to verify P8P = (Q"8P to show that the above diagram is coCartesian.

Let ¢ € @ be an element. Since 7' is Kummer, we can choose m € N* such that
mq = q+ ¢" for some ¢ € Q and ¢" € Q. We put r = dim P, and choose r linearly
independent elements py,...,p. € P over Q. Then let (ay,...,a,) denote the coordinate of
q € @ according to the basis {p1,...,p,}.

Choose by, ...,b. € NT such that a;+mby, ..., a.+mb, > 0, and we put p = (by,...,b,) €
P. Then

q+mp=(a; +mby,...,a, +mb,) € P,

som(¢ +p) =q+mp+q’ € P+Q" Thus ¢ +p € P, so ¢ € P®. This proves
PP = Qe 0

Lemma 6.1.6. Let P be a sharp fs monoid, and let n: P — P’ be a homomorhpism of fs
monoids such that 7 : P — P’ is Kummer. We denote by I the ideal of P' generated by
n(PT). Then the induced morphism

A prey = Ay
1s a bijective strict closed immersion.

Proof. For any element p’ € P't, for some n € NT, we have np’ € I since 77 is Kummer. Let
m (resp. n) denote the ideal of Z[P’] induced by P'* (resp. I). Then by the above argument,
for some m € Nt we have n™ C m. This implies the assertion. O

6.1.7. Let 0 : P — @ be a homomorphism of sharp fs monoids such that 6%P is an isomor-
phism, and consider a coCartesian diagram

P—5Q

b

P 60’ Ql

of fs monoids where 77 : P — P’ is Kummer. Note that 7/¢? is also an isomorphism by
the construction of the pushout in the category of fs monoids. Then we have the induced
commutative diagram

A(Q/,Q/Jr) — A(P’7P’+)

| |

A(Q/,J) e A(P’,I)

of schemes where I (resp. J) denote the ideal of P’ (resp. )’) generated by n(P) (resp. n'(Q)).
By , the vertical arrows are bijective strict closed immersions, and the upper horizontal
arrow is an isomorphism since they are isomorphic to Ager = Aprpr. Thus the category of
strict étale morphisms to A g, ) is equivalent to that of Ap ) by [EGA, IV.18.1.2].
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Proposition 6.1.8. Let 6 : P — ) be a homomorphism of sharp fs monoids such that 6%
1s an isomorphism, and let S be an . -scheme with the trivial log structure. Consider the
induced morphism f : S X ptg — S X ptp of S -schemes. Then the functor f* is essentially
surjective.

Proof. By (3.6.4), it suffices to show that for any Kummer log smooth morphism ¢ : Y’ —
Sxptg with a fs chart ' : Q@ — Q" of Kummer log smooth type, there is a Cartesian diagram

Y ——— Y
1% Js
S X ptg SN S X ptp

of .#-schemes such that g is Kummer log smooth. Note that 7/ : Q — Q' is Kummer.
By definition (3.1.1]), we can choose a factorization
Y’—)SxthXAQAQ/—)S

of ¢ where the first arrow is strict étale and the second arrow is the projection. Then by
(6.1.5), there is a coCartesian diagram

ol
P 6’ Q/
of fs monoids such that 77 : P — P’ is Kummer. Now we have the commutative diagram

Y/

|

SXth XAQ AQ/ E— SXptP XAPAP’

| !

S X ptg > S X ptp

of .-schemes where the square is Cartesian. Since

Plo Xaq Ag =A@y, ptp Xap Ap=Awpy)

where [ (resp. J) denotes the ideal of P’ (resp. @)) generated by n(P) (resp. 7'(Q)), by
(6.1.7)), there is a commutative diagram

! !

SXth XAQ AQI — SXptP XAPAP’

| !

S x ptg > S X ptp
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of .#-schemes where each square is Cartesian and the arrow Y — S X ptp x4, Aps is strict
étale. Thus we have constructed the diagram we want. O

Theorem 6.1.9. The log motivic category 7 satisfies (Htp—5).

Proof. Let f: X — S be a morphism of .#-schemes satisfying the conditions (i) and (ii) of
(6.1.1). By (6.1.3)), it suffices to show that the counit

£ 1% id

is an isomorphism.
Let {g; : S; — S}ier be a strict étale cover. Consider the Cartesian diagram

X, r X

o

S; —%— S
of .#-schemes. Then we have the commutative diagram

* L% ~ * ok Ex * *

\ lad/
a

/%
g;

of functors, and the upper right horizontal arrow is an isomorphism by (eSm-BC). Since the
family of functors {g/*}ics is conservative by (két-Sep), we reduce to showing that for any
1 € I, the counit f] f;. oy id is an isomorphism. Using this technique, we reduce to the case
when f has a fs chart 0 : P — Q.

Then let ¢ : 8" — S be a strict closed immersion of .#-schemes, and let 7 : S” — S
denote its complement. Consider the commutative diagram

) ;
Ly X ¢ X"

v
el
: |

LN SR S N

2\

of .-schemes where each square is Cartesian. Then we have the commutative diagrams

Ik px ~ * ok i % L1 1% kP ~ %k Ex * 1%
L A I A T A

lad’ lad/
ad’ ad’

Z'/* ]*
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of functors. As in the above paragraph, by (2.6.6)) and (Loc), we reduce to showing that the
counits

e A L
are isomorphisms. Using this technique, by the proof of [Ols03, 3.5(ii)], we reduce to the case

when X — § is the morphism S X pty; — S X ptp induced by the homomorphism P — Q.
In this case, the conclusion follows from ([6.1.8)) since f* is fully faithful by (6.1.3)). O

6.2 Homotopy property 6

Theorem 6.2.1. The log motivic category 7 satisfies (Htp—6).

Proof. Let S be an .’-scheme, and we put X =S x Ay and Y = S x pty. Consider the
commutative diagram

S x pty —2 S x Ay «2— S x G

9] Jr Jo

S—i>S><A1<LS><Gm

\g

of .#-schemes where
(i) each small square is Cartesian,
(ii) f denotes the projection, and f” denotes the morphism removing the log structure.
(ili) ¢ denotes the 0-section, and j denotes its complement.

We want to show that the natural transformation
S F T =S fA T gl

is an isomorphism. By (Loc), it is equivalent to showing

Jo L33 =0,
Then by (Supp), it is equivalent to showing

fegpd™ f7=0.

Thus by (Loc), it is equivalent to showing that the natural transformation

fuof* =5 fadit
is an isomorphism, which follows from (Htp-1). O
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6.2.2. Here, we give an application of (Htp—6). Let S be an .#-scheme. Consider the
commutative diagram

SxptNLSxAN
\lf
S

of .#-schemes where f denotes the projection and iy denotes the 0-section. Let i; : S —
S x Ay denote the 1-section. By (Htp—6), the natural transformation

« ad - % px
" — fuiadt f
is an isomorphism, and f* is conservative since fi; = id. Thus by (5.2.1)), (fi)* = ¢* is

conservative.

6.3 Homotopy property 7

Theorem 6.3.1. Let S be an . -scheme with a fs chart P, let 0 : P — (@) be a vertical
homomorphism of exact log smooth over S type, and let G be a 0-critical face of Q. We

denote by
f:SXAP (AQ_AQG> =S

the projection. Then fif* = 0. In other words, T satisfies (Htp-7).

Proof. (1) Locality of the question. Note first that the question is strict étale local on S by
(eSm-BC).

Let ¢ : Z — S be a strict closed immersion of .#-schemes, and let j : U — S denote its
complement. Consider the commutative diagram

Z xap (Ag — Agg) — S Xap (Ag — Agy) +— U X, (Ag — Agy)

; I

Z . J U

of .#-schemes where each square is Cartesian. Then by (BC-3), we reduce to showing
¢g" = 0 and hh* = 0. By the proof of [Ols03, 3.5(ii)], we reduce to the case when S has a
constant log structure.

(II) Reduction of G. Let G; be a maximal #-critical face of @) containing G. Consider the
induced commutative diagram

S XAp (AQ - AQG) — S XAp (AQ - Ach) — 5 XAp (AQG - AQal)

113



of .#-schemes. By (Loc), to show fif* = 0, it suffices to show f/f”* = 0 and f/f"™ = 0.
Hence replacing f by f’ or f”, we reduce to the case when G is a maximal O-critical face of
Q.
(ITI) Reduction of P. We denote by P’ the submonoid of () consisting of elements ¢ € Q
such that ng € P+ Q* for some n € NT. The induced homomorphism ¢’ : P' — () is again a
vertical homomorphism of exact log smooth over S x4, Ap: type. Replacing S by S x4, Apr,
we reduce to the case when the cokernel of 68P is torsion free and 6 is logarithmic.

Then by , since the question is strict étale local on S, we may assume that P is
sharp and that the fs chart S — Ap is neat at some point s € S. Then P and () are sharp,
and with (I), we may further assume that the fs chart S — Ap factors through ptp.

(IV) Homotopy limit. Let G; = G, ..., G, denote the maximal O-critical faces of ). The
condition that @ is vertical implies » > 2. For any nonempty subset I = {i1,...,is} C
{2,...,r}, we put

Gr=G; N---NG,,,

and we denote by
fr:8 %up Mgao-ar) = S

the projection. For any face H of Q, Ay C Ag — Ag,, if and only if H # @, G, which is
equivalent to H C Gy U --- U G,.. Thus the family

{S XAP A(Q,Q—Gz)a Ce ,S XAP A(Q,Q—Gr)}

forms a closed cover of S x,, (Ag — Ag,), so for any object K of 7 (S), f.f*K is the
homotopy limit of the Cech-type sequence

[=1,1|C{2,...} || =r—1,|1|C{2,...}

in .7 (S). Hence we reduce to showing fr.ff K = 0 for any nonempty subset I C {2,...,7}.
This is proved in (6.3.1)) below. O

Lemma 6.3.2. Let S be an ./-scheme with a constant log structure S — ptp where P is a
sharp fs monoid, let 6 : P — Q) be a homomorphism of exact log smooth over S type, and let
G be a O-critical face of Q such that G # Q*. We denote by

foSxap Moo-a) = 5
the projection. Then fif* = 0.

Proof. We will use induction on dim ). We have dim @) > 1 since G # Q*.
(I) Locality of the question. Note that by (eSm-BC), the question is strict étale local on S.

(IT) Reduction of G. Let G’ be a 1-dimensional face of G, and choose generators by, ..., b,
of the ideal @ — G’ in Q). For any nonempty subset I = {iy,...,i1,} C {1,...,r}, we denote
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by @ the localization @y, . 5, , and we denote by G the face of Q1 generated by G. The
family

{S XAp A(prle =Gpy)s e S Xap A(QbS:QbS *Gbs)}
forms an open cover of S x4, (A .o-a) — Awg-¢)). Thus if we denote by

Jr: S XAp A(QLQI—GI) — 9,

f 8 Xap A@o-an = 9, 718 Xap (A@e-0) — Ae-a)) =9
the projections, then for any object K of 7 (S), f/'f"*K is a homotopy colimit of

P rfik — - — @ ffiK

[1|=r |7|=1

in 7(S). Since dim@Q; < dim @, for any nonempty subset I C {1,....7}, fnfi = 0 by
induction on dim@Q. Thus ff” = 0. Then by (Loc), fif* = 0 is equivalent to f{f"* = 0.
Hence replacing G by G’, we reduce to the case when dimG = 1.

(III) Reduction of 6. Let a; be a generator of G, let H be a maximal f-critical face of Q
containing G, and choose as,...,a; € H where d = dim G such that @,...,a; in Q are
independent over Q.

We denote by P’ (resp. Q') the submonoid of @) consisting of elements ¢ € @) such that
ng € (as,...,a,) + P (resp. nq € (a1, ...,a,) + P) for some n € N*. Then we denote by G’
the face of ' generated by a;, and we denote by 6’ : P — @’ the induced homomorphism.
Consider the induced morphisms

S XAp A(QQ_G) = S XAp A(Q/7Q/_G/) 5 S XAp A(p/vp/) = S

of #-schemes. The induced homomorphism Q" — @®° is an isomorphism by [Ogul4,

4.6.6.4]. Thus by (6.1.3), the unit id LN w,w* is an isomorphism. Hence to show fif* =0,
it suffices to show vv* = 0.
The cokernel of 68P is torsion free, and the diagram

P —— P

bl

Q@7

is coCartesian where the horizontal arrows are the quotient homomorphisms. Thus we can
apply (3.2.2), so strict étale locally on S, we have a Cartesian diagram

S XAp A(Q’,Q’—G’) —_— A(@7@_@)

! |

S XAp A(P’,P/) _ Aﬁ
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of .#-schemes. The homomorphism @ : P/ — Q' is again a homomorphism of exact log
smooth over S x4, Ap pry type. Replacing (S x4, Ao-¢) = S, 0: P — Q) by
(S XAp A(Q@ng/) — S XAp A(pgp/), @ : ﬁ — @),
we may assume that
(i) P and @ are sharp,
(if) Q¢ = Fo @ Go,
(iii) dimG = 1.
(IV) Further reduction of 6. Since Py and Gg generate Qg, as in (5.2.2), we can choose a
homomorphism P — P; of Kummer log smooth over S type such that
1. P; and G generate P, ®p Q,
2. the functor ¢g* is conservative where g : S X5, Ap, — S denotes the projection.

We put Q1 = P, ®p Q, and we denote by G; the face of @)1 generated by G. Consider the
Cartesian diagram

f/
S XAp A(Q17Q1*G1) — S XAp API
I s
S Xap A(Q,Q—G) — 5

of .#-schemes. Since g* is conservative, to show fif* = 0, it suffices to show f/f™* = 0 by
(eSm-BC).
By (3.2.2)), strict étale locally on S x4, Aps, there is a Cartesian diagram

S Xap A@ri-61) — Agror-an

% |
S XAP Apl — Aﬁl
of #-schemes. Replacing (S x4, Agg-q) — 5, 0: P — Q) by
(S XAP A(QLQl—Gl) — S XAP Apl, Fl — @),

we may assume that

(i) P and @ are sharp,

(i) Q= P&,

(iii) dimG = 1.

(V) Final step of the proof. Then S x4, Ag.o-c) = S Xap Ag. Let a; denote the generator
of G. We denote by T the gluing of

Spec(Q — Z[Q)), Spec(P — Z[P,a;])
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along Spec(P — Z[P,ai]). Consider the commutative diagram

SXAPAQ—>S><APT\ S xap (Ap x Al)

(i) j1 and j, denote the induced open immersions,

of .#-schemes where

(ii) h and p denote the projections,
(iii) 47 is a complement of 7j;.

Then h is exact log smooth, and js is the verticalization of S x,, T via h. Thus by (Htp-2),
the natural transformation

« ad . xqx
R — j2.J5h
is an isomorphism. By (Htp—1), the composition

id — p.p* — hujosjah®

is an isomorphism, so the unit id LN h.h* is an isomorphism. Then by (Loc), for any object
K of 7(S), we have the distinguished triangle

hojfi W K S hoh* K 2% hyigith K — hojujih* K1)

in .7 (S). Since i1h = id, the second arrow is the inverse of the unit id LN h.h*, which is
an isomorphism. Thus f,f* = h,jijih* = 0. O

6.4 Base change property 2

Proposition 6.4.1. Let T be an . -scheme, and consider the commutative diagram

/

X 4 X > T X Anen

I

S -9 55 s T X Ay

~

of . -schemes where

(i) each square is Cartesian,
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(ii) p denotes the morphism induced by the diagonal homomorphism N — N @ N of fs
monoids.

Then (BCy ) is satisfied.

Proof. By (5.4.7), the purity transformations

R CN P R e

are isomorphisms. Thus to show that the exchange transformation g¢*f Lz, flg™ is an
isomorphism, it suffices to show that the exchange transformation

« Ex *
g™ — 9" i
is an isomorphism. This follows from (eSm-BC). O

Proposition 6.4.2. Let f : X — S be a separated morphism of .#-schemes, and let g :
S X pty = S denote the projection. Then (BCy,) is satisfied.

Proof. Consider the commutative diagram

. /

X v N 'C p

> X
lr b

S x pty —— S x Ay —2— S

of .#-schemes where

(i) each square is Cartesian,

(ii) 7 denotes the 0O-section, and p denotes the projection.
Then (BCy,) is satisfied by (eSm-BC), and (BCy» ;) is satisfied by (BC-3). These two imply
(BCy,). O

Proposition 6.4.3. Let T be an . -scheme, and let 6 : P — @ be a locally exact homorphism
of sharp fs monoids. We put X =T X pty and S =T X ptp, and consider the morphism
[+ X — S induced by 6. Then (BCy,) is satisfied for any morphism g : S" — S of
S -schemes.

Proof. (I) Reduction method 1. Assume that we have a factorization
9/ ’ 9//
P—Q —Q
of # where 6’ is locally exact, 6”8P is an isomorphism, and €’ is a sharp fs monoid. Consider
the morphism

f/:TXth/%TXptP
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induced by ¢'. Then by (Htp-5), (BCy,) is equivalent to (BCy ).
(IT) Reduction method 2. Let u : Sy — S be a morphism of .#-schemes, and consider a

commutative diagram
fo\‘
X
| ]
> S(] f
S S

\

g \
of .“-schemes where each small square is Cartesian. Then we have the commutative diagram

Ik % Ezx gt 1x Bz 1o Ik Ik
ug fo —— u" fig" —— fo.0"g

) )

*, ok Ex * * Ex 1 Ik
gou* fo —— gy fos0" —— fo.90v

of functors. Assume that «'* is conservative. If (BCy,), (BCyp ), and (BCy, 4,) are satisfied,
then the lower left horizontal, upper right horizontal, and lower right horizontal arrows are
isomorphisms. Thus the upper left horizontal arrow is also an isomorphism. Then (BCy)
is satisfied since u'* is conservative.

We will apply this technique to the following two cases.

(a) When u is an exact log smooth morphism such that v is conservative, then (BCy,,)
and (BCy ) are satisfied by (eSm-BC). Thus (BCy, ,,) implies (BCy,).
(b) When u is the projection S x pty — S, w'* is conservative by (6.2.2)). We also have
(BCy,) and (BCyr ) by (6.4.2)). Thus (BCy, ,,) implies (BCy,).
(IIT) Final step of the proof. Let G be a maximal O-critical face of @), and we denote by @’
the submonoid of @ consisting of elements ¢ € Q' susch that nqg € P + G for some n € N*.

Then by [Ogul4, 4.6.6], @Q"®? = @&P. Thus by (I), we reduce to the case when Q = @’. In
this case, we have

Qo = (P ® G)g.
Then choose n € NT such that nqg € P+G for any g € (), and consider the homomorphism

P— PGP aw (a,na).

We put P’ = P# & P, and consider the projection u : Sx,Ap — S. Then u* is conservative
as in (5.2.2). Thus by the case (a) in (II), we can replace P — @ by P — P’ @&p Q. Thus
we reduce to the case when

Q=PadG.
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Since X = S X pt, we reduce to the case when P = 0.

By [CLS11, 11.1.9], there is a homomorphism A : N” — @ of fs monoids such that AP
is an isomorphism. Thus by (I), we reduce to the case when ) = N". Then we have the
factorization

S X ptyr = -+ = I X pty = S

of f, so we reduce to the case when Q = N. By the case (b) of (II), we reduce to the case
when @ is the first inclusion N @ N & N. Composing with the homomorphism

NeN—-Na&N, (a,b)+— (a,a+Db)

of fs monoids, by (I), we reduce to the case when 6 is the diagonal homomorphism N — N&N.
Then f has the factorization

S X ptN@N L) S X ANEBN X Ag, A ptN L> S

where i denotes the induced strict closed immersion and p denotes the projection. By ([6.4.1),
(BC, ) is satisfied. If ¢” denotes the pullback of g : S” — S via p, (BC, ) is satisfied by
(BC-3). These two implies (BCy,). O

Theorem 6.4.4. The log motivic triangulated category 7 satisfies (BC-2).

Proof. Consider a Cartesian diagram

X - x
bl
s —2 5 9

of .-schemes where f is a separated exact log smooth morphism. We want to show (BCy,).

(I) Reduction method 1. Let {u; : S; — St}ier be a family of strict morphisms. For i € I,
consider the commutative diagram

\XZ

l > X
s, > S ‘f
g y S

i

rnox L

<
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of .#-schemes where each square is Cartesian. Assume that the family of functors {u] };e; is
conservative. Then we have the commutative diagram

1% 1%

1%k Ezx 1ot 1x Ex /
u; g f! E— U; !g — fi!vi g

I [

%,k Bz * * Bz ! Ik, %
giu; fr —— gi fav; - > Jix9i Y

of functors. By (BC-3), the lower left horizontal and upper right horizontal arrows are
isomorphisms. If (BCy, ;,) is satisfied for any ¢, then the lower right horizontal arrow is an
isomorphism for any 7, so the upper left horizontal arrow is an isomorphism for any z. This
implies (BCy4) since {u}}icr is conservative.

We will apply this in the following two situations.

(a) When {u;}icr is a strict étale cover, the family of functors {u},cr is conservative by
(két-sep).

(b) When ug is a strict closed immersion and w; is its complement, the pair of functors
(ug,uy) is conservative by (Loc).

(IT) Reduction method 2. Let {v; : X; — X}ier be a family of separated strict morphisms
such that the family of functors {v}};cs is conservative. Consider the commutative diagram

g’

e

/

X 4. x

b

s —2 58
of .#-schemes where each square is Cartesian. Then we have the commutative diagram
* Ex I Ex 10k
9" foy —— flg"va —— fivyg;

g (fvi) B > (fruihg

of functors. The upper right horizontal arrow is an isomorphism by (BC-1). If (BCy,, )
is satisfied, then the lower horizontal arrow is an isomorphism, so the upper left horizontal
arrow is an isomorphism. This implies that the natural transformation

| | Ez 1 ol
Vg f == v f g

is an isomorphism. This implies (BC,) since {v}};cr is conservative.
We will apply this technique in the following two situations.
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(a) When {v;};es is a strict étale cover such that each v; is separated, by (két-sep) and
(2.5.9), the family of functors {v}},cs is conservative.

(b) When vy : Sy — S is a strict closed immersion and v; is its complement, by (Loc),
the pair of functors (v),v}) is conservative.

(IIT) Final step of the proof. By the case (a) of (I) and the case (a) of (II), we reduce to the

case when f has a fs chart 6 : P — @ of exact log smooth type. Then by the case (b) of (I)

and the proof of [Ols03, 3.5(ii)], we may assume that S has a constant log structure.
Consider the commutative diagram

of .-schemes where each square is Cartesian. By the case (b) of (II) and the proof of [Ols03,
3.5(ii)], we reduce to showing (BCyy, ).
Now, consider the the commutative diagram

yr 9y

of .-schemes where
(i) each square is Cartesian,
(ii) ¢ denotes the induced morphism and p denotes the projection.

Then since p is strict, (BC, ) is satisfied by (BC-1). By (6.4.3)), (BC,4~) is also satisfied.
These two implies (BCy,). O
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Chapter 7

Localization property

7.1 Localization property for D1 ., (1Sm,A)

7.1.1. We will prove the theorem of Morel and Voevodsky [Ayo07, 4.5.36] in the logarithmic
setting. We will closely follow the proof of [loc. cit] except Etape 2 of [Ayo07, 4.5.42] in
which some additional log geometry is need.

7.1.2. Let S be an .-scheme. Recall from (1.3.2]) that for any presheaf F' on ft/S, we
denote by Ag(F') the A-free presheaf

(X € ft)S) — AF'®),
For any topology ¢ on ., we denote by AL(F) its associated t-sheaf.

7.1.3. Let t be a topology on ., let S be an .#-scheme, and let <75 be Shy(ft/S,A) or
PSh(ft/S,\). Then we denote by o the collection of &5 for .#-schemes S. For any family
W of morphisms in C'(&7) stable by twists, f; for f € ft, and f*, we refer readers [CD12,
5.2.2] the # -local model structure on C(7).

We denote by #j1 g the family

Mg(X x AN [n] — Ms(X)[n)]

for n € Z and morphisms X — S of finite type. For any topology ¢’ on .# finer than t, we
denote by #y s the family
Mg(27)[n] — Ms(X)[n]

for n € Z, morphisms X — S of finite type, and t-hypercovers 2~ — X. Then for brevity,
the #;: U #j1-local model structure is called (¢, A')-local model structure.

7.1.4. Recall from [Ayo07, Following paragraph of 4.5.31] that the ty is the topology on .7
generated by the empty cover of ().
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Theorem 7.1.5. Let i : Z — S be a closed immersion, and let j : U — S denote its
complement. For any log smooth morphism f : X — S of .-schemes, the commutative
diagram

AU x5 X) ——— A2(X)
$ ——— AN (Z x5 X)

of #-schemes is homotopy coCartesian in C(Shy,(ft/S,A)) with the (sét, A')-local model
structure.

7.1.6. Before proving the theorem, we recall several results in [Ayo07, §4.5].

Proposition 7.1.7. Let i : Z — S be a strict closed immersion of .#-schemes. Then the
functor

i+ C(Shy, (f£/S.8)) = C(Shy, (/5. 4))
preserves (set, Al)-weak equivalences.

