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I Basic concepts
1 Algebras

(1.1) Non-associative algebras. a) Let R # {0} be a commutative ring.
An R-module 2 together with an R-bilinear multiplication p: 2 x 24 — 2L
that is p(a + b,¢) = p(a,c) + u(b,c¢) and p(a,b + ¢) = p(a,b) + p(a,c) and
p(ra,b) = ru(a,b) = p(a,rd), for all a,b,c € A and r € R, is called a non-
associative (that is not necessarily associative) R-algebra.

An R-submodule B <p 2 such that u(B,%) C B is called an R-subalgebra.
Then B becomes a non-associative R-algebra with respect to the restricted
multiplication. If the multiplication in 2l fulfills certain identities, for example
those in (1.2) or (1.3), then these are automatically fulfilled in B as well.

An R-submodule J <p 2 such that p(,7) C J and p(3,2) C T is called an
ideal of ; we write J < 2. Note that any ideal also is an R-subalgebra. We
always have {0} <2 and A <A, and if 3, J I2A are ideals, then so are their sum
J+3:={zx+yecUxecT,yecJ}IAand their intersection TNJ I A.

Then the quotient R-module 2/J := {a + 3 C A;a € A} consisting of the
additive cosets of J in 2 becomes a non-associative R-algebra, being called
the associated quotient R-algebra, with respect to the induced multiplication
7 A/TxA/T — A/T defined by (a+7,b4+7) := p(a,b)+7, for all a, b € A: We
have p(a+c, b+d) = p(a,b)+pu(a, d)+u(c, b)+u(e,d) € p(a,b)+37, forall ¢, d € 7,
hence 1 is well-defined. If the multiplication in 2 fulfills certain identities, for
example those in (1.2) or (1.3), then these are automatically fulfilled in /7.

b) If B also is a non-associative R-algebra, then a homomorphism ¢: 2 — B
of R-modules such that ¢(ug(a,b)) = ps(p(a), (b)), for all a,b € 2, is called a
homomorphism of non-associative R-algebras; similarly, we have monomor-
phisms, epimorphisms, isomorphisms, endomorphisms and automor-
phisms. In particular, if ¢ is bijective, then ¢~1: B — 2 is a homomorphism
of R-algebras as well; we write 2 = 3.

The image im(p) = @A) C B is an R-subalgebra. Moreover, the kernel
ker(p) :={a € A; p(a) = 0} <r A of ¢ is an ideal of A: We have p(uy(a,z)) =

pss (p(a), p(x)) = pss(p(a),0) = 0 as well as p(ua(x,a)) = pss(p(x), p(a)) =
ps (0, 0(a)) =0, for all z € ker(y) and a € 2.

If 3<% is an ideal, then we have the natural epimorphism v;: 2 — 24/J: a —
a + J, where ker(v3) = J. This leads to the homomorphism principle:

Assume that J C ker(¢). Then there is a unique homomorphism ¢7: 2/J —
B:a+ T — ¢(a) giving rise to a factorization ¢ = Jvy: A — A/T — B.
We have im(p?) = im(p) € B and ker(¢”) = ker(p)/J = {x + 7T € A/T;x €
ker(¢)} <24/3. In particular, 7 is injective if and only if J = ker(y), and we
have an isomorphism % := ¥ (®): 2/ ker(¢) — im(y).

c) Let 2 be a finitely generated R-free R-module, and let d := rkr () € Ng. In



particular, this happens if R = K is a field, in which case 2 is a K-vector space,
and if 2 is finitely generated as such, in which case we have d = dimg (2).

Now, we may choose an R-basis {c1,...,cq} € 2. Then p is uniquely de-
fined by the associated structure constants vfj € R given by p(ci,c;) =

Zizl ijck e, foralld,j € {1,...,d}: Indeed, for elements a = Z‘Ll a;c; €2

and b = Z?:l Bjc; € A, where «;, 5; € R, by R-bilinearity we have p(a,b) =
d d d d d ,

>ic1 Zj:l aiBin(ci ¢j) = 3 iy Ej:l D k=1 O‘iﬁﬂfjck e

(1.2) Associative algebras. a) Let R # {0} be a commutative ring. A non-
associative R-algebra 2 is called associative, if associativity p(u(a,b),c) =
w(a, u(b, c)) holds, for all a,b, c € . In this case, we write ab = a - b := pu(a,b),
thus associativity becomes (ab)c = a(bc).

An associative R-algebra 2 is called unital, if there is a (necessarily unique)
multiplicatively neutral element 1 € 2, thatis 1-a =a =a-1, foralla € 2. An
associative R-algebra 2l is called abelian or commutative, if commutativity
ab = ba holds, for all a,b € 2.

b) If 7,3 <2 are ideals, then apart from taking their sum and their intersection
there is another available construction, being called their product: Let JJ :=
(xy € L2 € T,y € J)r <r A. Then a(zy) = (az)y € IJ and (zy)a = z(ya) €
J3,forallz € J, y € J and a € A, shows that JJ <2 indeed is an ideal.

Example. Here are basic but important examples:

i) If V is an R-module, then Endg(V) = Homg(V,V) := {a: V — V R-linear}
is a unital associative R-algebra, with respect to pointwise addition and R-
scalar multiplication, that is a +: V — V:z — a(x) + f(z) and ra: V —
V:a— ra(z), for all o, 8 € Endg(V) and r € R, and to composition of maps
as multiplication, that is af: V — V:z — «a(B(z)), for all o, 8 € Endg(V);
the multiplicatively neutral element is given by idy € Endg(V):

It is immediate that Endg (V) becomes an R-module. Using general properties
of maps we have (af)y = a(87): V — V:z — a(B(y(z))), for all a,B,v €
Endg(V); and we have (a + )y =ay+ f7y: V = V:a = a(y(z)) + S(y(x))
and a(f+7) =af+ay: V=V a(f(z) +a(y(x) and ra-=r-af =
a-rB: V= V:z—ra(f(z)), for all o, 8,y € Endg(V) and r € R.

ii) Similarly, for n € Ny, the set R™*" of all (n x n)-matrices with entries in R
becomes a unital associative R-algebra, with respect to addition of matrices, R-
scalar multiplication, and multiplication of matrices; the multiplicatively neutral
element is given by the identity matrix F, € R"*" and R™ "™ is commutative
if and only if n < 1:

Indeed, letting R"*! be the R-module of all column n-tuples with entries in
R, then by using the standard R-basis of R"*!, we get a natural R-module
isomorphism Endgr(R™*!) = R"*" which translates composition of maps in



Endg(R™*!) into multiplication of matrices in R™"*™. Thus R™*" becomes an
associative R-algebra, which is isomorphic to Endz(R"*1). Finally, we have

10.017017&00701.10

0 0 0 0o/ |0 O 0 0o/ |0 O 0 0|
Letting {F11,..., Enn} C R™*™ be the standard R-basis, where, for all 4,j €
{1,...,n}, the entries of the matrix unit E;; are given by the Kronecker function

) 1, ifk=1il=y, _ nxn
0ij: [k, 1] — { 0. otherwise. Then we have E;jEy = 0;5E; € R"™ ",
hence the associated structure constants are 'yffﬁkl =0,k - 0;s01e € {0,1} C R.

(1.3) Lie algebras. a) Let R # {0} be a commutative ring. A non-associative
R-algebra £ whose multiplication fulfills the following properties is called a
Lie R-algebra; in this case, we write [zy] = [z,y] := p(z,y), for all z,y €
£: i) We have [x,z] = 0, for all z € £; ii) we have the Jacobi identity
[z, [y, 2]] + [y, [z, 2]] + [, [, y]] =0, for all z,y,z € L.

Condition i) implies 0 = [z+y, 2+y] = [z, 2]+ [z, y]+[y, 2]+ [y, y] = [z, y]+[y, 2],
thus we have anti-commutativity [y, z] = —[z,y], for all 2,y € £. Conversely,
if 2 € R*, then for all x € £ the latter condition entails [z,z] = —[z,z], thus
2[z, ] = 0, hence we recover condition i).

For example, the zero multiplication given by [z,y] := 0, for all x,y € £, is a Lie
R-algebra structure on £; in this case £ is called abelian or commutative.

b) If 3,3 < £ are ideals, then apart from taking their sum and their intersection
there is another available construction, being called their product: Let [J,J] :=
([x,y] € &2 € T,y € J)r <r £. Then we have [q,[z,y]] = —[z,[y,a]] —
[y, [a, z]] = [z,a,y]] + [[a,z],y] € TF, for all z € T, y € J and a € £, showing
that [J,J] < £ is an ideal. Note that due to anti-commutativity an R-submodule
J <p £is an ideal if and only if p(£,7) C 7, if and only if x(£,7) C J.

Example. Interesting examples are constructed from associative algebras:

Let 2 be an associative R-algebra, and let a multiplication be defined by the
commutator or Lie bracket [z,y] := xy — yz, for all ,y € 2. Then [-,-]: A x
A — 2 is R-bilinear; we have [z,z] := zax — yz = 0, for all x,y € A; and
using associativity we have the Jacobi identity [z, [y, z]] + [y, [2, z]] + [z, [z, y]] =
[2,y2 — 2y] + [y, 22 — 22| + [z, 2y — ya] = (z(yz — 2y) — (yz — 2y)z) + (y(z2 —
xz) — (2z — z2)y) + (2(zy — yz) — (vy — yx)2) = (zyz — w2y — yzz + 2yz) +
(yzo —yxz — zzy + x2y) + (z2y — zyx — xyz +yaz) = 0, for all x,y, z € A. Thus
2 is a Lie R-algebra with respect to [-, -], being called the Lie algebra of 2.

In particular, continuing the examples in (1.2), for any R-module V, the Lie
R-algebra of the associative R-algebra Endg(V') it is denoted by gl(V). (The
notation is reminiscent of the close relationship of gl(V') to the general linear
group GL(V); similarly, the Lie algebras exhibited in (2.4) are related to various
groups occurring in geometric algebra.)



Similarly, for n € Ny the Lie R-algebra of the associative R-algebra R™*" is
denoted by gl,,(R); it is isomorphic to gl(R"*1!), and being called the associated

general linear Lie algebra. In terms of the standard R-basis {E11,..., Enn} C
R™ ™ we get [Eij, Ekl] =E;jEy — Ey B = 5j]€E“ — §ilEjk € R™*", hence the
associated structure constants are given as 'yfjt 6l = Ok 0501 — 031 - 0jsOke €

{0,£1} C R. Any Lie R-subalgebra of gl,,(R) is called a linear Lie algebra.

Theorem. [Ado, 1935 for char(K) = 0; Iwasawa, 1948 for char(K) > 0]
Let K be a field. Then any finite-dimensional Lie K-Algebra £ is isomorphic
to a linear Lie K-algebra.

Proof. Omitted; see [4, Ch.6.2, 6.3]. 1

2 Lie algebras

(2.1) Centralisers and normalisers. a) Let R # {0} be a commutative
ring, and let £ be a Lie R-algebra. Let Z(£) := {x € £;[z,a] = 0foralla €
£} <g £ be the center of £; in other words we have Z(£) = ker(adg). Hence in
particular Z(£)<£ is an ideal, which is also verified directly as follows: We have
[[a,z],b] = —[b, [a,z]] = [a,[z,b]] + [z,[b,a]] =0, for all a,b € £ and =z € Z(£).
We have Z(£) = £ if and only if ade(£) = {0}, that is £ is commutative.

