Optimization of Rational Approximations by Continued Fractions

Frithjof Blomquist

Preprint
BUW-WRSWT 2006/3

Wissenschaftliches Rechnen/
Softwaretechnologie
Impressum

Herausgeber: Prof. Dr. W. Krämer, Dr. W. Hofschuster
Wissenschaftliches Rechnen/Softwaretechnologie
Fachbereich C (Mathematik und Naturwissenschaften)
Bergische Universität Wuppertal
Gaußstr. 20
42097 Wuppertal, Germany

Internet-Zugriff

Die Berichte sind in elektronischer Form erhältlich über die World Wide Web Seiten

http://www.math.uni-wuppertal.de/wrswt/literatur.html

Autoren-Kontaktadresse

Frithjof Blomquist
Adlerweg 6
66436 Püttlingen, Germany
E-mail: blomquist@math.uni-wuppertal.de
Optimization of Rational Approximations by Continued Fractions

Frithjof Blomquist
University of Wuppertal
Scientific Computing / Software Technology
Gaußstr. 20
D-42097 Wuppertal, Germany

Abstract
To get guaranteed machine enclosures of a special function \(f(x) \), an upper bound \(\varepsilon(f) \) of the relative error is needed, where \(\varepsilon(f) \) itself depends on the error bounds \(\varepsilon(\text{app}), \varepsilon(\text{eval}) \) of the approximation and evaluation error respectively. The approximation function \(g(x) \approx f(x) \) is a rational function (Remes algorithm), and with sufficiently high polynomial degrees \(\varepsilon(\text{app}) \) becomes sufficiently small. Evaluating \(g(x) \) on the machine produces a rather great \(\varepsilon(\text{eval}) \) because of the division of the two erroneous polynomials. However, \(\varepsilon(\text{eval}) \) can distinctly be decreased, if the rational function \(g(x) \) is substituted by an appropriate continued fraction \(c(x) \) which in general needs less elementary operations than the original rational function \(g(x) \). Numerical examples will illustrate this advantage.

Keywords: C-XSC, continued fractions, error bounds, Special Functions.

1 Introduction

In general the exact sum \(a + b \) of two machine numbers \(a, b \) is not a machine number itself and must therefore be rounded to the IEEE system \(S(2,53) \). If the rounding is realized to one of the neighboring machine numbers, denoted by \(a \oplus b \), the relative error \(\varepsilon_{a+b} \) is defined by \((a + b) - (a \oplus b) = \varepsilon_{a+b} \cdot (a + b) \) and it holds [2]

\[
|\varepsilon_{a+b}| \leq \varepsilon^* := 2^{-52} = 2.220446\ldots \cdot 10^{-16}, \quad \text{(high accuracy)}.
\]

\(\varepsilon^* \) is the error bound of the elementary operations in high accuracy.

If \(\bar{f}(x) \) denotes the machine approximation of the exact function value \(f(x) \), the relative error \(\varepsilon_f \) is defined by \(\bar{f}(x) - f(x) = \varepsilon_f \cdot f(x) \) and for the error bound \(\varepsilon(f) \) it holds for all machine numbers \(x \) of the domain \(D_f \)

\[
|\varepsilon_f| \leq \varepsilon(f) \quad \forall x \in D_f \cap S(2,53).
\]

If \(f(x) \) is approximated by \(g(x) \approx f(x) \) and if \(\bar{g}(x) \) denotes the machine value of \(g(x) \approx \bar{g}(x) \) then \(\bar{f}(x) = \bar{g}(x) \) and with \(f(x) \approx g(x) \approx \bar{g}(x) \), together with the definitions

\[
\begin{align*}
 f(x) - g(x) &= \varepsilon_{\text{app}}(x) \cdot f(x), \quad |\varepsilon_{\text{app}}(x)| \leq \varepsilon(\text{app}) \quad \forall x \in D_f, \\
 g(x) - \bar{g}(x) &= \varepsilon_{\text{eval}} \cdot g(x), \quad |\varepsilon_{\text{eval}}| \leq \varepsilon(\text{eval}, g) \quad \forall x \in D_f.
\end{align*}
\]
the triangle inequality delivers

\[\varepsilon(f) = \varepsilon(\text{app}) + \varepsilon(\text{eval}, g) \cdot [1 + \varepsilon(\text{app})] \quad \forall x \in D_f \cap S(2, 53), \]

so guaranteed values of the upper bounds \(\varepsilon(\text{app}) \) and \(\varepsilon(\text{eval}, g) \) are needed for calculating an guaranteed upper bound \(\varepsilon(f) \) of the relative error \(\varepsilon_f \).

