FastPILSS = .
Fast parallel verified linear

(interval) system solvers

RN
i
il
SN\

N
i
N\

Quick Overview

Version 0.4.2

Contents

(1__Introduction|

[2__Installation|
2.1 Requirements
[2.2 Quick install guide]
[2.3 Detailed installation procedure
[2.3.1 Editing the 1ss.inc file|

[2.3.2 Compiling the solvers using make|

[2.3.3 Testing and examples|. L.

[3 Working with the solvers|

[y

AR W NN NN

1 Introduction

The FastPILSS (Fast Parallel Interval Linear System Solver) software is a set of parallel
linear (interval) system solvers that compute a verified (interval) solution of the system.
This means the solvers compute a verified enclosure of the solution to the problem

Axr =0,

where A is a square matrix of dimension n X n, b is a given right and side vector of
dimension n and x is the solution vector of dimension n. The solver is based on the well
known method by Rump [8], 9.

The elements of A and b can be real numbers, intervals, complex numbers or complex
intervals. The elements of the solution x will then be (tight) intervals (or complex
intervals) that have been verified to contain the actual solution of the linear system (for
interval systems, the solution is an enclosure of the interval hull of the solution set.

The solvers use the powerful C-XSC library for scientifing computing as a backbone,
which provides most of the necessary tools (interval arithmetic, accurate dot products
etc.). BLACS and ScaLAPACK [2] are used where possible to obtain optimal speeds.

The solvers are fast compared to many other software solutions for this problem while
maintaining a very high accuracy in its results. Due to the distributed memory paral-
lelization it allows to compute the verified solution of very large linear systems (Dimen-
sion 100000 or even higher) by distributing the data accordingly. The dimension of the
system is limited only by the size of the accumulated memory of the cluster used.

This document intends to give a quick overview on how to compile and use the solvers.
Please keep in mind that this software should still be regarded as being in beta stage. If
you have questions, suggestions or would like to report a bug, please feel free to mail us
at xscOmath.uni-wuppertal.de.

Remark: The serial solvers that were included in this package before are now part
of the C-XSC library itself. They can be used by including the header file fastlss.hpp
and calling the solver function as before.

2 Installation

This chapter details the installation of the solvers.

2.1 Requirements

The requirements for the solvers are:

e A modern C++ Compiler (GNU Compiler 4.6.x or higher or Intel Compiler 12.x
or higher recommended)

C-XSC Version 2.5.2 or higher
BLACS and ScaLAPACK libraries

MPI environment

2.2 Quick install guide

Here is a quick rundown of the steps necessary to compile and use the solvers. More
detailed explanations follow in the next section.

e Open the file 1ss. inc in the root directory. Edit the file according to your system.
e Type make all to compile everything.

e Run the programm tester from the bin directory to check if correct results are
computed.

e After compilation you can find the static library libcxscplss.a containing the
parallel solvers in the 1ib directory. The according header file can be found in the
include directory.

e You can now use the solvers by including the header from the include path and link-
ing to the solver library and according BLAS, BLACS and ScaLAPACK libraries.
See Chapter [3| for instructions on calling the solvers.

2.3 Detailed installation procedure

In this section the installation procedure is explained in more detail.

2 Installation

2.3.1 Editing the 1ss.inc file

The file 1ss.inc is used to configure the installation step for your system. The following
list explains the entries of this file in more detail:

e PREFIX: The install directory of the C-XSC library.

e ROOTDIR: The directory containing the src folder of the solvers and the 1lss.inc
file.

e CPP: The command to invoke the C++ compiler you want to use, for example g++.

e MPICPP: The command to invoke the C++ compiler for MPI programs. Most MPI
distributions have a convenience wrapper that calls the normal C++ compiler and
automatically sets all compiler options necessary to compile MPI programs. In
most cases it will be called something like mpiCC or mpic++. If your system does
not provide such a command, set this entry to your standard compiler with the
necessary compiler options for MPI programs.