Proof. In [Ayo07, 4.5.35], the statement is proved for the topos Shy, (Sm/S,A)) (with S
usual scheme) instead of the topos Shy,(ft/S,A). However, the proof of [loc. cit] can be
applied to our situation trivially. O]

Proposition 7.1.8. Let G — F be a morphism of presheaves of sets over ft/S. To show
that the morphism
As(G) = As(F)

in C(PSh(ft/S,\)) is (set, AY)-weak equivalent, it suffices to show that for any morphism
p: P — S of finite type of #-schemes and a section s € F(P), the morphism

Ag(p*G Xp*F P) — As(P)

in C(PSh(ft/S,A)) is (set, AV)-weak equivalent. Here, the morphism X — p*F used in the
fiber product is the right adjoint of

mP =P -5 F

Proof. In [Ayo07, 4.5.40], the statement is proved for the topos PSh(Sm/S, A) (with S usual
scheme) instead of the topos PSh(ft/S, A). However, the proof of [loc. cit] can be applied
to our situation trivially. O

Lemma 7.1.9. Under the notations and hypotheses of , to show (loc. cit), it suffices

to show that the commutative diagram

AS(U Xs X) e As(X)

| |

As(U) _— AS(Z*(Z Xg X))
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is homotopy coCartesian in C(PSh(ft/S,\)) with the (sét, A')-local model structure. Here,
the morphism As(U) — A(i.(Z xs X)) used in the above diagram is induced by a unique

element of
Homg(U,i.(Z xg X)) = Homz(0, Z xg X) = *.

Proof. 1t is due to [Ayo07, 4.5.41]. O]

Lemma 7.1.10. Let X be an .#-scheme over S, and let g : X' — X be a strict étale cover
of ./ -schemes. Then the functor

g" : C(PSh(ft/S,A)) — C(PSh(ft/S,A))
preserves and detects (set, AY)-weak equivalences.

Proof. In [Ayo07, 4.5.43], the statement is proved for the topos PSh(Sm/S, A) (with S usual
scheme) instead of the topos PSh(ft/S,A). However, the proof of [loc. cit] can be applied
to our situation trivially. O

7.1.11. Now we start the proof of ([7.1.5)). By ([7.1.9)), it suffices to prove that the morphism

As(X JT U) = As(iu(Z x5 X))

U><5X

induced by the diagram of (loc. cit) is (set, A')-weak equivalent. Here, X [, .y U is the
fibered coproduct of presheaves of sets. Note that for any morphism Y — S of .#-scheme,
we have

(X J] (V) =Homs(yv,X)  J[  Homg(Y,U)

UxsgX HomS(Y,UXSX)
o HomS(Y,X) if YXSZ#Q)
o * if Y xgZ=040.

By ([7.1.8)), it suffices to prove that for any morphism p : P — S of finite type of .#-schemes
and a section s : P — i,(Z Xg X), the morphism

AS(TX,P,s) — P

in C(PSh(ft/S,A)) is (set, Al)-weak equivalent where

Txps=p" (X H U) Xpein(zxsx) P-

U><5X
Note that for any morphism Y — P of .#-schemes, we have

[ Homg(Y, X) Xtomy(zxsv,zxsx) * if Y XgZ #0
TX:RS(Y)_{ * if YXSZ:@

125



where the function x — Homz(Z xsY, Z xg X) used in the fiber product is obtained by the
composition
ZxsY — ZxgP —7ZxgX.

Because
TX,P,S = TXXsP,P,Sp
where sp denotes the morphism (s,id) : Z xg P — X Xxg P, we may assume that P = S.

Hence to prove ([7.1.5)), the remaining is to prove the following proposition.

Proposition 7.1.12. Under the notations and hypotheses of , Let s : Z — X be a
partial section of f : X — S. We denote by Tx s the presheaf of sets defined by

— HOIIls<Y,X) XHomz(ZxgY,ZxgX) * if YXSZ%Q)
TX’S(Y)_{ x if Y xgZ =10

for any morphism 'Y — S of % -schemes. Then the morphism
AS(TX,S) — As(S)
in C(PSh(ft/S,\)) is (set, A')-weak equivalent.

Proof. We denote by t the graph morphism Z — Z xg X of s : Z — X. To help readers,
we include the description of Tx s(Y') via diagrams as follows: when Y xg Z # (), the set
Tx s(Y) is the set of morphisms Y — X of .#-schemes over S such that the diagram

ZxsgY —2 sy

/ (7.1.12.1)

Z ' h

N

Zxg X —4— X

of .#-schemes commutes where a and ¢ denotes the projections and the small square is
Cartesian. We will prove the proposition in several steps.

(I) Locality on S. Let {u; : S; — Stier be a strict étale cover. Then the presheaf u}(Ty s)
is isomorphic to T, s, where s; and X; denote the pullbacks of s and X via u; respectively.
Then implies that the question is strict étale local on S. Hence from now, we will
assume that S has a fs chart.

(IT) Comparison of presheaves. Consider a commutative diagram

P
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such that g is log étale. Then we will show that the evident morphism
Txr g — Tx s
becomes an isomorphism after sheafification. To show this, we will construct the inverse of
Txr oY) = Txs(Y)

for any henselization Y of an .#-scheme W over S. Here, the henselization means the fiber
product W xy (W)". Consider the commutative diagram ((7.1.12.1)). We put Y’ =Y x x X’
Then we have the commutative diagram

Y/
pP1
ZxsY b Y o
7z ! Z xg X'
\ /
7
7 xg X a X

of .#-schemes where
(i) p1 denotes the first projection, and p, denotes the second projection,
(ii) @’ denotes the projection,
(iii) ¢ and t' denotes the morphisms induced by s and s’ respectively,
(iv) each small square is Cartesian.

Then the two compositions
Z XgY =Y = X,

IxgY =7 —3ZxgX - X' =X

are equal, so these two induce a morphism o : Z xgY — Y xg X' =Y’ of .#-schemes. Thus
we have the commutative diagram

Yl
/ lm
ZxsY —2 sy

of .#-schemes, and by (3.3.4)), there is a unique section S : Y — Y’ of p; extending a. Let
~ denote the composition ps3. Then the diagram

Z xXgY > Y

N ~

s Z xg X' - > X/
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of .#-schemes commutes where the small square is Cartesian, so this gives an element of
Tx' ¢ (Y). Thus we have constructed the inverse of Tx: ¢(Y) — Tx 4(Y).

(IIT) Locality on X . Note that we have assumed that S has a fs chart. Let {v; : X; — X }ies
be a strict étale cover. We denote by w; : Z; — Z the pullback of v; via s : Z — X. By
[EGA, 1V.18.1.1], for each ¢ € I, there is a Cartesian diagram

Zi —— 4
[ |
S; —— S

such that u; is strict étale. Then we have the commutative diagram

X XgS;

Z s 5,

of .#-schemes where s} is the morphism induced by the morphisms Z; — X; and Z; — 5.
By (I), we reduce to the case when

(S7X7 Za S) = (S’L’X Xs Si7Zi78i>a
and by (IT), we reduce to the case when
(Sa X7 Z7 S) = (SZaX’L Xg Siaziasg)

since the morphism X; xg 5; = X Xg S; is strict étale.

We will apply this to the following two situations. Assume that {v; : X; — X };er be a
strict étale cover such that each morphism X; — S has a fs chart. Then each projection
X; xg S; = 8; has also a fs chart, so we reduce to the case when the morphism f: X — §
has a fs chart.

Another application of this process is that when f : X — S is strict smooth. By [EGA,
IV.17.12.2], there is an open cover {v; : X; — X };c; such that the composition fv; : X; — S
has a factorization

ul .
X; — AL 2 S

where u; is strict étale and u; denotes the projection such that the composition u}s : Z — A%
is the 0-section. Then the projection X; xg S; — S; has the factorization

Xi XSSi—>Agi HSZ
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induced by the above sequence. Hence when f is strict smooth, we reduce to the case when
f has a factorization

X AL S
where v’ is strict étale and u denotes the projection such that the composition u's : Z — A%
is the 0-section.

(IV) Final step of the proof. By (III), we may assume that f has a chart. Then by [Ogul4,
IV.3.4.2], we have a commutative diagram

X/
o
770, X

of .#-schemes where s’ is strict closed immersion and g is a log étale morphism with a fs
chart. By (3.3.3), we can choose a maximal open subscheme U of X such that the composition

U — X' 14§ is strict. Then s factors through U, so we have the commutative diagram

U
V lgj

7 —25 X

of .#-schemes where s” denote the morphism induced by s, so by (II), we reduce to the case
when (X, s) = (U, s”). In particular, we may assume that f is strict. Then by (III), we may
assume that f: X — S has a factorization

X AL S

where v’ is strict étale and u denotes the projection such that the composition u's : Z — A%
is the 0-section. Then by (II) again, we may assume that (X, s) = (A%, so) where so : Z — A%
denotes the 0-section. We have the morphism

TA’%’O X Al — TAg,O
of presheaves that maps (f,t) € Tano(Y) x Ag(Y) to the composite

(xl7"'7$n7t)H(twl7"~7t$n

Y —— A% x Al )>Ag.

This map forms a homotopy between the identity of Ty~ s, and the zero morphism, which
completes the proof. O

Corollary 7.1.13. Leti: Z — S be a strict closed immersion, and let j : U — S denote its
complement. For any log smooth morphism f: X — S, we have a distinguished triangle

g1 Ms(X) — Mg(X) — 03" Mg(X) — jyj"Ms(X)[1]
in Da1 st (ft/S, A).
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Proof. Because (7.1.5)) and (7.1.7) are proved, we can argue as in the proofs of [Ayo07,
4.5.47]. O

Proposition 7.1.14. Leti: Z — S be a strict closed immersion, and let j : U — S denote
its complement. Then the functor

(M DAl,sét<ft/Z7 A) - DAl,sét<ft/Sa A)
admits a right adjoint.

Proof. 1t follows from the proof of [Ayo07, 4.5.46]. O

7.2 Localization property for D1, (ISm,A)

7.2.1. Our final goal of this chapter is to show the localization property for Djog p, (1Sm, A).
Our strategy is to use the following result.

Proposition 7.2.2. Leti: Z — S be a strict closed immersion of #-schemes, let j : U — S
denote its complement, let f : V — Z be a log smooth morphism of .-schemes, let t be a
topology on .7, and let W be a family of morphisms stable by twists, f; for f € lSm, and
f*. Assume that

(i) the functor
i* . DAl,t(ft/Za A) — DAl,t<ft/S, A)

maps W to W -weak equivalences, and it admits a right adjoint.
(i1) there is a distinguished triangle
J1J " Mg(X) — Mg(X) — 6,.0" Mg(X) — jyj " Ms(X)[1] (7.2.2.1)
in Da14(ft/S, A).
Then

(1) the functor
Ty : Dy/yt(ft/Z, A) — D%t(ft/S, A)

admits a right adjoint,

(2) there is a distinguished triangle
G4 Ms(X) — Mg(X) — i,0"Mg(X) — jygj"Ms(X)[1] (7.2.2.2)
in Dy 4+(ft/S, A).
Proof. The assertion (1) follows from , and by (loc. cit), i, commutes with the functor
7 Da1y(ft,A) = Dy y(ft, A).
Applying 7 to , we get a distinguished triangle
7jsj Mg(X) — mMg(X) — mini*Mg(X) — mjyj* Ms(X)[1]

in Dy +(ft/S,A). It is exactly because m commutes with jy, j*, i*, and i,. O
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7.2.3. For the localization property for Da1 ,,(1Sm, A), out strategy is to apply Ayoub’s
following result.

Proposition 7.2.4. Let t be a topology on . such that any t-cover consists of morphisms
of finite type, and let i : Z — S be a strict closed immersion of .-schemes. Assume that
for any morphism X — S of finite type of #-schemes such that X xg Z # ), the evident
functor

Covy(X) — Covy(X xg Z)

is cofinal where Covy(X) denote the category of t-cover of X. Then the functor
iyt Dpryg, (ft/Z,A) = Dary, (ft/S,A)
preserves t-local equivalences.
Proof. 1t follows from the proof of [Ayo07, 4.5.34]. O
7.2.5. Hence the remaining is to study the cofinality for the pw-topology.

Proposition 7.2.6. Let i : Z — S be a strict closed immersion of .#-schemes. Then the
evident functor

O : Covyy(S) = Covyw(Z)
s cofinal.

Proof. Let g : Z' — Z be a morphism of .#-schemes. We divide the question into 3 cases.

(I) Strict étale cover. Assume that g is a strict étale cover. Then ¢ has a refinement that is
in the essential image of ® by the proof of [Ayo07, 4.5.33].

(IT) Piercing cover. Let v : Z — A! be a morphism of .-schemes. We put
7y =7 Xp1 SpecZ, Zy=7 xp Ay

where the morphisms SpecZ — Al and Ay — Al used above are the 0-sections and the
morphism removing the log structure respectively. We want to show that the piercing cover

Z 12—z

has a refinement that is an essential image of ®.
Zariski locally on S, the morphism v : Z — A® can be extended to a morphism u : S —
Al. We put similarly
S =85 xu1SpecZ, Sy =15 xu Ay.

Then the image of S7 I .S, — S via ® is the cover Z] 1 Z — Z.
(III) Winding cover. Assume that g is a pullback of a morphism

A@/ : AP{ — Ap/
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where ¢’ : P/ — P| is a Kummer homomorphism of fs monoids. We want to show that g has
a refinement that is an essential image of ®.
Let = be a geometric point of Z. Strict étale locally on Z near x, we can choose a
factorization /
P — Q/ i) M A
of the homomorphism P’ — M such that o’ is a chart exact at = by [Ogul4, 11.2.3.2].
Moreover, strict étale locally on S near x, we may assume that S has a fs chart
(67 Q — Mg
neat at x by [Ogul4, 2.3.7]. Choose homomorphisms
B:Q— Qo
A:Q — Qe
B Qe QR — My

as in (3.2.1)). Then A’ induces the homomorphism
P —QaQ*r.

We put Q1 = P} &p (Q & Q'%P), and we denote by ¢ : Q & Q'#? — @ the second inclusion.
For n € NT, we denote by u, : @ — @ the multiplication homomorphism a ~ na. By
, there is a Kummer homomorphism ¢ : QQ"8? — G of finitely generated abelian groups
and a commutative diagram

QOQ® ——

o~ |

Qe G

of fs monoids. Then ¢ has a refinement

A XAQ@Q’gPAMn@C AQ@G — 7.

Choose a surjective homomorphism A : Z" — Q'8P for some r. By (7.2.7) below, there is a
Kummer homomorphism (' : Z" — G’ of finitely generated abelian groups and a coCartesian
diagram

Qa7 _deA, Qo Qe

lﬂn el lﬂn &¢

QeG —— QoG

of fs monoids. Thus ¢ has a refinement

A XAQGBZT’A,U,”@Q/ AQ@G’ — 7.

132



Strict étale locally on S near x, the composition

QaZ ¥ QaqQ® —-T(2,My)

factors through I'(S, M) where the third arrow is the homomorphism induced by 5" because
Z" is free and 8" is induced by a. This gives a chart

Q P L — M S-
Then the image of the winding cover

S XAQ@ZT’AH’H@C/ AQ@G/ — S
via ® is a refinement of g. ]

Lemma 7.2.7. Let 6 : G — H be a surjective homomorphism of finitely generated abelian
groups, and let 7' : H — H' be a Kummer homomorphism of finitely generated abelian
groups. Then there is a coCartesian diagram

G5 H
[
G/ 6’ )2

of finitely generated abelian groups such that n' is Kummer.

Proof. Let a be an element of H'. By induction on [H' : H|, we may assume that H’ is
generated by a and H. We denote by X : Z — H’ the homomorphism maps 1 to a, and
consider the Cartesian diagram

7 2 H
of finitely generated abelian groups. Since n/(H) and N (Z) generate H', the above diagram

is also coCartesian. The assumption that 7’ is Kummer implies that K is nontrivial, so K
is isomorphic to Z. Then A has a factorization

K&5acgLH

since K is free. Consider the commutative diagram

bkl

/N o Ny & [

of finitely generated abelian groups where the left square is coCartesian. Then the right
square is also coCartesian, and 7 is Kummer. O
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Corollary 7.2.8. Letv: Z — S be a strict closed immersion of .-schemes, let j : U — S
be its complement, and let f .V — Z be a log smooth morphism of .#-schemes. Then

(1) the functor
[ DApr(ft/Z, A) - DAl,pw(ft/Sa A)

admits a right adjoint,

(2) there is a distinguished triangle
i Ms(X) — Mg(X) — 10" Ms(X) —» juj* Ms(X)[1
in Dat p (fE/S, A).
Proof. By (7.2.4) and ([7.2.6)), the functor

i* . DAl,sét(ft/Z7 A) — DAl,sét(ft/Sa A)

preserves pw-local equivalences. Then the conclusion follows from ([7.1.13[), (7.1.14)), and
722). 0

7.3 Dimensional density structure
Definition 7.3.1. Let S be a fs log scheme. Then we put

S ={seS: rkﬂ?} < n}.
We consider it as an open subscheme of S.

Definition 7.3.2. Let S be a fs log scheme. We denote by D3™(S) the family of open
immersions U — S such that dim(S — U) < dim S — d. It is called dimensional density
structure. Note that DIm(—) satisfies the conditions of [VoelOa, 2.20], so it is a density
structure whose definition is in [loc. cit]. Note also that any element of D$™(S) is an
isomorphism if d > dim X. We also denote by Dgf{z)(S) the family of open immersions

U — S such that U U S"Y € Ddim(g).
Proposition 7.3.3. The Zariski cd-structure is bounded by DI™(—).

Proof. Let S be an .#-scheme, and we put n = dim S. Consider a Zariski distinguished
square

Wy
U——38
of .#-schemes with W, € D™ (W), Uy € DI™(U), and V, € D$™(V). Then
dim(U — Up), dim(V — Vp) <n —d,

134



so dim(U — Uy UV —V4) < n — d where the closures are computed in S. Replacing S by
S—U—-Uy—V =V, we may assume that U = Uy and V = V4.
We put

Z=W-W,, C=5S-U D=S-V.
Then dim Z <n —d+ 1. If Z’ is an irreducible component of Z, then
Z’'n(CnD)ycCnD=1,
so Z' ¢ Cor Z' ¢ D. Thus we have a decomposition
7 = 71U Zy
such that

(i) Z; is a union of irreducible components of Z for each i = 1,2,

(ii) if Z’ is an irreducible component of Z; (resp. Z3), then 2’ ¢ Z, (vesp. Z' ¢ Z;), and
Z"¢ D (resp. Z' ¢ C).

The Cartesian diagram

WO >V—ZQ

| |

U-7 —— (U—-7)U(V - Zs)

of .-schemes where the closures are computed in S is a Zariski distinguished squares, and
we have
U—-Z)U(V~=2)=8~(S—(U~21))N (S~ (V~Z))
S—(CUZ)N (DU Zy)
S—(CUZy)U(ZiND)U(Z1NZy)).

By construction,

dim(C U Z,),dim(Z; N D),dim(Z, N Z,) < n —d,
so (U —Z1) U(V = Zy) € DI™(S). We are done by putting Sy = (U — Z;) U (V — Za),
Ule—Zl,and\/l:V—ZQ. O

Definition 7.3.4. Let S be a fs log scheme with a Zariski log structure. We denote by
Df}}n)(S ) the family of log étale monomorphisms U — S such that for some dividing cover

T — S, the projection U xgT' — T is an open immersion such that U xgT' € Dgi(“;b) (7).

Lemma 7.3.5. Let f : X — S be a log étale monomorphism such that S = S™ . Then the
mduced morphism
X-Xb 559 gty

has fibers of dimension 0.
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Proof. The question is Zariski local on S and X, so by , we may assume that there is
a chart 6 : P — ) with the conditions (i) and (ii) of (loc. cit). By [Ogul4, 11.2.3.2], we may
assume that P is exact at some point of S. Then dim P < n, so the conclusion follows from
the fact that the induced morphism

Ag—AG™Y = Ap—ADTY
has fibers of dimension 0. O

Lemma 7.3.6. Let f : X — S be a morphism of .#-schemes such that S = S™. Assume
that f is a dividing cover. If Sy € ngg‘l)(S), then Sy xg X € Dgféz)(X).

Proof. We have dim S < dim X, and by (7.3.5)), we have
dim(S — Sy — S V) > dim(X — Sy xg X — X)),
Thus Sy xs X € Dgi%(X). O

)

Definition 7.3.7. We denote by .#z,, the full subcategory of . consisting of .#-schemes
having Zariski log structures.

7.3.8. Recall from [VoelOa, 2.1] that a B.G.-functor on ., with respect to the union
of the dividing and Zariski cd-structures is a family of contravariant functors 7,, ¢ > 0
from %%, to the category of pointed sets together with pointed maps with pointed maps
Oc : Ty1(X') — T,,(S) for any Zariski or dividing distinguished square

X L x
C= lf’ lf
s 25 s
of .#-schemes such that
(i) the morphisms Jc are natural with respect to morphisms of distinguished squares,
(i) for any ¢ > 0 the sequence of pointed sets
Tyr1(X') = Ty(S) = To(X) x Ty(S)
is exact.

When C' is a dividing distinguished square, the condition (ii) means that the morphism
T,(S) — T,(X) is an isomorphism.

Definition 7.3.9. We denote by dZar the union of dividing and Zariski cd-structures on ..
Then we have dZar-topology on .

Proposition 7.3.10. For any B.G.-functor (T,,0,) on zq such that T,(0) is trivial and
that the dZar-sheaves associated with Ty, are trivial, Ty, is trivial for all q. Here, we say that
a pointed set is trivial if it is the one element set.
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Proof. Assume that T,(S) is trivial if S is an .#z4.-scheme with S = S~ We will show
that T;,(S) is trivial if S is an .z,,-scheme with S = S () Assume that we have shown this.
Then this completes the proof by induction on n since the basic case (when S = § 1) is
true by the assumption that 7,(0) is trivial.

(I) Reduction of S. Assume T;,(S) = 0 for any .#z,,-scheme S with a fs chart. For general
S, it has a finite Zariski cover {U; — X };e; such that each U; has a fs chart. Then any
intersection of U; has also a fs chart, so we can apply the condition (ii) of for the
Zariski cover {U; = X }ier. Thus T,(S) = 0, so we reduce to the case when S has a fs chart.
Loosening this, we may assume that there is a log étale monomorphism S — V such that V'
has a fs chart. We denote this condition as (*).

(IT) Voevodsky’s argument. Let a € T,(S) be an element. Consider the following assertion:
for any Zariski or dividing distinguished square

x L x
C = lf, lf (7.3.10.1)
s 258
of Lz4-schemes such that S satisfies (*) and that for some

So € Dgzlvﬂ,(n)(sl)a Xo € Dgil,(n) (X),

the restrictions of a to them are trivial, there is S; € Dgilv(n)(s ) such that the restriction of
a to it is trivial.

If it is proven, then the proof of [VoelOa, 3.2] shows that for any .7z,.-scheme S with
the condition (*), there is S; € Dgé”(n)(S ) such that the pullback of a to S; is trivial. Then
the morphism S; — S has a factorization

S, Lvhs

where
(a) j is an open immersion such that V = S; U V(=1
(b) pis a dividing cover.

By induction on n, T,(S" V) and T,,,(S™ Y N S)) are trivial. Thus the condition (i) of
implies that the pullback of a to V' is trivial. Since p is a dividing cover, a = 0 by the
condition (ii) of (loc. cit). Therefore T;,(S) = 0. Hence the remaining is to show the above
assertion.

If C' is a dividing distinguished square, then X, € DgiL(n)(S ), so we are done. Hence the
remaining case is when C' is a Zariski distinguished square.

(III) Reduction to the case when S, = S’ and X, = X. Consider the square C' in (II).

Assume that for some S, € Dfﬁl’(n)(S’) and X, € Dgil7(n) (X), the pullbacks of a to them
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are trivial. We want to show that there is S; € Dgil (n)(S) such that the pullback of a to it
is trivial.
By definition, there are dividing covers 7" — S and T — S such that the projections

XoxsT' =T, S,xsT' —T"

are open immersions, Xo xg1" € Dgﬁf}L (n)(X xgT"), and S) xgT" € Dgiﬁ (n)(S’ xsT"). We

put T'=T" xg T". Then the projections
XOXST—>T, S[I]XST—>T

are open immersions, and by (7.3.6), XoxsT € D3I} (X xsT) and SyxsT € DG} (5" s
T). Since T also satisfies the condition (*), replacing S by 7', we may assume that the mor-
phisms Xy — S and Sy — S are open immersions, Xy € D$ (X)), and Sy € Df}fllv(n)(S).
Then since X' € Dii% (X") and C is reducing with respect to D™ by 1) there is

S1 € Df}fll’(n)(S ) such that the projections

S/X551—>S/, X xXgS5 — X

factor through S, and X, respectively. Replacing S by S;, we may assume S; = S’ and
Xo = X, i.e., the pullbacks of a to S" and X are trivial.