Let \([a, b] \subset D_f\) be a given approximation interval, where \(f(x) \) is a positive and monotonic increasing function then a guaranteed enclosure of all function values \(f(x) \) is given by the following interval

\[
f(x) \in \left[\frac{\tilde{f}(a)}{1 + \varepsilon(f)}, \frac{\tilde{f}(b)}{1 - \varepsilon(f)} \right] \quad \forall x \in D_f \cap S(2, 53),
\]

so \(\varepsilon(f) \), depending on \(\varepsilon(\text{app}) \) and \(\varepsilon(\text{eval}, g) \), is essential for implementing interval functions, and for tight enclosures small values of \(\varepsilon(\text{app}) \) and \(\varepsilon(\text{eval}, g) \) are needed.

\section{Approximation Error}

In contrast to the elementary functions by special functions the approximation intervals \([a, b]\) are widespread, not containing the origin in general. Therefore a rational function

\[
g(x) := \frac{P_M(x - x_0)}{Q_N(x - x_0)} \approx f(x), \quad M, N \in \mathbb{N},
\]

calculated with the Remes algorithm, delivers an optimal approximation of \(f(x) \), i.e. \(\varepsilon(\text{app}) \) is for example much smaller than the appropriate error bound, calculated with the Padé algorithm using the same values of \(M, N \). The typical behavior of the relative approximation error \(\varepsilon_{\text{app}}(x) \), caused by best approximation with \(M = N = 4 \), is shown in figure 1.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure1.png}
\caption{Best approximation with \(g(x) \): \(\varepsilon_{\text{app}}(x), \ M = N = 4 \).}
\end{figure}
There are $M + N + 2 = 8$ equal values of the absolute extrema of $\varepsilon_{\text{app}}(x)$. The coefficients of the polynomials P_M, Q_N are calculated with the algebra system Mathematica, using a precision of 50 decimal digits. However, in practice these coefficients must be rounded to the IEEE system and hereby the maximum of $|\varepsilon_{\text{app}}(x)|$ will be enlarged roughly by factor 2. The typical influence of this rounding is shown in figure 2, where the rounding is done to 17, 16, 15 and 14 decimal digits.

![Figure 2: $\varepsilon_{\text{app}}(x)$; rounding the coefficients to 17, 16, 15, 14 decimal digits](image)

For the best approximation with $g(x)$ Mathematica delivers an approximation error, which however can only be used as an estimated value to realize the proper polynomial degrees M, N, because there is no information about the used algorithm. Furthermore, concerning the described rounding effects, the approximation error must be re-evaluated to get a reliable value of the upper bound ε_{app}, [4]. With a C-XSC program a guaranteed upper bound ε_{app} can be calculated, [2]. So, with sufficiently high values of M, N, ε_{app} can be treated as a nearly optimal and reliable value.

3 Evaluation Error

In [2] a C-XSC library is described for calculating reliable upper bounds $\varepsilon(\text{eval})$ of the evaluation errors concerning the elementary operations. Additionally C-XSC functions are implemented for calculating guaranteed upper bounds of the relative evaluation errors, if polynomials or rational functions are evaluated in the IEEE system.