e OPTIMIZATION: Sets the compiler optimization options. On most machines the
default setting will work fine. Depending on your system, you might want to set
some additional compiler options to improve inlining (for example the -ipo option
of the Intel Compiler or options extending the inlining limits). Please refer to your
compiler documentation for more information on the available options.

e BLASVERSION: Link options for the LAPACK and BLAS libraries you want to use.
Remember that the order of the link commands can be important! Please refer to
the documentation of your BLAS/LAPACK library for the correct link options.

e SCALAPACKLINK: Link options for the ScaLAPACK and BLACS libraries.

e FORTRAN: Depending on the BLAS library you use, you might have to link against
the standard FORTRAN library. Set this entry accordingly (for example to
-lgfortran if you use the GNU Fortran compiler).

e FORTRANNAMING: Naming conventions when calling FORTRAN functions from C
or C++4 code. The solvers call FORTRAN functions from ScaLAPACK directly.
Depending on your FORTRAN compiler, the naming conventions for calling these
functions from C++ can be different. Possible choices are Add_ if an underscore
is added to the name (dgemm becomes dgemm_), Unchanged if the name stays the
same and Uppercase when the name is changed to upper case (dgemm becomes
DGEMM).

e CXXRPATH: Sets the search path for the dynamic C-XSC library. If you did not
compile C-XSC into a dynamic library (which is the default), you can comment
this entry out or leave it blank. Depending on your operating system and compiler
you might need to use another option or set an environment variable instead.

2 Installation

e LIBTOOL: The tool to create a static library from object files with the appropriate
parameters. For Linux the default value ar rcs should normally work, however if
you are using the Intel compiler with multi file optimization (compiler flag -ipo)
you should set this to xiar cru.

e MAKETOOL: The command to invoke make. Normally this will be make or gmake.

2.3.2 Compiling the solvers using make

After setting the values in the 1ss. inc file correctly, you can start compilation by simply
typing make target in the root directory, where target can be one of the following:

e all: Compile solver library, examples and test program.
e library: Only compile solver library.

e examples: Compile all examples.

e tester: Compile test program.

After compilation you can find the libraries in the 1ib directory and all executables
(tester program and examples) in the bin directory.

2.3.3 Testing and examples

After successful compilation, you should run the tester program to check if all com-
putations are performed correctly. This program does not use MPI and can be called
directly. Possible problems are wrong results when computing dot products (then you
have to set the precision to K = 0 or K = 1 when invoking the solvers) and incorrect
results when using BLAS routines. This can happen if your BLAS library interferes with
the floating point control word (especially the rounding mode setting) of the processor.
You then have to use a different BLAS library (ATLAS BLAS is recommended).

If you compiled the example programs, you can find them in the bin folder. The
programs plss, pilss, pclss, pcilss are the parallel example programs for real,
interval, complex and complex interval systems, respectively. These, of course, use MPI
hand have to be called appropriately (for example by using a command like mpirun).

The parallel examples all by default compute the solution to an example system of
dimension 1000 x 1000 with one right hand side. The precision K, the dimension and the
number of right hand sides can be given to the solver as program arguments (for example
plss 2 5000 10 computes the solution to the example system of size 5000 x 5000 using
2-fold double precision for the computation of the residual and a right hand side of
dimension 5000 x 10). If you want to change the system, use a different right hand side
or make other changes, you can alter the source code directly. The source code of the
examples is located in src/examples. When running the parallel examples all nodes
will put out log messages into a file outputID.txt located in the directory from which
you called the example program, where ID is the MPI ID of the process.

3 Working with the solvers

This chapter explains how to use the solvers once they have been compiled. You can
also take a look at the example programs in src/examples to show you how to call
the solvers. Theres one example program for each solver (each basic data type: real,
interval, complex, complex interval).

The solvers are compiled into the static library 1ibcxscplss.a which can be found
in the 1ib directory. To use them in your program, you have to include the file cxsc-
plss.hpp from the include folder.

Only the solver for real interval systems (pilss) is explained here, the other solvers
plss, pclss, pcilss work the same way, only the datatypes of the matrices are dif-
ferent.