More generally, if M C £ is a subset, then let Co(M) = {z € £;[z,a] =
0 for all a € M} <p £ be the centraliser of M in £. Then Cg(M) is a Lie
R-subalgebra of £: We have [[z,y],a] = —[a, [z,y]] = [z, [y,a]] + [y, [a,z]] =
[#, [y, a]] — [y, [z,a]] =0, for all a € M and z,y € C¢(M). Note that Ce(M) =
Ce((M)R), and in particular we have Z(£) = C¢(L).

b) Similarly, if M <g £ is an R-submodule, then let No(M) := {x € £;[z,a] €
M for all a € M} <p £ be the normaliser of M in £. Then Ng(M) is a Lie
Resubalgebra of £ We have ([z, 4 a] = —[a, [t,]] = [z, g,a]] + [y, [0, 2] =
[#,[y,a]] — [y, [, a]] € M, for all a € M and z,y € Ne(M).

Then Co(M) <g Ne(M), where indeed Co(M) < Neo(M) is an ideal: We have
[z,a] = 0 and [y,a] € M, for all x € C¢(M), y € Ne(M) and a € M, hence
[y, z],a] = —[a, [y, z]] = [y, [z, a]] + [z, [a,y]] = 0 shows that [y, z] € Ca(M).

If 8 C £ is a Lie R-subalgebra, then we have R C Ng(8), hence R I N¢(R), and
since any Lie R-subalgebra of 9t C £ such that & <91 is contained in Ng(R)

we conclude that Ng(R) is the largest Lie R-subalgebra of £ containing £ as an
ideal. In particular, if 8 = N¢(R) then R is called self-normalising.

Example. For n € N we have Z(gl,(R)) = j.(R) := R - E,, the set of all
scalar matrices; note that 3,(R) is an associative R-subalgebra of R™*":

We may assume that n > 2. We have [3,(R), gl,,(R)] = {0}, hence 3,(R) C
Z(gl,(R)). Conversely, let A = [a;;]i;; € Z(gl,,(R)), and let k # 1l € {1,...,n}.
Hence we get Fy A = AFEy;, whose left hand side has non-zero entries in row



k only, these being [aj1, a2, ...,a;n] € R™, while whose right hand side has
non-zero entries in column [ only, these being [a1x, a2, - - - , ank)™ € R™*1. This
shows that a;; = 0 whenever ¢ # j, and agy = ay, implying that A € 3,(R). f

(2.2) Special linear Lie algebras. Let K be a field, and let V := K™*! for
some n € N. Then let s[(V) := {4 € gl(V); Tr(A) = 0}; recall that the trace
map Tr: gl(V) — K is independent of a choice of a K-basis of V. Since Tr is
K-linear, and Tr([A, B]) = Tr(AB — BA) = 0, for all A, B € gl(V), we conclude
that sI(V) <gl(V) is an ideal; in particular it is a Lie K-subalgebra, being called
the associated special linear Lie K-algebra.

Identifying gl(V') = gl,(K), and letting {En1,..., Enn} C gl,(K) be the stan-
dard K-basis, we get the standard K-basis

{E” — Ei+1’i+1;l. € {1, o, = 1}} U {E”,Z #] S {1, NN ,n}} g H[n(K),

having cardinality (n—1)+n(n—1) = n?—1 = dimg (ker(Tr)) = dimg (s, (K)).

Lemma. We have Z(sl,
[

(K)) = 3n(K) Nsl,(K); hence Z(sl,,(K)) = {0} if
char(K) { n, and Z(sl, |

[
(K))=3 (K)lfchar( ) | n

Proof. We may assume that n > 2. We have 3,(K) = Z(gl,(K)), hence
3n(K) Nsly(K) C Z(sl,(K)). Conversely, let A = [a;;]i; € Z(sl,,(K)), and let
k#£1e{l,...,n}, thus Ey; € sl,(K). Hence we get EyA = AFEy;, which as in
the case of the general linear Lie algebra implies that A € 3, (K). i

A finite-dimensional Lie K-algebra which is non-commutative and does not
have any proper non-zero ideals, is called simple. We will show later that if
char(K) = 0 then s, (K) is simple for n > 2. For the time being, we are content
with the following example:

Example: The special linear algebra of degree 2. Let K be a field and
£ := sly(K), and let {F,H, F} C £ be the standard K-basis, that is E :=

0 1 1 0 0 0

[O O] and H := {0 J and F = [1 O}.Then we have
0 1] o o] [o o] [o 1 1 0

B F] = [0 0] [t o] [1 o] |0 0] - [0 —1} = &
1 0] o 1] fo 1] 1 o0 0 2

A, E] = [0 1] [0 of |0 o] |0 —1} - [0 o} 25,
1 01 [o o] fo o] 1 o0 0 0

A, F] = [0 S R F —1} = {—2 o} = 2k

If char(K') # 2 then £ is simple: Let {0} # J<d€and let 0 # A := aE+cH+bF €
J, for some a,b,c € K. If a # 0 then we get [F, [F,A]] = [F,—aH + 2¢F] =



—2aF € J, hence F € J, thus H = [E,F] € J, and 2F = [H,E] € 3. If
b # 0 then we get [E, [E, A]] = [E,—2cE + bH] = —2bE, hence E € 7, thus
H=[E,F]e€3J,and —2F = [H,F] € 3. If both a = 0 = b, then cH € J, hence
H €7, thus 2F = [H,E] € J and —2F = [H, F| € J. Hence we have J = £.

If char(K) = 2 then we have [£, L] = Z(£) = (H)k: We have [E, F| = H and
[H,E] = 0 = [H, F], hence [£,£] = (H)x. Moreover, this implies H € Z(£).
Conversely, it suffices to consider A := aE+bF € Z(£)N(E, F)g, for a,b € K,
then 0 = [E, A] = SH and 0 = [F, A] = aH implies that both a =0 = b. i

(2.3) Classical Lie algebras. Let K be a field such that char(K) # 2.
Moreover, let a: K — K be a field automorphism such that o? = idg, and
let K := Fixg(a) C K be the fixed field of . For example, we always
have « := idg, in which case K/ = K; and we have complex conjugation
a:=":C — C, in which case C' = R. Finally, let V := K"*! for some n € N,
and let ®: V x V — K be a non-degenerate K-sesquilinear form.

Then let £(®) := {A € gl(V); A+ A* = 0}, where A* € gl(V') denotes the adjoint
map of A € gl(V') with respect to ®. Then, since gl(V) — gl(V): A— A*is K'-
linear, from [A, B]* = (AB—BA)* = B*A*—A*B* = (—B)(—A)—(—A)(—B) =
BA — AB = —[A, B], for all A, B € £(®), we conclude that £(®) is a Lie K’-
subalgebra of gl(V), called the classical Lie K’-algebra associated with ®.

In the sequel we borrow some facts from geometric algebra, for which we refer
to [5, 11]. In particular, recall that if @ = idg and ® is symmetric then ¢: V —
K:ve %Q)(v,v) is the associated quadratic form; conversely, given ¢ then ®
is recovered by polarisation ® (v, w) = (v +w) — ¢(v) — @(w), for all v,w € V.

(2.4) Orthogonal and symplectic Lie algebras. We keep the setting of
(2.3), and let char(K) # 2 and o = idk.

a) Let ® be skew-symmetric. Then we have n = 2[, for some [ € N, and V is
an orthogonal direct sum of hyperbolic planes. Thus, adjusting indices suitably,
we may let {ej,ea,...,e,e_1,6_9,...,e_;} CV be the standard K-basis, such
that the K-subspaces {e;,e_;)k <k V, for all i € {1,...,1}, form mutually
orthogonal hyperbolic planes. Hence the associated Gram matrix of ® equals

o 0 El 21x 21
J = [ 50 ] e K .

Then we have A* = (JAJ 1™ = —JA"J, thus the associated Lie K-algebra
becomes spy(K) = {A € gly(K); JA™J = A}; it is called the associated
symplectic Lie algebra. From Tr(A) = Tr(JA"J) = Tr(J2AY) = —Tr(A), for
all A € spy(K), we conclude spy;(K) C sly (K).

All A12

Writing A = [ Ty | Ay

} € gly(K), where A;; € K for i,j € {1,2}, we



have A € spy(K) if and only if

{OEl]_{AnAlz}:[AﬁrlAgrl}.{ 0 En]
E | 0 Agy | Agg Aty | A, -E, [ 0 ]’

that is
[ —Ag | —Ag } _ [ —A% | A% }
An | A AR | A% |
in other words if and only if Ayy = —AY, and AY, = Aj3 and AL, = Az;. Hence

we get the following standard K-basis of sp,; (K)

B - Eesigedl.. 1)
O {Bi_j+E_jui#je{l,... 1}}
U {EBi_iie{*],...,+1}};

in particular we have dimg (spy;(K)) =12 +1(1 — 1)+ 20 =21> + 1 = n(n+1).

b) Let ® be symmetric of maximal Witt index, that is the maximal isotropic
K-subspaces of V' have K-dimension |7 |. Assume first that n = 2, for some
[ € N, hence ¢ has Witt index [, and V is an orthogonal direct sum of hyperbolic
planes. We let {e1,ea,...,e,e_1,6_9,...,e_;} €V be the standard K-basis,
where the K-subspaces (e;,e_;)x <g V, for all i € {1,...,1}, form mutually
orthogonal hyperbolic planes; in other words, the quadratic form associated
with @ is given as p(z1,...,2_;) = 22:1 r;x_;. Hence the associated Gram
matrix of ® is given as

| 0| B 2Ux21
TS P

Then we have A* = (JAJ 1) = JA™J, thus the associated Lie K-algebra
becomes 09 (K) := {A € gly(K); JA™J = —A}; it is called the associated even
degree orthogonal Lie algebra. From —Tr(A) = Tr(JA®J) = Tr(J2AY) =
Tr(A), for all A € 09;(K), we conclude 09 (K) C sly(K).

Writing A := [ Au | Az } € gly(K), where A;; € K™ for i,7 € {1,2}, we
Aoy | Az

have A € 09;(K) if and only if

{0 —El}.{AuAu]_{AﬁAgrl},{oEn]
—El‘ 0 A21‘A22 A%‘Agﬁ E"‘ 0 ’

that is
[ — Ao | — Az } _ [ A% | AR }
—An | —Ap AR A |
in other words if and only if Ayy = —AY, and AY, = —Aj5 and AY, = —Aa;.

Hence we get the following standard K-basis of 0g;(K)

' {E” — E_j7_i;l',j (S {1, e J}}
U {Ei,_j‘i’E_j’i;i?éjG{l,...,l}};



in particular we have dimg (02(K)) =1 +1(1 —1) =21 — [ = In(n —1).

c) Assume now that n = 21+ 1, for some [ € N, hence ® has Witt index [, and V
is an orthogonal direct sum of hyperbolic planes and a non-degenerate line. We
let {eg,e1,€9,...,€e1,e_,6_a,...,e_1} CV be the standard K-basis, where the
K-subspaces (e;,e_;)x <k V, for all i € {1,...,1}, form mutually orthogonal
hyperbolic planes, being orthogonal to the non-isotropic line (eg) x <x V. Thus
we have € := ®(ep, eg) # 0, where we additionally assume that € € K is a square.
(If € € K is a non-square, this yields an inequivalent symmetric form, which has
an isomorphic classical Lie algebra associated with it.)

Thus we may assume that e = 1; in other words, the quadratic form associated
with @ is given as ¢(z1,...,2_1) := taf + 22:1 x;x_;. Hence the associated
Gram matrix of @ is given as

1{o]o
Ji=| 0[]0 [E | e kEHDxCHY,
0/E [0

Then we have A* = (JAJ~ 1) = JA™J thus the associated Lie K-algebra
becomes 0g141(K) = {A € gly(K); JA"J = —A}; it is called the asso-
ciated odd degree orthogonal Lie algebra. From —Tr(A) = Tr(JAY™J) =
Tr(J?A%™) = Tr(A), for all A € 0g9141(K), we conclude 0941 (K) C sly11(K).

Ago | Aot | Aoz
Writing A := | Ay | A1y | Az | € gly 1 (K), where A;; € K and Ag; €
Asg | Az | Aaa

K> and A; 9 € K1 and A; ;€ K™ fori,j € {1,2}, we have A € 0g;41(K)
if and only if

—Ago | —Ao1 | —Ao2 -1 0 0 Ago | Aot | Aoz
—Agg | —Ao1 | —A | = O 0 | —-E; || Ao | A | Ao
—Aio | A1 | —Ar2 0 |—-E| O Ao | Aoy | Aga
Ago | AT, | A% 1100 Ago | AL | Aty
= | AR AT [AS || 0] 0 | E | =| A | A% | AN |,
Al | ATy | A%, 0| FE | O Al | A%y | AT,

in other words if and only if Agg = 0 and Az = —AY) and Ay = — AL, and
Agp = —AY and A}, = —Ajs and AY, = —Ay;. Hence we get the following
standard K-basis of 09;41(K)

{EOi — E—i,O;i S {il, ey il}}
L:J {Eij —E_j i, je{l,...,1}}
U {Ei,_j‘i’E_j’i;Z.?éjG{l,...,l}};

in particular we have dimg (0241(K)) =20+ 1> +1(1—1) =20 +1 = in(n—1).



(2.5) Real forms. We keep the setting of (2.3), and let n > 2.

a) Let K := R and a = idg, and let ®* be symmetric and positive defi-
nite. Then we may assume that the standard R-basis {e1,...,e,} C V is
orthonormal; in other words, the quadratic form associated with ®* is given as
ot (T, Tn) = % -3, @2, Hence the associated Gram matrix of ®7 is just
the identity matrix F,.

Then we have A* = A thus the associated Lie R-algebra o} (R) := {4 €
gl,,(R); A" = — A} coincides with the set of all skew-symmetric matrices; it is
called the associated orthogonal Lie algebra. We have o' (R) C sl,(R), and
the following standard R-basis, of cardinality dimg (o} (R)) = $n(n — 1),

{E; — Eji;i<je{l,...,n}} Cot(R).

We aim at comparing the Lie R-algebra o;} (R) with the Lie R-algebra o,,(R) =
{A € gl,(R); JA™ J = — A} associated with the form ® in (2.4). To do so, we use
the complexifications o,,(R)® := 0,,(R) ®r C and o;f (R)® := o, (R) ® C, which
are Lie C-algebras. Since the standard R-bases of 0, (R) C g[,,(C) and o;} (R) C
gl,,(C) are C-linearly independent, we may identify o,,(R) with 0, (C) = {A €
gl,,(C); JA™J = — A}, and o} (R)€ with o) (C) := {A € gl,(C); A" = —A}.

Let first n = 2. Applying the matrix U := % . B 1.] € GU3(C) to the Gram
0 1
1 0
of ®. Hence we conclude that, for arbitrary n € N, there is a unitary matrix
U € GU,(C) = {M € GL,(C); M = M~} such that U"U = J; note that
UYU = J = J7! = U'U. Then, for A € 0,(C) we have UTIUAYUY"U =
JAYJ = — A, implying (DAU 1) = UAYUY = ~UAU!, thus UAU! €
0,7 (C). Conversely, for A € o;' (C) we have A" = — A, implying J(U 1AU)"J =
U—U - UTAYU - UY™U = ~U~Y AU, thus U~ AU € 0,(C).

This shows that U induces an isomorphism 0, (C) 2 o,/ (C) of Lie C-algebras.
Hence we conclude that both 0, (R) and o;f (R) are R-forms of 0, (C) = 0,/ (C).

Actually, 0, (R) and o,f (R) are non-isomorphic as Lie R-algebras, being called
‘split” and ‘non-split’ forms, respectively, but we do not prove this here.

matrix of ®F yields U E,U = UYU = = J, which is the Gram matrix

b) Let K := C and let @ =~ be complex conjugation, hence we have K’ = R.
Let ®* be hermitian and positive definite. Then we may assume that the
standard C-basis {ey, ..., e,} C V is orthonormal; in other words, the quadratic
form associated with ®* is given as ¢ (21,...,@,) := 5> i ; |z;|%. Hence the
associated Gram matrix of ®T is just the identity matrix F,,.

tr

Then A* = A", thus the associated Lie R-algebra gut (C):={Aegl,(C);A =
—A} coincides with the set of all skew-hermitian matrices; it is called the as-
sociated general unitary Lie algebra. The Lie R-algebra su,! (C) := gu}(C) N
s, (C) is called the associated special unitary Lie algebra. We have the fol-
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lowing standard R-bases of gu;’ (R) and su,f (R)

{iE J’je{l ..,n}}
U {Ejr — Enj,i(Eji + Ej);j <k e{l,...,n}}

and . .
{Z(E]J —Ejp )i €q{l,...,n— 1}}
U {BEjx — By, i(Bjk + Erg)ij <k € {1,...,n}},

n(n —1) = n? and

respectively; in particular we have dimg(gu, (R)) =n+2- 3

dimg(suf (R)) = (n—1)+2- in(n—1) =n? - 1.

Complexification yields gu; (C)® := gut (C) ®r C and suf (C)® := suf (C) ®x C,
as well as gl,,(R)® := gl (R) ®r C and sl,,(R)® := sl,,(R) ®r C, which are Lie C-
algebras. Since the standard R-bases of gu (C) C gl,,(C) and gl,,(R) C gl,,(C),
as well as of suf (C) C sl,(C) and sl,(R) C sl,(C) are C-linearly independent,
we may identify both guf(C)¢ and gl,(R)® with gl,(C), and both su;f(C)¢
and sl,, (R)® with sl,,(C). Hence we conclude that both gl,,(R) and gu;} (C) are
R-forms of gl,(C), and that both s[,(R) and su,}(C) are R-forms of sl,(C).
Actually, gl,,(R) and gu;’ (C) are non-isomorphic as Lie R-algebras, and neither
are sl,(R) and su; (C), being called ‘split’ and ‘non-split’ forms, respectively,
but we do not prove this here.

3 Representations

(3.1) Representations of associative algebras. Let R # {0} be a com-
mutative ring, and let 2 be a unital associative R-algebra. A homomorphism
p: A — Endgr(V), where V is an R-module, and such that ¢(1) = idy, is
called a representation of 2; in this case V is called an 2A-module. Iden-
tifying Endr(R™*1) = R"*"  for some n € Np, we obtain a representation
p: A — R"™ of degree n; in particular we have ¢(1) = E,,.

We also write a-v := ¢(a)(v) € V, foralla € A and v € V. Moreover, if U <p V
is an R-submodule such that 2 - U <pg U, then ¢ induces a representation of 2
on U; in this case U is called an 2A-submodule of V', and we write U <g V.

Moreover, ¢ induces a representation of 2 on V/U via the natural epimorphism
vy: V = V/U of R-modules; then V/U is called a quotient 2-module of V.

If W also is an A-module, then a homomorphism ¢: V — W of R-modules
such that ¢(av) = ap(v), for all @ € A and v € V, is called a homomor-
phism of 2-modules; similarly, we have monomorphisms, epimorphisms,
isomorphisms, endomorphisms and automorphisms. If ¢ is bijective, then
¢~ !t W — V is a homomorphism of 2-modules as well; we write V = W, and
the representations afforded by V and W, respectively, are called equivalent.

The image im(¢) = ¢(V) <o W and the kernel ker(¢) := {v € V;¢(v) = 0} <y
V are 2A-submodules. Then the homomorphism principle for R-modules
extends straightforwardly: Given U <g ker(yp), there is a unique homomorphism
WV VU — W:v+ U — ¢(v) of A-modules giving rise to a factorization
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0=y V= V/U— W. We have im(¢Y) = im(p) <g W and ker(¢V) =
ker(p)/U = {v+U € V/U;v € ker(p)} <o V/U. In particular, ¢V is injective
if and only if U = ker(p), and we have an isomorphism of 2-modules @ :=
oker(@): V/ker(p) — im(y).

Example. Given = € 2, then we have the associated left and right multipli-
cation maps Ay (z): A — A: a — za and py(z): A — A: a — az, respectively.
Then we have Ay (2)(a+b) = z(a+b) = za+xb and Ay (x)(ra) = z(ra) = r(xza),
as well as py(z)(a+b) = (a +b)x = ax + bz and py(z)(ra) = (ra)r = r(azx),
for all a,b € A and r € R, using R-bilinearity of multiplication in 2. Hence
we indeed have Ay (z), pu(x) € Endgr(). For later use we already note the
following commutativity property: By associativity we have Ag(x)pa(y) =
pa(y)Aa(z): a — z(ay) = (za)y, for all z,y,a € A.

Next we have Ag(z+y) = A () + A (y): a = (x+y)a = xa+ya and Ay (rz) =
rAg(x): a— (re)a = r(za), as well as py (x+y) = pa(z)+pa(y): a — a(z+y) =
ax+ay and py (rz) = rpg(z): a— a(rx) = r(ax), for all z,y,a € A, again using
R-bilinearity of multiplication in 2(. Hence both maps Ag, pgy: A — Endg ()
are indeed R-linear.

Moreover, by associativity we have Ay (xy) = Ag(z)Aa(v): a — (zy)a = z(ya),
for all z,y,a € 2, thus Ay is a representation of 2, being called the regular
representation; note that if 2 is unital then we have Mg (1) = idg. But from
pa(zy): a = a(zy) = (ax)y and py(z)pa(y): a — (ay)z, for all z,y,a € A,
we infer that we have the right regular representation pg: 2 — End g (2()°PP,
where Endg(21)°PP is the opposite ring of Endg(2), whose multiplication is
given by p(a, ) := Ba, for all «, 8 € Endg(21).

(3.2) Simple modules for associative algebras. Let R # {0} be a commu-
tative ring, let 2 be a unital associative R-algebra, and let V' be an 2(-module.
If V' # {0} does not have any proper non-zero 2-submodules, then V is called
simple or irreducible; likewise the representation of 2 afforded by V is called
irreducible or simple.

Theorem: Schur’s Lemma. Let V and W be simple 2-modules.
i) Then any non-zero 2-homomorphism from V' to W is an isomorphism.

ii) If R = K is an algebraically closed field, and V is finite-dimensional as
K-vector space, then we have Endg (V) = K -idy.

Proof. i) Let 0 # ¢: V — W be an 2A-homomorphism; recall that both V' #
{0} # W. Then {0} # ¢(V) <o W implies that ¢ is surjective; and ker(y) <g
V implies that ker(¢) = {0}, hence ¢ is injective.

ii) Let ¢: V — V be an A-endomorphism. Hence ¢ is K-linear, thus K being
algebraically closed implies that ¢ has an eigenvalue A € K. Since Endg (V)
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is a unital associative K-algebra, we infer that ¢ — A - idy € Endg (V). Since
{0} # ker(p — A -idy) <o V we conclude that ¢ — A -idy =0 € Endy (V).

(3.3) Semisimple modules for associative algebras. Let R # {0} be a
commutative ring, and let 2 be a unital associative R-algebra. If {V;;i € I} are
2l-modules, where Z is an index set, then the direct sum €, ., V; of R-modules
becomes an 2-module with respect to diagonal -action, that is a - [v;;i € Z] =
l[avs;i € T, for all a € 2; recall that the elements of @, ; Vi are precisely the

T-tuples [v; € Vi;i € Z] € [],c7 Vi, such that v; = 0 € V; for almost all i € Z.

Let V be an -module. If V' = P, 7 S; is the direct sum of simple «A-submodules
S; <g V, where Z is an index set, then V is called semisimple; likewise the
representation of 2 afforded by V is called semisimple.

Theorem. An 2(-module V is semisimple if and only if any 2A-submodule U <g
V has a complement, that is there is W <y V such that V. =U & W.

Proof. i) Let V be semisimple, such that V' = P, 7 Si, where 7 is an index set
and the S; <g V are simple. Then let M :={J C Z; UND, s S; = {0}}, being
partially ordered by set-theoretic inclusion. Then we have 0 e /\/l Moreover,
if 71 € Jo C --- is a chain in M, then we have J := UieNJi € M as well:
Assume to the contrary that there is 0 #u € U N @jej S;, then there is i € N

such that u € U N Gajeji S;, a contradiction. Hence J is an upper bound of
the given chain in M.

Thus by Zorn’s Lemma we conclude that there is a maximal element J € M,
and we let W := €D, ;5 <a V. We show that U & W = V: Assume to the
contrary that U @ W <g V, then there is i € Z\ J such that S; £y U & W,
hence since S; is simple we have S; N (U @ W) = {0}. Now by maximality of J
there is 0 # uw € U N (S; @ W), which since U N W = {0} implies that there is
0#veS;N(Ua@W), a contradiction.

ii) Let V be such that any 2-submodule has a complement. We first show that,
whenever U <o U <o V, then U has a complement in U: Indeed, let W <o V'
such that V = U@ W, then we have U = VNU = (UaW)NU = U@(WHU)

Next, let {0} # U <o V be any non-zero 2-submodule. Then we show that
U has a simple 2-submodule: To this end, we may assume that U = u%, for
some 0 # u € U. Let M be the set of all proper 2-submodules of U, being
partially ordered by set-theoretic inclusion. Then we have {0} € M. Moreover,
if Uy <g Uz <g -+ <o U is a chain in M, then we have u ¢ U, for all 7 € N,
hence u & U := |J; oy Us as well, implying that U <g U is an upper bound of the
given chain in M. Thus by Zorn’s Lemma we conclude that there is a maximal
element U € M, that is U <y U is a maximal proper 2l-submodule. Letting
S <o U such that U = U S, we conclude that S =2 U/U is simple.

Now, let U <g V' be the sum of all simple 2A-submodules of V. Then we have to
show that U = V: Assume to the contrary that U <g V, and let {0} # W <o V
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such that V' = U @ W. Then there is a simple 2-submodule S <g W, hence
S <o UNW, a contradiction.

Finally, it remains to be shown that V' can be written as a direct sum of certain
simple 2-submodules: Let V' =}, S;, where Z is an index set and the S; <g
V are simple. Then let M :={J CZ;3 ", ; S; <o V is direct}, being partially
ordered by set-theoretic inclusion. Then WeAhave 0 € M. Moreover, if J; C
Jo C --- is a chain in M, then we have J := UieNJi € M as well: Let
Ejejvj = 0, where v; € §;. Since v; = 0 € S; for almost all j € J, there is
i € N such that all non-zero summands occurring are elements of € e, i a

contradiction. Hence J is an upper bound of the given chain in M. Thus by
Zorn’s Lemma we conclude that there is a maximal element J € M, and we let
U .= ®jej S;. We show that U = V: Assume to the contrary that U <y V,
then there is ¢ € T\ J such that S; €g U, hence since S; is simple we have
S;NU = {0}, thus S; + U is direct, hence {i} U J € M, a contradiction. 1

(3.4) Representations of Lie algebras. Let R # {0} be a commutative ring,
and let £ be a Lie R-algebra. A homomorphism ¢: £ — gl(V'), where V is an
R-module, is called a representation of £; then V is called an £-module.

In particular, identifying Endg(R"*1) =2 R™ " for some n € Ny, we obtain a
representation ¢: £ — gl (R) of degree n. For example, for any R-module V'
we have the trivial representation, where all elements of £ act by the zero map.

If the Lie structure of £ is given as the commutator of a unital associative R-
algebra, then any representation £ — Endg (V) as associative algebras also is
a representation £ — gl(V') of Lie R-algebras. In particular, this holds for the
tautological representation of Endg(V) = gl(V).

Conversely, any representation ¢: £ — gl(V) of a Lie R-algebra can be con-
sidered as the tautological representation of the unital associative R-subalgebra
of gl(V) generated by the Lie R-subalgebra ¢(£) C gl(V). Hence the above
comments on modules and their homomorphisms for associative algebras hold
verbally for Lie algebras.

Example. Given z € £, we have the associated adjoint map ade(z): £ —
£: a — [z, a]; note that formally ade coincides with the left multiplication map
of £ as a non-associative R-algebra. Then we have ade(z)(a +b) = [x,a+b] =
[x,a] + [z,b] and ade(z)(ra) = [z,7a] = r[z,a], for all a,b € £ and r € R, using
R-bilinearity of multiplication in £. Hence we indeed have ade(x) € Endg(£).

Next we have ade(z + y) = ade(z) + ade(y) and ade(rz) = r - ade(x), for
all x,y € £, again using R-bilinearity of multiplication in £. Hence the map
ade: £ — Endg(£) is indeed R-linear. Moreover, using the Jacobi identity
we obtain adg([ﬂc,y})(a) = [[a:,y],a] = _[av [«%Z/H = [mv[yaa]] + [yv [a’m]] =
[z, [y, al] = [y, [z, a]] = (ade(z)ade(y) —ade(y)ade(z)) (a) = [ade(x), ade(y)](a),
for all z,y,a € £.
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Hence we conclude that ade: £ — gl(£) is a representation, being called the
adjoint representation. We have ker(adg) = {z € &;[z,y] =0for all y € £} =
Z(L). In particular, if Z(£) = {0} then the adjoint representation is injective,
so that if R = K is a field then £ is isomorphic to a linear Lie K-algebra, which
thus is a trivial case of the Ado—Iwasawa Theorem.

Moreover, the £-submodules of £ with respect to the adjoint representation are
precisely the ideals of £; thus, if R = K is a field and £ is a simple Lie K-algebra,
then £ is a simple £-module with respect to the adjoint representation.

(3.5) Modules for Lie algebras. a) Let R # {0} be a commutative ring, let
£ be a Lie R-algebra, and let V and W be £-modules. We describe a couple of
constructions producing new £-modules from the given ones:

i) Let V* := Homp(V, R) be the dual R-module of V. Then V* becomes an
£-module by letting za: V. — R: v — a(—zv), for all z € £ and « € V*, being
called the contragredient £-module of V:

We have (za)(av + w) = a(—z(av + w)) = aa(—zv) + a(—zw) = a(za)(v) +
(za)(w), for all v,w € V and a € R, implying that za € V* indeed. Moreover,
we have (az 4+ y)a = a(za) + ya: v = a(—(ax + y)v) = ac(—av) + a(—yv), for
all z,y € £, hence this defines an R-linear map £ — Endg(V*); and finally we
get [z,yla = 2(ya) — y(za): v = a(=[z,ylv) = a(—ryv + yav) = —a(zyv) +
a(yzv) = (za)(yv) — (ya)(zv) = —(y(za))(v) + (z(ya))(v), saying that the map
£ — Endg(V*) is a homomorphism of Lie R-algebras. 1

This construction is universal in the following sense: The map S: £ = £: z —
—x is an antiautomorphism of the Lie R-algebra £, also being called the
antipode of £: We have S € Endg(£), and S([z,y]) = —[z,y] = [y,2] =
[—y, —z] = [S(y), S(x)], for all z,y € £; and from S? = idg we infer that S
is bijective. Hence the £-action on the contragredient module V* is given as
za: v a(S(z) - v), for all z € £ and o € V*, where the reversing property of
S ensures that V* is a (left) £-module again rather than a right £-module.

ii) The tensor product V ®pr W becomes an £-module by letting (v ® w) :=
rw@w+vRaw, forallz € Land v € V and w € W:

Let first Z: VX W = Vg W: (v,w) - 2v @ w+ v ® zw. Then we get
(v+v",w) = z(v+0) QW4 (v+v) 2w = (TLVRWHVRTW)+ (V' RWHV @rw) =
z(v,w)+z(v',w) and (v,w+w') = 2V (WH+w)tvRr(w+w') = (LVRWHVR
zw) + (zv@w' +v@aw') = z(v,w) + z(v,w’), for all v,v" € V and w,w’ € W,
as well as (av,w), (v,aw) — z(av) @ w + (av) @ 2w = a(zv @ W + v ® Tw) =
20 ® (aw) + v ® z(aw), for all a € R, showing that Z is R-bilinear. Thus there
is a well-defined and unique R-endomorphism of V' @z W as claimed.

Moreover, we have (az +y)(v @ w) = (ax + y)v @ w + v ® (ax + y)w = a(zv ®
wHvRaw)+ (Yo w+ v yw) = ax(v @ w) + y(v @ w), for all z,y € £,
hence this defines an R-linear map £ — Endgr(V ®r W); and finally we get
[z, y](v@w) = [z,ylv@w+ v [z, y]lw = (xyv — yzv) QW + v ® (Tyw — yrw) =
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ZYVRUW — YTV QW+ VR TYW —VQYTw = (xyv@w—i—v@xyw)—l—(mv@yw+yv®xw)—
(yrovew+veyrw)—(xv@yuw+yvrw) = z(Yyr@w+vRyw)—y(xvQ@W+vRrWw) =
z(y(v @ w)) — y(z(v ® w)), saying that the map £ — Endg(V @r W) is a
homomorphism of Lie R-algebras. i

Similarly, we would like to have a universal construction giving rise to the £-
module structure on tensor products. But in order to write down the action of
£ we need a unital algebra, bringing us into the realm of associative algebras.
Actually, there is the notion of the universal enveloping algebra $(£) of
£, for which we have an embedding of Lie algebras £ — $((£). Moreover, we
have U(L® L) 2 U(L) Qg LU(L), so that the diagonal embedding of Lie algebras
£ — £dL gives rise to an embedding of Lie algebras A: £ — U(L)QpU(L): x —
r®14+1®x, whose extension to fU(£) is called the comultiplication. Now the
£-module V' becomes a $(£)-module, hence V ®r W becomes a (L) @ g U(L)-
module, and by restriction along A the latter becomes an £-module as desired.
Finally, the antipode, extended to 4(£), and the comultiplication fulfill certain
compatibility rules, so that $1(£) actually becomes a Hopf algebra. We do not
present any details on this here.

b) Combining the above constructions we in particular get the following: Let
both V and W be finitely generated R-free R-modules. Then we have the R-
isomorphism n: W @z V* — Homg(V,W): w@ a— (V= W: v a(v) - w):

Note first that both V* and V @z W are finitely generated R-free R-modules as
well. More precisely, letting B := {v1,...,v,} CVand C :={wq,...,wpn} CW
be R-bases, where n :=rkg(V) € Ny and m := rkg(W) € Ny, then the dual R-
basis B* := {v],...,v}} C V*is defined by v} (v;) = d;;, for all ¢, 5 € {1,...,n},
and we have the R-basis {v1 Q@wz, ..., 01 QWp, V2 QW1 ..., 0, QWn} CVRrW.
For the map 7): W x V* = Hompg(V,W): (w,a) = (V = W: v — a(v)w) we
have fj(w+w’, ) = f(w, a) + 7w, @) = (v a(v)(w+w') = a(v)w+a(v)w'),
for all w,w’ € W, and 7j(w, a+ ) = f(w, a) +7(w, B) = (v (a(v)+Bv))w =
a(v)w + B(v)w), for all a, B € V*, as well as f(aw, o) = f(w,ac) — (v -
a(v)(aw) = aa(v)w), for all a € R. Hence 7] is R-bilinear, thus giving rise to a
well-defined and unique R-homomorphism 7 as claimed.

It remains to be shown that 7 is bijective: To this end, for ¢ € Hompg(V, W)
let p(v;) = X200 ajiwy, for all i € {1,...,n}, where cpp = [a5]; € R™*™ is
the matrix of ¢ with respect to the R-bases B and C of V' and W, respectively.
Then letting ® := 3710, 377 aji - w; @ v € W @g V* we have n(®): vy, —
Z;nzl Sor o ag v (vg) wy = Z;n:l ajpw; = ¢(vg), for all k € {1,...,n}, thus
1(®) = p, showing that 7 is surjective.

Similarly, if @ := 3770, 3700 @i w; @ vf € W®RR V™, where aj; € R, such that
7(®) = 0, then we have 337" | 371" | aji - vf (o) -wy = Y00 ajpw; =0 € W,
for all k € {1,...,n}, hence a;z =0 € R, for all j € {1,...,m}, thus & = 0,
showing that 7 is injective. i
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Hence Homp(V,W) = W ®g V* becomes an £-module, where the action of
£ is given as follows: For z € £ we have z(w ® a) = 2w @ a + w @ xa =
2w ®a—w a(x?), for all w € W and a € V*, where a(x-?) denotes the R-
linear form on V obtained from « by pre-composing with the action of z. Hence
for pyo =nwa): V- W:v = av) - w we get Tpyo: V — Wiv —
a() - zw — a(zv) - w = (Pw,a(V)) — @w,a(xv). Thus by R-linearity we get
zp: V= W:v— z(p(v)) — p(zv), for all ¢ € Hompg(V, W).

In terms of matrices this reads as follows: Let gzg € R™*™ and cx¢c € R™*™ be
the representing matrices of the action of z € £ on V and W, respectively, with
respect to the R-bases B and C, respectively. Then for the representing matrices
of ¢ € Hompg(V, W) and z¢ € Hompg(V, W), with respect to the R-bases B and
C, we get c(x@)s = cxc - cyB — cpB - BT € R™*".

4 Derivations

(4.1) Derivations. a) Let R # {0} be a commutative ring, and let 2 be a non-
associative R-algebra with multiplication p; then Endg(2() is an associative
R-algebra, becoming the Lie R-algebra gl(2() with respect to the associated
commutator. An element 0 € Endg(2) is called a derivation of 2 if the
product rule 9du(a,b) = p(a, db) + p(9da, b) holds, for all a,b € A.

Let Derg () C Endg(21) be the set of all derivations of A. Since (949" )u(a,b) =
op(a,b)+0 pn(a,b) = p(a, db)+p(da, b)+pu(a, 0'b)+u(d'a,b) = pu(a, (0+0")(b))+
w((0+ 9)(a),b) as well as (rd)u(a,b) = ru(a, 9b) + ru(da,b) = p(a, (ro)(b)) +
w((rd)(a),b), for all 9,0 € Derg(A) and a,b € A and r € R, we conclude that
Derg(2) is an R-submodule of Endg(21).

Let 0,0 € Derg(2). Then we have 99'u(a,b) = 9(u(a,d'b) + pn(da,b)) =
ou(a,d'b) + ou(d'a,b) = u(a,09'd) + pu(da, 'd) + u(d a, db) + p(0d'a, b), for all
a,b € 2. Hence we get (00" —9'0)u(a,b) = p(a, d0'b) + u(da, d'b) + u(d'a, 0b) +
w(0d'a,b) — u(a,d'db) — w(d'a,db) — u(da,d’d) — u(dda,b) = u(a,09'db) +
1(00'a, b) — p(a, 9'0b) — p(9'0a, b) = p(a, (90’ —9'0)(b)) + (09’ —0'0)(a),b), in
other words we have [0, '|u(a,b) = p(a, [0, 0'](b))+u([0, ] (a),b), showing that
[0,0'] € Derg(A) C Endgr(2). Thus Derg(2A) C gl(2) is a Lie R-subalgebra,
called the Lie algebra of derivations of 2.

b) The powers of 0 € Dergr(2) are given by the Leibniz rule 0"u(a,b) =
S (?)u(aia, O"~'b) € A, for all n € Ny and a,b € 2A; here we let 9° := idy:

We use induction on n € Ny; the case n = 0 being trivial, let n > 1. Then we
have 8"u(a,b) = S0y ("71)0u(da, 0" 1b) = S0 (M) ((7a, 7 ) +
M(az‘-«—la’an—z‘—lb)) _ Z:‘L:_Ol (nzl),u(ai%an_ib) + E:‘L:l (71}:11)”(61‘&7871—%) —

(@, 07) + u(@"a, %) + SIS ((2) + (7))@, 07 b), where (1) +
(") = (1), foralli e {l,....,n—1}, and (7) =1 = () implies the claim. 4

In particular, for n = 2 we have 9*u(a,b) = p(a,8%b) + 2u(da, db) + u(6%a,b),
which shows that 92 in general is not a derivation, thus composition of maps in
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general does not induce an associative R-algebra structure on Derpg(2).

(4.2) Inner derivations. Let R # {0} be a commutative ring. For associative
or Lie algebras there are certain derivations arising naturally:

a) Let 2 be an associative R-algebra. Given x € 2, let ady(z) := Agy(x) —
pa(z) € Endr(2() be the associated adjoint map, that is ady(z): @ — za —
az, for all @ € 2. The map adg: A — Endg(2A) is R-linear, but it is not a
representation of . But we have ady (z)(ab) = xab — abx = zab — axb + axb —
abr = a(xb — bx) 4+ (xa — ax)b = a - adg(z)(b) + ady(x)(a) - b, for all a,b € 2.
Thus we have adg (z) € Derg(2), called the associated inner derivation of 2.

Let adgy (A) <g Derg(2) be the set of all inner derivations of 2. Note that we
have ady () = {0} if and only if 2 is commutative.

Then adg () < Dergr () turns out to be an ideal: For 0 € Derg(2), we have
[0, ada(z)](a) = dady(z)(a) — ady(z)(da) = d(za — az) — (z(da) — (Da)z) =
x(da) + (0z)a — a(0x) — (Da)x — x(Da) + (Da)x = (0z)a — a(Ox) = ady(0x)(a),
for all a € ; hence we have [0, ady (z)] = ady (Oz), for all z € 2.

b) Let £ be a Lie R-algebra. For x € £ let ade(z) € Endg(£) be the as-
sociated adjoint map. Then using the Jacobi identity we have ade(z)[a,b] =
[33’ [a’ b“ = _[aa [b7 SC]] - [b7 [377 a]] = _[a7 [b7 .1‘“ - [b> [.’L’, a” = [av [*T7 b]] + HSU, a|’ b]
[a,ade(x)(D)] + [ade(x)(a),b], for all a,b € £. This shows that ady(z)
Derg(£), being called the associated inner derivation of £.

)
Let adg(£) <g Dergr(£) be the set of all inner derivations of £. Then ade(£)
Derg(£) turns out to be an ideal: For 0 € Derg(£), we have [0, ade(x)](a)
Odadg(z)(a) — ade(z)(0a) = I([x,a]) — [x,0a] = [z,0a] + [0z,a] — [z,0a] =
[0z, a] = adg(0z)(a), for all a € £; hence [0, ade ()] = ade(dx), for all x € £.

Note that we have ade(£) = {0} if and only if £ is commutative; and if the Lie

structure of £ is given by the commutator of an associative R-algebra, then the
two notions of adjoint maps coincide.

m |l

1A

(4.3) Automorphisms. a) Let K be a field such that char(K) = 0, and let
2 be a unital associative K-algebra. Let z € 2 be nilpotent, that is there
is | € N such that z! = 0, where 20 := 1 € A. Let the associated divided
powers be defined as z[") := fl—, € 2, for all n € Ny. Let exp(z) =, 7" =
> n>0 = Zﬁ;lo £ € 2 denote the exponential map associated with .

If z,y € A are nilpotent such that 2! = 0 = 4’ and zy = yx, then (z +y)? 1 =

E?l:_ol (zlzl)xiym_l_i = 0, hence x + y € 2 is nilpotent as well, although
possibly a larger exponent is needed. Then we get exp(x+y) = 2171 (aty)”

n=0 n!
n—k

_ n ; n— _ n gk n zF
Zimlo a1 (Cheo ()aryn ) = Ziz;o (koo 57 - (Z:L—k)!) = 2n>0 (X0 57
n—k i

L) = Ciso %) - (Xy50 4) = exp(a) - exp(y) = exp(y) - exp(z) € Al

In particular, we have exp(z) - exp(—z) = exp(x + (—x)) = exp(0) = 1, hence
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we conclude that exp(z) € 2 is a unit, where exp(z) ™" = exp(—z) € 2.

b) Now let 2 be a non-associative K-algebra, and let 9 € Derg () <x Endg ()
be a derivation. Then for all n € Ny, the Leibniz rule becomes 9" u(a,b) =

n n—k n n
9 pu(a,b) = 3o u(2 k,a (‘Z Bl b) =S 1(0a, 0n=klp) € 2, for all a,b € 2A.

If 0 is mlpotent then for exp(0) € EndK(Ql) we obtain p(exp(d)a,exp(9)b) =

H(Zpo s Zpo b)) = 2nzo (oo u(Gra, (?zn ) b)) = Yuso Srnla,b) =

exp(0)u(a,b), for all a,b € A, hence exp(d) is a K-algebra automorphism of 2.

c) Let £ be a Lie K-algebra, and let = € £ such that ade(x) € Derg(£) <g
End g (£) is nilpotent. This gives rise to the adjoint or inner Lie K-algebra au-
tomorphism Adg(x) := exp(ade(x)) of £. Let Aut(£) < GL(L) be the group of
all Lie K-algebra automorphisms of £, and let Inn(£) := (Ade(z) € Aut(L);x €
£,ade(x) nilpotent) be the subgroup generated by all inner automorphisms.

Then Inn(£) < Aut(£) is a normal subgroup: For any € £ such that ade(x)
is nilpotent, and any o € Aut(£), we have o - ade(x) - a™! = ade(a()): a —
a([z,a"1(a)]) = [a(x),a], for all a € £; hence adg(a(z)) is nilpotent as well,
and we have o - Adg(z) - a1 = Ade(a(x)).

d) Let 2 be an associative K-algebra, and let € 2 be nilpotent, that is
there is | € N such that 2! = 0. Then we have Ay (z)! = Ag(z!) = 0 and
pa(x)! = py(z!) = 0, thus both \y(z), pa(z) € Endg () are nilpotent; note
that we have exp(Ay(z)) = Ay (exp(z)) and exp(pg(z)) = pa(exp(x)).