In practice, for not too wide intervals $[a, b]$ and with a proper point of expansion $x_0 \in [a, b]$ for polynomials we have $\varepsilon(\text{eval}) \sim 4 \cdot \varepsilon^*$. Hence, for a rational approximation function $g(x)$ it holds $\varepsilon(\text{eval}, g) \sim (2 \cdot 4 + 1) \cdot \varepsilon^* = 9 \cdot \varepsilon^*$. In
comparison with the upper bound of the approximation error, which should be
\(\varepsilon(\text{app}) \sim 0.1 \cdot \varepsilon^*\), the upper bound \(\varepsilon(\text{eval}, g)\) is much too great and should ideally
be reduced to \(\varepsilon(\text{eval}) \sim 1 \cdot \varepsilon^*\).

To get such a small evaluation error \(\varepsilon(\text{eval}) \sim \varepsilon^*\), the approximation function
\(g(x) \approx f(x)\) should be a sum

(2) \[S + s(x - x_0), \quad S, x, x_0 \in S(2, 53), \quad \text{with} \]

(3) \[|S| \gg |s(x - x_0)|, \]

where \(S\) must be an error-free summand, which should be rather great in comparison to the erroneous second summand \(s(x - x_0)\), [2].

4 Approximation with Continued Fractions

Starting from the rational function \(g(x) = P_M(x - x_0) / Q_N(x - x_0)\) the question
is now, how to get a nearly equivalent sum \(S + s(x - x_0) \approx g(x)\), fulfilling the
condition (3). \(S + s(x - x_0)\) must be nearly equivalent to \(g(x)\) in order to keep
the small approximation error \(\varepsilon(\text{app}) \sim 0.1 \cdot \varepsilon^*\).

To achieve the sum (2) we perform simple polynomial divisions, where two
strategies can be pursued

1. Discarding in \(P_M(x - x_0)\) the summand with the highest exponent \(M\),
2. Discarding in \(P_M(x - x_0)\) the summand with the exponent 0.

Strategy 1. is demonstrated with the following example, setting \(u = (x - x_0)\)

(4) \[g(x) = (2 + 4u - 2u^2) : (1 - u + u^2) = -2 + \frac{4 + 2u}{1 - u + u^2} \]

\[= -2 + \frac{1}{1 - u + u^2} \cdot \frac{4 + 2u}{4 + 2u} \]

\[= -2 + \frac{1}{2u - 3 + \frac{7}{4 + 2u}} \]

(5) \[= -2 + \frac{2}{u - 3 + \frac{7}{u + 2}} \]

In (5), with \(S = -2\), we have the desired structure (2). However, the condition
(3) is only fulfilled for \(|u| \to +\infty\). With strategy 2. we get

(6) \[g(x) = (2 + 4u - 2u^2) : (1 - u + u^2) = 2 + \frac{1}{6} + \frac{u}{u - 18 + \frac{u}{42 + \frac{u}{14},}} \]
now with $S = +2$, and condition (3) is fulfilled for $|u| \to 0$, i.e. for $x \to x_0$. To get a short runtime we should use (5), because here we only need 6 elementary operations instead of 8 operations in (6).

However, in (5) we should have $|u| \to +\infty$ for $x \to x_0$. This problem is solved by using the transformation $u = 1/v$ in the rational function $g(x)$, and a subsequent polynomial division with strategy 1. and $v := 1/(x - x_0)$ delivers

\[
g(x) = (-2 + 4v + 2v^2) : (1 - v + v^2) = 2 + \frac{6}{v - \frac{1}{3} + \frac{7/9}{v - \frac{2}{3}}} =: c(v).
\]

In (7) $x \neq x_0$ must be realized, and $g(x_0) := 2$ is a continuous supplementation. Now we have the desired result: $|v| \to +\infty$ for $x \to x_0$. Hence, with the continued fraction $c(v)$ on the right-hand side in (7) we will find rather small evaluation errors using not too wide approximation intervals with a suitable point of expansion $x_0 \in [a, b]$.

Here still a closing remark for calculating the approximation error. Starting with $c(v)$, defined in (7), we first have to realize a rational interval function $r(x)$ enclosing this finite continued fraction. The task can be done using the recurrence formula in [7,pp. 175–177], and with a C-XSC program a guaranteed upper bound $\varepsilon(\text{app})$ of the relative approximation error can be calculated, [1,2].

