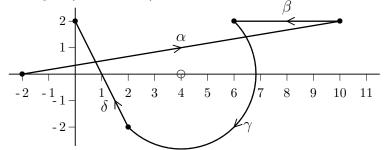
Übungen zur Funktionentheorie 1 SS 2017 Blatt 6 Prof. Fritzsche

21) Die Integrationswege $\alpha, \beta, \gamma: [0,1] \to \mathbb{C}$ und $\delta: [0,3] \to \mathbb{C}$ seien definiert durch $\alpha(t) := 2.5e^{2\pi\,\mathrm{i}\,t}, \ \beta(t) := -1.5\,\mathrm{i} + 1.5\cos(\pi(t+1)) + 0.5\,\mathrm{i}\,\sin(\pi(t+1))$ und $\gamma(t) := -1.5\,\mathrm{i} + 2\,\mathrm{i}\,t$, sowie

$$\delta(t) := \begin{cases} -1 + 0.5e^{i\pi(1/2 - 2t)} & \text{für } 0 \le t \le 1, \\ -1 + 0.5i + 2(t - 1) & \text{für } 1 \le t \le 2, \\ 1 + 0.5e^{i\pi(9/2 - 2t)} & \text{für } 2 \le t \le 3 \end{cases}.$$

Skizzieren Sie die Spur der Kette $\Gamma := \alpha + \beta + \gamma + \delta$. und berechnen Sie $\int_{\delta} z \, dz$.

22) Die folgende Skizze zeigt die Spur der Kette $\Gamma = \alpha + \beta + \gamma + \delta$. Dabei ist γ ein Halbkreisbogen (um $z_0 := 4$), und α , β und δ sind Strecken.



a) Geben Sie Parametrisierungen der Wege $\alpha, \beta, \gamma, \delta : [0, 1] \to \mathbb{C}$ an.

b) Berechnen Sie auf möglichst einfache Weise das Integral $\int_{\Gamma} \frac{dz}{z+1-i}$.

23) a) Für $z = x + iy \in \mathbb{C}$ und $k \in \mathbb{Z}$ sei $f_k(z) = x + iky$. Für $n \in \mathbb{N}$ sei $\alpha_n : [0,1] \to \mathbb{C}$ durch $\alpha_n(t) := t + it^n$ definiert. Zeigen Sie: $\int_{\alpha_n} f_k(z) dz$ ist genau dann unabhängig von n, wenn f_k holomorph ist.

b) Sei α die Parametrisierung des Viertelkreisbogens um 0, der die Zahlen 3 und 3 i miteinander verbindet. Beweisen Sie (ohne explizite Berechnung des Integrals) die Abschätzung $\left| \int_{\alpha} \frac{dz}{1+z^2} \right| \leq \frac{3\pi}{16}$.

24) a) Berechnen Sie $\int_{\alpha} (1/z) \, dz$, wobei α den Streckenzug von 1+ i über - i nach 1- i parametrisiert.

b) Sei $U=U(a)\subset\mathbb{C}$ offen und $f:U\to\mathbb{C}$ stetig. Dann ist $\lim_{r\to 0}\int_{|z-a|=r}\frac{f(z)}{z-a}\,dz=2\pi\,\mathrm{i}\,f(a).$

Abgabetermin: Mittwoch, 14.06.2017, 12 Uhr. Es gibt pro Aufgabe maximal 12 Punkte.