Since version 0.4.0, the interface to starting the solvers has changed slightly, and has
again been slightly modified for version 0.4.1 and 0.4.2. Many options are now set
using a struct. Before calling the solvers, you have to create an instance of the struct
plssconfig, which is shown in the following listing:

struct plssconfig {

int K; //Dot product precision
int lssparts; //Solver stages to use
int threads; //Number of OpenMP threads

// (probably used by your BLAS library)
int maxIterResCorr; //maximum number of iterations during
//residual correction

int maxIterVer; //maximum number of iterations during
//the verification step

bool refinement; //Perform an iterative refinement?

int maxIterRef; //maximum number of iterations during
//the refinement step

real epsVer; //Epsilon for the verification step

real epsRef; //Epsilon fot the refinement step

int nb; //Blocksize for Scalapack

bool matrixMode; //Activate matrix mode, faster for

//multiple right hand sides
//(forces K=1)

plssconfig() : K(2), lssparts(LSS_BOTH_PARTS), threads(-1),
maxIterResCorr(5), maxIterVer(5), refinement(false),
maxIterRef (5), epsVer(0.1), epsRef(le-5), nb(256),

+s

3 Working with the solvers

matrixMode(false) {}

The attributes of the struct have the following meaning:

e K: The dot product precision to use in the solver. Note that for speed reasons not

all computations are performed with this precision, but only the residual compu-
tations. Nevertheless, a higher setting can lead to more accurate results. Possible
values are 0 (maximum precision), 1 (pure floating point) or K > 2 using K-fold
double precision. The default value is K = 2, which should work fine for most
practical applications. However, if you try to solve a system with high condition
number using stage two of the solver (explained below), a setting of K = 3 often
provides noticably better results. If K = 1 is used, Matrix Mode is activated
automatically (see below).

1ssparts: Determines if only stage one (value LSS_ONLY_PART_ONE), only stage
two (value LSS_ONLY_STAGE_TWO) or stage one followed by stage two - if stage
one is not succesful - (value LSS_BOTH_PARTS) of the solver is performed. Stage
one normally works for systems with condition number of up to about 10'°, while
stage two can solve systems with condition numbers up to about 10%°. Be aware
that if the system matrix is an interval matrix whose elements are not very thin
intervals and stage one does not work, then stage two also is not very likely to
work, since the interval matrix then most likely contains very badly conditioned
or even singular point matrices. Also note that stage two takes considerably more
computing time. The default value for this attribute is LSS_BOTH_PARTS.

threads: The number of OpenMP threads to use. Currently, this has only an effect

if the used BLAS and LAPACK libraries use OpenMP. Note that this value will
override the number of threads set in the environment variable OMP_NUM_THREADS.
The default value of —1 uses the current default number of threads for OpenMP.

e maxIterResCorr: Maximum number of iteration steps for the residual correction.

The solver tries to improve the approximate solution computed for the midpoint
system at the beginning. The maximum number of iteration steps can be set
with this variable. Setting it low will save some time (should be negligible for
larger systems), setting it higher might produce better results, especially for point
systems.

e maxIterVer: Maximum number of iteration steps for the verification. In a final

iteration, the solver tries to verify that the computed enclosure contains the true
solution. If the enclosure can not be verified, but the matrix is not ill-conditioned,
setting this variable somewhat higher might produce a verified result. Normally
this should not be necessary.