5 Numerical Examples

In this section the improvement of the evaluation error is demonstrated by using a continued fraction analogously to (7) instead of the rational function $g(x) = P_M(x - x_0)/Q_N(x - x_0)$. The special functions to be approximated are the error function $\text{erf}(x)$ and the complementary error function $\text{erfc}(x)$.

![Figure 3: erf(x) and erfc(x)](image-url)
The two functions \(\text{erf}(x) \) and \(\text{erfc}(x) \) are defined by

\[
\text{erf}(x) := \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} \, dt, \quad \text{erfc}(x) := 1 - \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} \, dt, \quad x \in \mathbb{R};
\]

5.1 Approximation of \(\text{erfc}(x) \), \(x \in [14, 26.5] \)

In the wide approximation interval \([a, b] = [14, 26.5]\) we consider the asymptotic expansion, [1, formulae 7.1.23, 7.1.24]

\[
\text{erfc}(x) = \frac{e^{-x^2}}{\sqrt{\pi} \cdot x} \left[1 - \frac{1}{(2x^2)^1} + \frac{1 \cdot 3}{(2x^2)^2} - \ldots + (-1)^N \cdot \frac{1 \cdot 3 \cdot \ldots \cdot (2N - 1)}{(2x^2)^N} + r \right]
\]

\[|r| = |r(x, N)| \leq \frac{1 \cdot 3 \cdot 5 \cdot \ldots \cdot (2N + 1)}{(2x^2)^{N+1}}, \quad N = 1, 2, 3, \ldots\]

With the factor \(e^{-x^2} \) in the above asymptotic expansion \(\text{erfc}(x) \) is a strongly decreasing function. Hence, the following approximation \(\text{erfc}(x) \approx c_N(v) \) with a continued fraction \(c_N(v) \) of length \(N \) will fail, because \(c_N(v) \) itself is a strongly decreasing function, which consequently can not fulfill the condition (3) for a small evaluation error. However, in contrast to \(\text{erfc}(x) \), the quotient \(\text{erfc}(x)/e^{-x^2} \) is a nearly constant function, which can successfully be approximated by a continued fraction \(c_4(v) \) of length 4: \(v := 1/(x - x_0), \) \(x_0 := 20.5; \)

\[
(8) \quad \frac{\text{erfc}(x)}{e^{-x^2}} \approx c_4(v) := b_0 + \frac{a_1}{v + b_1 + \frac{a_2}{v + b_2 + \frac{a_3}{v + b_3 + \frac{a_4}{v + b_4}}}}, \quad x \neq x_0.
\]

The calculation of the rational function \(P_4(x - x_0)/Q_4(x - x_0) \), the transformation \(u := x - x_0 = 1/v \) and the computation of the \(a_k, b_k \) is done with the algebra system \texttt{Mathematica}. Approximations of the \(a_k, b_k \in S(2, 53) \) are listed in the following table:

<table>
<thead>
<tr>
<th>(k)</th>
<th>(a_k := \text{nearest}(.))</th>
<th>(b_k := \text{nearest}(.))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+0.0000000000000000000000 \cdot 10^{-9}</td>
<td>+2.748881515193487221 \cdot 10^{-2}</td>
</tr>
<tr>
<td>1</td>
<td>-1.337745866182817076 \cdot 10^{-3}</td>
<td>+4.8607808757869271 \cdot 10^{-2}</td>
</tr>
<tr>
<td>2</td>
<td>+2.771654901614425610 \cdot 10^{-6}</td>
<td>+4.8267667512656847 \cdot 10^{-2}</td>
</tr>
<tr>
<td>3</td>
<td>+5.428546251910422025 \cdot 10^{-6}</td>
<td>+4.79352491645432483 \cdot 10^{-2}</td>
</tr>
<tr>
<td>4</td>
<td>+7.982629192430865797 \cdot 10^{-6}</td>
<td>+4.740017176613045964 \cdot 10^{-2}</td>
</tr>
</tbody>
</table>

Table 1: Approximations of the \(a_k, b_k \in S(2, 53) \) with 19 decimal digits.