(IV) Final step of the proof. Then for some b € T,1(X’), we have 0x(b) = a by the condition
(i) of (7.3.8). Now by induction on d, there is Xo € Dg", (X') such that the pullback of b
to X is trivial. By definition, there is a dividing cover 7" — S such that the projection

X, xsT — T

is an open immersion and X} xg¢ 1" € DS}%(X "XgT"). Then T" also satisfies the condition
(*), so replacing S by 7", we may assume X € Df}f% (X7).

By induction on n, T,(X"™~Y) and T, (X, N X' ™) are trivial. Then by the condition
(ii) of (7.3.8), the pullback of b to X} U X'V is trivial. Thus we can replace X} by
XU X'V 50 we may assume

X} € DI™(X").

Since C is reducing with respect to D™ (X”) by (7.3.3)), there is Sy € D (S) such that the
projection

X' Xg Sy — X'
factors through X{). In particular, the pullback of b to X’ x ¢S5 is trivial. Then the restriction

of a to Sy is trivial by the condition (ii) of ((7.3.8). This completes the proof of the assertion
given in (II). O

Definition 7.3.11. For any .%%,-scheme S, we denote by ftz,./S the family of mor-
phisms X — S of finite type of .#z4-schemes. Then note that D(PSh(ftz.,A)) is a
ftza-premotivic category over .#zq;.
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Corollary 7.3.12. Let S be an .Szq.-scheme, and let K be an object of D(PSh(ftza,/S,\)).
Then the following conditions are equivalent.

(i) For any morphism p : T — S of Sza-schemes, and for any dividing or Zariski
distinguished square

X L x

A

T 2T
of L zar-schemes, the commutative diagram

% d * %k
P K —— p.g.g"p K

Je Jo

pfuf DK —ad pohp* K

is homotopy Cartesian where h = fq'.

(i) K satisfies tyzq,-descent.

Proof. We have that ([1.3.7)) needs ([1.3.6)), (1.3.6) needs [VoelOa, 3.8], [VoelOa, 3.8] needs
[VoelOa, 3.5], and [VoelOa, 3.5] needs [VoelOa, 3.2]. However, (7.3.10) can be used to

[VoelOa, 3.5] instead of [VoelOa, 3.2], so (1.3.7) for P = dZar with the restriction to %7,
is also true. n

Corollary 7.3.13. Let S be an Lzq,-scheme, and let K be an object of Dzar(ftzar/S, N).
Then the following conditions are equivalent.

(i) For any morphismp : T — S of Sz4r-schemes, and for any dividing cover f : X — T
of Szar-schemes over S, the morphism

* ad * %k
pp" K — pufo TP K
in Dzar(ftzar/S, \) is an isomorphism.
(ii) K satisfies tqzq.--descent.

Proof. The conclusion follows from ((1.3.7)) for P = Zar and (7.3.12)). O

Remark 7.3.14. Note that the condition (i) of (7.3.13)) is equivalent to the condition that
K is log”-local. The restatement is that K is log”-local if any only if k is dZar-local.

7.4 Localization property for D, ,,,(15m, A)

Proposition 7.4.1. Leti: Z — S be a strict closed immersion of .%zq.-schemes. Then the

evident functor
D . COVdZaT(S) — COVdZm«(Z)

is cofinal.
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Proof. Let g : Z' — Z be a morphism of .#7,,-schemes. We divide the question into 2 cases.

(I) Zariski cover. Assume that g is a strict étale cover. Then ¢ has a refinement that is in
the essential image of ® by the proof of [Ayo07, 4.5.33].

(IT) Dividing cover. Assume that g is a pullback of a proper birational morphism M’ —
spec P’ of fs monoschemes. We want to show that g has a refinement that is in the essential
image of ®. Let x be a geometric point of Z. Strict étale locally near x, we can choose a
factorization

P — Q/ il) MZ
of the homomorphism P’ — M such that o’ is a chart exact at = by [Ogul4, 11.2.3.2].
Then strict étale locally on S near x, we may assume that S has a fs chart

a:@Q — Mg

neat at « by [Ogul4, I11.2.3.7]. We put N’ = M’ Xypec pr spec Q. By ([3.2.3)), there is a proper
birational morphism
N — spec (@

of fs monoschemes such that
7 =7 XAQ/ AN/ =7 XAQ AN.
Then the image of the projection S xa, Ay — S via ® is the cover g : 2/ — Z. n

Corollary 7.4.2. Let i : Z — S be a strict closed immersion of %zq--schemes. Then the
functor

i* : Dt(a(ftzm./Z, A) — Dt@<ftZar/S7 A)

preserves dZar-local equivalences.
Proof. 1t follows from (|7.4.1)) and the proof of [Ayo07, 4.5.32]. O

Corollary 7.4.3. Let v : Z — S be a strict closed immersion of #zq--schemes. Then the
functor

Uy : DZar(ftZar/Za A) — DZaT(ftZCLT/S7 A)

preserves log” -weak equivalences.

Proof. By (7.3.14)), log”-weak equivalences and t,z,,-local equivalences are equivalent. Then
the conclusion follows from ([7.4.2)). O

Corollary 7.4.4. Let i : Z — S be a strict closed immersion of .-schemes. Then the

functor
i* : DAl,pw<ft/Z7 A) — DAljpw(ft/S, A)

preserves log'-weak equivalences.
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Proof. By (|1.6.4)), it suffices to show that for any dividing cover W — V in ft/Z the induced
morphism

in D, (ft/S,A) is an isomorphism. The question is strict étale local on S and V, so we
may assume that S and V' have Zariski log structures. Then the conclusion follows from

([7.4.3). O

Corollary 7.4.5. Let i : Z — S be a strict closed immersion of .-schemes, let j: U — S
be its complement, and let f -V — Z be a log smooth morphism of .-schemes. Then

(1) the functor
Ty : Dlog’,pw(.ft/Z7 A) — Dlog/mw(ft/s, A)

admits a right adjoint,

(2) there is a distinguished triangle
Jeg " Ms(X) — Ms(X) — 0" Mg(X) — jyj" Ms(X)[1]
in Diog puw(ft/S, A).
Proof. Then the conclusion follows from ((7.2.2)), (7.2.8)), and ([7.4.4]). O

Theorem 7.4.6. The localization property is satisfied for
Diog’ puw(1SM, A).

Proof. By (7.4.5) and the proof of [CD12, 2.3.15(iv)], the remaining is to show that for any
strict closed immersion i : Z — S of .#-schemes, the functor

Ty Dlog/,pw(lSm/Z, A) — Dlog/,pw(lSm/S, A)

is conservative (here, the well-generatedness of the assumption of [loc. cit] can be ignored
because the conclusion of [CD12, 1.3.18] holds for D,y i (ISm, A) by construction). The
conservativity follows from (3.1.5)) and the proof of [CD12, 2.3.16]. O

7.5 Localization property for D, ,,(I5m, A)

Proposition 7.5.1. Leti : Z — S be a strict closed immersion of .#-schemes. Then the
functor

i* . DAl’pw(ft/Z, A) — DA17pw(ft/S7 A)

preserves log-weak equivalences.

Proof. Consider the following situations for morphisms
w w2y Lz
of .-schemes.
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(¢) The morphism f’ is log smooth, the morphism ¢’ is an exact log smooth morphism,
and the morphism A’ is the verticalization WY — Y of W via f'¢g’.

(d) The morphism f’ is log smooth, the .#-scheme V has a neat fs chart P, and the
morphism ¢’ is the projection
V % Ap AQ -V
where the homomorphism 6 : P — @ is a locally exact vertical homomorphism of
fs monoids such that ¢ is an exact log smooth morphism. The morphism h is the
morphism
\% XAp AQG -V X Ap AQ

induced by the localization ) — Q¢ where GG is a maximal #-critical face of Q).
By (1.6.4]) and ([7.4.4)), the remaining is to show that for each type (c) and (d), the morphism

in Da1 o, (ft/S, A) is a log-weak equivalence.
Strict étale locally on V| we will construct the following diagram

Wt w Ly g
| lw l l (7.5.1.1)
yi—h sy 9 . x_T,g

of .#-schemes such that
(i) the sequence Y’ —Y — X — S is one of the types (c¢) and (d) in (1.7.2)),

(ii) each square is Cartesian.

By (3.1.5)), strict étale locally on V| there is a Cartesian diagram

v

=

- E

Z
l
S

of .#-schemes such that f is log smooth. In the case (c), by (loc. cit), there is a Cartesian
diagram

S

!

N, v
w l

y — 24 X

l

of .’-schemes such that g is exact log smooth. Then to show the claim, we only need to put
Y/ — Yver/X.
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In the case (d), let = be a point in v(V). We may assume that P is exact at x by [Ogul4,
11.2.3.2]. we denote by P’ the submonoid of @) consisting of elements ¢ € @ such that
ng € P+ Q* for some n € N. Then P’ is a fs monoid by Gordon’s lemma [Ogul4, 1.2.3.17].
The morphism P’ — @ is locally exact by [Ogul4, 1.4.6.5], so the induced morphism

c:W=Vxy, Ag =V xu, Ap

is an open morphism by [Nak09, 5.7]. We denote by V' the image of c. Then the induced
morphism W — V' is an exact log smooth morphism. Moreover, the order of the torsion
part of the cokernel of P8 — P’8P ig invertible in Oy, so the induced morphism V' — V' is
a Kummer log smooth morphism. Hence replacing (W -V — Z, P — Q) by (W - V' —
Z,P' — @), we may assume that the cokernel of 68 is torsion free. In particular, there is a
homomorphism ¢ : Q8 — PP such that ¢ o 8P = id. By [Ogul4, 11.2.3.7], we may assume
that X has a fs chart P” neat at . Then by (3.2.2), there is a coCartesian diagram

P—— P
lg le,,
Q I Q//
of fs monoids where the upper arrow is the quotient homomorphism P — P = P” such that

we have an isomorphism
Z XAp AQ =7 X A pir AQ//.

If G” denote the face of " induced by G, then G” is also a maximal 6”-critical face of Q.
Thus to show the claim, we only need to put

Y=X XAP” AQ//7 Y =X XAP” AQ&//.
We have constructed (7.5.1.1]). Then in the commutative diagram

Ja Ms(Y') —— Mg(Y') —— i.Mz(V') —— jsj*Ms(Y')[1]

| | | |

G Ms(Y) —— Ms(Y) —— i.Mz(V) —— jyj*Ms(Y)[1]

of .-schemes, the rows are distinguised triangles by ([7.2.8)). Moreover, the first and second
vertical arrows are [og-weak equivalences by construction. Thus the third vertical arrow is a
log-weak equivalence. O]

Corollary 7.5.2. Let i : Z — S be a strict closed immersion of . -schemes, let j : U — S
be its complement, and let f .V — Z be a log smooth morphism of .#-schemes. Then

(1) the functor
ix * Diogpw(ft/Z, A) = Diggpu(ft/S, A)

admits a right adjoint,
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(2) there is a distinguished triangle
" Ms(X) — Ms(X) — 12i* Ms(X) —» juf* Ms(X)[1
in Diogpw (ft/S, A).
Proof. Then the conclusion follows from ((7.2.2)), (7.2.8)), and (7.5.1]). O

Theorem 7.5.3. The localization property is satisfied for
Dlogva(lSm, A), Dlog,pw<_7 A)

Proof. By (7.5.2)) and the proof of [CD12, 2.3.15(iv)], the remaining is to show that for any

strict closed immersion ¢ : Z — S of .#-schemes, the functors
iw : Diogpuw(1SM/Z, A) = Digg pw(1Sm /S, A),
Ty Dlog,pw(—/Z, A) — Dlog,pw(_/57 A),

are conservative (here, the well-generatedness of the assumption of [loc. cit] can be ignored
because the conclusion of [CD12, 1.3.18] holds for Djog 1 (1Sm, A) and Djog puw(—, A) by con-
struction). The conservativity follows from (3.1.5)) and the proof of [CD12, 2.3.16]. O

7.5.4. We have proven the localization property for Djog(—, A). For future usage, we will
construct log”-weak equivalences and discuss the localization property for Djogm i (eSm, A).

Definition 7.5.5. For an .#-scheme S, we will consider the following situations for mor-
phisms

vy L x Lg
of .#-schemes.

(a) The morphism f is of finite type, the morphism g is the identity, and the morphism
h is the projection Y x Al — Y.

(b) The morphism f is of finite type, the morphism g is the identity, and the morphism
h is a dividing cover.

(c¢)’ The morphism f is exact log smooth, the morphism g is an exact log smooth morphism,
and the morphism h is the verticalization YV — Y of X via fg.

(d)’ The morphism f is exact log smooth, the .#-scheme X has a neat fs chart P, and the
morphism g is the projection
X x Ap AQ — X
where the homomorphism 6 : P — @ is a locally exact vertical homomorphism of
fs monoids such that ¢ is an exact log smooth morphism. The morphism h is the
morphism
X XAp AQF — X XAp AQ

induced by the localization () — QQr where F'is a maximal 6-critical face of Q.

144



Let .7 be a T-twisted &-premotivic triangulated category over .. Then let #},,~ s denote
the family of morphisms
Mg (Y'){i} — Ms(Y){i}

in 7 (S) where i € 7 and the morphism Y’ — Y is of the type (a), (b), (¢)’, and (d’).
Note that #,q4» is stable by the operations f; for f € eSm. To ease the notations, we often
remove # in the notation.

Proposition 7.5.6. Let i : Z — S be a strict closed immersion of .#-schemes. Then the
functor

byt Dat pu (ft/Z,A) = Dy o (ft/S, A)

preserves log" -weak equivalences.
Proof. The proof is parallel to the proof of . O
Theorem 7.5.7. The localization property is satisfied for

Diog pw(€Sm, A).

Proof. The proof is parallel to the proof of ([7.5.3)). O

7.6 Plain lower descent

7.6.1. As promised in ((1.7.8)), we will show the following result.

Proposition 7.6.2. Let S be an . -scheme. Consider the adjunction
Pt Diog' puw(1Sm, A) S Diogr pu ([, A) = p*

of LSm-premotivic triangulated categories. For any object K of Dipgr p(1Sm/S, A), the image
ps K satisfies the plain lower descent.

Proof. Let p: T — S be a morphism of finite type of .’-schemes, and consider a plain lower
distinguished square

X -4, x

ol

N

of #-schemes. By ([1.3.8)), it suffices to show that the commutative diagram

* ad * ook
P o ——— [ f pr K

Je Jo

* ok ad * ook
99" ps K —— hh*p*p K
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in Dyogr pu (f1/S, A) is homotopy Cartesian where h = f¢'. By (7.4.6)), we have a distinguished
triangle

*, sk ad’ * ad *, sk *, %
wu'p* oy K — p ps K — [ f ' pe K — wyu™p” ps K [1]

where u denotes the complement of f, so f.f*p*ps/K is in the essential image of p;. In
particular, since py is fully faithful, the natural transformation

* * ok ad’ * ok
pep” [ 0 ps K — [ f P p KK

is an isomorphism. The same is true for p*py K, ¢.9"p*ps K, and h,h*p*py K, so it suffices to
show that the commutative diagram

* ok ad * * ook
PO S ——— p L P S

Jos Jo

0.9 ps K —2 p*ho b p*p, K

in Diog puw({Sm/S, A) is homotopy Cartesian. Since p* commutes with f,, g, he , and py
commutes with p*, f*, g%, h*, it suffices to show that the commutative diagram

* * ad * * ook
P o K ———— fop*pf'p K

Jos Jo

G0 psg" D' K —2 hop* php* K

in Dipyr p(1Sm /S, A) is homotopy Cartesian. Then since py is fully faithful, it suffices to
show that the commutative diagram

P —s ffD K

Jos Jo

99V K —*= hhp' K
in Dyog pu(1Sm/S, A) is homotopy Cartesian. It follows from (2.6.7)). O

7.6.3. Note that we have discussed in ((1.7.8)) that for # = #ioy, #ioy and & = 1Sm,eSm,
(7.6.2)) implies that we have an equivalence

Dy puw(Z,N) = Dy (2, A)

of Z-premotivic triangulated categories. In particular, Dy ,, (22, A) is compactly generated
by & and T.

146



Chapter 8

Verification of the remaining axioms

8.0.1. In this chapter, we complete the proof that Dj,g . (—, A) is a log motivic triangulated
category.

8.1 Isomorphisms in D,y ., (ft, A)

8.1.1. We will study various isomorphisms in Djoy p(ft, A). Using these, in (8.1.15), we
will prove that the functor

9" Diogr puw(€Sm/ S, A) = Dipy puw(eSm/Y, A)

admits a left adjoint where S is an .%’-scheme with a fs chart N and g : Y — S denotes the
projection S X pty — 5.

Proposition 8.1.2. The ft-premotivic triangulated category Diog pw(ft, A) satisfies (Htp—

6).

Proof. Let S be an .’-scheme, and consider the commutative diagram

SXptNL)SXAN

s g

S — v 9 xAl

Nl”

S

of .#-schemes where
(i) g denotes the morphism removing the log structure,
(ii) the inside square is Cartesian,

(iii) p denotes the projection,
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(iv) ¢ denotes the O-section.

By (7.6.3) and (1.3.8)), for any object K of Dj,g puw(ft/S, A), the diagram

pp* K N Pulyt*p* K

lad lad
*, % d o) <Pk k%
Pegxg" P K —= p.g.i,i"g*p* K
is homotopy Cartesian. The upper horizontal arrow is an isomorphism by (Htp—1), so the

lower horizontal arrow is an isomorphism, which is (Htp-6). O

Proposition 8.1.3. Let S be an .#-scheme, and let 6 : N — P be a homomorphism of fs
monoid such that 6(1) is not invertible, i.e., Ap Xa, pty s nonempty. Then the morphism

Mft/S(S X A(p7p+)) — Mft/s(s X AP X A ptN)

in Diogr pw (f1/S, A) induced by the closed immersion i’ : Acp p+y — Ap X a, Pty 5 an isomor-
phism.

Proof. Let I denote the ideal (6(1)) of P. Then Ap xu, pty = App. We argue as in
[Ogul4, 1.3.2.1.3]. By [Ogul4, 1.2.2.1], we can choose a homomorphism A : P — N such that
h~1(0) = P*. Then we have a morphism

m' A(P,I) X Al — A(pj[)

induced by the homomorphism
ZIP)/(I) = ZIP,t]/(I), (p € P) s pt"®).
When we compose m’ with the O-sections and 1-sections, we get morphisms

id
A(P,]) — A(P,P+) — A(P,I), A(JD,I) — A(P,I)-

Thus the closed immersions i’ is an A'-homotopy equivalence, and this proves the statement.
m

Proposition 8.1.4. Let S be an .#-scheme, and let 6 : N — P be a homomorphism of fs
monotd. Then the morphism

Mft/s(S X A(Rpﬂ) — Mft/S(S X A_p)

in Diogr pw(f1/S, A) induced by the closed immersions i : App+y — Ap is an isomorphism.

Proof. As in the proof of (8.1.3)), we can show that 7 is an A'-homotopy equivalence. O
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Proposition 8.1.5. Let S be an .#-scheme, and let 6 : N — P be a homomorphism of fs
monoid such that (1) is not invertible, i.e., Ap X a, pty is nonempty. Then the morphism

Mft/s<S X Ap XAN ptN) — Mft/S(S X Ap)
in Diogr pw (ft/S, A) induced by the projection S x Ap X a, pty — S X Ap is an isomorphism.

Proof. We put p = 60(1). We will use induction on 7/(P) where r'(P) denotes the number of
rays of P not containing p. Let pq,...,p, denote the rays of P not containing p.

(I) Reduction method. Let p: P — P denote the quotient homomorphism. For s = 0,...,7,
we put -
R, = (Np+ N(=p1) + - -+ + N(=73) + Npgi1 + - - - + Npy)g N P,
R, = (Np+N(=p1) + - + N(=po1) + Ngzi1 + - - + Npy)g N P¥,
R! = (NP + N(—p1) + - -+ + N(=P:=7) + ZP; + Npzy1 + - - + Npy)o N P¥.
Po=u (R, Pl=p B, Pl =R,

Then the gluing of Ap, and Ap_, along Aps is a dividing cover of Ap/, so we have the
commutative diagram

Myyys(S X Apy Xpy Pty) —— Myyys(S x Ap, Xy Dty) & Mpyys(S X Ap,_, Xay, Pty) —— Myyys(S x Apy Xy Dty) —— Myyys(S x Apr Xa, pty)[1]

| ! | !

Mys(S X Apy) ————— Myys(S x Ap,) ® Mpys(S x Ap,_|) ———— Myys(S x Ap)) ——————— Myys(S x Apr)[1]

in Dyogr pw(ft/S, A) where the rows are distinguished triangles by (2.2.3(8)). Assume
p ¢ Ps*fh Ps*v Psl*v Ps”*'

Since r'(P.),r'(P!) < r'(P), by induction on 7’(P), the question is true for P and P!. Then
the above diagram shows that the question for P,_; is equivalent to the question for P;.

(IT) Reduction of P. Assume r > dim P — 1. Then {p,p1,...,P,} is linearly dependent over
Q, so we may assume

mpr+ -+ ape = ap + agaprer + o+ apr + 0
for some 0 <t <r,p € P*, and a,aq,...,a, € Nwith a; #0. In P,_1, p; is not a ray since
apy = a1(—p1) + -+ a1 (=pi-1) + Gp1pepr + -+ aepr +p.

Thus we can choose least u such that r'(P,) < '(P).
Assume p € P for some 1 < s < u. Then

_bp - b1<_p1) Tt bs(_ps) + bs+1ps+1 + - brpr

for some b,by,...,b, € Nwith b # 0. In P;_4, ps is not a ray since
bsps = bp + by (—=p1) + -+ + bs—1(—Ps—1) + bsp1Ps1 + -+ + bepy,
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contradicting to the fact that v'(P,_1) =7/(P). Thusp ¢ Pf,..., P
For 1 <s<wu, P.C P;,sop¢ P*. If pe P/ then for some

05627 Caclv'"7Cs—17cs+17"'acr€N7 0#07
we have
—cp=ci(=p1) + -+ cs1(—Ps—1) + Csps + -+ Copy
This means p € P} or p € P¥ |, which is a contradiction. Thus p ¢ P*.

Because Py = P and p ¢ Pr, P*, P’ for 1 < s < u, the question is true for P if and
only if the question is true for P, by (I). Since r'(P,) < 7'(P), by induction on r'(P), the
question is true for P,.

Hence we reduce to the case when 7 = dim P — 1. Then Fy is simplicial, and p is a ray
of P. The question is winding local on Ap, so we may further assume that P is isomorphic
to N1 by [CLS11, 11.1.9]. Choose minimal ¢ such that p € (¢). Then P = (q) & N". By
(13.5.2), we have an isomorphism

P={(q)®N @ P".
(III) Final step of the proof. We put P’ = P/{q). Then we have isomorphisms
S X Ap Xy Pty S X Ay Xp, 4y Pty X Apr,  SXAp =S X Ay x Aps

where 77 : N — (g) denotes the homomorphism 1 — p. Hence replacing S by S X Ap/, we may
assume P = N. Then Ap x4, pty has pty as a strict closed subscheme. Thus by (2.2.3(4)),
it suffices to show that the morphism

Mft/s(s X ptN) — Mft/S(S X AN)

in Diogr pw(ft/S, A) induced by the O-section pty — Ay is an isomorphism. This follows from
B81.2). 0

Proposition 8.1.6. Let S be an .-scheme, and let u : M — specN be a vertical morphism
of fs monoschemes. Then we have the distinguished triangle

Mft/s(s X AM X Ay ptN) — Mft/s(s X AM) D Mft/s(s X AM X Ay ptN)
—Myiys(S < Apr) — Myys(S x Apr X ay ptiy)[1]
in Diog pu (f£/ S, A).

Proof. The question is Zariski local on M, so we may assume that M = Spec P where P is

a fs monoid. Let 6 : N — P the morphism induced by u. When Ap xypty = 0, P is a group

since 6 is vertical. Thus S x Ap = S x Ap. Hence the remaining case is when Ap Xy pty # 0.
In this case, the morphisms

Mft/S(S X Ap XAN ptN) — Mft/S(S X Ap),
Myiys(S X Ay Xy, Pty) = Myiys(S x Apr)
are isomorphisms by (8.1.5)), (8.1.3]), and (8.1.4). This implies the statement. O
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Corollary 8.1.7. Under the notations and hypotheses of , if 0 : N — P is vertical,
then the morphism
Mpi/s(S % Ap Xy, Pty) — Myiys(S x Ap)

in Diog pw(ft/S, A) induced by the projection S X Ap xa, pty = S X Ap is an isomorphism.