3 Working with the solvers

e refinement: When set to true, an iterative refinement step is used to try to
improve the computed enclosure somewhat. The cost for this is normally negligible
and especially for interval systems the results are often (slightly) improved.

e maxIterRef: Maximum number of iteration steps for the refinement step described
above.

e epsVer: Epsilon for the epsilon inflation used during the verification step. The
iterate is blown up a little in each step to try to achieve an enclosure in the interior
of the previous iterate.

e epsRef: Epsilon for the refinement step. This value dictates how large the maximal
distance between two successive iterates should be for the refinement iteration to
stop. Setting this value lower and the number of refinement steps higher might
produce more accurate results.

e nb: The block size for ScaLAPACK. The block size can have a huge effect on
the efficiency of the ScaLAPACK routines. The optimal setting depends on the
used system. The default value is 256, which provided good results on most test
systems. You should experiment with this setting to find the best value for your
system.

e matrixMode: Enables the so-called matrix mode, which does not loop over multiple
right hand sides but instead treats them as a matrix. For many right hand sides it
is suggested to activate this mode. Note that enabling matrix mode forces K = 1
and the use of only stage one of the solver. Also, inner enclosures can not be
computed in this mode.

Create an instance of the struct and overwrite the values you want to change (if any)
or use the values sett by the default constructor. Then pass the instance as the last
argument of the solver function call (see also the example programs).

Before starting the solvers, you have to also initialize the MPI environment and re-
trieve the process ID and number of processes yourself using the corresponding MPI
functions. After that, you can start the solver by invoking the function:

void pilss(imatrix& A, imatrix& b, imatrix& x, int m, int n, int procs,
int mypid, int& errc, ofstream& out, struct plssconfig cfg)

The parameters have the following meaning:

e A: The system matrix. When starting the solver, the complete system matrix must
be stored in process 0. It will then be distributed to the other processes and deleted
afterwards.

e b: The right hand side(s). When starting the solver, the complete matrix must be
stored in process 0. It will then be distributed to the other processes and deleted
afterwards.

3 Working with the solvers

x: The solution matrix. After the solver is finished and if not in matrix mode
(see above), the solution will be stored column cyclically distributed between the
processes (A process p stores all columns j with j mod P = p, where P is the
number of processes used). The solution matrix must already have sufficient size
to hold the result when starting the solver. If in matrix mode, process 0 will store
the complete result matrix.

e m: The number of rows of the system matrix.

e n: The number of columns of the system matrix.
e procs: The number of processes used.

e mypid: Own MPI process id.

e errc: An error code. If errc equals 0, no error occured. Otherwise the function
std::string LinSolveErrMsg(int) can be used to retrieve the error message
corresponding to the error code.

e out: An output file stream to which the log data should be written.

e cfg: The configuration struct as explained above.

If you want to solve very large systems, the version of the solver described above
might not work because the whole system matrix has to be stored by one process in the
beginning. For such cases you can use a different version, where A and b are not given
as matrices, but as function pointers. For the real interval case, this must be a pointer
to a function like this:

void makeA(int i, int j, interval& r)

This function will be called by the solver while distributing the matrix. It should
overwrite r with the entry at position (4, 7) of the matrix. The other solvers require a
function where 1 is of type real, complex or cinterval. The function can for example
compute the entry, if there is some formula for the matrix entries, or read the appropriate
value from a text file. This way, the system matrix never has to be stored completely by
one process. Still, the larger the system you want to solve, the more memory is needed.
In these cases you should give the solver as much ressources (nodes) as possible in your
environment.

This second version is called as follows:

void pilss(Get_imatrix& A, Get_imatrix& b, imatrix& x, int m, int n, int
rhs, int procs, int mypid, int& errc ofstream& out, struct plssconfig cfg)

The parameters have the following meaning:

e A: Pointer to a function that can compute element (i, j) of the system matrix.

3 Working with the solvers

e b: Pointer to a function that can compute element (7, j) of the right hand side.

e x: The solution matrix. After the solver is finished and if not in matrix mode
(see above), the solution will be stored column cyclically distributed between the
processes (A process p stores all columns j with j mod P = p, where P is the
number of processes used). The solution matrix must already have sufficient size
to hold the result when starting the solver. If in matrix mode, the solution will
be distributed among the processes in ScaLAPACKSs two-dimensional block cyclic
distribution according to the block size set in the configuration struct. Consult
the ScaLAPACK manual [2] for more information.

e m: The number of rows of the system matrix.

e n: The number of columns of the system matrix.

rhs: The number of right hand sides.

procs: The number of processes used.

mypid: Own MPI process id.
e errc: An error code. If errc equals 0, no error occured.

e out: An output file stream to which the log data should be written.

cfg: The configuration struct as explained above.