Notice, that \(\text{erfc}(x_0)/e^{-x_0^2} \) will be approximated by \(b_0 = 2.74888151519 \ldots 10^{-2} \).

As \(\text{erfc}(x)/e^{-x^2} \) and \(c_4(v) \) are nearly constant functions in \([a, b]\), the condition
As can be seen in figure 3, erf(\(x\)) together with (1) we finally get
\[
\text{erfc}(x) \approx g(x) := \frac{P_4(x - x_0)}{Q_4(x - x_0)} \approx c_4(v), \quad x \in [a, b],
\]
with the same point of expansion \(x_0 = 20.5\), then with another C-XSC program we get the guaranteed upper bound \(\varepsilon(\text{eval}, g(x))\) of the evaluation error
\[
\varepsilon(\text{eval}, g(x)) = 3.469925 \cdot 10^{-15} \approx 15.6 \cdot \varepsilon^*.
\]
Comparing the results in (9) and (10) we get an improvement of the evaluation error by the factor 6.5 using the continued fraction \(c_4(v)\) instead of the rational function \(g(x)\).

Up to now we have approximated only the quotient \(\text{erfc}(x)/e^{-x^2}\). However, in practice \(\text{erfc}(x)\) is evaluated by \(h(x)\):
\[
\text{erfc}(x) \approx h(x) := e^{-x^2} \cdot c_4(v), \quad v = \frac{1}{x - x_0}.
\]
The machine value \(\bar{h}(x)\) is defined by
\[
\bar{h}(x) := \expmx2(x) \odot \overline{c_4}(\overline{v}(x)), \quad \overline{v}(x) := 1 \odot (x \ominus x_0),
\]
where \(\expmx2(x)\) is the C-XSC function for calculating \(e^{-x^2}\), provided with the error bound \(\varepsilon(e^{-x^2}) = 4.618919 \cdot 10^{-16}\). \(\{\oplus, \ominus, \odot, \oslash\}\) is the set of the erroneous floating-point operators. The upper bound \(\varepsilon(\text{eval}, h(x))\) of the relative evaluation error \(\varepsilon_{\text{eval}}\) is defined by
\[
\bar{h}(x) - h(x) = \varepsilon_{\text{eval}} \cdot h(x), \quad |\varepsilon_{\text{eval}}| \leq \varepsilon(\text{eval}, h(x)) = 1.233494 \cdot 10^{-15},
\]
and calculated with a special C-XSC program.

Using the upper bound \(\varepsilon(\text{app}, \text{erfc}(x)) = 7.7344 \cdot 10^{-17}\) of the approximation error [2], together with (1) we finally get
\[
\varepsilon_{\text{erfc}} := \frac{\text{erfc}(x) - \bar{h}(x)}{\text{erfc}(x)}, \quad |\varepsilon_{\text{erfc}}| \leq \varepsilon(\text{erfc}(x)) = 1.3109 \cdot 10^{-15} \quad \forall x \in [a, b].
\]

5.2 Approximation of \(\text{erf}(x)\), \(x \in [4.75, 6]\)

As can be seen in figure 3, \(\text{erf}(x)\) is a nearly constant function for \(x \in [a, b] = [4.75, 6]\). Hence, an approximation with the continued fraction \(c_5(v)\)

\[
\text{erf}(x) \approx c_5(v) := b_0 + \frac{a_1}{v + b_1 + \frac{a_2}{v + b_2 + \frac{a_3}{v + b_3 + \frac{a_4}{v + b_4 + \frac{a_5}{v + b_5}}}}}
\]
\[v = \frac{1}{x - x_0}, \quad x \neq x_0, \quad x_0 = \frac{43}{8} = 5.375; \]

will lead to a rather small evaluation error of \(c_5(v) \), because condition (3) is fulfilled now very well. As in section 5.1 the calculation of the rational function \(P_4(x - x_0)/Q_4(x - x_0) \), the transformation \(u := x - x_0 = 1/v \) and the computation of the \(a_k, b_k \) is done with the algebra system Mathematica. Approximations of the \(a_k, b_k \in S(2, 53) \) are listed in the following table:

<table>
<thead>
<tr>
<th>(k)</th>
<th>(a_k := \text{nearest}(.))</th>
<th>(b_k := \text{nearest}(.))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+0.00000000000000000 \cdot 10^0</td>
<td>+9.9999999999707074 \cdot 10^{-1}</td>
</tr>
<tr>
<td>1</td>
<td>+3.20148681957019238 \cdot 10^{-13}</td>
<td>+5.37669022446720768 \cdot 10^0</td>
</tr>
<tr>
<td>2</td>
<td>+9.97147747229114810 \cdot 10^0</td>
<td>-8.66555788956434789 \cdot 10^{-2}</td>
</tr>
<tr>
<td>3</td>
<td>+2.02175601425989692 \cdot 10^0</td>
<td>-1.02362941358960172 \cdot 10^{-1}</td>
</tr>
<tr>
<td>4</td>
<td>+9.11033599780354109 \cdot 10^{-1}</td>
<td>-2.340999377105155262 \cdot 10^{-1}</td>
</tr>
<tr>
<td>5</td>
<td>+4.48307205311511268 \cdot 10^{-1}</td>
<td>-4.9945712016765505 \cdot 10^{-1}</td>
</tr>
</tbody>
</table>

Table 2: Approximations of the \(a_k, b_k \in S(2, 53) \) with 19 decimal digits.

Notice, that \(\text{erf}(x_0) \) will be approximated by \(b_0 = 9.999999999970 \ldots \cdot 10^{-1} \) without any evaluation error. With the erroneous machine value \(\tilde{c}_5(\tilde{v}) \) the relative evaluation error \(\varepsilon_{\text{eval}} \) is defined by

\[
\varepsilon_{\text{eval}} = \frac{\tilde{c}_5(\tilde{v}) - c_5(v)}{c_5(v)}, \quad \tilde{v} = 1 \odot (x \odot x_0).
\]

A C-XSC program delivers for the upper bound \(\varepsilon(\text{eval}, c_5(v)) \) the following result

\[
|\varepsilon_{\text{eval}}| \leq \varepsilon(\text{eval}, c_5(v)) = 2.220447 \cdot 10^{-16} \approx 1 \cdot \varepsilon^*.
\]

As we have already supposed, with the continued fraction \(c_5(v) \) we now get a rather small and optimal upper bound of the relative evaluation error.

If the approximation is done by the rational function \(g(x) \)

\[
\text{erf}(x) \approx g(x) := \frac{P_5(x - x_0)}{Q_5(x - x_0)} \approx c_5(v), \quad x \in [a, b],
\]

with the point of expansion \(x_0 = 4.875 \), then with another C-XSC program we get the guaranteed upper bound \(\varepsilon(\text{eval}, g(x)) \) of the evaluation error

\[
\varepsilon(\text{eval}, g(x)) = 3.450345 \cdot 10^{-15} \approx 15.5 \cdot \varepsilon^*.
\]

Comparing the results in (12) and (13) we get an improvement of the evaluation error by the factor 15.5 using the continued fraction \(c_5(v) \) instead of the rational function \(g(x) \).
With the upper bound \(\varepsilon(\text{app, erf}(x)) = 2.0982 \cdot 10^{-17} \) of the approximation error [2], together with (1) we finally get a rather small error bound:

\[
\varepsilon_{\text{erfc}} := \frac{\text{erfc}(x) - \overline{h}(x)}{\text{erfc}(x)}, \quad |\varepsilon_{\text{erfc}}| \leq \varepsilon(\text{erfc}(x)) = 2.4303 \cdot 10^{-16} \quad \forall x \in [a, b].
\]

Both examples demonstrate a drastic reduction of the evaluation error by using a continued fraction of structure (7) instead of an equivalent rational approximation function. Furthermore the runtime can be reduced, because the evaluation of \(c_5(v) \) in (11) needs only 17 elementary operations in contrast to the rational function \(P_5(x - x_0)/Q_5(x - x_0) \), which requires 22 operations.

References:

