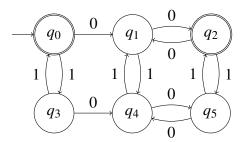

Automaten, Sprachen, Berechenbarkeit

Sommersemester 2017

7. Übungsblatt


Aufgabe 1 (DEA \rightarrow Min)

Minimieren Sie folgenden DEA M und bestimmen Sie seine Sprache über $\Sigma = \{0, 1\}$:

Aufgabe 2 (DEA \rightarrow Min)

Geben Sie zu folgendem DEA M den Graphen eines Minimal-DEA an:

Aufgabe 3 (Unterscheidbarkeit)

Beweisen Sie die Richtung "unterscheidbar ⇒ markiert" aus Satz 3.3.4. *Tipp:* Beweis per Induktion über die Wortlänge.

Aufgabe 4 (Wohldefiniertheit)

Sei $M = (Q, \Sigma, \delta, q_0, F)$ ein DEA als Eingabe für Algorthmus 3.3.3 und $M' = (Q', \Sigma, \delta', q'_0, F')$ der zugehörige Minimal-DEA als Ausgabe des Algorithmus. Zeigen Sie, dass die im Algorithmus auf Äquivalenzklassen gegebene Abbildung δ' , definiert durch

$$\delta'([q],e]) := [\delta(q,e)]$$
 für $q \in Q, e \in \Sigma$

wohldefiniert ist, d.h.,

$$q \sim q' \quad \Longrightarrow \quad \delta(q,e) \sim \delta(q',e) \quad \forall e \in \Sigma,$$

mit \sim gemäß Definition 3.3.1.

Aufgabe 5 (Zusammengesetzter ε -NEA)

Konstruieren Sie einen ε -NEA M_{ε} , der folgende Sprache akzeptiert:

 $L(M_{\varepsilon})$ ist die Menge der Worte über $\{a, \dots, z, 1, \dots, 9\}$, die nur aus den Zeichenketten fk4 oder buw bestehen, wobei auch das leere Wort zugelassen ist und die Gesamtanzahl der Teilworte fk4 und buw durch zwei teilbar ist, also

 $L(M_{\varepsilon}) = \{ \varepsilon, \text{ buwbuw, buwfk4, fk4buw, fk4fk4, buwbuwbuwbuw, buwbuwbuwfk4, } \ldots \}.$