filib++ - Interval Library
Specification and Reference Manual

Michael Lerch, German Tischler,
Jurgen Wolff von Gudenberg

Report No. 279 August 2001

Lehrstuhl fiir Informatik IT
Universitdt Wiirzburg
Am Hubland
97074 Wiirzburg

{wolff}@informatik.uni-wuerzburg.de

Parts of this report have been published in [8, 9]

Contents

1 Interval Evaluation and Containment Evaluation 3
1.1 Interval Evaluation 3
1.2 Containment Evaluation 4
1.3 Functional Specification of filib++— Overview 8

1.3.1 Internal Representation 8
1.3.2 Construction and Accesso oL 8
1.3.3 Arithmetic Operations 9
1.3.4 Relations e 9
1.3.5 Set Theoretic Functions 9
1.3.6 Elementary Arithmetic Functions 9
1.3.7 Input and Output, 9

2 Instantiation and Options 10
2.1 Namespacefilib oL oo 10
2.2 Two Modes and Two Versions 10
2.3 Template Parameters of Class interval<>. 10

2.3.1 Basic Number Type 11
2.3.2 Rounding Control 11
24 Traits o e e e e 13
2.5 Alternative Macro Version 14
2.6 Instantiation Examples. o oL 14
2.7 Sample Programs o 15
2.7.1 Evaluation of a Polynomial — Template Version 15
2.7.2 Evaluation of a Polynomial — Macro Version 16

3 The fp_traits<> class 17
3.1 Template Argumentso 17
3.2 Utility Functions L 17

4 The interval<> class 20
4.1 Basic Number Type 20
4.2 Constructorso 20
4.3 Assignment 21
4.4 Arithmetic Methods, 21
4.5 Access and Information Methods 22
4.6 Set Theoretic Methods 24

4.7 Interval Relational Methods 26
471 Set Relations oo 26
4.7.2 Certainly Relations L. 27
4.7.3 Possibly Relations 28

4.8 Input and Output L 29

Global Functions 30

5.1 Arithmetic Operators 30

5.2 Access and Informationo oL 32

5.3 Set Theoretic Functions 32

5.4 Interval Relational Functions 33
5.4.1 Set Relational Functions 33
5.4.2 Certainly Relational Functions 34
5.4.3 Possibly Relational Functions 34

5.5 Elementary Functions 35

5.6 Input and OQutput 36

Installation 38

6.1 Compiler Requirements L. 38

6.2 Installation and Usage 38
6.2.1 Imstallation 38
6.2.2 Usage of the Template Library 39
6.2.3 Usage of the Macro Library 39

6.3 Organization of Subdirectories 39

Abstract

filib++ is an extension of the interval library £i1ib originally developed in Karlruhe
[2]. The most important aim of the latter was the fast computation of guaranteed
bounds for interval versions of a comprehensive set of elementary function. filib++
extends this library in two aspects. First, it adds a second mode, the ”extended”
mode, that extends the exception-free computation mode using special values to rep-
resent infinities and NotaNumber known from the IEEE floating-point standard 754
to intervals. In this mode so-called containment sets are computed to enclose the
topological closure of a range of a function defined over an interval [5]. Second, state
of the art design uses templates and traits classes in order to get an efficient, easily
extendable and protable library, fully according to the C++ standard [1].

Overview

Chapter 1 presents the difference between the normal mode computing interval eval-
uations and the extend mode computing containment sets. The functionality of the
library is roughly sketched.

Chapter 2 then shortly explains the inner structure and describes how to use it. Some
sample programs are listed.

Chapters 3,4,5 contain the specification of the complete interface.

Finally, chapter 6 gives some installation hints.

Chapter 1

Interval Evaluation and
Containment Evaluation

1.1 Interval Evaluation

We assume that the reader is familiar with the basic ideas of interval arithmetic. In
this introductory chapter we use bold face for continuous intervals, represented by
two real bounds.

x=[z,Z] ={z € Rz <2 <T}

IR denotes the space of all finite intervals.

Let us deal with the enclosure of a range of a function, one of the main topics of interval
arithmetic. We restrict our consideration to the one-dimensional case, extensions to
more dimensions are obvious. Given an arithmetic function f: Dy C R — R, f(x)
denotes the range of values of f over the interval x C Dy.

Definition 1 :

The interval evaluation f : IR — IR of f is defined as the function that is ob-
tained by replacing every occurence of the variable x by the interval variable x and
by replacing every operator by its interval arithmetic counterpart and every elemen-
tary function by its range. Note, that this definition only holds, if all operations are
executable without exception.

The following theorem is known as the fundamental theorem of interval arithmetic.

Theorem 1 :
If the interval evaluation is defined, we have

f(x) Cf(x)

The interval evaluation is not defined, if x contains a point y ¢ D;. Division by an
interval containing 0, e.g., is forbidden. But note, that even if x C Dy, f may not be
defined. The result depends on the syntactic formulation of the expression.

fl (.’L’) = z-;+2

f1([—2,2]) is not defined, because [—2,2] - [-2,2] = [-4,4]

whereas f2(x)

yields f5([—2 2] Jfl/6 1/2].

The elementary functions f are defined as the set of all function values, that is an
interval, because the functions are continuous over their domain. That means that
the interval evaluation is equal to the range, if it is defined. The interval evaluation
is not defined, if the argument interval contains a point outside the domain of the
corresponding function.

f(x) := f(x) = {f(2)|z € x C Dy}

1.2 Containment Evaluation

To overcome the difficulties with partially defined functions throwing exceptions, we
introduce a second mode, the “extended” mode. Here, usually no exceptions are
raised, but the domains of interval functions and ranges of interval results are consis-
tently extended.

Following G. W. Walster in [4, 5] we define the containment set:

Definition 2 :
Let f : Dy CR — R, then the containment set f* : PR* — ©R" defined by

F*() = {f@)e €xN Dy} U {Jim f(r)lz € Dya* €x} TR (L1)

contains the extended range of f, where R* = RU {—oo} U {o0}.

Hence, the containment set of a function is the closure of the range including all limits
and accumulation points.

Our goal is now to define an analogon to the interval evaluation which encloses the
containment set, and is easy to compute.

Let IR* denote the set of all extendeded intervals with endpoints in R* .

Definition 3 :

The containment evaluation f* : IR* — IR* of f is defined as the function that is
obtained by replacing every occurence of the variable x by the interval variable x and
by replacing every operator or function by its extended interval arithmetic counterpart.

We then have

Theorem 2 :
The containment evaluation is always defined, and we have

[r(x) (%)

For the proof of this theorem all arithmetic operators and elementary functions are
extended to the closure of their domain. This can be done in a straight forward
manner, cf. [4]. We apply the well known rules to compute with infinities. If we
encounter an undefined operation like 0 - co we deliver the set of all limits, i.e. R*.
Note that negative values are also possible, since 0 can be approached from both sides.
We show the containment sets for the basic arithmetic operations in the following
tables.

—0o0 Y +0o0

-0 -0 R
- x+y +o0
R* 400 4o

Table 1.1: extended addition

— —0 Y +o0
—oo| R* —o0 -0
x +00 x—y —00

+00 | o0 +oo R*
Table 1.2: extended subtraction
* -0 y<0 0 y>0 +o0
—00 +0 40 R -0 -
<0400 zxy 0 xxy —o0
0 R* 0 0 0 R*
>0 -0 zxy 0 xzxy +o©
+o0 -0 - R 40 +x

Table 1.3: extended multiplication

/ -0 y<0 0 y>0 oo
—00 | [0,+00] +oo {—o0,400} —00 [—00,0]
z<0 0 zfy {—o0,+0} z/y 0

0 0 R* 0 0
z>0 0 zfy {—o0,+0} z/y 0
+00 | [-00,0] —oo {—00,+00} +oo [0,+00]

Table 1.4: extended division

A=l[ag;a) B=I[bb Range containment set
0ed 0eB R* R*

0eAd B =[0;0] {—o0;400} R*

a<0 b<b=0 [a/boo) [@/b, oc]

a<0 b<0<b (—oo;a/blula/b,+o0) R*

a<0 0=b<b (—oc;a/b] [—o0;a/b]

a>0 b<b=0 (—o0;a/l] [—00;a/b]
a>0 b<0=b (~oo;a/BUla/bh+00) R

a>0 0=b<b [a/b;+) [a/b; +o0]

Table 1.5: extended interval division

From these tables the definition of extended interval arithmetic can easily be deduced.
For addition, subtraction, and multiplication can be returned, if a corresponding
operation is encountered.

Some examples:

[2,00] + [3,00] = [5,]

[27 OO] - [3700] =R

[27 OO] * [_37 3] =R

Division is a little bit more subtle. Table 1.5 shows the cases where the denominator
contains 0.

For the elementary functions Table 1.6 shows the extended domains and extended
ranges.

The containment evaluation for an elementary function is computed by directly ap-
plying the definition of the containment set.

f*(x) := O({f(x)|z € xN Ds} U {limy_o+« f(x)|x € Dy,z* € x})
Here ¢ denotes the interval hull.

If the argument lies strictly outside the domain of the function, we obtain
the empty set as result.

If the argument x contains a singularity the corresponding values for oo
are produced.

The functions in containment mode never produce an overflow or illegal
argument error.

Some examples:

name domain range special values

sqr R* [0, 0]
power R* x Z R* power([0,0],0) = [1,1]
pow 0, 00] x R* 0, 0] pow([0,0}(0,0]) =[0, <]
sqrt [0, 0] [0, 0]
exp, expl0, exp2 R* [0, o0]
expml1 R* [-1, 0]
log, log10, log2 [0, 0] R* log ([0,0]) = [—o0]
loglp [—1, 0] R* loglp ([-1,-1]) = [—o0]
sin R* [-1,1]
cos R* [-1,1]
tan R* R* tan(x) = R*, if
w2+ knex,keZ
cot R* R* cot(x) = R*, if
kr € x, k €Z
asin [-1,1] [—7/2,7/2]
acos [-1,1] [0, 7]
atan R* [—7/2,7/2]
acot R* [0, 7]
sinh R* R*
cosh R* [1, 0]
tanh R* [-1,1]
coth R* [~o0,—1]U[1,00] coth[0,0] =R*
asinh R* R*
acosh 1, o0] [0, 0]
atanh [-1,1] R*
acoth [-o0,—1]U[1l,00] R* acoth[—1, —1] = [—0o0]

acoth[1, 1] = [o0]

Table 1.6: extended domains and ranges of elementary functions

log[—1,1] = [-0,0], /[-1,1] = [0,1], log[-2, —1] = 0, coth[-1,1] = R*

The special values column shows the results of the interval version at points on the
border of the open domain. In all cases the lim construction in (1.1) is applied and
containment is guaranteed. Note that for the power function z* only lim,_,o 2° is to
be considered whereas z¥ is calculated as e?!*? in the pow function. We intentionally
chose 2 different names, since power(x, k) C pow(x, [k, k]) does not hold for negative
X.

It has been shown in [5, 6], that using these extended operations the containment
evaluation can be computed without exceptions.

1.3 Functional Specification of filib++ — Overview

1.3.1 Internal Representation

In the normal mode of the library continuous real intervals are represented by two
floating-point bounds, in fact a more general instantiation is possible, see 2.3. If a
function or interval evaluation is not defined, the exception handling for the floating-
point type is activated. That should terminate the program with an error message.
To cope with the closed set of real numbers in the extended mode, we accept the
IEEE representation of —o0o, or 0o as left or right hand bound of an extended interval,
respectively. Thus we introduce one-sided open intervals:

x = [z,00] = {z € Rlz >z}
x =[—00,Z] = {z € Rz < 7T}

The real numbers larger than the overflow threshold M are
x = [M,00] = {z € Rjz > M}

X =[—00,-M] = {z € Rz < -M}

[—00,00] = R*

means all numbers.

The emtpy interval () is represented as [NaN,NaN] . There are, however, no point
intervals [—00, —o0] or [00, 00], we use the closed exterior intervals instead. This trick
helps in a clear set theoretical interpretation and also facilitates the implementation.
If we consider R* as the base set all the open intervals can be interpreted as closed,
and the usual formulae for interval arithmetic extended with obvious rules for oo
can be applied.

1.3.2 Construction and Access

The interval constructor expects two or one floating-point values as arguments with
a default value for the point interval [0.0, 0.0]. Inf and sup are accessible via meth-
ods. There are checks for point interval (isPoint), empty interval (isEmpty) and
unbounded interval (isInfinite). To check for sharpness of an interval the method
hasUlpAcc (n) is provided, it is fulfilled, if both bounds differ at most by n ulps (unit
last place).

1.3.3 Arithmetic Operations

The extended arithmetic operations for this data type, abbreviated as I and the base
type double = D are accessible as overloaded operators. Operand combinations I x I
D x I,and I x D are available for all operations +, —, %, /. Assignment operators + =
,— =,x =,/ = are provided for I x I and I x D as methods of the class interval.

1.3.4 Relations

All 3 kinds of set-like, certainly or possibly comparisons [4] are provided as methods
and as functions. The operators ==, !=, >=, <= are overloaded for the set-like
relations. We further supply the predicate y interior x <= z <y <T.

1.3.5 Set Theoretic Functions

Utility methods and functions like midpoint, radius, diameter of an interval, its migni-
tude or magnitude, the interval of all absolute values, minima, maxima are provided.
Lattice operations as intersection (intersect) or interval hull (hull)can be performed
and the Hausdorff distance (dist) between two intervals can be computed.