Proof. 1t follows from (8.1.5)) and ({8.1.6]). O
Proposition 8.1.8. Under the notations and hypotheses of , the morphism

Mft/S(S X A};er X Ay ptN) — Mft/S(S X A}/per)

in Diog puw (ft/S, A) induced by the closed immersion A" X 4, pty — AY" is an isomorphism.
Here, AF" denotes the verticalization of Ap via the morphism Ag : Ap — Ay.

Proof. (1) Usage of (8.1.6). By (8.1.6]), we reduce to showing that the morphism

Miis(S x Ap" Xay Pty) = Myiys(S x AE")

in Doy pw(ft/S, A) induced by the projection S x Ap — S is an isomorphism. When P is
already vertical over N, we are done by (8.1.7)). Hence we will assume that P is not vertical.

(IT) Dual cones. We denote by (Spec P)*" the set of faces F' such that Pp is vertical over N.
Then (Spec P)¥" consists of the faces F' of P such that (F'+ 6(1)) = P.
We also have the one-to-one correspondence

®:SpecP — Spec P, F s (P7)".

Then ®((Spec P)®") consists of the faces G of P’ such that G N O((0(1))) = (0).

(IIT) Zariski descent. Let Fy, ..., F, denote the elements of (Spec P)¥", and for any nonempty
subset I = {iy,...,4} of {1,...,r}, let Fy denote the face (F;, +--- + Fj,) of P. Then we
denote by ¥ the set of nonempty subsets I C {1,...,r} such that Ap, Xay Phy # (). We
have AF" = Ap, U---UAp, , so the motives

Mipiys(S < Ap"),  Myeys(S x AP Xa, pty)
are the homotopy colimits of the Cech-type sequences

P Myys(S x Apy,) — -+ — @ Myys(S x Ap,.), (8.1.8.1)

[=r [7]=1

@ Mft/s(s X APFI XAN ptN) —_— s — @ Mft/S(S X APFI XAN ptN) (8182)

H|=r |1|=1
respectively. Then by (8.1.7)), the sequence (8.1.8.2) is isomorphic to
@ Mft/S(S X APFI) — s — @ Mft/s(s X APFI)' (8183)
\I|=rIc¥ \I|=1Ic¥
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Comparing (8.1.8.1)) and (8.1.8.3), we get the following result: to show the question, it

suffices to show that the homotopy colimit of the sequence

@ Myys(S X App ) — -+ — @ Mis(S < Apy,) (8.1.8.4)
\I|=rI¢¥ |I=1,¢v -

extracted from (8.1.8.1)) is 0.

(IV) Reduction to a topological problem. If I ¢ ¥, then (1) C Fj, so F; = P since (F +
0(1)) = P. Thus Ap, = Ap«, which has the trivial log structure. With this identification,
morphisms

Mft/s(s X APFI) — Mft/S(S X APFI’)

in (8.1.8.4]) are either id : My, /s(S x Ap+) = My 5(S x Ap+) or —id. Thus to show that the
homotopy colimit of the sequence (loc. cit) is 0, it suffices to show that the sequence

0 @B zZ, "5 Pz %0 (8.1.8.5)
|I|=r,I¢V |I|=1,¢7

is exact. Here, each Z; is Z, and morphisms Z; — Zp in (8.1.8.5|) are either id or —id. It is
equivalent to the assertion that the morphism

2\

j ’ EB|1|:7:1767/ Ly P ’ @m:uev Ly ? j
0 0

» D= L1 P » D11 Z1 ’

2\

(8.1.8.6)
of complexes of abelian groups is a quasi-isomorphism. Here, each Z; — Z; in (8.1.8.6))
is either id or —id, whose sign is the same as the corresponding sign in (8.1.8.1). By the
universal coefficient theorem, it is equivalent to the assertion that the morphism

oo —— 0 —— Homgz(Z, Dy, sey Z1) — -+ — Homz(Z, D ;1 ey Z1) —— 0 —— -+~

| | | |

o 0 ——— Homy(Z. @, Zr) Homy (Z, @y, Zr) —— 0 — -

(8.1.8.7)

of complexes of abelian groups is a quasi-isomorphism.
We put

Gr=(®(F))g, G =G —{0}, K=GU---UG,, K =K-{0}.

Then {Gy,...,G,} (resp. {G',...,G.}) is a closed cover of K (resp. K'). Moreover, the
topological space Gy is always contractible, and G is contractible (resp. empty) if [ € ¥
(resp. I ¢ 7). Thus the cohomology of the first row (resp. second row) of is
exactly the Cech cohomology of K (resp. K') associated to the closed cover {G1,...,G,}
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(resp. {GY,...,G.}), and the cohomology is isomorphic to the singular cohomology H'(K, Z)
(resp. H(K',Z)). Because K is contractible to {0}, to show that the morphism of complexes
in (8.1.8.7)) is a quasi-isomorphism, it suffices to show that the reduced singular cohomology

H(K',7)

vanishes for all 7. It is equivalent to the assertion that the reduced singular homology

H,/(K',7Z)

vanishes for all 7 by the universal coefficient theorem.
(V) Final step of the proof. Choose a hyperplane H of (ﬁv)ﬂgg such that

V:HH(P)R

is a polytope and that the cone generated by v is equal to (ﬁv)R. Then K'N H is homotopy
equivalent to K, so it suffices to prove that the reduced singular homology

Hi(K'NH,7)

vanishes for all i. The topological space V is homeomorphic to D? where d = dim P, and
the boundary 9V is homeomorphic to S¢. We also have

V =V™IV = V™I (K' N H) T (0V — K'N H),
so by the Alexander duality, we have an isomorphism
Hi(K'NH,7Z)= H Y0V — K'n H).

Hence it suffices to show that 0V — K’ N H is contractible.

A face G of P’ is in the image of ® if and only if GN®((6(1))) = (0), so IV — K’ N H is
the union of (G'N H)™ for faces G of P such that G N ®({6(1))) # (0) and G # P’ . Then
the conclusion follows from this description and below. O]

Lemma 8.1.9. Let P be a real polytope, let G be a face of P, and let F be a family of faces
of P such that

(i) G is in F,
(ii) if F is in F, then F NG # 0,
(ii1) if F isin F, and if F' is a face of F, then FFNG =0 or F' € F.
Then the union
U:= U Fint

FreF

18 contractible.
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Proof. We will use an induction on r = dim G and s = |F|. If s is equal to the number of
faces of GG, then we are done since U = (' is contractible. Hence assume that s is bigger than
that number.

Choose an element H # G of F maximal among F. Then we put

U, = U Fint’ Uy = U Fint’ Uy = U [rint

FeF-{H} FeF,FCH FeF—{H} FCH

We will show that these are contractible. If  is any point in H™¢, then U, is contractible to
x. If G is not a face of H, then dim(H NG) < dim G, so Ujs is contractible by induction on
r. If G is a face of H, then Ujs is contractible by induction on s. Finally, U; is contractible
by induction on s.

The topological space U is the gluing of U; and U, along U4, so it is also contractible. [

8.1.10. Let S be an .#-scheme with a fs chart a : N — Mg. We put
X=SxAy, Y=Sxpty, P=NaN, F=Na&O.

Then X has the fs chart v : X — Ay x Ay = Ap induced by «, and we have the commutative
diagram Consider the commutative diagram

Yy — 5 X
le
S

of .#-schemes where f and g denote the projections and ¢ denote the 0-section.

Proposition 8.1.11. Under the notations and hypotheses of , let 0 : P — @ be an
injective homomorphism of monoids such that there is a face Gy of Q such that 0~'(G) = F}.
Then the motive

Mipiys(Y Xap Aq)

in Diog puw(ft/S, A) is in the essential image of the functor
Py,S - Dlog/mw(eSm/S, A) — Dlog/,pw(ft/S, A)

Proof. We put p = 6(1,0) and p’ = 0(0,1). We will use induction on r'(Q)) where '(Q)
denotes the number of rays of ) not containing p and p’. By below, there is a face G
containing p and not containing p’ such that dimG = dim@ — 1. Let ¢y, ..., ¢~ denote the
rays of () not containing p. Among them, we may assume ¢, ..., g, are the rays contained
in G.

(I) Reduction of G. We will first reduce to the case when G is simplicial and p is a ray of
G. Let p1: Q — Q denote the quotient homomorphism. For s = 0,...,r, we put

Ry=(Np+Np + N(—@) + -+ + N(=) + NGoz + - + Ng)g N Q™
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R, = (Np+ Ny + N(=q1) + - + N(-=1) + Ngz1 + - + Ng)o N Q%
R! = (Np + Np/ + N(—=q1) + -+ + N(=@: 1) + Z@ + NGog1 + - + NG ) N Q%
Qs=p'(Ry), Qu=pn"(R), Qf=p""(R).
Then the gluing of Ag, and Ag,_, along Aqy is a dividing cover of Aq;, so by (2.2.3(8)), we
have a distinguished triangle

Myys(Y Xap Agy) — Mpys(Y Xa, Ag,) ® Mpys(Y xap Ag, )
—> Myoys(Y Xap Agy) —> Myys(Y xap Agy)[1]

in Dyog pw (ft/S, A). We have r'(Q%), 7' (QY) < r'(Q), and the homomorphisms
P—> Q57 P—>Q3/, P—)QS//

again satisfy the condition of the statement. Thus by induction on (@), the question is
true for @)% and @Q”. Then the above diagram shows that the question for (Q;_; is equivalent
to the question for ;. Because )y = @), to show the question for @), it suffices to show the
question for Q).

Assume r > dim G — 1. Then {p,q, ..., } is linearly dependent, so we may assume

a1q1 + -+ asqs =ap+ asp1 + -+ arqr +¢q
with ag # 0, ay,...,a, € N, and ¢ € Q*. In Q,_1, ¢, is not a ray since

Asqs = al(_ql) +- as—l(_QS—l) + As+1Gs+1 + ArQy + q.

Thus 7 (Qs—1) < 1'(Q), so by induction on 7/(Q), the question is true for Qs_1, which implies
the question for (). Hence we may assume that » = dim G — 1. In this case, p is a ray of G,
and Gy is simplicial.

(IT) Reduction of ). Assume that we have two different rays ¢,,1 and ¢,,2 not containing
p/ and not in G. Then {p,q, ..., G2} is linearly dependent, and {p, Gy, ..., @1} is linearly
independent. Hence we may assume that

a1qy + -+ asqs + Ary2Qri2 = AP + As41Qs+1 + 0 F Qrp1Gry1 @

for some 0 < s <r, g€ Q" and a,ay,...,a,,2 € N with a,.2 # 0. In Qs, g2 is not a ray
since

UriaGria = ap + ar(—q1) + -+ + as(—qs) + as419s41 + -+ + Grp1Gri1 + G

Then by induction, the question is true for (),, which implies the question for (). Hence we
may assume that there are no two different rays not containing p’ and not in G.

Assume that Qg is not simplicial. In this case, there is a unique ray g,;; not containing
p’ and not in G. Then {p,p,q1,..., 1} is linearly dependent, and {p,q1,...,G51} and
{P,V,q,...,q} are linearly independent. Moreover, there is a homomorphism h : Q — N
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with 271(0) = G by [Ogul4, 1.2.2.1], and then we have h(p’),h(g-+1) > 0. Hence we may
assume that one of the two equations

aqr+ -+ asqs + ari1gryr = ap + a'p 4 agy1qsir + -+ arge + g,

a/p/ +a1q1+ -+ asqs = ap + As4+14s+1 +oe Ar14r4+1 +4q

holds for some ¢ € Q* and a,d’,ay,...,a,,1 € N with d’;a,1 # 0.

If the first equation holds, then ¢, is not a ray in Qs, so (Qs) < r'(Q). Thus by
induction, the question is true for (), which implies the question for (). If the second
equation holds, then p’ is not a ray in Qs, so (Qs)g is simplicial. Since it suffices to show
the question for ()5, we reduce to the case when ()q is simplicial.

The question is winding local on Ag, so we may further assume that () is isomorphic to
N+ by [CLS11, 11.1.9]. Then Q = {¢) ® N" where ¢ is a minimal element in @ such that

p € {(g). By (3.5.2), we have an isomorphism
Q={(goN Q"
(IIT) Final step of the proof. Let
m:Q@ (=N n:Q—=-N, n:Q—Q"
denote the projections. Consider the ideals
L= (m@),m(),0), Ii=m)00), Ir:=(0n()0), hLy=5LNh
of (), and we put
W=Xxa, Aoy, Wi=XXapAgn), Wo=X Xap,Agn), Wi=XXu, A,

Then we put Q' = Q/(p), and let ' : N — @' denote the composition
NoPLHQ—Q

where the first arrow is the second inclusion and the third arrow is the quotient homomor-
phism. We have
WQYXAPAQ, ng(s XANptN)XAQ’,

Wa = 8 X (Ag Xagny Py); Wiz = (S Xuy Plyy) X (Agr X4y, Ply)-

By (8.1.5)), the morphism
Myiys(Wiz) = My s(Wh)

in Diogr pw(ft/S,A) induced by the closed immersion Wi, — Wi is an isomorphism. Since
W1 LI Wy — W is a plain lower cover, we have a distinguished triangle

Mypys(Wia) = Mpyys(Wh) @ Mpyys(Wa) = Mpyys(W) — Myyg(Wio)[1]
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in Dyogr pw(ft/S, A). Thus the morphism
Miiys(Wa) = Mpiys(W)
in Diogr p (ft/S, A) is also an isomorphism. Since W5 22 .S x (Ag X a,.4, Pty), by (8.1.5)), the

morphism
Mft/S(W2> — Mft/g(s X AQ/)

in Diogr pw(ft/S, A) induced by the closed immersion Wy — S x A¢y is an isomorphism. This
completes the proof since the projection S x Ag: — S is exact log smooth. O

Lemma 8.1.12. Let § : N® N — @ be an injective homomorphism of fs monoids such that
there is a face Gy of Q with 07'(G1) = N@® 0. We put p = 6(1,0) and p' = 0(0,1). Then

there is a face G containing p and not containing p’ such that dim G = dim @ — 1.

Proof. We put F; = N@ 0. Consider the homomorphism
0 :N=(NeN)p — Qq,

of fs monoids induced by 0. Since 071(G,) = Fy, ' is injective. Choose a maximal proper
face G" of Q¢, not containing #'(1), and we denote by G the inverse image of G” under the
localization homomorphism @) — Q¢,. Then G satisfies the condition. O

Proposition 8.1.13. Under the notations and hypotheses of (8.1.11]), we assume further
that the fs chart N — Mg induces a constant log structure. Then the morphism

Mfﬁg(y XAP AQ) — Mft/S(X XAP AQ)
in Diog puw(ft/S, A) induced by i : Y — X is an isomorphism.

Proof. We can follow the proof of (8.1.11)) until the end of the step (II). Hence we may
assume that @ is isomorphic to N"*!. Let us use the notations in the step (III) of the proof
of (loc. cit). We want to show that the homomorphism

Myyys(W) = Mpys(YXap) = Mpys(X Xap Ag,n) = Mypys(X Xa, Ag)

in Dyog pu(ft/S) is an isomorphism.
If mi(p') # 0, then W = W) = X x,, Ag, so we are done. If n(p') = 0, then Wy = W.
As in the proof of (loc. cit), the morphism

Mft/S(S X (AQ’ XAQ,AN ptN)) — Mft/S(S X AQ/)
in Doy puw(ft/S,A) is an isomorphism by (§8.1.5), so we are done because W = Wy = S x

(AQ/ X Ag,Ay ptN) and X XAp AQ = S x AQ!. ]
Proposition 8.1.14. Under the notations and hypotheses of (8.1.10), the essential image
of

93, FtPRY - Dlog/mw(eSm/Y, A) — Dloglypw(ft/S, A)

1s in the essential image of

Py,8 - Dlog/,pw(eSm/S, A) — Dlog/,pw(ft/S, A)
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Proof. We put P = N @ N. Then Y has the fs chart P — Mg. By (3.6.3)), it suffices to
prove that
Myiys(Y' X Ag)

is in the essential image of p; g where

(i) h: Y’ — Y is a Kummer log smooth morphism with a fs chart  : P — P’ of Kummer
log smooth type,

(ii) @ : P — @ is an injective homomorphism of fs monoids such that the cokernel of ’¢P
is torsion free,

(iii) ¢ is logarithmic and locally exact.
We put T' = pty, and consider the diagram

Y — T

f

of .-schemes where the horizontal arrow is the projection. Then the new question is winding
local on S and T, so by ([1.2.18)), we may assume that 7 is an isomorphism. In this case, h
is strict smooth, so there is a unique Cartesian diagram

vyl y
L
S — S
of .#-schemes since the morphism ¢ : ¥ — S of underlying schemes is an isomorphism.

Then the morphism S’ — S is automatically strict smooth. Replacing Y’ — Y — S by
Y' = Y' — S’ we may assume that Y =Y’ and P = P’. Then we are done by (8.1.11). [

8.1.15. Under the notations and hypotheses of (8.1.10)), by (8.1.14)) and ([1.5.4)), we have the
adjunction

gy - Dlog/,pw(eSm/Y, A) = Dlog/pw(eSm/S, A) . g*
Moreover, g; commutes with py, and g, commutes with p*.

8.1.16. Let S be an .¥-scheme with the trivial log structure. Consider the Cartesian diagram

(SXptN)XANLSXAN

b J

(S x pty) x Al —L— S x Al

of .#-schemes where f denotes the morphism removing the log structure and g denotes the

projection. Then by (8.1.15)) and ([1.5.5]), the exchange transformation
* Ex *
g fe — fld

in Dipg pw(eSm, A) is an isomorphism.
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Proposition 8.1.17. Under the notations and hypotheses of (8.1.1()), the natural transfor-
mation

d .. .
fof” — Jetu ™ f*
in Diog pw(€Sm, A) is an isomorphism.

Proof. Let us add subscripts eSm and ft to functors for distinction. By (8.1.2), the natural
transformation

* d . ko pxk

f*,ftfft " f*,ftl*,ftlftfft

is an isomorphism. Thus the natural transformation
P Fesif b == 0" fegpeinpiisifops
is an isomorphism. Since p* commutes with f, r; and i, s, and py commutes with f;, and
i, the natural transformation
d . :
Feesmp Pefism = Jeesmivesmp” Peicsm fism

is an isomorphism. Then the conclusion follows from the fact that py is fully faithful. O]

8.2 log"-weak equivalences in Dy, ,,(eSm, A)

8.2.1. We will study various log"”’-weak equivalences Djog i (eSm, A). Using these, in (8.2.9),
we will prove that the functor

g>|< . Dlog///’pw<65m/s, A) — Dlogm,pw(eSm/Y, A)
admits a left adjoint where S is an .’-scheme with a fs chart N and ¢g : Y — S denotes the
projection S X pty — S.

Proposition 8.2.2. Let S be an .¥-scheme with the trivial log structure, and we put Y =
S X pty. Let

(i) h: W =Y be alog smooth morphism of .#-schemes,

(i) Q be a fs chart of W,

(11i) n: Q — Qo be a vertical homomorphism of fs monoids of exact log smooth over W

type,

(iv) F be a n-critical face of Q.

We put Q1 = (Qo)r. Then the morphism

gﬁMy<W XAQ AQI) — gﬁMy(W XAQ AQO) (8221)

in Dipg puw(€Sm/S, A) induced by the open immersion Ag, — Ag, is an isomorphism.
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Proof. We will use an induction on

48P
d := max My 5.
zeW ’

If d =1, then A is Kummer log smooth, so F' = 0. Thus (8.2.2.1]) is an isomorphism. Hence
assume d > 1.

(I) Reduction of Q. We denote by R the submonoid of @y consisting of elements ¢ € @y
such that ng = n(¢’) + ¢” for some ninNT, ¢ € @, and ¢ € Qf. Then the induced
homomorphism v : R — @ is again a vertical homomorphism of fs monoids of exact log
smooth over W' := W x4, A type, and F is a v-critical face of Qp. Moreover, the projection
W' — W is Kummer log smooth. Hence replacing

%74 XAQ AQI — W XAQ AQO — W
by
w’ XAp AQl — W XAp AQO — W/,
we may assume that the cokernel of %P is torsion free.

(IT) Reduction of Y. The question is strict étale local on W, so by [Ogul4, IV.3.3.1], we may
assume that h: W — Y has a fs chart 0/ : N — @’ of log smooth type. Let y be a point of
Y. Then we may further assume that the chart Q" — My is exact at y by [Ogul4, 11.2.3.2].
We denote by P’ the submonoid of @' consisting of elements ¢ € Q' such that nqg = 6(p) + ¢
for some n € N*, p € N, and ¢ € Q. Then P’ is a fs monoid by Gordon’s lemma [Ogul4,
1.2.3.17], and P’ = N. Moreover, the induced homomorphism s : P’ — Q' is logarithmic, so
the commutative diagram

P H Q/
Pt
P50
of fs monoids where the vertical arrows are the quotient homomorphisms is coCartesian.
Replacing (W - Y — 5,0 :N—= Q') by (W =Y Xu, Ap = S X Apr, i : PP = Q'), we
may assume further assume that
(i) @' is sharp,
(ii) the cokernel of 6P is torsion free.
Then the chart @ — My is neat at y because @’ is sharp.

(ILT) Further reduction of Q. We denote by s the composition @ — My, — Q" where
the first arrow is the chart homomorphism and the second arrow is the inverse of the chart
homomorphism. We put

Q=Qu®Q, Q1=0Q19Q"
Then since the cokernel of 78P is torsion free by (I), we have isomorphisms

WXAQAQ(]%WXAQ/AQ&; WXAQAngWXAQ,AQII
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by (3.2.2)). Hence replacing Q — Qo — @1 by Q' — Qf — @), we may assume that
(i) @ is neat at y,
(ii) g: Y — X has a fs chart 0 : N — @ of log smooth type,

(iii) the cokernel of of 65 is torsion free.

(IV) Induction. The induced morphism
Y X Ay th — X
of schemes is an isomorphism since @) is sharp, so there is a unique Cartesian diagram

| |

Y’ ! s Y

of .#-schemes where the right vertical arrow is the projection and the upper horizontal arrow
is a pullback of the strict étale morphism W — Y x,, Ag. Then the morphism V' — Y is
automatically strict étale. Now we have the commutative diagram

Y’ XANAQl — Y’ XANptA XAQ AQI —— WXAQ th XAQ AQI E— WXAQ AQl

l 2 ~ v

Y’ XANAQO +—— Y’ XANptA XAQ AQO —— WXAQ th XAQ AQO E— WXA

l 2 N

Y’ XANAQ<—YI XANth =

Q AQo

v ~

» W Xa, Do > W

\
\

Y XAN%>; Y X Ay AQ
\’, t N h /
Y Y

7

of #-schemes. Let u denote the complement of the closed immersion v : Y X, ptgy —
Y xa, Ag. Then by (Loc), we have the commutative diagrams

pﬁUW*A/IYXANAQ(W XAQ AQl) —_— ]\fy(W XAQ AQl) —_— p:’U*’U*A/[yXANAQ(W XAQ AQl) —_— pﬁutu*]\[yXANAQ (W XAQ AQL)[H

| l | |

prugt My s, aq(W Xag Agy) —— My (W xaq Agy) — ppuav™ My, ag(W Xag Agy) — prugu* My, aq(W xaq Ag,)[1]
pnutu*JWyXANAQ (Y/ X Ay AQI) — ]\/fy(y, X Ay AQl) —_— pﬁU*U*ZWYxANAQ (Y’ X Ay AQl) —_— pﬁuju*]‘/IYXANAQ (Y/ X Ay AQI)[l]

| ! ! |

puut'u*]\fyXANAQ (Y’ X Ay AQO) —_— ]\/fy(yl X Ay AQD) —_— pu’U*’U*AI}/XANAQ (Y/ X Ay AQU) —_— pﬁUjU*AfyXA\NAQ (Y’ X Ay AQO)[I]
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of .’-schemes whose rows are distinguished triangles. We have isomorphisms
U My, nqg(W Xag Agy) = Myx, pto(W Xaq Pt Xag Ag,) = ’U*MYXANAQ(Y, Xay Agy ),
U My x, aq (W xp, Ag,) = My s, ptq (W Xy, Do Xag Ag,) = U*MYXANAQ<Y, Xan Ao, ),
and by induction on d, the morphisms
gipyugu” My, ao(W Xag Ag,) = gepyusu™ My, ag(W Xag Agy),

gipyug” My, ag (Y Xay Ag,) = gpyug™ My, g (Y Xay Ag,)

are log”'-weak equivalent in Dy, i (eSm /S, A). Thus from the above commutative diagrams,
we see that the question for W x,, Ag, — W X, Ag, is equivalent to the question for
Y’ xa A, = Y xa,Ag,. In other words, we may assume W =Y’ x, Ag. Sincet:Y' =Y
is strict étale, there is a unique Cartesian diagram

y —t sy

.

S — S

of .#-schemes. Then the lower horizontal arrow is automatically strict étale. Replacing
W—=Y —=Sby W—=Y =5 wemay further assume that Y =Y’ ie, W =Y x,, Ag.

(V) Final step of the proof. We put X = S x Ay. Then X has the chart N. We also put
Wo=Y x5, Agy, Wi=Y Xy, Ag,, Vo=X xua,Ag,, Vi=Xxu,Ag,.
We want to show that the morphism
9:My (Wh) — g: My (Wo)

in Diogr pw(€Sm/ S, A) is a log”'-weak equivalence. If 6(1) is invertible in @, then Wy = Wy =
(), so we are done. If not, then the image of (1) in @); is not invertible since (Q1)g = Qg by
[Ogul4, 4.6.6]. Thus by (8.1.5)), we have isomorphisms

gsMy (Wo) = gsMy (o), gsMy (Wh) — g:My (V1)
in Doy pw(€Sm /S, A). This completes the proof since the morphism
9:My (V1) = g:My (Vo)
in Dyogr pw(eSm/S, A) is a log”'-weak equivalence by definition. O

Proposition 8.2.3. Let S be an .-scheme with the trivial structure, and we put Y =
S xpty. Let h: W —Y be a log smooth morphism. Consider the verticalization WY — W
of W wvia h. Then the morphism

gMs (W) — gsMg(W)

in Diog puw(€Sm/S, A) is a log" -weak equivalence.
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Proof. The question is strict étale local on W, so we may assume that h has a fs chart
0 : N — @ of log smooth type. We can follow the proof of from Step (I) to Step (IV),
so we reduce to the case when W =Y x,, Ag. We put X = S x Ay. Then X has the chart
N. We also put

WOZW:YXANAQ, lewver:YXANAZ;r, %:XXANAQ, %:XXANAEH.
We want to show that the morphism
9sMy (Wh) — g: My (Wo)

in Doy puw(eSm/S, A) is a log”-weak equivalence. If (1) is invertible in @), then Wy = W, =
(), so we are done. If not, then by (8.1.8) and (8.1.5)), we have isomorphisms

g My (Wo) = gs My (Vo),  gsMy (W1) = gsMy (V1)

in Dyogr pw(eSm/S, A). This completes the proof since the morphism
g9:My (V1) = g:My (Vo)
in Doy puw(€Sm/S, A) is a log”'-weak equivalence by definition. O

Corollary 8.2.4. Let S be an .’-scheme with the trivial log structure, and let g : Sxpty — S
denote the projection. Then the functor

gy : Dlogf,pw(eSm/Y, A) — Dlog/pw(eSm/S, A)
preserves log" -weak equivalences.

Proof. 1t follows from (8.2.2)) and ({8.2.3). O

8.2.5. Under the notations and hypotheses of (8.1.10]), assume further that the chart « :
N — Mg induces a constant log structure. We put

PP =NoN, X' =Xxup.a Ap, Y =Y x4,4, Apr
where 77 : P — P’ denotes the homomorphism
(a,b) — (a+b,b).
Consider the commutative diagram

7;/

Y — X'

ol

Yy — X
lg/
S

where f’ denotes the projection and the square is Cartesian. Then gg¢’ : Y’ — S is the
projection S x Ay — S, and in particular it is exact log smooth.
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Proposition 8.2.6. Under the notations and hypotheses of , consider the natural
transformation

(99 )89™ — g
that is the left adjoint of

x ad AN

9 — 99 9 -
Then for any object K of Da1 ,,(eSm/Y, A), the morphism

(99 )19" K — g: K

is a log" -weak equivalence.

Proof. Note first that the functor g; is defined by (8.1.15]). As in the proof of (8.1.14), we
reduce to the case when

K = My(Y XAP,AQ AQ)
where

(i) 6 : P — @ is an injective homomorphism of fs monoids such that the cokernel of &P
is torsion free,

(i) 6 is logarithmic and locally exact.
By (8.1.13)), the morphism
gsMy (Y Xnp Ag) = Ms(X X4, Ag)

in Diogr puw(eSm/S, A) is an isomorphism. Hence to show the question, it suffices to show
that the morphism
Ms(y/ XAp AQ) — Ms(X XAp AQ)

in Diogr pw(eSm/S, A) is a log”'-weak equivalence.
Consider the coCartesian diagram

p—15 P

o b

Q"5 q

of fs monoids. Then ¢’ is again local and locally exact. Let G’ be a maximal ¢'-critical face
of @'. Then 1/~1(G’) is a maximal f-critical face of Q. The morphisms

Ms(Y' Xpp Bgg) = Ms(Y' Xup Ag),  Ms(X xup Agg) = Ms(X Xup Ag)

in Dloglﬁpw(eS_m/ S, A\) are log”-weak equivalences by definition, so replacing @ by Qg, we
may assume 6 is Kummer by [Ogul4, 1.4.6.6].
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We put T' = pty, and consider the diagram

Y — T

ls

S

of .#-schemes where the horizontal arrow is the projection. Then the question is winding
local on S and T, so by (|1.2.18)), we may assume that # is an isomorphism. In this case, the
projection p : Y x4, Ag — Y is strict smooth, so there is a unique Cartesian diagram

YXAPAQL)Y

Lk

SN — S

of .#-schemes since the morphism ¢ : ¥ — S of underlying schemes is an isomorphism.
Then the morphism S’ — S is automatically strict smooth. Replacing Y x apAhg =Y = S
by Y xu, Ag =Y Xxu, Ag = 5, we may assume that P = Q).

Then the remaining is to show that the morphism

MS(Y,) — Ms(X)
in Dyogr pw(eSm/S, A) is log"-weak equivalent. The morphisms
Mg(Y') = Ms(X'), Mg(X"/5) = Mg(X'), Mg(XV%) = Mg(X)

in Diog pw(€Sm/S, A) is are log”-weak equivalent by definition, so this proves the question
since Xver/S — X/ver/S' N

Proposition 8.2.7. Under the notations and hypotheses of , the functor

G4 Diog' pw(eSM/Y, A) = Diogr pu(eSm/S, A)
preserves log" -weak equivalences.
Proof. By (8.2.6)), it suffices to prove that the functor

(99")4 : Diog pw(eSm/Y', A) = Dipgr pu(eSm /S, A)

preserves log”-weak equivalences. This is true since gg’ is exact log smooth. O
Proposition 8.2.8. Under the notations and hypotheses of , the functor

G4 Diog puw(eSm /Y, N) = Diogr pw(eSm/S, A)

preserves log" -weak equivalences.
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Proof. We put 8" = S X, pty. Let i : S — S denote the closed immersion, and let
j 8" — S denote its complement. Consider the commutative diagram

’

vy sy Iy

RN

S S S

<

of .#-schemes where each square is Cartesian.
If K — L is a log”-weak equivalence in Djpy p(eSm/Y, A), then by (Loc), we have a
commutative diagram

. ad’ ad . 0; .
i g K —— g K —— i.0* g K —— j3j* g3 K[1]

R

©x ad’ ad -k A -k
Js3* g4 L > gy L y i gL ——— jaj*gyL[1]

in Diogr pw(eSm/Y, A) whose rows are distinguished triangles. By (8.1.15) and (1.5.5)), the

exchange transformations
LY /LS

Ex .4 Ex .4
g — gy, gii" — gy

are isomorphisms. Applying these to the above diagram, we get the commutative diagram

~
~

. 1% ad’ ad . <% 82 . Ix
Jsgi i K g K ikgyi™ K ——— jygy 7" K[1]

| l | |

. . d' d . s 0; C e . s
Jagli* L —" = gL —" = i.gli" L —— jsj*gsJs9{ 7" L[1]

~

in Dyog pw(€Sm/Y, A) whose rows are distinguished triangles. Since i, preserves log"”-weak
equivalences by (7.5.6]), to show that g; preserves log”-weak equivalences, it suffices to show

that gy and g} preserves log"”-weak equivalences. It follows from (8.2.4)) and (8.2.7). ]

8.2.9. Under the notations and hypotheses of (8.1.10), by (8.2.8) and ((1.6.5)), we have the
adjunction

gy - Dlogm’pw(eSm/Y, A) = Dlogm,pw(eSm/S, A) : g*.
Moreover, gy commutes with 7 : Djogr pw(eSm, A) = Dipgr p(eSm, A), and ¢g* commutes

with O : Dlog//gpw(eSm, A) — Dlog/pw(eSm, A)
8.2.10. Under the notations and hypotheses of (8.1.16]), by (loc. cit), (8.2.8)), and (1.6.6]),

the exchange transformation

* Ex *
g fe — flg'

in Dyogrr py(€Sm, A) is an isomorphism.
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Proposition 8.2.11. Under the notations and hypotheses of (8.1.10)), the natural transfor-
mation

., . .
fof” — Jetu ™ f*
in Diogr pw(eSm, A) is an isomorphism.

Proof. Let us add subscripts log” and log’ to functors for distinction. By (8.1.17)), the

natural transformation
* ad . % %
f*Jog/ flog’ f*JOg'Z*,lOg’Zlog’ flog’
is an isomorphism. Thus its adjunction
* *
gﬁ,log’glog/ fjj,log’ flog’
is an isomorphism. Then the natural transformation
* *
7"'gti,log’glog/(f) ? 7T'fti,log’flog’(/)

is an isomorphism. Since 7 commutes with f; ., and g4 0, and O commutes with f;;g, and
Glog+ the natural transformation

92109 TOGpogn — [0 TO frogm
is an isomorphism. Then the conclusion follows from the fact that O is fully faithful. m
Corollary 8.2.12. Under the notations and hypotheses of , the functor
9" Diggrr pw(eSm /S, A) = Dipgrr p(eSm /Y, A)
18 conservative.

Proof. The functor f* is conservative since f has a section. Thus the conclusion follows from
(8-2.11) and (5.2.1). 0

8.3 Homotopy properties 1, 2, 3, and 4

Proposition 8.3.1. The Sm-premotivic triangulated category
Dlog’pw(lSm, A)
satisfies (Htp—1), (Htp-2), (Htp-3), and (Htp—4).

Proof. For any log smooth morphism f : X — S of .“-schemes and any object K of
Diogpw(1Sm/S, A), we have

fif ' K= Mg(X)® K
by ({Sm-PF). Thus to show (Htp-1), (Htp-3), and (Htp-4), it suffices to show that the

morphism
Ms(Y/) — Ms(Y)
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in Diogpw(1Sm/S, A) for each type (a), (c), and (d) in is an isomorphism. It follows
from the fact that the morphism is a log-weak equivalence.

For (Htp-2), let f : X — S be an exact log smooth morphism of .#-schemes, and let
j 1 Xver/S — X denote its verticalization of X via f. Since Doy (lSm, A) is generated by
ISm and 7, it suffices to show that the morphism

fedsi™Mx (V) — f;:Mx (V)

in Dipgpw(1Sm/S, A) is an isomorphism for any log smooth morphism V' — S. Consider the
commutative diagram

Ms<<v X x Xver/S)ver/S) Mg(vver/S)

| !

Mg(V xx XV/9) ————— Mg(V)

in Djogpw(ISm/S, A). We want to show that the lower horizontal arrow is an isomorphism.
This follows from the fact that the vertical arrows are log-weak equivalences, i.e., they are
isomorphisms in Djyg p (15m /S, A). O

Remark 8.3.2. The method of (8.3.1)) can be applied to Djogm p,(eSm, A) to conclude that
it satisfies (Htp—1), (Htp—2), and (Htp-3) (but not (Htp—4)).

Proposition 8.3.3. The eSm-premotivic triangulated category
Dlog,pw(_a A)
satisfies (Htp—1), (Htp-2), (Htp-3), and (Htp—4).
Proof. Consider the adjunction
Pz : Diogpuw(—; A) S Diggpu(LSm, A) = p*.

Let us prove (Htp—2). It suffices to show that the natural transformation

ad . -
f*,eSm ? f*,eSmj*,eSm.]eSm
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is an isomorphism. Consider the commutative diagram

ad . 5
f*,eSm ? x,eSmJx,eSmleSm
ad |~
ad |~ f*,eSmj*,eSmj:Smp*pﬁ
f*,eSmp*pﬁ f*,eSmj*,eSmp*jfsmpﬁ
* r 3k
~ f*yeSmp J#,18mJ18m Pt

N d " . %
1Y f*,lSmp]j — P f*,lSm]*,lSmlempﬂ

of functors. The lower horizontal arrow is an isomorphism by (Htp-2) for Djyg p (1S, A)
proved in (8.3.1]), so the upper horizontal arrow is also an isomorphism. This proves (Htp-2).
The other properties can be similarly proved. O

8.3.4. By (8.3.3), (7.6.3), (7.5.3) and (2.9.5), we have proved that Djog ,u(—, A) satisfies the
axiom (i) of (2.9.1]) for . We also have proved (Adj), (Htp-1), (Htp-2), (Htp-3), (sét-Sep),
(Loc), and (Stab) by (2.9.5), (7.5.7)), (7.6.3)), and (8.3.2)).

8.4 Axiom (ii) of (2.9.1))

Theorem 8.4.1. Let S be an .#-scheme with the trivial log structure. Then the support
property holds in Diygn p,(eSm, A) for the morphism

f:SxAy— S xA!
of L -schemes removing the log structure.

Proof. Consider the Cartesian diagram

SXptNxANLSxAN

I I

S x pty x Al —L— S x Al

of .-schemes where g denotes the projection. Then by (8.2.10)), the exchange transformation

* Ex *
g fe — f.9'
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in Dyogr pw(€Sm, A) is an isomorphism, and by (8.2.12)), the functor
g* : Dlogm,pw(eSm/(S X A1)7 A) — Dlogm’pw(eSm/(S X ptN X Al), A)

is conservative. Thus to show the support property for f, it suffices to show that the support
property for f.
By (8.3.4), we can use (5.5.5)), and this proves the support property for f’. O

8.4.2. Let S be an .-scheme with a trivial log structure. For any open subscheme X of
S x Ay or S x Al, we have 1Sm/X = eSm/X by [Ogul4, 1.4.5.3.5]. Thus for these X, we
have

Dlogm,pw(eSm/X, A) = Dlog,pw (X, A)

Then (8.4.1]) implies the axiom (ii) of (2.9.1)) for Djpg p(—, A). Therefore we have proved the

following theorem.

Theorem 8.4.3. The eSm-premotivic triangulated category

DlOg7pw(_7 A)

15 a log motivic triangulated category.
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Chapter 9

Premotivic triangulated prederivators

9.1 Axioms of premotivic triangulated prederivators

9.1.1. Through this section, fix a category . with fiber products and a class of morphisms
P of . containing all isomorphisms and stable by compositions and pullbacks.
Definition 9.1.2. We will introduce several notations and terminology.

(1) An -diagram is a functor
AR e IR

where I is a small category. The 2-category of .#-diagrams is denoted by .42 We
often write 2" = (27, 1) for 2. The category [ is called the index category of 2,
and an object \ of I is called an index of 2.

(2) Let f: 1 — J be a functor of small categories, and let p be an object of J. We denote
by 1, the full subcategory of I such that A is an object of I, if and only if u(\) is
isomorphic to p in J.

We denote by I/u the category where

(i) object is a pair (A € ob(I), a: f(N\) = u),
(ii) morphism (X, a) — (N, a’) is the data of commutative diagrams:

b N : > f(X)
A —— N
N M s

(3) Let f: (Z,1) — (#,J) be a 1-morphism of .-diagrams. Abusing the notation, we
denote by f the induced functor I — J. For an object p of J, we denote by 2, and
2 /i the -diagrams

I, —1-5%.97 Ijp—129
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respectively where the first arrows are the induced functors. Then we denote be
p: 2, =, p:Z/p—->&

the induced functors.

(4) Let f : 2 — % be a l-morphism of .-diagrams, and let u be an index of #/.
Consider the induced 2-diagrams

D A TR S o N

[ R L A

of .#-diagrams. Here, the arrows < and = express the induced 2-morphisms. Then
we denote by

P Zy=P fa: X n—= P fa: X n— Y

the 1-morphisms in the above 2-diagrams.

Let A be an index of 2" such that f(A) is isomorphic to p. Then we denote by
f)\,u : e/lm//')\ — %

the induced 1-morphism.

(5) Let f: 2 — % be a l-morphism of .-diagrams. For a property P of morphisms
in ., we say that f is a P morphism if for any index A of 2", the morphism f,, :
I\ — ¥, where = f(A) is a P morphism in ..

(6) We denote by dia the 2-category of small categories.
(7) We denote by Tri® the 2-category of triangulated symmetric monoidal categories.
(8) We denote by e the trivial category.

Definition 9.1.3. A Z-premotivic triangulated prederivator 7 over . is a 1-contravariant

and 2-contravariant 2-functor
T SN Tri®
with the following properties.
(PD-1) For any l-morphism f: 2" — # of .#-diagrmas, we denote by f*: T (¥) — T(Z")

the image of f under .7 : .42 — Tri®. Then the functor f* admits a right adjoint
denoted by f*.

For any 2-morphism ¢ : f — ¢ of l-morphisms f,g : & — % of -diagrams, we
denote by t* : g* — f* the image of ¢t under .7.

(PD-2) For any &-morphism f : 2" — %, the functor f* admits a left adjoint denoted by
fe-
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(PD-3) For any .-diagram 2" = (2, 1), if I is a discrete category, then the induced functor

72)— [[ 7(2)

Aeob(I)

is an equivalence of categories.

(PD-4) For any .#-diagram 2" = (2", I), the family of functors \* for A € ob([) is conserva-
tive.

(PD-5) For any object S of .7, the fibered category
T (_7 e)
is a H-premotivic triangulated category.
(PD-6) For any morphism f : 2" — % of .#-diagrams and any index p of %, in the 2-diagram
Xy —L
fml V% lf
Y — ¥

of .#-diagrmas, the exchange transformation

d t* _ d’ _
K f = fﬁu*fﬁ*uﬂ*f* — fﬁu*ﬂ*f*f* S fﬁu*/fk
is an isomorphism.

Remark 9.1.4. Our axioms are selected from [Ayo07, 2.4.16] and the axioms of algebraic
derivators in [Ayo07, 2.4.12].

Definition 9.1.5. Let .7 be a &-premotivic triangulated prederivator.
(1) A cartesian section of 7 is the data of an object Ay of T (Z) for each .-diagram

Z" and of isomorphisms

[f(Ay) — Ay
for each morphism f : 2" — % of .-diagrams, subject to following coherence condi-
tions as in ((1.1.5)). The tensor product of two cartesian sections is defined termwise.

(2) A set of twists T for 7 is a set of Cartesian sections of .7 stable by tensor product.
For short, we say also that .7 is T-twisted .

Proposition 9.1.6. Let 7 be a &2-premotivic triangulated prederivator, and let Z be an

S -diagram. Then MK is compact for any index N of 2 and any compact object K of
T(Z).
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Proof. We have the isomorphism
Homg(g)()\ﬁK, —) = Homy(d%)(K, /\*(—)).
Using this, ther conclusion follows fom the fact that A* preserves small sums. O

Definition 9.1.7. Let .7 be a 7-twisted &2-premotivic triangulated prederivator. For any
object S of ., we denote by Fz/g the family of motives of the form

Mg (X){i}

for #-morphism X — S and twist ¢ € 7. Then for any .¥-diagram 2", we denote by Fz, 4

the family of motives of the form
MK

for index A of 2" and object K of Fp/ 4.

Proposition 9.1.8. Let .7 be a T-twisted &2 -premotivic triangulated prederivator. Assume
that 7 (—,e) is compactly generated by & and 7. Then Fup 9 generates T ().

Proof. Let K — K’ be a morphism in 7 (%) such that the homomorphism
Homy(g[)(AﬁL, K) — Homg(%)()\ﬁL, K,)

is an isomorphism for any index A of 2" and any element L of F»,9,. We want to show
that the morphism K — K’ in .7 (2") is an isomorphism.
The homomorphism

HOIHg(gg‘n(L, )\*K) — HOIIIy(gg‘/Q(L, )\*K/)

is an isomorphism, and F 4, 4, generates .7 (Z)) by assumption. Thus the morphism \* K —
MK in 7 (Z)) is an isomorphism. Then (PD-4) implies that the morphism K — K’ in
T (Z) is an isomorphism, which completes the proof. H

9.2 Consequences of axioms
9.2.1. Throughout this section, fix a category . with fiber products and a class of mor-
phisms & of . containing all isomorphisms and stable by compositions and pullbacks.
Definition 9.2.2. Let f: (Z,1) — (%, J) be a 1-morphism of .-diagrams.

(1) We say that f is reduced if the functor f: I — J is an equivalence.

(2) We say that f is Cartesian if f is reduced and for any morphism py — g’ in J, the
diagram

Z, —— Zy

L]

in . is Cartesian.
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9.2.3. Let f:(Z,]) = (#,J)and g : (#',J) — (#¢,J) be l-morphisms of .-diagrams.
Consider the category J' x; I. We have the functors

U12J/XJ[£JIz;y,

uy: I x,; IR J 5 2,
w:J x, I 575 7
where p1, po, and p denote the projections. Then we denote by
(W'} X, T x5 1)

the functor J' x; I — .7 obtained by taking fiber products ui(A) X, u2(A) for A €
ob(J" x; I). Note that by [Ayo07, 2.4.10], the commutative diagram

Y o X~y X

ol

@y 9 oy

of .#-diagrams is Cartesian where ¢ and f’ denote the first and second projections respec-
tively.

Proposition 9.2.4. Let f : & — % be a Cartesian &-morphism of ./ -diagrams, and let
i be an index of %. Then in the Cartesian diagram

X, ——

bl

%, LNV
of ./ -diagrams, the exchange transformation

*

% Ex
I e — ,u*fu
18 an isomorphism.

Proof. Let X\ be an index of 2" (so an index of # since f is Cartesian). By (PD-4), it
suffices to show that the natural transformation

* px Ex * *
)\fﬂ*—>)\,u*fﬂ

is an isomorphism.
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Consider the 2-diagrams

%“/)\ 5% S\ 3{“/)\ 2 > 2\
R N ~,
(Fu) 2 - » X U Vi i Z
/ * /
Y/ N o L r A S s
\ \ “ 2
A A
Y, m > Y Y, . > Y

of .#-diagrams. Then we have the commutative diagram

%

le lEm
Nt fi =25 X fr = pixa (fu)ix

*

of functors. By (PD-6), the lower left horizontal and upper right horizontal arrows are
isomorphisms. Thus it suffices to show that the right vertical arrow is an isomorphism. We
have the identification

XN = Z, x Homy(u, N), Z, /A =%, x Hom,(u, \)

where J denotes the index category of %°. Thus by (PD-3), it suffices to show that for any
morphism g — A in J, in the induced Cartesian diagram

in ., the exchange transformation
. Ex .
f;ldu/\* — ld/v\*f;

is an isomorphism. This follows from (PD-5) and the assumption that f is a Cartesian
Z-morphism. O

Proposition 9.2.5. Consider a Cartesian diagram

N

b

' 2w
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of & -diagrams where f is a Cartesian &?-morphism. Then the exchange transformation
* E *
fig™ =g f:
s an isomorphism.

Proof. Note that f’ is also a Cartesian &-morphism. Let p/ be an index of #’. By (PD-4),
it suffices to show that the natural transformation

* E * %
W =5 1 gt f
is an isomorphism. We put p = g(p).
Consider the commutative diagrams

H/ g/
X, —— X — X

/
K 2
lfﬂl J/fl J/f lfp‘l
4 g
/ /

=
=
~
R
2

<_
=
<—
~

P g 9 sy

~
2\

w'p % g g
of .#-diagrams. Then we have the commutative diagram

JE WS Ix £ I

E.Z’ ECC k%
g ——— " fig" ——— u"g" fy
* * Ex * * Ex * *
fli’ﬁgu/’u,” — glﬂ'u,fllzﬁ/"l’ - gu/ul‘l’ fﬁ
of functors. The upper left horizontal and lower right horizontal arrows are isomorphisms

by (9.2.4), and the lower left horizontal arrow is an isomorphism by (PD-5) since the com-
mutative diagram

a7, Ty g

— 2,

lf;, lfu
Cm

Yy —— I

is Cartesian by assumption. Thus the upper right horizontal arrow is also an isomorphism.
m

Proposition 9.2.6. Let 2 be an .7 -diagram. Assume that the index category of Z  has a
terminal object A. Consider the 1-morphisms

2= 2 L2,

where f denotes the morphism induced by the functor I — e to the terminal object X. Then
the natural transformation

A fF 2 p

18 an isomorphism.
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Proof. Let X' be an index of 2. By (PD-4), it suffices to show that the natural transfor-
mation )

)\I*)\ﬂ)\*f* ﬂ) )\/*f*
is an isomorphism. We will show that its right adjoint

ad

F A — LA,

is an isomorphism.
Consider the diagram

L —4 2y

id
lidA/A lX \jA
A f
s 2 s 2

2

of .-diagrams. Then we have the commutative diagram

feX

e T2

FANN, =22 £ idy,id*

of functors, so it suffices to show that the horizontal arrow is an isomorphism. This follows

from (PD*G) since %‘)\/ = %)\///\. L]

Proposition 9.2.7. Let f : & — % be a reduced morphism of . -diagrams, and let u be
an index of % . Consider the Cartesian diagram

X, Lt
v
@, —
of .L-diagrams. Then the exchange transformation
* Ex *
W fe = fusht
s an isomorphism.

Proof. Consider the 2-diagram

=
<_
Sl
hS
<_
~
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of .#-diagrams. Then the exchange transformation
* E *
W [ = Juslt
has the decomposition
* E —% d : sk o—x *
2 Je = f,uu*,u — fﬁu*lduﬁ*lduﬁﬂ — fu*ﬂ :

By (PD-6), the first arrow is an isomorphism. Thus it suffices to show that the second arrow
is an isomorphism.
Consider the 1-morphisms

- -
2, X2,
of .#-diagrams. Then it suffices to show that the natural transformation

% ad .
o ldﬁﬂ*

idg,.id,z,id
is an isomorphism, which follows from (9.2.6)). O

Proposition 9.2.8. Consider a Cartesian diagram

2 Ly
lf/ lf
w 2wy
of ./ -diagrams where
(i) f is reduced,
(ii) for any index ' of %", in the Cartesian diagram

’ g;t’u
2, 2 7,

lf;, lfu
g,

©w

/ K
%/—>%

in . where p = g(y'), the exchange transformation

/%

Ex

* /
gu’ufﬂ* fu/*gu’u
s an isomorphism.

Then the exchange transformation

* Ex *
g fe — flg

18 an isomorphism.
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Proof. Note that f’ is also reduced. Let ¢/ be an index of #’. By (PD—4), it suffices to show
that the natural transformation

,u’*g*f* ﬂ Iu/* >ig/*
is an isomorphism. We put p = g(u’).
Consider the commutative diagrams

/
g, /

D G R L
I
7,

Z
N

\
7

<—
~

s g !
y ! y W LN

Iy

v

of .#-diagrams. Then we have the commutative diagram

x

* ok E * * Ex x /%
Wrgtfo ——— W flg" ——— fung

lN lN (9.2.8.1)

* * Ex * * Ex * / /%
g#’ul’[’ f* g‘u"u,flt*/i g/jy, /j*g

of functors. The upper right horizontal and lower left horizontal arrows are isomorphisms
by (9.2.7), and the lower right horizontal arrow is an isomorphism by (PD-5) since the
commutative diagram

, g:/ﬂ
2, e 7,

lf;, lfu
g,/
Y, —— %,
is Cartesian by assumption. Thus the upper left horizontal arrow of (9.2.8.1)) is also an
isomorphism. O

9.2.9. Under the notations and hypotheses of (9.2.8]), we will give two examples satisfying
the conditions of (loc. cit).

(1) When f is reduced and ¢ is a &-morphism, the conditions are satisfied by (£-BC).

(2) Assume that .7 (—,e) satisfies (Loc). Then the conditions are satisfied when f is a
reduced strict closed immersion by (2.6.2)).

9.2.10. Let i : & — 2 be a Cartesian strict closed immersion of .#-diagrmas. Then for
any morphism A — )\ in the index category of 2", we have the commutative diagram

( J
.%\ A):%,\</\ 02/)\

lid)\)\/ lidA)\/ l

13/ I
%\’%%X;%X
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in . where each square is Cartesian and j, (resp. jy) denotes the complement of iy (resp.
iy). From this, we obtain the Cartesian open immersion j : % — 2 . It is called the
complement of 1.

9.2.11. We have assumed or proven the axioms DerAlg 0, DerAlg 1, DerAlg 2d, DerAlg 2g,
DerAlg 3d, and DerAlg 3g in [Ayo07, 4.2.12]. With the additional assumption that .7 (—, e)
satisfies (Loc), the following results are proved in [Ayo07, Section 2.4.3].

(1) Let i : & — Z be a Cartesian strict closed immersion, and let j :  — 2" denote
its complement. Then the pair of functors (%, j*) is conservative.

(2) Let i : & — Z be a strict closed immersion. Then the counit

v ad .
%y — id
is an isomorphism.
(3) Consider a Cartesian diagram
!
2 s X

]

oy 2w
of .#-diagrams where f is a #Z-morphism and g is a Cartesian strict closed immersion.
Then the exchange transformation

Ex
f1g . > g, ﬁ,
is an isomorphism.

9.2.12. The notion of Z-premotivic triangulated prederivators can be used to descent theory
of &-premotivic triangulated categories. Let t be a Grothendieck topology on .. Recall
from [CD12, 3.2.5] that .7 satisfies ¢t-descent if the unit

id 2L fpr

is an isomorphism for any t-hypercover (see [CD12, 3.2.1] for the definition of ¢-hypercover)
[ Z — % of S-diagrams. In (9.5.1), we will construct a eSm-premotivic triangulated
prederiator satisfying strict étale descent.

9.3 Localizing subcategories

9.3.1. Throughout this section, we fix a category . and classes of morphisms &' C & of
. containing all isomorphisms and stable by compositions and pullbacks. We fix also a 7-
twisted Z2-premotivic triangulated prederivator .7 such that .7 (—, e) is compactly generated
by & and 7. Then by (9.1.8), .7 (2") is compactly generated for any .#-diagram 2.
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For an ./-diagram 2", we denote by F 5,2 the family of motives of the form
MK

for index A of 2" and object K of Fp,4, (see (1.5.1) for the definition of Fz,4;). Then we
denote by 7 (2’ / Z") the localizing subcategory of .7 (Z") generated by Fz, 4. Note that

T ('] Z) is compactly generated by (9.1.6]).
We denote by .7 (') the collection of T (') Z) for object Z" of .. The purpose of this

section is to show that .7 (') has a structure of &?’-premotivic triangulated prederivator.
9.3.2. We denote by p; the inclusion functor
TP — 7.

Then the set of twists 7 for .7 gives a set of twists for .7 (). It is denoted by 7 again. By
(9.3.1), 7 (2') is compactly generated, so by [NeeOl, 8.4.4], p; has a right adjoint

p T = T (P
since py respects small sums. For any .#-diagram 2", we denote by
pr s T(P L) == T(X):piy

the specification of p; and p* to 2.

9.3.3. Let & and % be .-diagrams. Consider a diagram
ACHED T(P'Y)

pu,%\u\pf% P, Tp*;y
T(X - (@)

) —— 7

such that o is left adjoint to 8. Suppose that a maps Fur 4 into 7 (Z'/%) and that o
commutes with twists. Then as in (1.5.3)), we define

Qg T(P )XY — T (DY),
Bor : T(PNY) = T(P'|Z)

as agr = psapy o and By = p% Bpsw. We often omit &’ in agr and B for brevity. Then
as in ([1.5.4), o commutes with p;, and ag is left adjoint to Sz. Note that § commutes
with p* in this case.

Proposition 9.3.4. Let 2 be an .-diagram. For any indices X and X' of Z and any
object K of T(Z\) in T (P'|Z)), the object N* K of T (X)) is in T (P | Zv).

182



Proof. Consider the 2-diagram

of .-diagrams. Then the exchange transformation

1 ¥ Exooyx
Ny X5

is an isomorphism by (PD-6), so we need to show that XXMX*K is in J(2'/Z). This

follows from the identification
%)\///\ = %A’ X HOIH[()\/7 )\)
where I denotes the index category of 2 . m

Proposition 9.3.5. Let 2" be an . -diagram, and let K be an object of T (Z°). If N*K is
in (2P| Z\) for any index \ of 27, then K is in T (P'|Z").

Proof. We denote by T the full subcategory of .7 (%Z") consisting of objects K of (%)
such that A*K isin .7 (2?'/ %) for any index A of Z". Then T is a triangulated subcategory
of 7(Z). By (9.3.4), Far /o isin T'. We will first show that the family F4r, 4 generates
T

Let K — K’ be a morphism in 7" such that the homomorphism

Hom 72y (ML, K) — Homz (o) (ML, K')

is an isomorphism for any index A of 2" and any element L of Fz,4,. We want to show
that the morphism K — K’ in .7 (2") is an isomorphism.
The homomorphism

Homy(gg;\)<L, )\*K) — HOmf(g{n(L, )\*K/)

is an isomorphism, and Fg /4, generates 7 (' /Z)). Thus the morphism A*K — MK’ in
T (Z)) is an isomorphism since A*K and M*K’ are in 7 (2'/Z)). Then (PD-4) implies
that the morphism K — K’ in .7 (Z") is an isomorphism. Thus so far we have proven that
the family F1, 4 generates T

Since F1) 9, consists of compact objects by , T is compactly generated. Thus
by , T’ is the localizing subcategory generated by Fz/ 4, which is 7 (Z'/Z") by
definition. This completes the proof. n

9.3.6. Let f: 2" — % be a l-morphism of .”-diagrams. Then by (9.3.5)), f* maps Fu /o
into .7 (2'/Z"). Thus by (9.3.3), f* commutes with py, f. commutes with p*, and we have
the adjunction:

[ - T(PNY) = T(P'|Z) : [
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When f is a &-morphism, f; maps Fz 9 into F (/%) by definition. Thus by (9.3.3),
f3 commutes with py, f* commutes with p*, and we have the adjunction:

forg : T(P'|X) == T(P'|Y) : [

9.3.7. Now, we will verify the axioms of (9.1.3) for .7 ().
(1) Asin (1.5.6), .7 (2) satisfies (PD-1), (PD-2), and (PD-5).
(2) Aziom (PD-3). Let (Z°,1) be an .-diagram such that [ is a discrete category.

Consider the diagram
TP L) — [Deonry 7 (2 23)
lpﬁ | (9.3.7.1)
T(ZX) ——— [ Do 7 (23)

where o and o' are the functors induced by \* : Z(Z) — T(Z)\) and \* :
T(P'|Z) = T(P')Z)) for A € ob(I) respectively. By (9.3.6)), it commutes. The
lower horizontal arrow is an equivalence by (PD-3) for .7, and the vertical arrows are
fully faithful. Thus o/ is fully faithful.

Then consider the diagram

T(P)V2) L ey T(2] 25)

! ;

T(Z) —_ [Tconny 7 (2£3)

where § and " are the functors induced by
N T (X)) —» T (X)), M: T (P2 = T(P)X)

for A\ € ob([) respectively. By (9.3.6)), it commutes. The lower horizontal arrow is an
equivalence by (PD-3) for .7, and the vertical arrows are fully faithful. Thus /' is
fully faithful. Then o' is an equivalence since both o’ and 3’ are fully faithful and o’
is left adjoint to f’. Thus .7 (') satisfies (PD-3).

Aziom (PD-4). Let (Z',I) be an ./-diagram. Consider the commutative diagram
(9.3.7.1). The lower horizontal arrow of (loc. cit) is conservative by (PD-4) for .7,

and the vertical arrows of (loc. cit) are fully faithful. Thus the upper horizontal arrow
of (loc. cit) is conservative, so .7 (') satisfies (PD-4).

Aziom (PD-6). Let f : 2" — % be a l-morphism of .-diagrams, and let u be an
index of %¢'. Consider the 2-diagram

X/ —t— X

fﬁul /
Y, — Y

H M

~
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of .-diagrmas. The horizontal arrows are &?’-morphisms, so p* and * commutes

with p* by (9.3.6)). Then we can apply the technique of ((1.5.5)) to conclude that (PD-6)
for .7 implies (PD-6) for .7 ().

9.3.8. Thus by (9.1.6) and (9.3.7)), we have proven that
(i) 7(2) is a T-twisted Z-premotivic triangulated prederivator,
(i) 7 () is compactly generated.

9.4 Boustfield localization

9.4.1. Throughout this section, we fix a category . and a class of morphisms & of .%
containing all isomorphisms and stable by compositions and pullbacks. We fix also a 7-
twisted Z2-premotivic triangulated prederivator .7 such that .7 (—, e) is compactly generated
by & and 7. Then by (9.1.8), 7 (2") is compactly generated for any .#-diagram 2". For
any object S of .7, we also fix an essentially small family of morphisms #5 in .7 (.S) stable
by twists in 7, fy for &-morphism f in ., and f* for morphism in .. Assume that any
cone of #g is compact in .7 (.9).

Definition 9.4.2. Let 2" be an .-diagram.
(1) For an .-diagram 2", we denote by # the family of morphisms of the form
MK — MK
for index A of 2" and morphism K — K’ in #y, (see for the definition of
Wa,).

(2) We denote by Ty o the localizing subcategory of 7 (%) generated by the cones of
Wy . Note that Ty o is compactly generated since any cone of #- consists of compact

objects by (9.1.6)).

(3) We denote by 7 (2)[# '] the Verdier Quotient 7 (%Z")/Ty ». Then we denote by
T W 1] the collection of T (2)[# ~1] for .#-diagrams 2 .

(4) We say that an object L of (%) is # -local if
Hom 74y (K,L) =0
for any object K of .7 (%2") which is the cone of a morphism in #'. Equivalently,
Hom 74y (K,L) =0
for any object K of Ty 4.

(5) We say that a morphism K — K’ in (%) is a # -weak equivalence if the cone of
the morphism is in 7y 2. Equivalently, the induced homomorphism

Homy(%)(K,, L) — Homg(g)(K, L)
is an isomorphism for any # -local object L of .7 (Z"). This equivalence follows from

[Nee01, 9.1.14].

185



9.4.3. The purpose of this section is to show that .7 [# ~1] has a structure of Z-premotivic
triangulated prederivator. The set of twists 7 for 7 gives a set of twists for J[# ~!]. Tt
is denoted by 7 again. By [Nee(01, Introduction 1.16], 7 (S)[# ~!] is well generated, so by
[NeeO1, 9.1.19], we have the adjunction

Ty T(Z) == TS : Oy

of triangulated categories where 74 denotes the Verdier quotient functor and Q4 denotes
the Bousfield localization functor. Note that by [Nee0l, 9.1.16], the functor Oy is fully
faithful, and its essential images are exactly % -local objects of .7 (Z"). We denote by m and
O the collections of w4 and Q4 for .#-diagrams 2~ respectively.

9.4.4. Let & and % be .-diagrams. Consider a diagram
T(Z) ————= T(¥)
wffor " elfe

T2 (2

] 7 ]

such that « is left adjoint to 5. Suppose that o maps the cones of # into .7y » and
commutes with twists. Then as in ((1.6.4)), we define

ay : T( X)W — T @)W,
By : T( D)W = T ()W)

as ay = mgaQq and By = w9 04 . We often omit # in oy and By for brevity. Then as
in (1.6.5)), & commutes with 7, and a is left adjoint to 5y . Note that 5 commutes with O
in this case.

Proposition 9.4.5. Let 2" be an ./-diagram. For any indices A and N of Z and any
object K of Ty 2, in T (Z\)[W '], the object N* MK of T(Zx) is in Ty 2, -

Proof. The proof is parallel to the proof of (9.3.4)). O

Proposition 9.4.6. Let 2" be an .#-diagram, and let K be an object of T (Z"). If \*K is
in T(Z\) WY for any index X\ of 2, then K is in T (2)[# 1.

Proof. The proof is parallel to the proof of (9.3.5)). O

9.4.7. Let f : & — % be a l-morphism of .-diagrams. Then by (9.4.6), f* maps the
cones of #y into 7 (2 )[# ~']. Thus by (9.4.4), f* commutes with 7, f, commutes with O,
and we have the adjunction:

Lo 2 T == T @)W foa

When f is a &-morphism, f; maps the cones of #5 into 7 (#)[# ~'] by definition. Thus
by (9.4.4), fy commutes with 7, f* commutes with O, and we have the adjunction:

fre: TP —= TV fy
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9.4.8. Now, we will verify the axioms of (9.1.3) for 7 [# ~!].

(1)
(2)

Asin (1.6.7), F[# '] satisfies (PD-1), (PD-2), and (PD-5).
Aziom (PD-3). Let (2Z7,1) be an .-diagram such that I is a discrete category.
Consider the diagram
T(ZX) —— [ Lo 7 (23)
o o (9.4.8.1)
T == Thean 7 (207 7]

where o and o are the functors induced by \* : 7(Z) — Z(Z)\) and \* :
TN — T(Z)W# Y for A € ob(I) respectively. By (9.4.7), it commutes.
The upper horizontal arrow is an equivalence by (PD-3) for .7, and the vertical arrows
are fully faithful. Thus o’ is fully faithful.

Then consider the diagram
B
T(Z) «——— ILeonny 7 (Z£3)
o o

T L Thean T (2077

where § and " are the functors induced by
N T = T(X) quad), - T (X)W = T(2) |7

for A € ob(I) respectively. By (9.4.7), it commutes. The upper horizontal arrow is an
equivalence by (PD-3) for 7, and the vertical arrows are fully faithful. Thus the 5’
is fully faithful. Then o’ is an equivalence since both o/ and " are fully faithful and
o is left adjoint to 8. Thus J[# ~] satisfies (PD-3).

Aziom (PD-4). Let (Z27,1) be an .-diagram. Consider the commutative diagram
(9.4.8.1). The upper horizontal arrow of (loc. cit) is conservative by (PD-4) for .7,
and the vertical arrows of (loc. cit) are fully faithful. Thus the lower horizontal arrow
of (loc. cit) is conservative, so 7 [# '] satisfies (PD—4).

Aziom (PD-6). Let f: 2" — % be a l-morphism of .-diagrams, and let u be an
index of %¢'. Consider the 2-diagram

Xy —Ls

fwl Va lf

Yy — Y

of #-diagrmas. The horizontal arrows are Z?’-morphisms, so p* and * commutes
with O by (99.3.6)). Then we can apply the technique of ([1.6.6)) to conclude that (PD-6)
for 7 implies (PD-6) for 7 [# ~1].
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9.4.9. Thus we have proven that J[# 1] is a T-twisted Z?-premotivic triangulated pred-
erivator,

9.5 Construction

9.5.1. Consider the ft-premotivic triangulated category

DAlﬂw(ft, A)

It can be extend to .-diagrmas by [CD12, 5.2.7]. Then it satisfies (PD-5) by construction,
and it satisfies (PD-1) and (PD-2) by [CD12, 3.1.11]. It also satisfies (PD-3) and (PD-4) by
[CD12, 3.1.10] and [CD12, 3.1.6] respectively. Finally, it satisfies (PD-6) by [CD12, 3.1.15,
3.1.16]. We denote by 7 the set of twists generated by (1) and [1]. Then Dy:(ft, A) is a
ft-premotivic triangulated prederivator.

9.5.2. By ((1.7.5)), the ft-premotivic triangulated category

DAl,QUI(ft/(_v e)? A)

restricted to .’-schemes is compactly generated by ft and 7. Consider #,, defined in (|1.7.2)).
Then every cone of #,,s is compact for any .#-scheme S since D1 (ft/S, A) is compactly
generated by & and 7, so the conditions of are satisfied. Thus by , we obtain
the ft-premotivic triangulated prederivator D1 4, (ft, A) [V/Zo_gl] It is also denoted by

Dloquw(f@ A)-
9.5.3. By ((1.7.5)), the ft-premotivic triangulated category
Diogqu(ft/(—,€),\)

is compactly generated by ft and 7. Then the conditions of (9.3.1)) are satisfied for eSm C ft.
Thus by (9.3.8)), we obtain the eSm-premotivic triangulated prederivator

Dlog,qw(esma A)
It is also denoted by Djog 4uw(—, A). Note that for any .#-scheme S, we have the equivalence
Diog,qu (S, A) = Diggpu (S, A).

by (1.7.8)). Thus the restriction of Djyg 0 (—, A) to .#-schemes is a log motivic category by
(2.9.4). Note that it satisfies strict étale descent by [CD12, 5.2.10].
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Chapter 10

Poincaré duality

10.0.1. Throughout this chapter, we fix a full subcategory . of the category of fs log schemes
satisfying the conditions of . We also fix a log motivic triangulated category .7 over
. In Sections 6 and 7, we further assume that 7 can be extended to an eSm-premotivic
triangulated prederivator satisfying strict étale descent.

10.1 Compactified exactifications

10.1.1. Compactification via toric geometry. Let 8 : P — ) be a homomorphism of fs
monoids such that 6P is an isomorphism. Choose a fan ¥ of the dual lattice (P*") whose

support is (P)Y and containing (Q/6(P*))" as a cone. This fan induces a factorization
spec(Q/0(P*)) — M — spec P

of the morphism spec (Q/6(P*)) — spec P for some fs monoscheme M. Consider the open
immersions spec P, — M of fs monoschemes induced by the fan, and, we denote by P/
the preimage of P; via the homomorphism P — P®. Then the family of P! forms a fs
monoscheme M’ with the factorization

spec Q@ — M' — spec P

of the morphism spec() — spec P. Here, the first arrow is an open immersion, and the
second arrow is a proper log étale monomorphism.
We will sometimes use this construction later.

Definition 10.1.2. Let f : X — S be an exact log smooth separated morphism of .-
schemes, let a : X — X x¢ X denote the diagonal morphism, and let py,ps : X xg X = X
denote the first and second projections respectively. A compactified exactification of the
diagram X — X xg X = X is a commutative diagram



of .#-schemes such that

(i) there is an open immersion v : I — D of fs log schemes such that the compositions
pruv and puv are strict,

(ii) b is a strict closed immersion and factors through I,
(iii) u is a proper and log étale monomorphism of fs log schemes.

We often say that v : D — X is a compactified exactification of a if no confusion seems
likely to arise. We also call I an interior of E. Then pyuv and pouv are strict log smooth,
and the morphism X — [ of .-schemes induced by b is a strict regular embedding. Note
also that the natural transformation

id 24y uu”
is an isomorphism by (Htp—4) and that the natural transformation

Tp,s

Qpr— Qsp
given in (4.2.2)) is an isomorphism by construction.

10.1.3. Under the notations and hypotheses of (10.1.2), let C€, denote the category whose
objects consist of compactified exactifications of a and morphisms consist of commutative

diagrams
E
/ N
D
2

X — X xg X —5— X

of .#-schemes. Note that v is a proper log étale monomorphism. For such a morphism in
C&,, we associate the natural transformation

TD,E : QﬁE — Qf,D

given in (4.2.2). We will show that it is an isomorphism. Let I be an interior of D, and let
J be an interior of E contained in I xp E. Consider the induced commutative diagram

J

Y
1
/ lU/ %

XTXXSXTX

!
T2
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of .#-schemes. Then v’ is a strict étale monomorphism, so it is an open immersion by [EGA,
IV.17.9.1]. Consider the diagram

TEg,s

lTI J lTD B

Tp,r
Qf] — QfD

of functors. It commutes by (4.2.13)), and the horizontal arrows are isomorphisms by (10.1.2)).
The left vertical arrow is also an isomorphism since v’ is an open immersion, so Tp g is an
isomorphism.

Definition 10.1.4. Let 6 : P — () be a homomorphism of fs monoids. Then the submonoid
of P8P consisting of elements p € P8P such that nf%P(p) € @ for some n € NT is called the
fs exactification of 0. It is the fs version of [Ogul4, 1.4.2.12].

10.1.5. Let f : X — S be an exact log smooth separated morphism of .#’-schemes with a
fs chart 6 : P — (@ of exact log smooth type, and let (); denote the fs exactification of the
summation homomorphism of Q&P @ pepr QP. Applying ((10.1.1]), we obtain the morphisms

spec Q1 — M — spec(Q @p Q)
of fs monoschemes. If we put

I:(XXSX) AQl? D:(XXSX) AM,

XAQ@PQ XAQEBPQ

then the projection u : D — X x X is a compactified exactification of the diagonal morphism
a:X — X xg X with an interior I. In particular, a has a compactified exactification.

Proposition 10.1.6. Let f : X — S be an exact log smooth separated morphism of .-
schemes, and let a : X — X Xg X denote the diagonal morphism. For any compactified
exactificationsu : D — X xgX andvu' : D — X xgX, the morphism DX xxx D' — X xg X
18 a compactified exactification.

Proof. Consider the induced commutative diagram

%\\%

X ——— X xg X = ,X

of .#-schemes where I (resp. I’) is an interior of D (resp. D'). To show the claim, it suffices
to construct an open immersion I” — I X x x I’ such that a factors through I” and that
the morphisms I” = X induced by p; and p, are strict.
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We have the induced morphisms

X BT sox I' D T gy x

of .#-schemes. Let x € X be a point. Consider the associated homomorphisms

A i —
MIXTQ,X,répvﬁa(x) = MIXXXSXI,,a(a:) — MX,E

of fs monoids. Then 7\ is an isomorphism since 7o and 7} are strict. In particular, A is
injective. Since [ is a pullback of the diagonal morphism X xg X — (X Xg X) Xp, xps
(X x5 X) that is a closed immersion, A is a pushout of a Q-surjective homomorphism. Thus
A is Q-surjective, so A is Kummer. Then by , 7 is an isomorphism, i.e., « is strict.
Thus the conclusion follows from . m

Corollary 10.1.7. Let f : X — S be an exact log smooth separated morphism of .7 -schemes,
and let a : X — X xXg X denote the diagonal morphism. Then the category CE, is connected.

Proof. 1t is a direct consequence of ((10.1.6)). O

10.2 Functoriality of purity transformations

10.2.1. Let h : X — Y and g : Y — S be exact log smooth separated morphisms of
/-schemes. We put f = gh. Consider the commutative diagram

of .#-schemes where

(i) a, d’, and a"”

denote the diagonal morphisms,
(ii) pa2, ph, and pj’ denote the second projections,

(iii) each small square is Cartesian.
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10.2.2. Under the notations and hypotheses of ({10.2.1)), assume that we have a commutative
diagram

(10.2.2.1)

2
Y _ >Y><5Y>9Y

of .#-schemes where each small square is Cartesian and u (resp. «/, resp. «”) is a compactified
exactification of a (resp. @', resp. a”).

We will use these notations and hypotheses later.

10.2.3. Under the notations and hypotheses of (10.2.2), let v : Sy — S be a morphism of
#-schemes, and consider the commutative diagrams

X, My, 2, g,
bl
X > Y > S
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of .#-schemes where each small square is Cartesian. We put fy = goho. Then the diagram

* C
By, oS g.0r —— QD

[

Qho,Dgﬁ*Qg,f,D” Ex

[

* C *
Qh(),Déng,fo,Dgﬁ - Qmeoﬁ
of functors commutes since it is the big outside diagram of the commutative diagram

ﬁ*b/!qé*b//!qg* Ezx s 5*6’!p!p'*q§'* ~ 5*5!@

Ex Ex

ISP ES NI BT Ex N1k ) pk Ik

b a2 b " —— bgY"p " g Ez
~ Ezx

1ok k) Ik VAN RN /2 ~ I % ok

by a2 870" ¢ bopoY* P " —— by g5
Ex

WS NI/ ~ ~

bodoabo v 45

Nk Ik

* o1 % Ex ! * ~ Dok *
bG%ng'qua — bypopo @y BT —— b:)qDQB

of functors.
We will use these notations and hypotheses later.
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10.2.4. Under the notations and hypotheses of (10.2.2)), we denote by Z (resp. Z’, resp. Z”)
the ideal sheaf of X on D (resp. D', resp. D). Then by [Ogul4, IV.3.2.2], the morphisms

I/T* — b*QlD/X, T )17 — V*Q; X 7'/ — b"*QlD///X

of quasi-coherent sheaves on X are isomorphisms, and by [Ogul4, 1V.3.2.4, TV.1.3.1], the
morphisms
Q}D/X - U*Qﬁcxs){/x — U*pTQﬁqs,

QlD’/X - U,*Q}(XYX/X - Ul*pll*Qﬁ(/%
Q}D”/X - u”*Q%/XSX/X - U/,*PY*Q%f/S
of quasi-coherent sheaves on X are isomorphisms where
P X Xxe X=X, pi: Xxy X=X, pl: YV xs XY
denote the first projections. Then from the exact sequence
0 — h*Qyg — Qg — Qxyy — 0
of quasi-coherent sheaves on X given in [Ogul4, 1V.3.2.3], we have the exact sequence
0—7"/T"* — I/ —T/I” —0

of quasi-coherent sheaves on X. This shows that the induced diagram

NxD' —* NyD
ltfg le (10.2.4.1)

X —2— NxD"
of .#-schemes is Cartesian. Thus the induced diagram

DxD/ _— D)(D

| J

X x Al —— DxD"
of .#-schemes is also Cartesian. Then as in (4.3.1)), we have the natural transformations
d d ¢, 0d
Qh,D/Qg7f,DN H Qf,D7

O o o~ Q0 (10.2.4.2)

These are called again composition transformations. Note that the left adjoint versions are
d ¢, yd d
Xpp 7 Xhpr g o
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C
n n n
£.0 = Xh g f D

In the Cartesian diagram ((10.2.4.1)), the morphisms es, t,, x, and x’ are strict, x’ are strict

smooth, and ey is a strict closed immersion. Thus by (2.5.10) and (4.3.1)), the natural
transformation ({10.2.4.2)) is an isomorphism.

Applying ((10.2.3)) to the cases when the diagram

X[) % > Do 102 > X()
I
XYy p-_-2.,x

is equal to one of the diagrams in (4.1.2.1)) and similar things are true for D’ and D", we
have the commutative diagram

thD/ngf’D// Qf7D

| |

d Od C ., d
Qh,D/ngf’D// Q 7D

leTd le

C
Qg p.0r —— Qpp

of functors.

10.2.5. Under the notations and hypotheses of (|10.2.2)), consider the diagram

P N
14 L2 ” f!Ef,D
c
I
. N (10.2.5.1)

92 4o X pr

~

g pZ,D/”pZ,DI
gohy —-Z 957 S

of functors. We will show that it commutes. Its right adjoint is the big outside diagram of
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the diagram

! | T T ! | TeTe ! 1 TprTpm ! 1 9nd
QZ,D’h.QZ,D”’g. e Q;i%D,h'Qg’D,,,g' E— thD/h'Q%D/ug' _— thQgg — h*g*

A y N N

Ex Ex Ex Ex

|1 T ) 1 Tdrd 1 1 TpiTpn 1
O oY g prh'dt —— QU p QY prh'gt = QupQypprhigt == QQy sh'g!

~ ~ ~ ~ ~

n n I A d d I 1 TpTpn !
Qh,D’Qg,f,D”f — Qh,D'Qg,f,D"f — Qh,D/Qg,f,D”f — Qth,ff

C C C C

~ ~ ~ ~

~

Q?ny! ™ Q%Df! o Qpf ™ QO f Y

of functors. It commutes by (4.2.10), (4.3.2), (4.4.3), and (10.2.4). Thus also
commutes.

Note also that the right vertical top arrow of is an isomorphism by
and that the right vertical bottom arrow of is an isomorphism by .

10.2.6. Let h: X — Y and g : Y — S be exact log smooth separated morphisms of .-
schemes. Assume that f (resp. ¢g) has a fs chart 6 : Q — R (resp. n : R — P) of exact
log smooth type. In this setting, we will construct the diagram and verify the
hypotheses of .

We denote by T and T" the fs exactification of the summation homomorphisms

QerQ—Q, ROpR—R

respectively. Then we put
T'=T®qgerq (QSrQ).

By (10.1.1)), we have the factorization

specT” — M" — spec R@®p R

such that the first arrow is an open immersion of fs monoschemes and the second arrow is a
proper log étale monomorphism of fs monoschemes. We put

M" = M" Xqpee(rapr) SPEC(R ®p Q).
Consider the induced morphism

specT — M" Xgpece(rap0) SPEC(Q ®Bp Q).

By the method of (10.1.1)), it has a factorization
specT — M — M" Xgpee(rapq) SPEC(Q G p Q)
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where the first arrow is an open immersion of fs monoschemes and the second arrow is a
proper log étale monomorphism of fs monoschemes. We put

M/ =M ><spec(Q@pQ) SpeC(Q D®r Q)a

and we put
[:(X XsX) XAQEBPQ AT, [/:(X XyX) XAQGBRQ AT/, I/”:(Y ><5Y) XAREBPRAT””
D= (X Xg X) XAQEBPQ AM, D = (X Xy X) XAQG}RQ AM/, D" = (Y Xg Y) XAR@PR AM’”-

Then we have the commutative diagram (10.2.2.1). By construction, D (resp. D', resp.
D) are compactified exactifications of the diagonal morphism a : X — X xg X (resp.
a: X = X xy X,resp. d”:Y =Y XgY) with an interior I (resp. I’, resp. I").

Proposition 10.2.7. Let f : X — S be an exact log smooth separated morphism of .-
schemes, let D be a compactified exactification of the diagonal morphism a : X — X xg X,
and let g : 8" — S be a morphism of .#-schemes. We put

X/:XXSS/, D/:DXXXSX (X,XS/X/).
Then the diagram

P
fn’gl* S f!lz?/,pfg/!

[

o e (10.2.7.1)

TE:L‘

* ! * n
gy —— g (¥ p
of functors commutes.

Proof. The right adjoint of (10.2.7.1)) is the big outside diagram of the diagram

g T Qiflg. T Qpf'g. — fru

T T T

Qg f* —— Qg f —T— Qg f" B

[ [ |

n q s
g f" = g% T gl L g

of functors. By (4.2.10) and (4.4.5)), each small diagram commutes. The conclusion follows
from this. u
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10.3 Poincaré duality for Kummer log smooth sepa-
rated morphisms

Proposition 10.3.1. Let f : X — S be a strict smooth separated morphism of . -schemes.
Then the natural transformation

O

18 an isomorphism.

Proof. Tt follows from (2.5.9)) and (4.2.9). O

10.3.2. Let f: X — S be a Kummer log smooth separated morphism of .’-schemes. Then
the diagonal morphism a : X — X xg X is a strict regular embedding by (3.3.5). In
particular, we can use the notation .

Proposition 10.3.3. Let f : X — S be a Kummer log smooth separated morphism of
S -schemes. Then the natural transformation

Py fy — S}
s an isomorphism.

Proof. By (5.2.2)), there is a Cartesian diagram

x Ly

of .#-schemes such that
(i) ¢ is Kummer log smooth,
(ii) g¢* is conservative,
(iii) f’ is strict.

Hence we reduce to showing that the natural transformation

g fy — g hX

is an isomorphism.

Consider the commutative diagram . The left vertical arrow and right lower
vertical arrow are isomorphisms since f and g are exact log smooth. The right upper vertical
arrow is an isomorphism by . Thus we reduce to showing that the upper horizontal
arrow is an isomorphism. It follows from ((10.3.1]). O
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10.4 Poincaré duality for Ag — Ap

Definition 10.4.1. In this section, we will consider the following conditions:

(PDysp) Let f: X — S be an exact log smooth separated morphism of .#-schemes, and let D
be a compactified exactification of the diagonal morphism a. We denote by (PDy p)
the condition that the natural transformation

Py fs — X5

is an isomorphism.

(PDy) Let f: X — S be an exact log smooth separated morphism of .#-schemes, and let
a: X — X xg X denote the diagonal morphism. We denote by (PDy) the conditions
that

(i) there is a compactified exactification of a,
(ii) for any compactified exactification D of a, (PDy p) is satisfied.

(PD™) We denote by (PD™) the condition that (PDy) is satisfied for any wertical exact log
smooth separated morphism f : X — S with a fs chart  : P — @) such that 6 is a
vertical homomorphism of exact log smooth type and

maxrk/\/txx +maxrk/\/lss < m.
rzeX €s

Note that by (2.8.2)), we get equivalent conditions if we use 3¢ ;, instead of X%

Proposition 10.4.2. Let f : X — S be a vertical exact log smooth separated morphism of
S -schemes, and let E — D be a morphism in CE, where a : X — X xg X denotes the
diagonal morphism. Then (PDy p) is equivalent to (PDy ).

Proof. The diagram

Oy s Ly T Qe s Qs

lTDE lTDE lTDE H H
d

nip —— U —— Qup — Qpff —

of functors commutes by and (£.2.13). The left vertical arrow is an isomorphism
because the normal cones NxD and Ny FE are isomorphic to the vector bundle associated
to the sheaf Qﬁ( /5" Then the conclusion follows from the fact that the composition of row
arrows are q} p and q} ,, respectively. [l

Corollary 10.4.3. Let f : X — S be a vertical exact log smooth separated morphism
of . -schemes such that there is a compactified exactification D of the diagonal morphism
a: X — X xgX. Then (PDy) is equivalent to (PDy p).
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Proof. Since C&, is connected by ([10.1.6)), the conclusion follows from ((10.4.2)). [

Proposition 10.4.4. Under the notations and hypotheses of , if (PDgpn) and
(PDy, ) are satisfied, then (PDy p) is satisfied.

Proof. By (10.2.6), we can use (10.2.5). Then by (loc. cit), in the commutative diagram
(10.2.5.1)), the upper horizontal arrow is an isomorphism if and only if the lower horizontal

arrow is an isomorphism. The conclusion follows from this. O

Proposition 10.4.5. Let f : X — S be an exact log smooth separated morphism of .-
schemes, and let D be a compactified exactification of the diagonal morphism a : X —
X xg X. Then (PDy) is strict étale local on X.

Proof. Let {u; : X; — X };er be a strict étale cover of X. We put
fi=fui, Di=D xXxyx,x (XixsX;), D/=0D xxysx (Xi*xsX;)

Then D; is a compactified exactification of the diagonal morphism a; : X; — X; xg X;.
Hence by (10.4.3), it suffices to show that (PDyp) is satisfied if and only if (PDy, p.) is
satisfied for all i. Note that by (2.1.3), (PDyp) is equivalent to the condition that the
natural transformation
pn
fowiz =53 [X] pusy
is an isomorphism for any i € I.

By ((10.2.6)), we can use ((10.2.5)) for u; : X; — X and X — S. Then by (loc. cit), in the

commutative diagram

prLi D;
’ n
it > fuX% b,
C
n n
fi!zUm ivD?Eui

~ ~

yn n
f!u“EUzyfi,D{'Zui

A

Ex

~ n

S o
Jow L2 f!E?DUijj —_— f!E}L,DU!ZZi

of functors, the right vertical top arrow and the right vertical bottom arrow are isomor-
phisms. The lower horizontal right arrow is also an isomorphism by . Thus the
upper horizontal arrow is an isomorphism if and only if the lower horizontal left arrow is an
isomorphism, which is what we want to prove. O

201



10.4.6. Let S be an .’-scheme with a fs chart P that is exact at some point s € S, and
let 6 : P — @ be a locally exact, injective, logarithmic, and vertical homomorphism of fs
monoids such that the cokernel of #¢P is torsion free. We put

X =9%u,Ag, m=dimP +dimQ,

and assume m > 0. By ({10.1.1)), there is a compactified exactification D of the diagonal
morphism a : X — X xg¢ X.

Proposition 10.4.7. Under the notations and hypotheses of , the natural transfor-
mation

* pn» n *
fof* 25 A8 o f

18 an isomorphism.

Proof. Let G be a maximal f-critical face of (), and we put
U:SXAPAQF, D/:DXXXS)((UXSU).

We denote by j : U — X the induced open immersion. Then the diagram

. kL% ~ ek Lx ad’ *
(fi)ed™ f y fod fr ——— fif
lp?j,D' l”?,D l”?,D

. n * Lk ~ . n sk Lk Ex n s ek Lk ad’ n *
(f])!zfjp/f [fr— f!]ﬁEfjp/] = f!zf,D]ti] [fr— f!Ef,Df

of functors commutes by ((10.2.5) and (10.2.6). By (Htp-3) and (Htp-7), the upper and lower

right side horizontal arrows are isomorphisms, and the lower middle horizontal arrow is an
isomorphism by . The composition fj : U — S is Kummer log smooth and separated,
so the left vertical arrow is an isomorphism by . Thus the right vertical arrow is also
an isomorphism. O

Proposition 10.4.8. Under the notations and hypotheses of , (PD™ 1) implies
(PDy).

Proof. Assume (PD™'). By , it suffices to show (PDy p). We put
d=1kQ® —rk P* 71 = (d)[2d].
Then it suffices to show that the natural transformation
Pip fy — fiT

is an isomorphism. Guided by a method of [CD12, 2.4.42], we will construct its left inverse

@2 as follows:
Psp)

bo: fir % frpe gy TN R g
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Here, the second arrow is defined and an isomorphism by (10.4.7). We have ¢, o p$ , = id
as in the proof of (5.4.7)).

To construct a right inverse of p} ;,, consider the Cartesian diagram

J — AQ — A(Q7Q+)

! |

X — 5 Ag

of .#-schemes, and we put g = fi. Note that the morphism g : Z — S of underlying schemes
is an isomorphism by assumption on 6. Consider the commutative diagram

Coex ad’ ad .y 81 ©oex
faded > fi > fyiad* —— figsg* (1]

lp?,D lp?,D lp?,D l”fw

frigt = fr =2 fridr =2 firggt]

of functors where j denotes the complement of . The two rows are distinguished triangles by
(Loc). The first vertical arrow is an isomorphism by (PD™!), and ¢, induces the left inverse
to the third vertical arrow. If we show that the third vertical arrow is an isomorphism, then
the second vertical arrow is also an isomorphism. Hence it suffices to construct a right inverse
of the natural transformation

o

. b .
fits i fiTi.

Consider also the commutative diagram

© ek ad’ * a .k px 0; .k px
foged™ f* —L s fif* — fuiarfr —2 figag 1)

l’“?,D l’“?,D l’“?,D l*"},D

Frgg e = frfr = frit f =2 frgt o[

of functors. The two rows are distinguished triangles by (Loc), and the first vertical arrow is
an isomorphism by (PD™1). Since the second vertical arrow is an isomorphism by (10.4.7)),
the third vertical arrow is also an isomorphism.

pD
Then a right inverse of fyi, R fi7i, is constructed by

;. . Ez . ~ ad * Ez—1 %
@) 1 1Tl = filaT — GuT — G20 9«T — 99" TYx
o —1

~ . * -1 % (P s . * / .
— J1ixTg" gs EL) N1Tig" gs e J41+9" g« % .

Here, the fourth and sixth natural transformations are defined and isomorphisms by (Stab),
and the seventh natural transformation is an isomorphism by the above paragraph. To show
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pD
that ¢} is a right inverse of fji, R fiTi,, it suffices to check that the composition of the
outer cycle of the diagram

P9
faix —2 5 fri, > 020" GuT

\\/

ad’ fITZ* — g«T 21
ad’

J41g™ G o= NiT0g7 s S 11T g7 g ¢ S 9+9" T g

(P$p)~
of functors is the identity. It is true since each small diagram commutes. m

Proposition 10.4.9. Let f : X — S be a vertical exact log smooth separated morphism
of #-schemes with a fs chart 8 : P — ) where 0 is a vertical homomorphism of exact log
smooth type. Then (PD™ 1) implies (PDy).

Proof. By (10.4.5) and [Ogul4, 11.2.3.2], we may assume that f has a factorization
X585 —=58
such that
(i) v strict étale,
(ii) the fs chart Sy — Ap is exact at some point of sy € S,

(iii) sg is in the image of w.

By (10.2.6]), we can use for the morphisms X — Sy and Sy — S, and by ,
(PD,) is satisfied. Hence replacing S by Sy, we may assume that the fs chart S — Ap is
exact at some point of s € S and that s is in the image of f.

By assumption, the induced morphism

X—)SXAPAQ

is strict étale and separated. We denote by P’ the submonoid of @) consisting of elements
q € @ such that ng € P+Q* for some n € N*. Then the induced homomorphism ¢’ : P — Q
is locally exact, injective, logarithmic, and vertical, and the cokernel of 8P is torsion free.
In particular, the induced morphism

S XAp AQ ) X Ap Ap/

is exact log smooth, so it is an open morphism by [Nak09, 5.7].
We denote by S’ the image of X via the composition

X%SXAPAQ—)SXAPAP/.
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we consider S’ as an open subscheme of S X, Ap,. Then the induced morphism g : 8" — S
has the fs chart ¢’ : P — @’ of Kummer log smooth type. Consider the factorization

X‘gS/XAP,AQ‘gS’QS
of f: X = 5. Then (PDy,) and (PD,,) are satisfied by (|10.3.3)) since g; and g3 are Kummer

log smooth and separated. The set g; *(a) is nonempty since s is in the image of f, and the
chart " — Ap is exact at a point in g; '(s). Thus (PD,,) is satisfied by (10.4.8)), so (PDy)

is satisfied by ((10.2.6|) and ({10.4.4)). O

Theorem 10.4.10. Let f : X — S be a vertical exact log smooth separated morphism of
S -schemes with a fs chart § : P — @ where 6 is a vertical homomorphism of exact log
smooth type. Then (PDy) is satisfied.

Proof. Tt suffices to show (PD™) for any m. By (10.3.3), (PD") is satisfied. Then the
conclusion follows from (|10.4.9)) and induction on m. m

Corollary 10.4.11. Under the notations and hypotheses of (10.4.10), let D be a compactified
exactification of the diagonal morphism a : X — X xg X. Then the composition

T UG s
Qnf =2 f L f
s an isomorphism.
Proof. By ((10.4.10)), the composition
n d
ol T Qpft T Qo f = QS

is an isomorphism. By (4.2.9), the first and second arrows are isomorphisms, so the compo-
sition of the third and fourth arrows are also an isomorphism. O

10.5 Purity

Proposition 10.5.1. Let f : X — S be a vertical exact log smooth separated morphism
of #-schemes with a fs chart 8 : P — ) where 0 is a vertical homomorphism of exact log
smooth type. Consider a Cartesian diagram

X 9 x

]

S —2— S
of ./ -schemes. Then the exchange transformation
Ex:g"fi — fig"

18 an isomorphism.
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Proof. By (10.1.5)), there is a compactified exactification D of the diagonal morphism a :
X — X Xg X. Then by ((10.2.7)), the diagram

P,
fﬁlgl* — f!lz?',D'g/!

[

AN
Ex f,g f.D

TE T

g —— g hE}p

of functors commutes. The left vertical arrow is an isomorphism by (eSm-BC), and the
right upper vertical arrow is an isomorphism by . The horizontal arrows are also
isomorphisms by . Thus the right lower vertical arrow is an isomorphism. Then the
conclusion follows from the fact that the functor

~ ]

n —_
D — <fD
is an equivalence of categories. ]

10.5.2. Under the notations and hypotheses of , note that by , the condition
(CE") is satisfied when 7 in (loc. cit) is a vertical exact log smooth separated morphism of
#-schemes with a fs chart a fs chart 0 : P — ) where 0 is a vertical homomorphism of
exact log smooth type.

Proposition 10.5.3. Let f : X — S be a vertical exact log smooth separated morphism of
S -schemes with a fs chart 0 : P — () where 0 is a vertical homomorphism of exact log smooth
type, and let D be a compactified exactification of the diagonal morphism a: X — X xg X.
Then the transition transformation

TD : QﬁD — Qf
18 an isomorphism.

Proof. Let v : I — D be an interior of D. Consider the commutative diagram

D/
V \ qs
I
X' - > Y xg X' - X'
a § 2
p2 D 77/ p2
/ s @
X > Y xXg X X

p2



of .#-schemes where p, denotes the second projection and each square is Cartesian. We
denote by v/ : I’ — D’ the pullback of v : I — D. Then I’ is also an interior of D’. By
(10.5.2) and (4.2.3)), we have the exchange transformations

 F | 1 B |  F |
Qo — 2o, Qo oDy — Py p, Qo 1Py — D511,

and we have the commutative diagram

1) N TN v "o )
@ity Py 7 A3lpy D'Po 7 A3lpy Do

I8 | [

T
APy —2 a'phQpp —2— alphy N\ (10.5.3.1)
Oy p —2 O == d'p}

of functors. The natural transformations
1 Trn ! r Trp !

apylsr —> apSlip, aQp ppy — a’Qp prpy

are isomorphisms by (4.2.7)), and the natural transformation
! 1 Bz 1o
aQpppy — a Py
is an isomorphism by (4.2.6]) since 79 = gov is strict by definition of interior. The composition
! rT ed 0 T 1 Tpro T
a$hy, ppy — @Sl pipy —> @Sy, ppy = a Qpopy — a’p;

is also an isomorphism by ([10.4.11). Applying these to (10.5.3.1)), we conclude that the

natural transformation
Th: Q f,.D — Q f

is an isomorphism. O

Proposition 10.5.4. Let f : X — S be a vertical exact log smooth separated morphism of
S -schemes. Then (Pury) is satisfied.

Proof. We want to show that the purity transformation
a5 Qf — f

is an isomorphism. It is equivalent to showing that the natural transformation
prify — hy

is an isomorphism.
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(I) Locality on S. Let {u; : S; — S}icr be a strict étale separated cover of S. Consider the
Cartesian diagram

X, M X
lfi lf
S, g

of .#-schemes. Then by (4.4.5), the diagram

P
fuu” —— fuXpu

[

Ex fllug*Ef

T

* Ps *
U, fﬁ e U; f!Ef

of functors commutes. The left vertical arrow is an isomorphism by (eSm-BC), and the right
lower vertical arrow is an isomorphism since u; is exact log smooth. The right upper vertical
arrow is also an isomorphism by . Thus the upper horizontal arrow is an isomorphism
if and only if the lower horizontal arrow is an isomorphism.

Since the family of functors {uf};c; is conservative by (két-sep), the lower horizontal
arrow is an isomorphism if and only if the natural transformation

prfy — [iXy
is an isomorphism. Thus we have proven that the question is strict étale separated local on
S.
(IT) Locality on X. Let {v; : X; — X }ics be a strict étale separated cover of X. By (4.4.3),

we have the commutative diagram

Qo f — s 0r QT vy f

Ex

Q'Uivaf'Ui U;f!

~ ~

QUinyfvi<f’Ui)!

C

2 v

Qo fo)!  (fur)*

of functors. The left top vertical arrow is an isomorphism by ([2.5.10)), and the left bottom
vertical arrow is an isomorphism by (4.3.1). The upper left horizontal arrow is also an
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isomorphism by , so the upper right horizontal arrow is an isomorphism if and only if
the lower horizontal arrow is an isomorphism.

Since the family of functors {v]};c; is conservative, the lower horizontal arrow is an
isomorphism if and only if the natural transformation

a Qs f — f*

is an isomorphism. Thus we have proven that the question is strict étale separated local on
X.

