Universität Erlangen-Nürnberg Naturwissenschaftliche Fakultät I Wintersemester 2003/2004 Prof. Dr. K. Klamroth Barbara Pfeiffer

Integer and Nonlinear Optimization Exercise 11

Problem 1

Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$

$$f(x_1, x_2) = \frac{x_1 + x_2}{3 + x_1^2 + x_2^2 + x_1 x_2}$$

- (a) Find all stationary points of f, i.e. all points \overline{x} with $\nabla f(\overline{x}) = \underline{0}$.
- (b) Determine whether these are (strict) local minima (maxima) or neither.

Problem 2

Prove Theorems 10.2 and 10.3 of the lecture.

Problem 3

Show that a function $f: \mathbb{R}^n \to \mathbb{R}$ is quasiconvex if and only if the level-sets

$$L_{\leq}(y) := \{ \underline{x} \in \mathbb{R}^n : f(\underline{x}) \leq y \}$$

are convex for all $y \in \mathbb{R}$.

Give an (analytical) example of a function which is quasiconvex but not convex.

Problem 4

Definition: A function $\theta : \mathbb{R} \to \mathbb{R}$ is called *strictly unimodal* over the interval [a, b] if there exists a $\bar{\lambda} \in [a, b]$ that minimizes θ over [a, b] and for $\lambda_1, \lambda_2 \in [a, b]$ such that $\theta(\lambda_1) \neq \theta(\bar{\lambda})$, $\theta(\lambda_2) \neq \theta(\bar{\lambda})$, and $\lambda_1 < \lambda_2$, we have

$$\lambda_2 \leq \bar{\lambda} \Rightarrow \theta(\lambda_1) > \theta(\lambda_2)$$

 $\lambda_1 \geq \bar{\lambda} \Rightarrow \theta(\lambda_1) < \theta(\lambda_2).$

Show that if θ is strictly unimodal and continuous over [a, b], then θ is strictly quasiconvex over [a, b]. Conversely show that if θ is strictly quasiconvex over [a, b] and has a minimum in this interval, then it is strictly unimodal over [a, b].