1.3.6 Elementary Arithmetic Functions

The provided elementary functions and their (closed) domains and ranges are listed
in table 1.6. In the normal mode the true domains of the functions are valid, i.e.
log[0,1.0] yields an error. The implemented elementary functions do not return least-
bit accurate results, but an almost enclosure within a few ulps of the range is always
guaranteed.

1.3.7 Input and Output

The standard input output operators are overloaded for intervals, but without appro-
priate rounding to the external decimal string format.

10

Chapter 2

Instantiation and Options

2.1 Namespace filib

The library is contained in the namespace filib. Hence, it is required to qualify
each identifier of the library with £ilib:: or to use the directive using namespace
filib.

2.2 Two Modes and Two Versions

One template version and one macro version of the library are supplied. In either
version two modes can be used. In the default or “normal” mode traditional interval
evaluations are computed, and the program terminates, if the argument interval is
not contained in the domain of a function. Overflow treatment is done according to
the chosen floating point option.

In the “extended” mode containment sets over R* are computed, no exceptions are
raised. This mode is obtained by setting the constant FILIB_EXTENDED during com-
pilation.

For the macro library, this constant FILIB_EXTENDED has to be set for the compilation
of the library as well as the application program. For the template version, the
constant is not used during the building of the static parts of the library and thus
only has be provided when compiling application programs. That essentially means
that you do not have to recompile the template version for switching the extended
mode on or off.

In the following we describe the template version. Since the interface of both versions
are essentially identical, a few statements about the macro version in section 2.5 are
sufficient.

2.3 Template Parameters of Class interval<>
An interval is defined as a template. There are 2 template parameters, the underlying

basic (floating-point) number type N, and the method, how to implement the directed
roundings rounding _control.

11

2.3.1 Basic Number Type

An interval is given by 2 computer representable bounds, the lower bound or infimum
and the upper bound or supremum

X = [Evf]

It represents the continous set of all numbers from the mathematical set S that is
approximated by the basic number type N, e.g. § = R and N=double.

x=[z,F]={z €Sz <2 <T}

The type N has to be an arithmetic type, i.e. all the operators have to be provided.
In the extended mode constants for oo und NaN are needed. These constants are
supplied by the fp_traits<> class. Currently the only reasonable choices are double
or float. Hence, only R can be taken for S. The elementary functions for a basic
type cannot be generated by instantiation of a template, but have to be implemented
by suitable algorithms. In the current version of £ilib++ only double functions are
implemented. !

2.3.2 Rounding Control

Rounding, the use of the directed roundings in particular, is controlled by the sec-
ond template parameter. It addresses the low-level, machine dependent part of the
implementation.

The second parameter can have the following values

o native_switched: Before an operation computing a floating-point bound of the
interval is executed, the rounding mode is switched via an assembler statement
that changes the floating-point control word. This is an expensive operation,
since the pipelines have to be cleared. After the interval operation the rounding
mode is switched back to the default. This is our default mode for interval
operations.

o native_directed: The same as native_switched but the rounding mode is not
switched back. Note, that this mode influences the non-interval operations of
the program.

o native_onesided_switched: Since A(z) = —(V(—z)), one directed rounding mode
suffices for interval operations, where V and A denote the rounding to —oo or
00, respectively. After the interval operation the rounding mode is switched
back to the default.

o native_onesided_global: Here, the rounding mode is set to V and never changed.
Note, that this mode influences the non-interval operations of the program.
Before using this mode the user has to switch the rounding mode to rounding
to —00. (fp-traits<T>::downward())

this implementation is the original £ilib code, see [2]

12

o multiplicative: If the architecture does not support directed rounding modes,
they can be simulated by a multiplication of the result.

We define two functions (R is a floating-point screen):

low: R—+ R d(1)
[a>0: a®pred(l
low(a) := { a<0: a®succ(l) 1
and high: R - R
' [a>0: a®suce(l)
high(a) := { a<0: a®pred(l). 22

where ® means round-to-nearest-multiplication and where succ(z) = min{yly €
R,y > z} or pred(z) = max{y|y € R,y < z}, respectively.
Note that, because high(a) = —low(—a), one function suffices.

For a binary floating-point system R = R(2, n,emin,emax) we have

succ(l) =1+21"" =1+4¢*

where ¢* = 217" denotes the bound for the relative rounding error (|e] < €*).

Theorem 3 :

Let R = R(2,n, emin, emazx) be a binary floating-point system and O : R — R
the rounding to the nearest. Then for all x € R not in the over- or underflow
range, i.e. M > |z| > 26™in=1 or x = 0, we have

low(Qz) <z

high(Oz) > z

For the proof, see [9].

e pred_succ_rounding: Another way to simulate the directed roundings is to ma-
nipulate the representation of a floating-point number in order to obtain the
predecessor or successor of that number. This is usually done using integer
arithmetic. It can be sped up, if a table of ulp(z) is stored containing the unit
in last place with respect to the exponent of x.

e no_rounding: This mode is only for testing and tuning. Do NOT use it in
applications. It does NOT compute enclosures.

The one-sided rounding mode seems to be very appealing, since it minimizes
switches of the rounding control. But note, that it currently does not work in
the case of gradual underflow. For 1386 architectures the rounding of values in
the overflow range to oo have to be forced by an intermediate storing of the
value and, hence, the predicted performance gain is lost.

IMPORTANT: it is necessary to call the method

13

filib::fp_traits<N,K>::setup()

whenever you use instances of a different instantiation of the interval<> class
with template parameters N,K. This is especially true at program start. When
starting the usage of the native_onesided _global mode, the correct sequence
is first calling setup and then downward.

2.4 Traits

Let us have a closer look into the design of the library. The interval<> class
implements its operations relying on functions for directed floating-point arith-
metic operations and on a function to reset the rounding mode. For example a
simplified version of the += operator looks like:

interval<N,K> & interval<N,K>::operator +=
(interval<N,K> const & o)
{
INF=fp_traits<N,K>: :downward_plus(INF,o.INF);
SUP=fp_traits<N,K>: :upward_plus(SUP,o0.SUP);
fp_traits<N,K>::reset();
return *this;

These type and rounding mode specific operations are provided by a traits
class fp_traits<> that handles all the operations depending on the type N and
rounding control K. Specializations of this traits class for double and float
and each of the described rounding control mechanisms are instantiated in the
library. The specializations for rounding modes that rely on machine specific
rounding control methods inherit these methods from an instantiation of the
class rounding control. That is illustrated in the following diagram.