(IIT) Final step of the proof. Since the question is strict étale separated local on X and S5,
we may assume that f: X — S has a fs chart 6 : P — @ of exact log smooth type by
(in (loc. cit), if we localize X and S further so that X and S are affine, then the argument
is strict étale separated local instead of strict étale local). Localizing @) further, since f is

vertical, we may assume that 0 is vertical.
By (10.1.5), there is a compactified exactification D of the diagonal morphism a : X —
X xg X. Then we have the natural transformation

Qppf 22 25 f

The composition is an isomorphism by (10.4.11]), and the first arrow is an isomorphism by
(10.5.3). Thus the second arrow is an isomorphism. n

Theorem 10.5.5. Let f : X — S be an exact log smooth separated morphism of . -schemes.
Then (Pury) is satisfied.

Proof. Let j : U — X denote the verticalization of f. By (4.4.3), the diagram

ij!fo! 93 j*fo! af ,]*f*

Ex

Q;Qy4i7' f*

~ ~

Q;Q 5;(f7)

C

~ v

Qp(f5) Y > (f4)"

of functors commutes. The left top vertical arrow is an isomorphism by (77), and the left
bottom vertical arrow is an isomorphism by . The upper left horizontal arrow is an
isomorphism by (2.5.9), and the lower horizontal arrow is an isomorphism by (10.5.4). Thus
the upper right horizontal arrow is an isomorphism.
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Then consider the commutative diagram

fo! as f*

Jo Jo

. q ok rw
G5 f —L Gt f

of functors. We have shown that the lower horizontal arrow is an isomorphism. Since the
right vertical arrow is an isomorphism by (Htp-2), the remaining is to show that the left
vertical arrow is an isomorphism.

Consider the commutative diagram

<
<

R—
g\
R—
IS}

X
S a

:

X
2

of .-schemes where
(i) p2 denotes the second projection.
(ii) @ denotes the diagonal morphism,
(iii) each square is Cartesian.

Then j' is the verticalization of py, so by (Htp—2), the natural transformation

<) elx %

« ad
P2 — 7. D2
is an isomorphism. Consider the natural transformations

YK Ik %

~ « ad | Ex . Ex . 1« o~ .
QO = a'py 5 d'jlg"ps & jud" " ps S oty < 570y
We have shown that the second arrow is an isomorphism. The third arrow is an isomorphism
by (eSm-BC), and the fourth arrow is an isomorphism by (Supp). This completes the
proof. O
10.6 Purity transformations

10.6.1. Throughout this section, assume that 7 can be extended to an eSm-premotivic
triangulated prederivator satisfying strict étale descent.
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Definition 10.6.2. Let i : (Z°,1) — (#,I) be a Cartesian strict regular embedding of
&/ -diagrams. For any morphism A — g in I, there are induced morphisms

Doy %\ — Do, %, Na% — Na,%,

of .#-schemes. Using these, we have the following .#-schemes.
(1) Dy denotes the .-diagram constructed by Dy, % for A € I,
(2) No? denotes the .#-diagram constructed by N, %, for A € I.

Note that if the induced morphism %) — ¢, is flat for any morphism A — y in I, then the
induced morphisms 2" — Dy % and 2" — N4y % are Cartesian strict regular embeddings
by [Ful98, B.7.4].

Definition 10.6.3. Let f : X — S be an exact log smooth morphism of .#-schemes, and
let h : 2 — X be a morphism of .#-diagrams. Then we denote by

Ngf(X Xg %)

the vector bundle of 2™ associated to the dual free sheaf (h*(2x/s)". Note that when the
induced morphism & — X xg 2 is a Cartesian strict regular embedding, this definition is
equivalent to the definition in ((10.6.2)).

10.6.4. Let f : X — S be a separated vertical exact log smooth morphism of .#-schemes.
We will construct several .#-diagrams and their morphisms.

(1) Construction of Z". Let {hy : Z\ — X}aer, be a strict étale cover such that there is a
commutative diagram

2 s X
lfx lf
Sy —25 5
of .#-schemes where
(i) 42, and S, are affine,
(ii) fx has a fs chart 6, : Py — @, of exact log smooth type,
(ili) [, is strict étale.
Then we denote by 2 = (27, 1) the Cech hypercover associated to {hy : Zx — X }rer-
(2) Construction of 9. For X\ € Iy, we denote by k), the induced morphism
X xg &> X xgX
of .-schemes, and let U, denote the open subscheme

X xs 2y — ()7 (a(X)).
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Then we denote by 2y the Cech hypercover of X xg 2 associated to
{Z\ x5, Zy = X x5 Zy, Uy = X x5 2},
and we denote by 2 = (2, J) the Cech hypercover of X xg X associated to
{20 — X x5 X}aery
Note that from our construction, we have the morphism
w: 99— X xg &

of .#-diagrams.
(3) Construction of &. For A € Iy, we put Yy = 2 Xg,xsx Za. Then the composition

Y, — %)\%AQA

where the first arrow is the first projection gives a fs chart of Y). The induced morphism
Y\, — S, also has a fs chart Py — @,. As in ([10.1.5]), choose a proper birational morphism

My — spec(Qx ©p, Q)

of fs monoschemes, and we put

E\ = (%) x5, Z))

XAg,ep, Q) Ay,

and let v} : By — 2\ Xgs, Z\ denote the projection. Note that the diagonal morphism
2\ — 2 xs, 2, factors through E) by construction in (loc. cit). Let b} : 2" — E\ denote
the factorization. We will show that the projection

Y\ Xayxs, 25 Ex = Y

is an isomorphism. Consider the commutative diagram

/ \ N
E}\ 7 E)\ 7 AMA

| ! |

Y)\ E— Y)\ XSy YA e %)\ XSy 3{.)\ I AQA@PAQA

| |

AM)\ } AQ,\ ®p, Qx

of .#-diagrams where

(i) ¢; denotes the fs chart induced by the fs charts Py — @, of Y\ — S defined above,
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(ii) the arrow Y) xg, YA = 2\ xg, £ is the morphism induced by the first projection
Y\ — %), the identity Sy, — Sy, and the second projection Y\ — 2},

(111) Ef\ = (Y)\ XSy YA) X%,\XSA%)\ E>\.
By (3.2.3), we have an isomorphism

(Y)\ XS)\ YA) X AM &= Ej\,

LLAQ @ p, Qx

and this shows the assertion since the morphism Ay, — Ag, s, @, 1S @ monomorphism of fs
log schemes.
Now, we denote by &), the Cech hypercover of X xg 2 associated to

{Ex = X xg 2, Uy — X x5 2},
and we denote by & = (&, .J) the Cech hypercover of X xg¢ X associated to
{6 — X x5 Xhery-
Note that from our construction, we have the morphism
v:E—>9

of .-diagrams. We put

Y = XXxgZ 9.
Then the assertion in the above paragraph shows that the projection % x4 & — % is an
isomorphism, so the projection b : % — & factors through ¢: % — &.

(4) Commutative diagrams. Now, we have the commutative diagram

&

v Lt 59 Q
w0 ux (10.6.4.1)

l
X s X xg X —— X
l a §

n h

\

>

~

XT>XXSXT>X

of .#-diagrams where
(i) each small square is Cartesian,

(ii) u, v, and ¢ are the morphisms constructed above.
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As in (4.1.2), we also have the commutative diagrams

v i 4 »y i N
O S S S
U x A 1 Dy& —2 X x A' H x A~ Dy& 2 X x A
J# S [
Y v 4 Z
of .-diagrams where

(i) each square is Cartesian,

(ii) ap denotes the O-section, and «; denotes the 1-section,

(i) d and sy are the morphisms constructed as in (4.1.2.1]),

(iv) m and ¢ denotes the projections.

Then we have the commutative diagram

W —— Ny&

luo lul t2
X — L5 Ny (X xg ) —> X
lh lhl
X —% Ny(X x5 X) ——= X
of .#-diagrams where
(i) each small square is Cartesian,
(ii) €” denotes the 0-section, and ¢ denotes the projection.

For A € I, we also have the corresponding commutative diagrams

E)
o )

G ———

[ l\

%T)XXS%AT)%}\
A 22
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C T (5% tg)\
2 — 2 2 Y, —2 s Ny & —2 2,

> éa)\
l’m lﬂl,\ lau l’mx LBOA loéox

Box A =P Dy & =2 i x A B x A —2 Dy & 2 25 x Al

Jo Pl |

) >3\ >3\

By ——— Ny &

lu())\ luu X
%)\ i> NgA(X X9 %A) & %)\
of .#-schemes. We also put
g= fha grx = fh/\7

10.6.5. Under the notations and hypotheses of (10.6.4]), we have an isomorphism Ny & =
No (X x5 Z7) X9 % by [Oguld, 1V.1.3.1]. In particular, the morphism u; : Ny& —
Ng (X xg Z7) is a strict étale hypercover. We have the natural transformation

/

"

n n
f.9 1,9,€

given by

/!t/* ad oyl ™ /" # Ex—! !t*

Here, the first arrow is an isomorphism since .7 satisfies strict étale descent, and the third
arrow is defined and an isomorphism by since €’ is a Cartesian strict closed immersion.
Thus the composition is an isomorphism.

We similarly have the natural transformation

n T"l n
f:gk f:gk:é‘a)\ )

which is also an isomorphism.

10.6.6. Under the notations and hypotheses of (|10.6.4)), for A € Iy, we temporary put
A)\:XXS%)\, BA:%)\ XSy gbr)\
for simplicity. We had the Cartesian diagram

E/\ EEE— AM/\

| |

B 5 AQA@PAQX
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of .#-schemes. Consider the commutative diagram

1!

E)\ XAAE)\ L) E)\ XA)\B)\ —>AMA

Lo, l

¢
B)\ XAy E, —2 B)\ XA, B)\ —2> AQAEBP/\Q)\

! Jo

A, AQ)\@PA Qx

of .-schemes where
(i) each square is Cartesian,

ii) (; denotes the composition By X 4, By — By — where the first arrow is the
ii denotes th ition B B B AQA@PAQA here the first is th
first projection,

(iii) ¢2 denotes the composition By X a, Bx = Bx = Ag,a @, Where the first arrow is the
second projection.

By (3.2.3)), we have isomorphisms

B)\ XAy E)\gB)\ X¢, AM%JB)\ X¢a, AMgE)\ XAy B)\,

AQAGBP)\QA AQAGBPAQA

so using this, we have the Cartesian diagram

11

E\ XA)\E)\ <—2> E, XA)\B)\

| ¢

Cl
E)\ XAy B)\ — B)\ X Ay B)\

of #-schemes. Since (i is a pullback of Ay — Ag,e, @, that is a monomorphism, the
morphism (i is an isomorphism. From this, we conclude that the induced morphism

Ey Xxxs2, & — B XX x g2 D

is an isomorphism for A € I.
Now, for A € I instead of A € I, if Dy = Dy, Xxxox -+ Xxxex D), forsome Ay, ... A\, €
1y, we put
Ey=E\ Xxxgx * Xxxgx Eh,-

From the result in the above paragraph, we see that the induced morphism
Ey Xxxs2, & — B XX x g2 D
is an isomorphism. In particular, the the first projection
E\ Xxxg2, 6N — E)

is a strict étale Cech hypercover.
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10.6.7. Under the notations and hypotheses of (10.6.6)), consider the commutative diagram

EX
y, \
/" o w'
A A
. & . 2 9

(&
A
I

by A
q2x
luox l@&’ lug\ lux 2
i 1" /

b u w p
%)\ A E)\ A)%)\XSA%)\—A)XXS%A&)%A

~

of .-diagrams where each small square is Cartesian and w, denotes the induced morphism.
Then we have the commutative diagram

T !/ !/ T !
d 7d 24 .8} 2.9},
° %
Fansl o O gt = Qrg > Q0,9 Q9,2

T
lTEA’gﬁ\ lTE)\,é:;\ lTE)\,éfg\ l Zxxgy, Xn Dy lT@)\

0 — Q — 0 gy, ——————— )
N 2 — [.9,Ex Toryxs, 255 F90 22 X5, Zx Toryxs, 25 f.9x

Q?79A7E>\ (T’”)*l

(10.6.7.1)

of functors. Here, the arrows are defined by the .-diagram versions of (4.2.2)), (4.2.9)),

and (4.2.11). Since wuy is an exact log smooth morphism and a), is reduced, the exchange
transformation

1 Bz g
Uoaxby — A Uy
for the commutative diagram

@ —2 5 g,

J/u())\ J/u)\
i

L%,\L)XXS%

is an isomorphism by (9.2.9). The unit id LN A+U; 1s also an isomorphism since .7 satisfies
strict étale descent. Thus by construction in (4.2.2{(ii)), the transition transformation Ty, is
an isomorphism. Similarly, the other vertical arrows of (10.6.7.1]) are 1somorphlsms

By construction in m using ({10.1.5] 1 D the condmons of are satisfied, so by
m the lower horizontal arrows denoted by (T”) and T are isomor-
phisms. The lower horizontal arrow of ((10. 6 7 1 denoted by T'o, « 5y ZEx is an isomorphism

by |D and the lower horlzontal arrow of (10.6.7.1) denoted by Tz, x4 2; is an isomor-

phism by construction (4.2.2(iii)). Thus we have shown that the lower horizontal arrows of
(10.6.7.1)) are all 1somorphlsms, so the upper horizontal arrows of ((10.6.7.1)) are also isomor-

phisms.
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Now, consider the commutative diagram

Tg /
2! X\ xg, Xy, D,
d A A

- Qf AN ) N Yo' — 220
f,g,\,é” 9.6} Ix:9,6% 19025 290 Zx X5y XN

ngA &l lT@ &} ngA,g’ lT@A,@g\ lT%A X5y Zx

T@/\
Q% o061 o O

EX
Qf In, DA

of functors. Here, the arrows are defined by the .-diagram versions of , , and
(4.2.11). We have shown that the upper horizontal arrows and the right side vertical arrow
are isomorphisms, and the other vertical arrows are also isomorphisms by (4.2.2) and (4.2.11]).
The lower horizontal arrows are isomorphisms. In particular, the natural transformation

T d
n
vag)\véa)\ ka7g7éa)\

is an isomorphism. Let 7™ denote its inverse.

10.6.8. Under the notations and hypotheses of (10.6.7), as in (4.2.3), we have several ex-
change transformations (or inverse exchange transformations) as follows.

(1) We put Q45 = a"A\.psy. Then we have the natural transformations

Mgy =5 Qpgn =2 Qp g

given by
| FEx | Ez—1
Aea\phy — a" Aphy " a plz*)‘

Here, the first arrow is an isomorphism by (9.2.7), and the second arrow is defined
and an isomorphism by (9.2.5)) since pj is Cartesian exact log smooth.

(2) We put Q405 = uo*b!)\*qg)\. Then we have the natural transformations
E Ex—!
)\*Qf?g)w@)\ —x> Qf,%@,)\ L Qf7g7-@)\*

given by
I % ~ !« Ex ! x Fz I x
/\*UO)\*b)\QQ)\ — UO*/\*b)\QQ)\ — UO*b )\*Q2)\ — uO*b QQ)\*

(3) We have the inverse exchange transformation

Qp o oh 225 00
f7gvg * * fvgkvt')@k
given by
(% Ex ! AN I % ~ I %
U0xC Ty Ax — U0xC AuTay — UgeAxC\Toy — AslUor«CyToy-

Here, the second arrow is defined and an isomorphism by (9.2.9) since ¢ is a Cartesian
strict closed immersion.
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(4)

We have the inverse exchange transformation

d Bz} d
Qf7g7g)\* — )\*vagk 7£>>\
given by

[ Ex [ . ! * ok
Us P S5 N — U0u i SHATTY, — Ugu Pu A\ S5y T
Ez~! Iox % ™ I ox %
Here, the third arrow is defined and an isomorphism by (9.2.9) since d is a Cartesian

strict closed immersion.

We have the inverse exchange transformation

B A
f7g7g * * f79>\7€>\

given by
1% Ex ! x Ba! (" ~ [
Ups€ ToAe — Ups€ Ail5y — UpsAsliloy — AUprs€)lsy-

Here, the second arrow is defined and an isomorphism by (9.2.9)) since e is a Cartesian
strict closed immersion.

We have the inverse exchange transformation

n Ex~! n
fvg)‘* — )‘*Qf,gx

given by
N1 Ex 1 Bzl e

Here, the first arrow is an isomorphism by (9.2.5) since t, is Cartesian exact log
smooth, and the second arrow is defined and an isomorphism by ((9.2.9) since €’ is a
Cartesian strict closed immersion. Thus the composition is also an isomorphism.

We have the exchange transformation
)\*Qd Ex Qd )\*
f:gvéa fvg)\vg/\
given by
* | % _x Pz * | «_x Pz * 7l x %
A UO*¢*d ST — Uo,\*)\ ¢*d ST —— UO)\*Qﬁ)\*)\ d SoT
E ! ~ !
B U P AN SETY 5 UgreDand\SHATINT.

Here, the first and second arrows are isomorphisms by (9.2.8]), and the third arrow is
defined and an isomorphism by ((9.2.11)) since d is a Cartesian strict closed immersion.
Thus the composition is an isomorphism.
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(8) We have the exchange transformation

k n E{l‘ n

*
Fac — Qg o)

given by
)\* lx_x Fxz )\*!**Eﬂ? !)\***N (S *)\*
Uk € ToT — U A €T — UgACA\N Lo — WxkEylgyTAA ™.

Here, the first arrow is an isomorphism by (9.2.8)), and the second arrow is defined
and an isomorphism by (9.2.9) since e is a Cartesian strict closed immersion. Thus
the composition is an isomorphism.

We also have the natural transformation
T
Qpgox =2 Qpgn

given by
! Ex_ g ~oon ad=!
UpD' M@y — A" UG5y — A" A UnUNDS, — A7 A5y

Here, the third arrow is defined and an isomorphism since .7 satisfies strict étale descent.

10.6.9. Under the notations and hypotheses of (10.6.8]), for A € I, we have the commutative
diagram
("

* )_1 *()d
Ao — N Qe

= e

on % (T )_1 Qd %
f7g/\7£))\ f7g)\7£)>\

of functors. By (loc. cit), the vertical arrows are isomorphisms, and by (10.6.7)), the lower
horizontal arrow is an isomorphism. Thus the upper horizontal arrow is also an isomorphism.
Then by (PD—4), the natural transformation

(T~ 4
n
fas S Qe

is an isomorphism. Let 7™ denote its inverse.
Now, consider the commutative diagram

DN PN o SN N e S L U o DNR2 Sz S W a0
*27f,9x *27F, 00,60 *3EF 906N *24f,90,60 *34f,g0, D *38f g3

[ |

Ty
Bl Bl Bz Bo Qrgr —— Qpga

TEafl lE’x
! d T

mn mn T
Q?,g)‘* - Q?,gﬂ)‘* = Q?,g,é")‘* T vag«g’/\* - Qf,g,-@A* “— Qf,g)‘*
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of functors. Here, the arrows are constructed in ((10.6.8)), (10.6.5), and the .-diagram
version of (4.2.2)). The top horizontal arrows are isomorphisms by (10.6.5) and (10.6.8)), and
we have shown in (loc. cit) that the left side vertical and the right side vertical arrows are
isomorphisms. Thus the composition of the five lower horizontal arrows

}17!])\* — nyg)\*
is an isomorphism. Then its left adjoint
NEjpg — XF AN
is also an isomorphism where
Zf,g = pIQﬁa/w ?,g = t;ﬁefk'
We also denote by T the composition
™ A Td To,& T.
Fo = Dge — Wy — oo — Qoo —> Q.
It is called again a transition transformation. Then its left adjoint
by f.9 — 27}7 g

is an isomorphism by (PD-4) and the above paragraph. Therefore, we have proven the
following theorem.

Theorem 10.6.10. Under the notations and hypotheses of , the transition transfor-
mation

n T&
f7g —> Qf’g
18 an isomorphism.
10.6.11. Under the notations and hypotheses of (10.6.8), we put
Qpxxs = hllgh”, Q= hQf h”
Then the natural transformation
n n * Tg *
b= hSQ} b — hQyp b = Qp xug o
is an isomorphism by (10.6.10)). We also have the natural transformation
Txxsr : Qpxxgr — Q

given by

%« ad !

E -
h*a’!p’;h* 4 a!h’*p’;h* s a!h;h’*]z)2 — a!pg.
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Here, the first arrow is an isomorphism by , and the third arrow is defined and an
isomorphism since 7 satisfies strict étale descent. Thus the composition is also an isomor-
phism.

Now, consider the natural transformations

TXXS%

TTL
Q?—g>Qf’XXS% Qf

The composition is also denoted by 77. It is an isomorphism by ((10.6.10) and the above
paragraph.
Then consider the natural transformations

nf —>fo 5o

The composition is denoted by q} .. By (10.5.5) and the above paragraph, we have proven
the following theorem.

Theorem 10.6.12. Under the notations and hypotheses of , the natural transfor-
mation

a7 &

18 an isomorphism.

10.7 Canonical version of purity transformations

10.7.1. Assume that .7 can be extended to an eSm-premotivic triangulated prederivator
satisfying strict étale descent. Let f : X — S be a separated vertical exact log smooth mor-
phism of .’-schemes. The category of localized compactified exactifications of the diagonal
morphism a : X — X xg X, denoted by LCE,, is the category whose object is the data of
vy 6 = Xy Xg, X and commutative diagram

—> X
lfx lf
S b S
for A € I where
1. I is a set, and the diagram commutes,
2. fy and [ are strict étale,
3. v; is a compactified exactification of the diagonal morphism 2\ — 2\ xg, Z\.

Morphism is the data of
SS\-)S)\, e/g{)\,—> %/\, é"/{-)é"/\

compatible with the morphisms in (|10.6.4.1]).
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Then LCE, is not empty by (10.6.4]), and as in (10.1.7)), it is connected since we can take
the fiber products of (Z), Sx, & )rer and (27, S, &5)rer. For any object w of LCE,, as in
(10.6.10)), we can associate the natural transformation

n 13
Then as in (4.2.13)), we have the compatibility, i.e., this defines the functor
T : LCE, — Hom(§2},€y).
To make various natural transformations 7} canonical, we take the limit
Jim Tw)".

It is denoted by T™ : Q} — Q. Now, the definition of the purity transformation is the
composition

S D
and it is denoted by q’. By (10.6.12), we have the following theorem.

Theorem 10.7.2. Let f : X — S be a separated vertical exact log smooth morphism. Then
the purity transformation

!q? *
=

18 an isomorphism.
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Index of terminology

additive property, exact log smooth over S type,
adjoint property, exact log smooth type,

Kummer log smooth type,

base change properties, Kummer log smooth over S type, [4g]

BCp-local, log smooth over S type,
cartesian section, 2} [[73] log;weak equlyalences,
compact, [T6] log'-weak equivalences,

) ” .
compactified exactification, [T89 EOQW‘WealI{ equlyalle;nces,
compactly generated, og"'-weak equivalences, |145

generated by & and 7, morphisms of .#-diagrams

density structure, Cartesian, [[74]
standard density structure, [9) reduced,
dZar-topology, orientation, [6]
ecd-structure, P-base change,
additive, |§| Z-premotivic triangulated prederivator, (172
bounded, [9] P-projection formula,
complete, premotivic triangulated category,

diVidﬁHg, [ projection formula,

Galos, o 1

piercing, [7 pw-topology,

plain lower, [0]

quasi-piercing, [7] qw-topology,

regular, _

strict Nisnevich, 7 —d‘lz.xgram, 171

winding, stability property, 0]

Zariski, [f support property, [30]

semi-universal support property,
fs exactification, [191 universal support property,
generated by & and T, t-local,
generating, [T6] T-twisted, [2]
) t-descent,

homotopy properties, tg-topology,
. . t-flasque,
interior, [190 Thom transformations,
localization property, tp-local,
log motivic triangulated category, t-separated,
log smooth type, twist, [2], [I73]
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W -local, [22]

W -weak equivalence,

W -weak equivalence, [185)

well generated,

well generated by & and T,
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Index of notations

Ls(1),

BSX7
BCp, [14]

C, [T
cE,. 190
C(Sh(2/5, 1)), 3

DsX,

D™ (S), [134
D (), [134
Dg}n (S), 135
dia7
Dy (2, A),[29
Day?,

e, 172
eSm,

ft,[13
ftZar/Sa

Homg, [2)

K{i},
C(K(2/5,0)),

AS<F)7
AG(X), [L3)
As(2), 13
LCE,, B2
1Sm, [13

MS(X)7

NSX7 @
Ny (X x5 2), P11

Nﬂg?
Qy, @]

ng.ﬂD’ @

Q1.0

228

QZJ,D’
Q% .0>
Prs @

P%.p:

PSht@ /5, M),
qs, @

q;‘b,Dau
q?,é"v
qar,

Shy(2/5, A),

77 pam

7",
0,69

Tri®, [[72
T3
Ty ,s:

Tw .2, [189
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