Since 2 is associative, we have Ay (z)pa(z) = pa(z)Au(x), hence ady(x) =
Ao (z)+pa(—2x) € Endg () is nilpotent as well. Note that the argument showing
the nilpotence of adg(x) € Endg (1) holds for fields of arbitrary characteristic,
and that adg(zr) € Endg(2) being nilpotent does not imply that z € A is
nilpotent, as for example the identity element in the unital case shows.

Hence the nilpotent element z € 2 gives rise to the adjoint K-algebra au-
tomorphism Adg(z) = exp(ady(z)) = exp(Aa(x) + pa(—x)) = exp(Aa(z)) -
exp(pu(—2)) = Au(exp(z)) - palexp(—2)) = Aalexp(x)) - pa(exp(z) 1) of 2.
In other words we have Ady(z) = kg (exp(z)): a — exp(x) - a - exp(x)~1, for
all a € 2, that is Ady(x) coincides with the inner K-algebra automorphism
ke (exp(z)) of 2 associated with exp(z) € 2.

For any K-algebra automorphism « of 2 we have a(exp(z)) = exp(a(z)) € 2.
Hence we get - Adg(z)-o™ = Adg(ev(2)): a — a(exp(z)-a(a)-exp(z) ) =
exp(a(z)) - a-exp(a(x))~!, for all a € 2; alternatively, using the Lie K-algebra
structure of 2 given by commutators, this follows directly from part c).

(4.4) Example: The special linear algebra of degree 2. a) Let K be a
field such that char(K) = 0, and let £ := sly(K). Letting {E, H, F'} C £ be the
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standard K-basis, by (2.2) the adjoint representation ade: £ — gl3(K) equals

0 -2 0 2.0 0 0 0 0
ade(E)=10 0 1|, ade(H)=1{0 0 0|, ade(F)=|-1 0 0
0 0 0 00 —2 0 2 0

Note that the standard K-basis consists of eigenvectors of ade(H).
The matrices ade(F), ade(F) € gl3(K) are nilpotent, where

00 —2 0 0 0
adg(E)*= (0 0 0|, adg(F)*’=10 0 0f,
00 0 -2 0 0

and thus ade(F)3 = 0 = ad¢(F)3. This yields the Lie K-algebra automorphisms

9 1 —2a —a?
Adg(aE) = B3+ a - ade(E) + % cade(E)2= [0 1 a | €GLsy(K),
0 0 1
b2 1 0 0
Ade(bF) = Ez+b-ade(F)+ —-ade(F)?= | =b 1 0| € GL3(K),
2 2
-b= 2b 1
for all a,b € K. In particular, we get
o 0 -1
Adg(E) Adg(—F) Adg(E) =10 -1 0| e GL3(K),
-1 0 0

that is the Lie K-algebra automorphism o € Inn(£L) given by o(F) = —F and
o(F)=—F and o(H) = —H.

b) We consider £ = sly(K) C gly(K) =: £. Now £ carries the structure of an
associative K-algebra, hence the adjoint automorphisms of £ as an associative
K-algebra are inner automorphisms of £ as a Lie K-algebra. More specifically:
The elements E, F € € are nilpotent such that E? = 0 = F2. Hence we have
exp(aFE) = Ey + aF = [é C{] € SLy(K) < GLy(K), and similarly exp(bF) =
10

FEs +bF = [b 1

} € SLy(K) < GLy(K), for all a,b € K.

This givies rise to inner automorphisms Adg(?) = exp(adz(?)) = rg(exp(?))
of £, and since the elements under consideration are in £, the latter automor-
phisms restrict to £, giving the automorphisms Adz(?)|e = exp(adg(?))|e =
exp(ada(?)]e) = exp(ade(?)) = Ade(?). Indeed we get explicitly:

Adg(aE): E — exp(aE) - {8 (ﬂ - exp(—aE) = [8 (1)} _E,
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1 —2a

Adg(aE): H — exp(aE) - {é _OJ ~exp(—aE) = {0 1

} =—2aF + H,

0 0 a —a® 9
Adg(aE): F + exp(aF) - 1 0 -exp(—aF) = P E+aH+F,

-b 1

Adg(bF): E v exp(bF) - {8 (ﬂ - exp(—bF) = [_62 ,

]:E—bH—bQF,

Adg(bF): H — exp(bF) - {(1) _OJ -exp(—bF) = Bb _01] = H + 2bF,

0 0 0 0
Adg(bF): F' +— exp(bF) - L O} -exp(—bF) = [1 0] =F.
c) Now let K be a field of arbitrary characteristic, and let still £ = sly(K) C
gly(K) = £ For A € GLy(K) let rg(A): £ = £: M — AMA™' be the
inner automorphism of the associative K-algebra € associated with A. Hence
#3(A) also is an automorphism of £ as Lie K-algebras, and thus we get a group

homomorphism rg: GLa2(K) — Aut(fl) < GL(E) >~ GL4(K). Moreover, since
Tr(AMA=1) = Tr(M), for all M € £ and all A € GLy(K), this restricts to a

group homomorphism rz|e: GLo(K) — Aut(£) < GL(£) = GL3(K).
Lemma. We have ker(xg) = ker(rg|e) = K™ - Es.
Proof. For t € K* we have (tEy) - B - (t"'E,) = B, for all B € £, hence

K*Ey <ker(kg). If A:= [i Z} € ker(kg|e) then A-B-A~! = B, forall B € £,

. 0 a c d a —b a b
yields {O c} =AFE = FEA = [0 O] and [c —d] =AH = HA = [—c —d}
b 0 00
and d 0 =AF =FA= a b7thusb:0:canda:d,henceA:aEg,
where 0 # det(A) = a? yields a € K*. i

Hence we have k3 (GL2(K)) = GLy(K)/(K* - Es) =: PGLy(K), the projective
general linear group of degree 2. Similarly, restricting to SLa(K) < GLy(K)
we get rg(SLo(K)) = SLa(K)/(—E2) =: PSLy(K), the projective special
linear group of degree 2, where ker(xg) N SLa(K) = (—Es).

Lemma. We have < [é (11] , [ll) ﬂ ;a,b € K> = SLy(K).
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b

Proof. Let A := {a
c d

} € SLy(K), where a,b,¢,d € K are such that det(A) =

1«11 1ol 1 &2
ad — bc = 1. Then we get: Ifc;é()wehaveA{O i}[c J[ ];

0

ifb#OthenwehaveAz[dll N all
S T N B

a 0 1 o] [11 1 o] [1 -2
WehaveA{o a_l}[i—l 1}'{0 1]'[a—1 1}'{0 1]' b
To relate this to the above observations on exponentials, letting char (K ) =0,t
group (Adg(aE), Adg(bF);a,b € K) = (Adg(aE)|e, Ads (bF)|¢; a,b K

1 1
</<;E(exp(aE))|g7/{E(exp(bF))\g;a,b € K) = <n§([ } \g, Kg [b

1 1 0
a,b € K) = nﬁ(< [0 Cll] , [b J a,b € K))|e = kg 3(SLa(K))|e < Inn(£
is isomorphic to PSLy(K).

ﬂ;ifbothbz()zcthen

‘Ea

Here is a couple of particularly interesting automorphisms of £ thus arising:

i) Letting S := {_01 (1)} € SLy(K), we get
wE+cH+bF =€ s “l=s)y=|¢ P = pp—cH-
b —c b —c —a c

for all a,b,c € K. Thus we obtain the Lie K-algebra automorphism o € Aut(£)
given by 0(FE) = —F and o(F) = —F and o(H) = —H; in other words, we have
o(A) = —A™, for all A € £. If char(K) = 0, then we have

S = exp(E) - exp(—F) - exp(E) = [(1) ﬂ ' [_11 ﬂ ' {(1) ﬂ - [—01 (1)] ’

and o € Inn(£) coincides with the inner automorphism encountered earlier.

t 0

ii) For all t € K* let T(t) = [0 1

} € SLy(K). Then T := T'(t) induces

2
aE+cH+bF = {C “] T [C a} Tl = {ﬁ t “] _ PaE+cH+ 2R
b —c b —c = c t2
for all a,b,c € K. Thus we get the Lie K-algebra automorphism 7(t) € Aut(£)
given by n(t): B+ t?E and n(t): H — H = t°H and n(t): F — t~2F. Note
that the standard K-basis of £ consists of eigenvectors of n(t), and that the
corresponding eigenvalues are given as powers of ¢ € K™, where he exponents
are related to the eigenvalues of adg(H) occurring in the case char(K) = 0.

Recall that we have noted earlier that

e T R R P P R

which expresses T' as a word in the chosen generators of SLa(K).
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5 Solvable algebras 1

(5.1) Descending series. a) Let R # {0} be a commutative ring, and let
£ be a Lie R-algebra. Let £ := [ €] = ([a,b] € £;a,b € £)r < £, being
called the derived subalgebra of £. Then £ is called perfect if £1) = £, and
£ = {0} if and only if £ is commutative.

Iterating this yields the derived series of £ defined by £0+1) = [¢() ¢()] for
all i € N; we let £0® := €. Then we have £ < ¢, for all i € Ny. The Lie
algebra £ is called solvable if there is | € Ny such that £) = {0}; if [ is chosen
minimal then £ is said to have derived length [. In particular, if £ # {0},
then £ is solvable of derived length 1 if and only if £ is commutative; while for
perfect £ we have £() = &, for all i € Ny, hence £ is not solvable.

Proposition. i) If £ is solvable, then so are all R-subalgebras and quotients.
ii) Conversely, if 7 < £ such that both J and £/J are solvable, then so is £.
iii) If 3,3 < £ are solvable, then so is J + J.

Proof. i) If & C £ is a Lie R-subalgebra, then we have £) C £, for all
i € Np. Similarly, if ¢: £ — K is an epimorphism of Lie R-algebras, then we
have p(£#) = & for all i € Ng: We have ¢(£®) = 8O and 80+ =
(8D, 80)] = [p(£9)), p(L£D)] = p([£), £0]) = £+,

ii) We consider the natural map vy: £ — £/3. From (£/3)®) = {0}, for some
I € Ny, we get v5(£1) = v5(£)V = {0}, thus £ C ker(v3) = 3. Then, from
3(m) = {0}, for some m € Ny, we get £0T™) = (¢W)(m) C 5(m) = {0},

iii) From the homomorphism principle, applied to the restriction to J of the
natural map vy: £ — £/3, we get 3/(IJNJ) = (J+ J)/J. Thus from T being
solvable, we infer that (J+3J)/J is solvable as well, hence J being solvable entails
that J + J is solvable. i

b) Iterating this in a different way yields the descending or lower central
series of £ defined by letting €% := ¢ and g1 := [¢,£] = €M), as well as
glitll = ¢ ¢ll] for all i € N. Then we have £ < &, for all i € Ng. The Lie
algebra £ is called nilpotent if there is I € Ny such that £[J = {0}; if { is chosen
minimal then £ is said to have nilpotency length /. In particular, if £ # {0},
then £ is nilpotent of nilpotency length 1 if and only if £ is commutative; while
for perfect £ we have £l = ¢, for all i € Ny, hence £ is not nilpotent.