14

rounding_control

setup()
upward()
downward()
reset()

/<<bind>>(double)

rounding_control<doubh%

fp_traits

interval

operator+=(interval<> o)

IsInf(N &)

upward_plus(N a N b)
downward_plus(N a, N b)

]

/<<bind>>

fp_traits<doublenative_switched>

rounding control based
implementation

< <<bind>>

fp_traits<double multiplicative>

machine independant
implementation

2.5 Alternative Macro Version

For the mainly used data type interval<double> a non generic version that
is highly optimized in speed is provided. It only supports the data type Interval,
i.e. an interval of doubles. The switching between the various rounding modes is
implemented via compile time constants. The arithmetic operations are defined
as macros. This design certainly is not up to date concerning modern software
engineering principles, but benchmarks showed, that the arithmetic was consid-
erably faster, see [8]. The interface of the methods and functions is identical to

the templated version.

2.6 Instantiation Examples

Some examples may help to use the library. Another example can be found in the

examples directory of the distribution.

e filib::interval<double> A;
This is the default instantiation. A is an interval over the floating-point type

double. The second parameter is set to its default filib::native_switched

15

e filib::interval<double,filib::multiplicative> A;
A is an interval over double. Multiplicative rounding is used. The hardware
need not support directed roundings.

e filib::interval<double,filib: :native onesided_global> A;
This is probably the fastest mode for most of the currently available machines.
But it changes the floating-point semantics of the program.

2.7 Sample Programs

2.7.1 Evaluation of a Polynomial — Template Version

// Typical usage of the library filib++ (template version)

#include <interval/interval.hpp>
#include <vector> // STL container vector
#include <iostream>

using filib::interval;
using std::vector;
using std::cout;
using std::endl;

// Evaluation of a polynomial using Hormer’s rule
interval<double> hormner

(
// interval coefficients in STL container vector
vector< interval<double> > const & pol,
// interval argument
interval<double> x
)
{
// result
interval<double> res = interval<double>(); // res is [0,0]
vector< interval<double> >::const_iterator p= pol.begin();
while (p != pol.end())
{
res *= X;
res += *(p++);
}
return res; // now res == pol(x)
}

int main()

{
filib::fp_traits<double>::setup();

16

interval<double> coeff2(2), coeffi1(5), coeff0(3), x(0,1);
vector< interval<double> > pol;

pol.push_back(coeff2);

pol.push_back(coeffl);

pol.push_back(coeff0) ;

// horner(pol,x) computes coeff2*x*x + coefflxx + coeff0

cout << "pol(x)= " << hormer(pol,x) << endl;
interval<double> y(-1,1);

cout << "pol(y)= " << hormer(pol,y) << endl;
return 0;

2.7.2 Evaluation of a Polynomial — Macro Version

#include <Interval.h>
#include <vector>
#include <iostream>

/* Evaluation of a Polynomial */
/* using Hormer’s rule */
Interval hormner
(
/* interval coefficients in STL container vector*/
std: :vector< Interval > const & v,
/* interval argument */
Interval A

e

/* result */
Interval R = Interval();

std::vector< Interval >::const_iterator
a = v.begin(), b = v.end();

while (a !'= b)

{

R *= A;

R += x(a++);
}
return R;

17

Chapter 3

The fp traits<> class

3.1 Template Arguments

The fp_traits<> class is a template class with two template arguments. The first
argument is supposed to be a numeric type, where there are currently implemen-
tations for float and double. The second parameter is a non-type parameter of
type rounding strategy as described in section 2.3.2. The following table shows the
currently available combinations.

first param | second param |

double native_switched

double native_directed

double multiplicative

double no_rounding

double native onesided_switched
double native_onesided_global
double pred_succ_rounding

float native_switched

float native_directed

float multiplicative

float no_rounding

float native onesided_switched
float native_onesided_global

3.2 Utility Functions

The following static member functions are mandatory for all implementations of the
fp_traits<> class (where N denotes the first template parameter):

e bool IsNalN(N const & a)
test if a is not a number

e bool IsInf(N const & a)
test if a is infinite

18

N const & infinity ()
returns positive infinity

N const & ninfinity ()
returns negative infinity

N const & quiet_NalN()
returns a quiet (non-signalling) NalN

N const & max()
returns the maximum finite value possible for N

N const & min()
returns the minimum finite positive non-denormalized value possible for N

N const & 1 pi()
returns a value that is no bigger than 7

N const & u_pi()
returns a value that is no smaller than 7

int comnst & precision()
returns the current output precision

N abs(N const & a)
returns the absolute value of a

N upward_plus(N const & a, N const & b)
returns a value of type N. It shall be as close to a + b as possible and no smaller
than a + b.

N downward_plus(N const & a, N const & b)
returns a value of type N. It shall be as close to a + b as possible and no bigger
than a + b.

N upward _minus(N const & a, N const & b)
returns a value of type N. It shall be as close to a — b as possible and no smaller
than a — b.

N downward_minus(N const & a, N const & b)
returns a value of type N. It shall be as close to a — b as possible and no bigger
than a — b.

N upward multiplies(N const & a, N const & b)
returns a value of type N. It shall be as close to a - b as possible and no smaller
than a - b.

N downward_multiplies(N const & a, N const & b)
returns a value of type N. It shall be as close to a - b as possible and no bigger
than a - b.

N upward_divides(N const & a, N const & b)
returns a value of type N. It shall be as close to a/b as possible and no smaller
than a/b.

19

e N downward_divides(N const & a, N const & b)

returns a value of type N. It shall be as close to a/b as possible and no bigger
than a/b.

20

Chapter 4

The interval<> class

Let z or T denote infimum or supremum of the interval X, the interval thisx* is written
as T =[t, t]. N denotes the underlying basic number type, i.e the type of the bounds
(see 2.3.1). Furthermore M is the largest representable number of type N and £INFTY
denotes an internal constant for +oo. [NaN, NaN] represents the empty interval where
NaN denotes an internal representation for “Not a Number”.

4.1 Basic Number Type

e The typename value_type is defined for the basic number type.

e The type of traits used by the class is introduced as traits_type.

4.2 Constructors

The following constructors are provided for the interval class:

e interval():
The interval [0, 0] is constructed.

e interval(N const & a):
The interval [a, a] is constructed.The point intervals for +0co and —oo are given
by [M,+INFTY] or [—INFTY, — M], respectively.

e interval(N const & a, N const & b):
If a < b the interval [a, b] is constructed, otherwise the empty interval.

e interval(std::string const & infs, std::string const & sups)
throw(filib::interval io_exception):
Construct an interval using the strings infs and sups. The bounds are first
transformed to the primitive double type by the standard function strtod and
then the infimum is rounded down and the supremum is rounded up. If the
strings cannot be parsed by strtod, an exception of type
filib::interval io_exception is thrown.

21

interval (interval<> const & o):
Copy constructor, an interval equal to the interval o is constructed.

4.3 Assignment

interval<> & operator=(interval<> const & o):
The interval o is assigned.

4.4 Arithmetic Methods

The following methods are provided for updating arithmetic operations. Note that
the usual operators are available as global functions (see 5.1).

The special cases of the extended mode are not explicitly mentioned here, see tables
1.1,1.2,1.3,1.4 for details.

interval<> const & operator+() const (unary plus):
The unchanged interval is returned.

interval<> operator-() const (unary minus):
[—%, —t] is returned.

interval<> & operator+=(interval<> const & A)(updating addition):

t:=t+a,t:=t+a

interval<> & operator+=(N const & a)(updating addition):

t:=t+a,t:=t+a

interval<> & operator-=(interval<> const & A)(updating subtraction):

ti=t—a,t:=t—a

interval<> & operator-=(N const & a)(updaing subtraction):

interval<> & operator*=(interval<> const & A)(updating multiplication):

t:=min{t*xa,t*a,txa,txa}, t == max{t xa,t*xa,t *a,t xa}

22

e interval<> & operator*=(N const & a)(updating multiplication):

t:=min{t*a,t*a},t:= max{t xa,txa}

e interval<> & operator/=(interval<> const & A)(updating division):

t := min{t/a,t/a,t/a,t/a}, t == max{t/a,t/a,t/a,t/a}

The case 0 € A throws an error in normal mode. R* is returned in extended
mode.

e interval<> & operator/=(N const & a)(updating division):

t := min{t/a,t/a}, t := max{t/a,t/a}

The case a = 0 throws an error in normal mode. R* is returned in extended
mode.

4.5 Access and Information Methods

Methods only available in extended mode are marked with the specific item marker
*.

N const & inf() const:
returns the lower bound.

e N const & sup() const:
returns the upper bound.

x bool isEmpty() const:
returns true, iff T is the empty interval.

x bool isInfinite() const:
returns true, iff T has at least one infinite bound.

* static interval<> EMPTY () :
returns the empty interval.

¥ static interval<> ENTIRE() :
returns R*.

x static interval<> NEG_INFTY() :
returns the point interval —oco = [-INFTY, —M].

* static interval<> POS_INFTY()
returns the point interval +o0o0 = [M, +INFTY].

23

static interval<> ZERO() :
returns the point interval 0 = [0.0, 0.0]

static interval<> ONEQ) :
returns the point interval 1 = [1.0, 1.0]

static interval<> PI() :
returns an enclosure of 7.

bool isPoint () const:
returns true,iff T is a point interval.

static bool isExtended() const:
returns true,iff the library has been compiled in the extended mode.

bool hasUlpAcc(unsigned int const & n) const:
returns true, iff the distance of the bounds # — ¢ < n ulp, i.e. the interval
contains at most n + 1 machine representable numbers.

N mid() const:
returns an approximation of the midpoint of T, that is contained in T

In the extended mode the following cases are distinguished:

NaN for T == ()
0.0 forT == R*
+INFTY for T == [a,+INFTY]
—INFTY for T == [—INFTY,al

T.mid() =

N diam() const:
returns the diameter or width of the interval (upwardly rounded). The method
is also available under the alias width. In the extended mode the following cases
are distinguished:

NaN if T ==

T.diam() = { +INFTY if T.isInfinite()

N relDiam() const:
returns an upper bound for the relative diameter of T:

T.relDiam() == T.diam() if T.mig() is less than the smallest positive
normalized floating-point number,

T.relDiam() == T.diam()/T.mig() otherwise.
In the extended mode the following cases are distinguished:

NaN if T ==

T.relDi = -
relDiam() {+INFTY if T.isInfinite()

24

e N rad() const:
returns the radius of T (upwardly rounded) In the extended mode the following
cases are considered:

NaN if T ==

T.radQ) = { +INFTY if T.isInfinite()

e N mig() const:
returns the mignitude, i.e.

T.mig() == min{abs(t) te€ T}
In the extended mode the following cases are considered:

T.mig() = NaN if T == 0

e N mag() const:
returns the magnitude, the absolute value of T. also

T.mag() == max({abs(t) t€ T})

In the extended mode the following cases are considered:

Tomag(y — NN if T ==
‘MABY) =) LINFTY if T.isInfinite()

e interval<> abs() const:
returns the interval of all absolute values (moduli) of T:

T.abs() = [T.mig(), T.mag(Q)]

In the extended mode the following cases are considered:

1] for T ==
T.abs() = [T.mig(),+INFTY] if T.isInfinite() and one bound is finite
[M, +INFTY] if both bounds are infinite

4.6 Set Theoretic Methods

e interval<> imin(interval<> const & X):
returns an enclosure of the interval of all minima of T and X, i.e.

T.imin(X) == { z: 2z == min(a,b): a € T, b € X }

T.imin() = 0 fir T==0orX ==

e interval<> imax(interval<> const & X):
returns an enclosure of the interval of all minima of T and X, i.e.

25

T.imax(X) == { z: z == max(a,b): a € T, b € X }
In the extended mode return

T.imax() = 0 flir T==0orX ==

N dist(interval<> const & X):
returns an upper bound of the Hausdorfl-distance of T and X, i.e.

T.dist(X) == max { abs(T.inf O-X.inf()), abs(T.sup()-X.sup()) }

In the extended mode return

T.dist(X) = NaN fir T==0orX ==

interval<> blow(N const & eps) const:
return the e-inflation:

T.blow(eps) == (1+eps)-T - eps-T

interval<> intersect(interval<> const & X) const:
returns the intersection of the intervals T and X. If T and X are disjoint return ()
in the extended mode and an error in the normal mode.

interval<> hull(interval<> const & X) const:
the interval hull

In the extended mode return

T.hull(): @ if T ==X ==
This function is also available under the intervall hull() alias.

interval<> hull(N const & X) const:
the interval hull.

In the extended mode return
T.hull() = 0 if T ==0andX == NaN
This function is also available under the intervall hull() alias.

bool disjoint (interval<> const & X) const:
returns true, iff T and X are disjoint, i.e. T.intersect(X) ==

bool contains(N x) const:
returns true, iff x € T

bool interior(interval<> const & X) const:
returns true, iff T is contained in the interior of X.

In the extended mode return true, if T ==

26

bool proper_subset(interval<> const & X) const:
returns true, iff T is a proper subset of X.

bool subset(interval<> const & X) const:
returns true, iff T is a subset of X.

bool proper_superset(interval<> const & X) const:
returns true, iff T is a proper superset of X.

bool superset (interval<> const & X) const:
returns true, iff T is a superset of X.

4.7 Interval Relational Methods

4.7.1 Set Relations

bool seq(interval<> const & X) const:
returns true, iff T and X are equal sets.

bool sne(interval<> const & X) const:
returns true, iff T and X are not equal sets.

bool sge(interval<> const & X) const:
returns true, iff the > relation holds for the bounds

T.sge(X) == T.inf() > X.inf() && T.sup() > X.