In both cases, an inner enclosure of the solution can be computed by passing an ad-
ditional parameter imatrix y after the parameter x:

void pilss(imatrix& A, imatrix& b, imatrix& x, imatrix& y, int m, int n,
int procs, int mypid, int& errc, ofstream& out, struct plssconfig cfg)

void pilss(Get_imatrix& A, Get_imatrix& b, imatrix& x, imatrix& y, int m,
int n, int rhs, int procs, int mypid, int& errc ofstream& out, struct plssconfig
cfg)

An inner enclosure can be used to determine the quality of the computed outer enclo-
sure. The true result is guaranteed to lie between the inner and outer enclosure. Size
and data distribution of the inner enclosure are the same as for the outer enclosure.
Note: Sometimes, no inner enclosure can be computed (especially for point systems).
The corresponding elements of the inner enclosure are then set to SignalingNaN. Also
note that when using K = 1 (matrix mode), no inner enclosure can be computed.

Note: You have to link your program not only against the solver library, but also
against the BLACS, ScaLAPACK, BLAS, LAPACK and C-XSC libraries!

Bibliography

[1] L.S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Her-
oux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, R. C. Whaley:
An Updated Set of Basic Linear Algebra Subprograms (BLAS). ACM Trans. Math.
Soft., 28-2 (2002), pp. 135-151.

2] Blackford, L. S. and Choi, J. and Cleary, A. and D’Azevedo, E. and Demmel, J. and
Dhillon, I. and Dongarra, J. and Hammarling, S. and Henry, G. and Petitet, A. and
Stanley, K. and Walker, D. and Whaley, R. C.: ScaLAPACK Users’ Guide. Society for
Industrial and Applied Mathematics, 1997, Philadelphia, PA, ISBN = 0-89871-397-8

[3] Grimmer, M.: Selbstverifizierende Mathematische Softwarewerkzeuge im High-
Performance Computing. Konzeption, Entwicklung und Analyse am Beispiel der par-
allelen verifizierten Losung linearer Fredholmscher Integralgleichungen zweiter Art.
Logos Verlag, 2007.

[4] Hofschuster, W.; Kramer, W.: C-XSC 2.0: A C++ Library for Extended Scientific
Computing. Numerical Software with Result Verification, Lecture Notes in Computer
Science, Volume 2991/2004, Springer-Verlag, Heidelberg, pp. 15 - 35, 2004.

[5] Holbig, C.; Kramer, W.: Selfverifying solvers for dense systems of linear equations
realized in C-XSC. Technical Report BUW-WRSW'T 2003/1, 2003.

6] Klatte, Kulisch, Wiethoff, Lawo, Rauch: C-XSC - A C++ Class Library for Extended
Scientific Computing. Springer-Verlag, Heidelberg, 1993.

[7] Kramer, W., Zimmer, M.: Fast (Parallel) Dense Linear System Solvers in C-XSC
Using Error Free Transformations and BLAS. Accepted for publication 2008, Springer
Lecture Notes in Computer Science.

[8] Rump, S.M.: Kleine Fehlerschranken bei Matrixproblemen. PhD Thesis, Universitt
Karlsruhe, 1980.

9] Rump, S.M.: Verification methods for dense and sparse systems of equations. In
J.Herzberger, editor, Topics in validated numerics, Studies in Computational Mathe-
matics, pages 63-136. Elsevier, Amsterdam, 1994.

[10] Zimmer, Michael: Laufzeiteffiziente, parallele Loser fiir lineare Intervallgle-
ichungssysteme in C-XSC. Master Thesis, University of Wuppertal, 2007.

10

	Introduction
	Installation
	Requirements
	Quick install guide
	Detailed installation procedure
	Editing the lss.inc file
	Compiling the solvers using make
	Testing and examples

	Working with the solvers