Then we have [£l, ¢l1] € gli+i+1 for all 4,5 € Ny: Proceeding by induction
on i € Ny, for i = 0 we have [£, £U]] = ¢U+1 for all j € Ny, and [li+1], ¢l]] =
(e, el], gll]  [g, (el el + (gl [g, gbl]) C [g, glitit] 4 (gl gb+1] C
£li+7+2] I particular, this implies that any iterated product of i € N elements
of £ is contained in £,

In particular, since any element of £ is a sum of products of 2! elements of £,
we conclude that £ C £2'=1 for all i € Ny. Hence any nilpotent Lie algebra
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is solvable, and its derived length k € Ny is bounded above by k& < [log, (14 1)];
this bound is actually sharp, as is shown by the examples given below.

Proposition. i) If £ is nilpotent, then so are all R-subalgebras and quotients;
moreover, if £ # {0} then we have Z(£) # {0}.

ii) If £/Z(£) is nilpotent, then so is £.

iii) If 3,3 < £ are nilpotent, then so is J + J.

Proof. i) If # C £ is a Lie R-subalgebra, then we have /il c S[i], for all
1 € Ng. Similarly, if ¢: £ — £ is an epimorphism of Lie R-algebras, then
we have ¢(£[1) = Rl for all i € No: We have p(£l%) = g0 and ]I+l =
(&, &) = [p(2), o(&l)] = ¢([£, £11]) = i+, Finally, if I > 1 is minimal such
that £ = {0}, we get [, £!=1] = {0}, hence {0} # £l-1 C Z(£).

ii) We consider the natural map vz(g): £ — £/Z(£). From (£/Z(£))! = {0},
for some | € Ny, we get VZ(,:)(SU]) = VZ(,:)(S)[I] = {0}, thus we have £l C
ker(vz(s)) = Z(£). Hence we obtain £+ = [¢, ¢lll] C [g, Z(£)] = {0}.

iii) Given any ideal 8 < £, we first show that any iterated product of i € N
elements of £ of which at least j € {0,...,i} belong to £ is actually contained
on KU~ where we let &7 := ¢:

We proceed by induction on ¢ € N; the cases ¢ < 2 being clear, let ¢ > 3. Then let
x,y,z € £, where z is an iterated product of ¢ — 2 elements. If z,y ¢ K, then at
least j of the factors of z belong to & and [z, [y, 2]] € RV~ if 2 ¢ R and y € &,
then at least j — 1 of the factors of z belong to & and [y, 2] € [®], RV~2]] = g1
if £ € 8 and y € R, then at least j — 1 of the factors of [y, z] belong to & and
[z,[y, 2]] € [R, AV~ = &V if 2,y € &, then at least j — 2 of the factors of z
belong to & and [z, [y, 2] € [&, [], &3] = g1

Now let I € N such that 3% = {0} = 3. Then (3 + J)? 9 £ consists of sums
of iterated products of 2I elements of £ of which at least [ belong to J or at
least [ belong to J. Hence we conclude that (J + 3)[2” c ol 43 = {0}. i

(5.2) Example: Triangular matrices. Let R # {0} be a commutative ring.
We consider various associative R-subalgebras of R™"*"™, for n € Ny. Going over
to commutators we obtain associated Lie R-subalgebras of gl (R):

Let b,(R) := {A = [a;j]i; € R"*™;a,; = 0 for i > j} be the Borel subalge-
bra of upper triangular matrices, let n,(R) := {4 = [a;;];; € R"*";a;; =
0 for ¢ > j} be the nilpotent subalgebra of strictly upper triangular ma-
trices, and let t,(R) := {A = [ai;];j € R™*™;a;; = 0 for i # j} be the toral
subalgebra of diagonal matrices.

Then for all A € {b,(R),n,(R), t,(R)} we have A <p R™*", as well as AB € 2,

for all A,B € 2, thus these indeed are associative R-subalgebras of R™*™.
Moreover, we have b, (R) = n,(R) ®t,(R) as R-modules, where n, (R) is R-free
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of rank n(n — 1) with standard R-basis {E;; € n,(R);i < j € {1,...,n}}, and
t,(R) is R-free of rank n with standard R-basis {E;; € t,(R);i € {1,...,n}}.

i) The Lie R-algebra t,,(R) is commutative. Moreover, we have Ny (g)(tn(R)) =
Cg[”(R) (fn(R)) = {:n(R) IfrA c Ng[”(R) (tn(R)), then we have [A, E“] = AE” —
E;A € t,(R), for all i € {1,...,n}, hence A is a diagonal matrix.

ii) We have [Ekl; Eij] = 5“Ekj _6jkEil7 for all i,j, k‘,l S {1, . ,n} such that i <
j and k < I. Hence for the descending central series we have n,(R)lY = (E;; €
n,(R);j—i > c)g, for all ¢ € Ng: From n,(R)I” = (E;; € n,(R);j—i > 0)g, by
induction we get n, (R)FY = [n,(R),n,(R)9] = (E;; € n,(R); 5 —i > c+1)p.
Thus we conclude that n, (R) is nilpotent of nilpotency length n — 1.

For the derived series we have n,(R)(® = (E;; € n,(R);j —i > 2°)g, for all
¢ € No: From n,(R) = (E;; € n,(R);j —i > 1)g, by induction we get
n, (R = [n,(R)@,n,(R)¥] = (BE;j € ny(R);j —i > 2°42¢ = 25,
Thus we conclude that n,(R) is solvable of derived length [log,(n)].

iii) We have [Ekk,Eij] = 5]ﬂEU — 6kjEij, for all 4,4,k € {1, .. .,n} such that
i < j. Hence we have [t,(R),n,(R)] = n,(R). For the descending central series
this implies b, (R)!Y = n,(R), for all ¢ € N; in particular we have n,(R) <
b, (R): From b, (R)™ = [b,,(R),b,(R)] = n,(R) <b,(R), by induction we get
b, (R)H) = [b,(R), b, (R)F] = [b,,(R),n,(R)] = n,(R). Thus we conclude
that b, (R) is not nilpotent.

But the restriction to t,,(R) of the natural map v, (g): bp(R) — by (R)/n,(R)
yields an isomorphism b, (R)/n,(R) = t,(R), which is commutative and thus
solvable. Hence since n,(R) < b, (R) is a solvable ideal we conclude that b, (R)
is solvable. For the derived series we have b, (R)(®) = n,(R)(¢~1, for all ¢ € N,
hence the derived length of b, (R) exceeds the derived length of n,(R) by 1,
that is equals 1 4 [logy(n)].

Finally, we have Ny (r)(bn(R)) = b, (R) and Cy (g)(bn(R)) = jn(R), as well
as Ny (r)(nn(R)) = by (R) and Cg (r)(nn(R)) = 3n(R): If A € gl,,(R), then
[A,E;j] = AE;; — E;jA € b,(R) for all ¢ < j € {1,...,n}, shows that A is
an upper triangular matrix, and [A, E;;| = AE;; — E;;A =0, for all i < j €
{1,...,n}, shows that A is a scalar matrix. Note that we have Cy( (g)(bn(R)) C
C(g[n(l’?‘) (tn(R)) = tn(R) anyway.

(5.3) Nilpotent Lie algebras. Let K be a field, and £ be a finite-dimensional
Lie K-algebra. An element z € £ is called ad-nilpotent if ade(x) € gl(£) is a
nilpotent K-endomorphism, that is there is [ € Ny such that adg(z)! = 0.

If £ is nilpotent of nilpotency length I € Ny, then £ = [€ [£,]...,[, £]]]] =
{0} says that adg(zq)ade(xz2) - -ade(z;) = 0 € gl(£), for all z1,...,2; € &
hence we have adg(x)! = 0 € gl(£), for all x € £, thus = € £ is ad-nilpotent.

Nicely enough, conversely to this observation, it turns out that complete ad-
nilpotency already implies nilpotency. We now proceed to prove this:
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Theorem. Let n € N, and let £ C gl (K) be a Lie K-subalgebra all of whose
elements are nilpotent. Then we have (), . ker(A) # {0}, that is there is
0 # v € K™ such that £-v = {0}.

Proof. We proceed by induction on d := dimg (L) € Ng. The case d = 0
being trivial, let d > 1. Note that the case d = 1 actually is well-known:
In this case we have £ := (A)g, where 0 # A € gl,,(K) is nilpotent, then
its minimum polynomial equals X! € K[X], for some [ € {1,...,n}, hence its
characteristic polynomial equals X™ € K[X], showing that A has an eigenvector
in 0 # v € K™ with respect to the eigenvalue 0.

Let first £ C £ be a proper Lie K-subalgebra. Since for adg: & — gl(£) we have
ade(R) - B = [R, R] C &, we have an induced representation p: & — gl(£/8).
Since dimg (R) < d there is v € £\ & such that its natural image v € £/8 fulfills
p(R) - v = {0}, thus adg(R) - v C &, showing that v € Ne(R) \ &

Let now 8 C £ be a maximal proper Lie K-subalgebra, and let A € £\ &.
Then the above argument shows that Neg(R) = £, that is & < £. Moreover,
RC R+ (A)k C Lis a Lie K-subalgebra, entailing that & + (A)x = £.

Since dimg (R) < d again, we have {0} # U := (\gcqker(B) <g K"*'. Then
we have B(Au) = A(Bu) — [A,BJu = 0, for all B € 8 and u € U. Hence we
have A-U <g U. Thus A induces a nilpotent K-endomorphism of U, which
has an eigenvector within 0 # v € U with respect to the eigenvalue 0. Hence in
conclusion we have £-v = (8+ (A)k) - v = {0}. i

Corollary. There exists a flag {0} =V < V3 < --- <V, =V := K" that
is we have dimg (V;) = ¢, such that £-V; <g V;_4, for alli € {1,...,n}.

Thus, choosing an adjusted K-basis of V' by proceeding through Vi, Vo, ..., V,,
yields a matrix A € GL,,(K) such that A= - £. A Cn,(K) C gl,,(K); hence £
is isomorphic to a Lie K-subalgebra of n, (K), in particular is nilpotent.

Proof. We proceed by induction on n € N; the case n = 1 being trivial, let
n > 2. By the theorem, there is 0 # v € V such that £-v = {0}. Hence
let Vi := (v)x and W := V/V; =2 K(®=UX1 Then £ acts with nilpotent K-
endomorphisms on W. Hence by induction there is a flag {0} = Wy < W3 <
<o < Wpo1 =W such that £-W; <g W;_4, for alli € {1,...,n — 1}. Letting
Vi <k V be the preimage of W;_; <y W with respect to the natural map
V—oV/Vi =W, forallie{l,...,n}, yields a flag as desired. i

Corollary. Let £ be a nilpotent finite-dimensional Lie K-algebra. Then for
any proper Lie K-subalgebra £ C £ we have R # Ng(R).

Proof. The adjoint representation of £ induces a representation £ — gl(£/R),
whose image by the nilpotency of £ consists of nilpotent maps. Hence there is
v € £\ & such that ade(8) - v C &, thus v € Ne(R) \ R i
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Theorem: Engel. Let £ be a finite-dimensional Lie K-algebra all of whose
elements are ad-nilpotent. Then £ is nilpotent.

Proof. Let ade: £ — gl(£) be the adjoint representation, where ker(ade) =
Z(£). Hence it suffices to show that ade(£) = £/Z(£) is nilpotent. By assump-
tion ade (L) C gl(L) is a Lie K-subalgebra all of whose elements are nilpotent,
hence by the above corollary is nilpotent. i

(5.4) Solvable Lie algebras. We proceed to generalise the above observations
for nilpotent Lie algebras to solvable ones. It turns out that we need further,
fairly strong assumptions on the underlying field K, which cannot be dispensed
of, inasmuch the theorem to follow elsewise does not hold in general.