In the extended mode return true, if T ==) and X == .

bool sgt(interval<> const & X) const:
returns true, iff the > relation holds for the bounds

T.sgt(X) == T.inf() > X.inf() && T.sup() > X.

In the extended mode return false, if T == () and X == {.

bool sle(interval<> const & X) const:
returns true, iff the < relation holds for the bounds

T.sle(X) == T.inf() < X.inf() && T.sup() < X.

In the extended mode return true, if T ==) and X == .

bool slt(interval<> const & X) const:
returns true, iff the < relation holds for the bounds

T.slt(X) == T.inf() < X.inf() && T.sup() < X.

In the extended mode return false, if T == () and X == {.

27

sup ()

sup ()

sup ()

sup ()

4.7.2 Certainly Relations

e bool ceq(interval<> const & X) const:
returns true, iff the = relation holds for all individual points from T and X, i.e.

VieT,VzeX:t=z

That implies that T and X are point intervals.

In the extended mode return false, if T == () or X == {.

e bool cne(interval<> const & X) const:
returns true, iff the # relation holds for all individual points from T and X, i.e.

VtieT,VeeX:t#x

That implies that T and X are disjoint.

In the extended mode return true, if T ==) or X == ().

e bool cge(interval<> const & X) const:
returns true, iff the > relation holds for all individual points from T and X, i.e.

VieT,VeeX:t>zx

In the extended mode return false, if T == () or X == {.

® bool cgt(interval<> const & X) const:
returns true, iff the > relation holds for all individual points from T and X, i.e.

VieT,VeeX:t>a

That implies that T and X are disjoint.

In the extended mode return false, if T == () or X == {.

e bool cle(interval<> const & X) const:
returns true, iff the < relation holds for all individual points from T and X, i.e.

VieT,VeeX:t<z

In the extended mode return false, if T == () or X == {.

e bool clt(interval<> const & X) const:
returns true, iff the < relation holds for all individual points from T and X, i.e.

VtET,Ve€EX:t<x

That implies that T and X are disjoint.

In the extended mode return false, if T == () or X == {.

28

4.7.3 Possibly Relations

e bool peq(interval<> const & X) const:
returns true, iff the = relation holds for any points from T and X, i.e.

FHeT,IxeX:t=x

In the extended mode return false, if T == () or X == {.

® bool pne(interval<> const & X) const:
returns true, iff the # relation holds for any points from T and X, i.e.

JdteT,JxeX:t#x

In the extended mode return true, if T == @) or X == {.

e bool pge(interval<> const & X) const:
returns true, iff the > relation holds for any points from T and X, i.e.

HeT,JxeX:t>x

In the extended mode return false, if T == () or X ==

e bool pgt(interval<> const & X) const:
returns true, iff the > relation holds for any points from T and X, i.e.

FteT,IreX:t>x

In the extended mode return false, if T == () or X ==

e bool ple(interval<> const & X) const:
returns true, iff the < relation holds for any points from T and X, i.e.

HeT,JrxreXx:t<x

In the extended mode return false, if T == () or X ==

e bool plt(interval<> const & X) const:
returns true, iff the < relation holds for any points from T and X, i.e.

FteT,IreX:t<x

In the extended mode return false, if T == () or X ==

29

4.8

Input and Output

std: :ostream & bitImage(std: :ostream & out) const:
output the bitwise internal representation.

std::ostream & hexImage(std::ostream & out) const:
output a hexadecimal representation.

static interval<N,K> readBitImage(std::istream & in)

throw(filib: :interval io_exception): read a bit representation of an inter-
val from in and return it. If the input cannot be parsed as a bit image, an
exception of type £ilib: :interval_io_exception is thrown.

static interval<N,K> readHexImage(std::istream & in)
throw(filib::interval io_exception): read a hex representation of an in-
terval from in and return it. If the input cannot be parsed as a hex image, an
exception of type £ilib: :interval io_exception is thrown.

static int const & precision():
returns the output precision that is used by the output operator <<. (see 5.6)

static int precision(int const & p):
set the output precision to p. The default value is 3.

30

Chapter 5

Global Functions

Let R denote the interval [r,7]. All operations which have been specified as updating
methods of the class interval<> are available as global functions as well. This
interface to the operations is not only more familiar and convenient for the user, but
also more efficient.

5.1

Arithmetic Operators

interval<> operator+ (interval<> const & A, interval<> const & B):
returns the interval R with

ri=a+b7r:=a+b

interval<> & operator+ (interval<> const & A, N const & b):
returns the interval R with

r.=a+br:=a+b

interval<> operator4 (N const & A, interval<> const & B):
returns the interval R with

ri=a+br:=a+b

interval<> operator-(interval<> const & A, interval<> const & B):
returns the interval R with
ri=a—0b,7:=a—>b

interval<> & operator-(interval<> const & A, N const & b):
returns the interval R with

interval<> operator-(N const & A, interval<> const & B):
returns the interval R with

31

ri=a—b,7:=a—>o

interval<> cancel(interval<> const & A, interval<> const & B):
returns the interval R with

r:=a-b,7r:=a—->

if a —b < @—b. Otherwise an error is thrown in the normal mode, or the empty
interval is returned in the extended mode.

interval<> operator*(interval<> const & A, interval<> const & B):
returns the interval R with

r:=min{a*b,@xb,a*b,ax*b}, 7 :=max{axb,axb,ax*b,axb}

interval<> & operator* (interval<> const & A, N const & b):
returns the interval R with

r := min{a x b, b}, ¥ := max{a + b, @ x b}

interval<> operator*(N const & A, interval<> const & B):
returns the interval R with

r:=min{a*b,axb,axb,ax*b},7:=max{axb,axb,ax*b,axb}

interval<> operator/(interval<> const & A, interval<> const & B):
returns the interval R with

r := min{a/b,a/b,a/b,a/b}, ¥ := max{a/b,a/b,a/b,a/b}

0 € a produces an error in the normal mode.

interval<> & operator/(interval<> const & A, N const & b):
returns the interval R with

r :=min{a/b,a/b}, ¥ := max{a/b,a/b}

b = 0 produces an error in the normal mode.

interval<> operator/(N const & A, interval<> const & B):
returns the interval R with

r := min{a/b,a/b,a/b,a/b}, ¥ := max{a/b,a/b,a/b,a/b}

0 € a produces an error in the normal mode.

32

5.2 Access and Information

N const & inf(interval<> const & A):
equivalent to A.inf ().

e N const & sup(interval<> const & A):
equivalent to A.sup().

e N inf by_value(interval<> const & A):
return a copy of A.inf ().

e N sup_by_value(interval<> const & A):
return a copy of A.sup().

e bool isPoint(interval<> const & A):
equivalent to A.isPoint ().

e bool hasUlpAcc(interval<> const & A):
equivalent to A.hasUlpAcc().

e N mid(interval<> const & A):
equivalent to A.mid ().

e N diam(interval<> const & A):
equivalent to A.diam(). An alias named width is available.

e N relDiam (interval<> const & A):
equivalent to A.relDiam().

e N rad(interval<> const & A):
equivalent to A.rad().

e N mig(interval<> const & A):
equivalent to A.mig().

e N mag(interval<> const & A):
equivalent to A.mag().

e interval<> abs(interval<> const & A):
equivalent to A.abs().

5.3 Set Theoretic Functions

e interval<> imin(interval<> const & A, interval<> const & B):
equivalent to A.imin(B).

e interval<> imax(interval<> const & A, interval<> const & B):
equivalent to A.imax (B).

e N dist(interval<> const & A, interval<> const & B):
equivalent to A.dist(B).

33

e interval<> blow(interval<> const & A, N const & eps):
equivalent to A.blow(eps).

e interval<> intersect(interval<> const & A, interval<> const & B):
equivalent to A.intersect (B).

e interval<> hull(interval<> const & A, interval<> const & B):
equivalent to A.hull(B), also available as intervall hull().

e interval<> hull(N const & b, interval<> const & A):
equivalent to A.hull(b), also available as intervall hull().

e interval<> hull(N const & a, N const & b):
returns the interval hull of the 2 numbers a and b, also available as intervall hull().

In the extended mode returns @, if x == y == NaN

e bool disjoint(interval<> const & A, interval<> const & B):
equivalent to A.disjoint (B).

e bool in(N & a, interval<> const & B):
equivalent to B.contains(a).

e bool interior(interval<> const & A, interval<> const & B):
equivalent to A.interior(B).

e bool proper_subset(interval<> const & A, interval<> const & B):
equivalent to A.proper_subset (B).

e bool subset (interval<> const & A, interval<> const & B):
equivalent to A.subset (B).

e bool operator<=(interval<> const & A, interval<> const & B):
equivalent to A.subset (B).

e bool proper_superset(interval<> const & A, interval<> const & B):
equivalent to A.proper_superset (B).

® bool superset (interval<> const & A, interval<> const & B):
equivalent to A.superset (B).

e bool operator>= (interval<> const & A, interval<> const & B):
equivalent to A.superset (B).

5.4 Interval Relational Functions

5.4.1 Set Relational Functions

e bool seq(interval<> const & A, interval<> const & B):
equivalent to A.seq(B).

® bool operator==(interval<> const & A, interval<> const & B):
equivalent to A.seq(B).

34

e bool sne(interval<> const & A, interval<> const & B):
equivalent to A.sne(B).

e bool operator! =(interval<> const & A, interval<> const & B):
equivalent to A.sne(B).

e bool sge(interval<> const & A, interval<> const & B):
equivalent to A.sge(B).

e bool sgt(interval<> const & A, interval<> const & B):
equivalent to A.sgt (B).

e bool sle(interval<> const & A, interval<> const & B):
equivalent to A.sle(B).

e bool slt(interval<> const & A, interval<> const & B):
equivalent to A.s1t(B).

5.4.2 Certainly Relational Functions

® bool ceq(interval<> const & A, interval<> const & B):
equivalent to A.ceq(B).

e bool cne(interval<> const & A, interval<> const & B):
equivalent to A.cne(B).

® bool cge(interval<> const & A, interval<> const & B):
equivalent to A.cge(B).

® bool cgt(interval<> const & A, interval<> const & B):
equivalent to A.cgt (B).

e bool cle(interval<> const & A, interval<> const & B):
equivalent to A.cle(B).

e bool clt(interval<> const & A, interval<> const & B):
equivalent to A.c1t(B).

5.4.3 Possibly Relational Functions

e bool peq(interval<> const & A, interval<> const & B)
equivalent to A.peq(B).

e bool pne(interval<> const & A, interval<> const & B)
equivalent to A.pne(B).

e bool pge(interval<> const & A, interval<> const & B):
equivalent to A.pge(B).

e bool pgt(interval<> const & A, interval<> const & B):
equivalent to A.pgt (B).

35

e bool ple(interval<> const & A, interval<> const & B):
equivalent to A.ple(B).

e bool plt(interval<> const & A, interval<> const & B):
equivalent to A.plt(B).

5.5 Elementary Functions

The elementary functions return enclosures of the ranges. In general, they are not 1-
ulp accurate, but reasonably fast. These functions are only implemented for intervals
based on the double type.

e interval<> acos(interval<> const & A):
inverse cosine

e interval<> acosh(interval<> const & A):
inverse hyperbolic cosine

e interval<> acot(interval<> const & A):
inverse cotangent

e interval<> acoth(interval<> const & A):
inverse hyperbolic cotangent

e interval<> asin(interval<> const & A):
inverse sine

e interval<> asinh(interval<> const & A):
inverse hyperbolic sine

e interval<> atan(interval<> const & A):
inverse tangent

e interval<> atanh(interval<> const & A):
inverse hyperbolic tangent

e interval<> cos(interval<> const & A):
cosine

e interval<> cosh(interval<> const & A):
hyperbolic cosine

e interval<> cot(interval<> const & A):
cotangent

e interval<> coth(interval<> const & A):
hyperbolic cotangent

e interval<> exp(interval<> const & A):
exponential e

e interval<> explO(interval<> const & A):
exponential to base 10. 104

36

5.6

interval<> exp2(interval<> const & A):
exponential to base 2. 24

interval<> expml (interval<> const & A):
A
e® —1

interval<> log(interval<> const & A):
logarithm to base e

interval<> logl0O(interval<> const & A):
logarithm to base 10

interval<> loglp(interval<> const & A):
log(A +1)

interval<> log2(interval<> const & A):
logarithm to base 2

interval<> power(interval<> const & A, int const & p):
power to an integer AP

interval<> pow(interval<> const & A, interval<> const & B):
general power function {a®:a € 4,b € B}.

interval<> sin(interval<> const & A):
sine

interval<> sinh(interval<> const & A):
hyperbolic sine

interval<> sqr(interval<> const & A):
square

interval<> sqrt(interval<> const & A):
square root

interval<> tan(interval<> const & A):
tangent

interval<> tanh(interval<> const & A):
hyperbolic tangent

Input and Output

std::ostream & operator<<(std::ostream & out, interval<> const & A):
outputs the interval A to the stream out. According to the output precision the
usual format is [a, @]. Note that the bounds are NOT rounded directly to
the string format, but the standard output method is used instead. We rec-
ommend to use the bitImage method (see 4.8) for a detailed view. In case

of an erroneous interval [UNDEFINED] is output in the normal mode. In the
extended mode there are several special cases:

37

EMPTY] for the empty interval
-INFTY] for [—o0, —M]
+INFTY] for [M, o0]

[

[

[

[ENTIRE] for R*

e std::istream & operator>>(std::istream & in, interval<> & A)
throw(filib: :interval io_exception) :
reads the interval A from the stream in. If the input cannot be parsed as an
interval, an exception of type filib: :interval_io_exception is thrown. Note
that the input is converted to the used arithmetic type by using the standard
function strtod (). That means that there is no care taken for directed rounding
in the case that the provided numbers do not have an exact machine represen-
tation. We recommend using the method readBitImage() if there is need for
a perfectly predictable input method.

38

Chapter 6

Installation

6.1 Compiler Requirements

A compiler conforming to ISO 14882 (ISO C++) is sufficient, but currently not avail-
able. We have used GNU C++ Compiler (version 2.95.2) and KAI C++ Compiler.
The code also compiles with version 3 of the GNU C++ Compiler.

Furtheron a unix compatible make utility is needed (e.g. GNU make or BSD make),
GNU Binutils (version 2.9.5 or better) and a BSD compatible install program.

6.2 Installation and Usage

6.2.1 Installation

The library is delivered as a gziped tar file. If you unpack it, the source code is put
into a subdirectory interval. The compilation with the GCC or KCC is controlled by
the included makefiles. A convenient way is to set the appropriate link

1n -s makefiles/Makefile.gcc Makefile
or
In -s makefiles/Makefile.kcc Makefile

For other compilers the makefile has to be adapted.
The command

make libs

compiles and builds the library.
The target directory, e.g. /usr/local/filib is set to the variable PREFIX and then
the library is installed by the command

make install OWN=<user> GRP=<group> PREFIX=/usr/local/filib

39

6.2.2 TUsage of the Template Library

The source file has to contain the directive
#include <interval/interval.hpp>

in order to declare the identifiers of the library. It has to work in the namespace
filib. When compiling source files, it is necessary to inform the compiler about the
path of the include files. For GCC or KCC the compiler option ~-IPREFIX/include is
given.

c++ -c -I/usr/local/filib/include source.cpp -o source.o

Linking is controlled by another option telling the location of the library during linking
and at runtime. An example for the KAT compiler:

KCC source.o -o source ——no_abstract_float -L/usr/local/filib/1lib
-lprim -Wl,-rpath=/usr/local/filib/1ib

--no_abstract_float is used for calling the KAI compiler for correctness reasons.

6.2.3 Usage of the Macro Library
The source file has to contain the directive
#include <Interval.h>

in order to declare the identifiers of the macro library. When compiling source files,
it is necessary to inform the compiler about the path of the include files. For GCC or
KCC the compiler option ~-IPREFIX/include is given.

c++ -c -I/usr/local/filib/include source.cpp -o source.o

Linking is controlled by another option telling the location of the library during
linking. An example for the KAT compiler:

KCC source.o -o source -L/usr/local/filib/1lib -1fi -lieee -1lm
-Wl,-rpath=/usr/local/filib/1ib --no_exceptions --no_abstract_float

As above ——no_abstract_float is used for the KAI compiler. In addition the macro
library is by default compiled with --no_exceptions for performance reasons.

6.3 Organization of Subdirectories

We finally describe the structure of the directories in form of a directory tree:

40

interval

| --- doc (this manual)

: :——— tex (PS/PDF documentation files)
:--— examples (a few tiny examples)

:——— fp_traits (traits classes for fp types)

|
|--- ieee (code for handling IEEE 754 types)

|--- interval (interval arithmetics)

|-—- stdfun (standard functions)

[

[|

| | --- interval (interval versions)
[|

[| --- point (point versions)

[

| --- macro (macro based library)

[
| |-- config (compile time switches)
[

| |-- doc (o0ld documentation)

[

| |-- example (example code)

[

| |-- include (c++ header files)

[

[

[

[

|-- src (static/non-inline interval code)

-- licenses (licemnse (GPL))

|-- makefiles (various makefiles for GCC/KAI/etc.)

|-- readme (some information on installations)

| -- rounding_control (low-level machine rounding control)

The installation copies files from the directories interval, fp_traits, ieee, rounding control
and macro/include to the installation include directory. The installation 1ib direc-
tory is after installating filib++ populated by libraries built on the target machine.

(We currently do not support cross-compilation.)

41

Bibliography

[1]

[2]

[5]

[6]

The C++ Programming Language, ISO 14882, 1998

Acknowledgements, Origins

Many people have contributed to the design and the construction of filib4++. The
first version of the library has been published in Karlruhe by Werner Hofschuster
and Walter Kramer. It was a library with emphasis on the fast evaluation of the
elementary functions. The normal mode was implemented.

Hofschuster, W.; Kramer, W.: FILLIB, eine schnelle und portable Funk-
tionsbibliothek fir reelle Argumente und reelle Intervalle im IEEE-double-
Format, Preprint Nr. 98/7 des Instituts fiir Wissenschaftliches Rech-
nen und Mathematische Modellbildung, Universitdt Karlsruhe, July 1998.
ftp://ftp.iam..uni-karlsruhe.de
/pub/iwrmm/preprints/prep987.ps

Hofschuster, W.; Kramer, W.: Quellen der fi_1ib
ftp://iamk4515.mathematik.uni-karlsruhe.de/pub/iwrmm/software/fi_lib.tgz
Now in Wuppertal !
http://www.math.uni-wuppertal.de/org/WRST/software.html

The code for the calculation of the elementary functions has been taken from
this library with changes only for the extended mode.

The implementation of the extended mode has largely been influenced by Bill
Walster and his team at Sun Microsystems.

Chiriaev,D., Walster, G.W.:Interval Arithmetic Specification,
www.mscs.mu.edu/ globsol/walster-papers.html

Walster, G.W. et al.: Extended Real Intervals and the Topological Closure of
Extended Real Numbers, Sun Microsystems, Feb 2000

Walster, G.W. et al.: The ”Simple” Closed Interval System, Sun Microsystems,
Feb 2000

They started with a Fortran extension and now also provide a C++ library.

C++ Interval Arithmetic Programming Reference, Sun Microsystems, Oct 2000
http://www.sun.com/forte/cplusplus/interval/index.html

42

[8]

[9]

Input and output routines of filib+4+ have been adapted from the
libI77 of the runtime system of the Gnu Fortran Compiler // (see
http://www.eecs.lehigh.edu/ mschulte/compiler)

We further thank Jens Maurer for fruitful discussions on the design of a template
library conforming to the C++ standard.

Parts of this manual have been published in earlier reports.

Michael Lerch, Jirgen Wolff von Gudenberg, fi lib++ : Specification, Im-
plementation and Test of a Library for Extended Interval Arithmetic, RNC4
proceedings, pp. 111-123, April 2000

Jiirgen Wolff von Gudenberg, Interval Arithmetic and Multimedia Architectures,
Techn. Report 265, Informatik, Universitdt Wiirzburg, Oct 2000

43