Theorem. Letn € N, let K be an algebraically closed field such that char(K) =
0 or char(K) > n, and let £ C gl,,(K) be a solvable Lie K-subalgebra. Then
thereis 0 # v € K™*! such that £-v <k (v)f, that is v is a common eigenvector
for all elements of £.

Proof. We proceed by induction ob d := dimg (£) € Ny; the case d = 0 being
trivial, let d > 1. Then £ being solvable we have [£, £] < £. Thus £/[£, £] # {0}
is commutative, hence any K-subspace of £/[£, £] is an ideal. Taking a preimage
of a maximal proper K-subspace of £/[£, £], with respect to the natural map
£ — £/[£, £], yields an ideal [£, £] C R < £ such that dimg (R) = d — 1. Hence
letting C' € £\ &, then we have £ = R+ (C) k.

Hence by induction there is a common eigenvector 0 # w € K™*! for all elements
of R, in other words there is a K-linear map A\: & — K: B — Ap such that
Bw = Apw, for all B € & Let U := {u € K™!; Bu = \gu, for all B € 8} <
K™ 1. thus we have 0 # w € U. It now suffices to show that U <y K"*!
is an £-submodule; then, since K is algebraically closed, C' has an eigenvector
0 # v € U, which hence is a common eigenvector for all elements of £.

It remains to show that Au € U, for all A € £ and u € U. To do so, we have to
show that B(Au) = AgAu, for all B € & Since B(Au) = A(Bu) — [A,Blu =
AAu — A4, pju, this amounts to showing that A4, = 0:

For i € N let W; := (u, Au, A%u, ..., A" u) g <g K™, hence we have {0} =:
Wo < Wy <--- <W; =Wy =+, where dimg (W;) = 4, for all 4 € {0,...,1},
and | € {0,...,n} is minimal such that {u, Au, A%u,..., Alu} C K™*!is K-
linearly dependent. Hence we have AW, <x W, 1 <g W, for all i € Ny.

Next, by induction on i € Ny we show that BA'u = AgA’u (mod W;), in
particular implying that BA*u € W;,,: For i = 0 we have Bu = Apu; hence
let i+ > 1. Then we have BA'u = BAA""'u = (AB — [A, B])A""'u, where
by induction we have BA*lu = ApA"~lu (mod W;_1) and [A, B]JA" lu
Ata,pj A" ' (mod W;_1). Hence, using AW;_; <g W;, we infer that BA'u =
ApAu — A\a, g A" u = ApAtu (mod Wj).
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This shows that BW,; <x W;11 <x W, for all i € Ny, hence the matrix of the
action of B on W, with respect to the K-basis {u, Au, A%u,..., A=y} C W,
is upper triangular with all diagonal entries being equal to Ag. Thus we have
Trw, (B) = I\, for all B € & In particular, since AW; <xg W; as well, the
element [A, B] € R acts as the commutator of two K-endomorphisms of W,
thus we have 0 = Trw, ([A, B]) = [\(4,p). Finally, due to the assumption on
char(K) we have [ € K*, hence this entails Aj4 g = 0. i

Corollary: Lie’s Theorem. There exists a flag {0} = Vo < Vi < --- <V, =
V= K™ such that £-V; <k V;, for all i € {0,...,n}.

Thus, choosing an adjusted K-basis of V' by proceeding through Vi, Vo, ..., V,,
yields a matrix A € GL,,(K) such that A™1 - £- A C b, (K) C gl,,(K); hence £
is isomorphic to a Lie K-subalgebra of b, (K).

Proof. We proceed by induction on n € N; the case n = 1 being trivial, let
n > 2. By the theorem, there is 0 # v € V such that £-v <p (v)x. Hence
let V; := (v)g and W := V/V; = K®~Dx1 with associated representation
p: £ — gl(W). Then ¢(£) = £/ker(p) is a solvable Lie K-subalgebra of
gl(W). Hence by induction there is a flag {0} = Wy < Wy < -+ < W,,.q =W
such that £ -W; <xg W;, for all i € {1,...,n — 1}. Letting V; <x V be the
preimage of W;_; <y W with respect to the natural map V — V/V; = W, for
all i € {1,...,n}, yields a flag as desired. 1

Theorem. Let K be a field such char(K) = 0, and let £ be a solvable finite-
dimensional Lie K-algebra, where d := dimg (£) € Ny.

a) Let K be algebraically closed. Then there exists a chain of ideals {0} = Jy <
J1 < -+ <Jq:= £ of £ such that dimg(3J;) =4, for all 1 € {0,...,d}.

b) The derived subalgebra [£, £] is nilpotent.

Proof. a) We consider the adjoint representation ade: £ — gl(£). Then
ade(L) = £/Z(L) is a solvable Lie K-subalgebra of gl(£), hence there is a
flag {0} = Jp < J1 < -+ < Ty := £ such that [£,7;] = ade(£) - J; <k TJ;, thus
J; < £ is an ideal, for all ¢ € {0,...,d}.

b) Let E be an algebraic closure of K, and let 2K .= £ @k K. Then we
have (EK)[’“] = (glF)K for all k € Ny. Hence [£, £] is nilpotent if and only if

[£K, £K] is. Thus we may assume that K = K is algebraically closed.

Now, by Engel’s Theorem it suffices to show that any element of [£, £] is ad[¢ ¢}
nilpotent. To this end, let {0} = Jp < J; < --- < Jg := £ be a chain of
ideals such that dimg(J;) = 4, and let {z1,...,24} C £ be a K-basis such
that (z1,...,2;)x = J;, for all ¢ € {0,...,d}. Then, with respect to this K-
basis, we have adg(z) € by(K), implying that ade([z,y]) = [ade(x),ade(y)] €
[64(K),by(K)] = ng(K), for all z,y € £. Hence we infer that ade([L, £])
consists of nilpotent K-endomorphisms, thus adje ¢j([£, £]) does so as well.
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6 Solvable algebras II

(6.1) Semisimple endomorphisms. Let K be an algebraically closed field,
and let V' be a finite-dimensional K-vector space. A K-endomorphism ¢ €
Endg (V) is called semisimple, if its minimum polynomial p, € K[X] is
multiplicity-free, that is all its roots are simple.

This is equivalent to saying that ¢ is diagonalisable, or still in other words that
V =@,cx Talp), where T, (p) := ker(p —a-idy) = {v € V;¢(v) = av} <k V;
note that T,(p) # {0} if and only if a € K is an eigenvalue of ¢, in which case
T, () is the associated eigenspace.

If W <g V is a p-invariant subspace, then fi,|,, | p, € K[X] implies that
©lw € Endg (W) is semisimple again.

Lemma. Let M := {p; € Endg(V);i € I}, where Z # ) is an index set,
be a set of pairwise commuting semisimple K-endomorphisms. Then M is
simultaneously diagonalisable, that is there is a K-basis of V' consisting of
eigenvectors for all elements of M.

Proof. We proceed by induction on dimg (V) € Ny, the cases dimg (V) < 1
being trivial. Letting ¢ € M we have V = @, i Tu(p). Then, for all a € K
and ¥ € M, the K-subspace T,(p) <k V is ¢-invariant: For v € T,(¢) we have
p(v) = Pp(v) = ap(v), thus ¥(v) € To(p). Hence it suffices to consider the
eigenspaces W <g V of ¢, and the set My = {pi|lw € Endg(W);i € Z} in
turn. If there is ¢ € M having two distinct eigenvalues, then we are done by
induction. Otherwise we have Ty, (@) =V, for all ¢ € M and certain a, € K,
thus all non-zero elements of V' are eigenvectors for all elements of M. i

We now consider arbitrary K-endomorphisms, and show that these can be nat-
urally decomposed additively into semisimple and nilpotent parts:

(6.2) Theorem. Let K be an algebraically closed field, let V' be a finite-
dimensional K-vector space, and let ¢ € Endg (V).

i) Then there are a unique semisimple part ¢, € Endg (V) and a unique
nilpotent part ¢, € Endg (V) such that @50, = ¢nes and we have the
(additive) Jordan-Chevalley decomposition ¢ = ¢4 + @,,.

ii) There are polynomials fs, f, € K[X] where fs(0) = 0 = f,(0), such that
ws = fs(p) € Endg (V) and ¢, = fu(e) € Endg (V). In particular, both ¢
and ¢, commute with all K-endomorphisms of V' commuting with ¢.

Proof. We first show existence: Let x, = Hle(X —a;)™ € K[X] be the
characteristic polynomial of ¢, where a1, ...,a; € K are the distinct eigenvalues
of ¢, and mq,...,my € N are the associated multiplicities. Then we have V =

@D, Vi, where V; := T(x _q,)mi (p) <k V, where we let Ty () := ker(f(y)) <k
V be the generalised eigenspace of ¢ with respect to f € K[X]. Then V; <g V
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is a p-invariant K-subspace, where ¢; := |y, has characteristic polynomial
X, = (X —a;)™ € K[X], foralli € {1,...,k}.

We consider the congruences f = a; (mod x,,), for all ¢ € {1,...,k}, and
f =0 (mod X) in K[X]. The moduli x,, are pairwise coprime. If 0 € K is an
eigenvalue of ¢, then the last congruence is a consequence of f =0 (mod X™),
where m € N is the associated algebraic multiplicity, hence is redundant and will
be ignored. Otherwise the modulus X is coprime to x,, for all i € {1,...,k}.

Hence by the Chinese Remainder Theorem there is f; € K[X] simultaneously
fulfilling all the above congruences. Let f, := X — fs(X) € K[X]. From fs =0
(mod X) we infer f5(0) =0, and f,(0) = 0. Let now ¢4 := fs(p) € Endg (V)
and ¢, = fulp) = ¢ — ps € Endg (V). Hence we have ¢ = ps + ¢, and
since s and (,, are polynomials in ¢, we infer that s and ¢, commute, and
commute with all K-endomorphisms commuting with .

Now V; <k V is ps-invariant and @,-invariant, for all i € {1,...,k}, and
we have 908|Vi = fs(‘pi) and (pn"/i = fn(‘pi)' Since fs = (mOd Xsai)’ the
Cayley-Hamilton Theorem says that fs(¢;) = a; - idy,. This implies that ¢, is
semisimple. Next, we have f,,(p;) = ¢i — fs(vi) = @i —a;-idy,, thus f,(p;)™ =
(pi — a; -idy,)™ = x4, (¢s) = 0. This implies that ¢,, is nilpotent.

It remains to prove uniqueness: Let ¢, € Endg (V) be semisimple and ¢}, €
Endg (V) be nilpotent such that ¢L¢!, = ¢h¢l and ¢ = ¢, + ¢),. Then both
©., and ¢!, commute with ¢, hence commute with ¢, and ¢,,. Now ¢, + ¢, =
© = ¢. + ¢, implies p; — ¢, = ¢, — @,. The left hand side, being a sum
of commuting semisimple K-endomorphisms, is semisimple again. Similarly,
the right hand side, being a sum of commuting nilpotent K-endomorphisms, is
nilpotent again. Now, the only K-endomorphism which is both semisimple and
nilpotent is the zero map, hence ¢, = ¢, and ¢}, — ¢,,. i

(6.3) Theorem. Let K be an algebraically closed field.

a) Let V be a finite-dimensional K-vector space, and let A € gl(V') with Jordan-
Chevalley decomposition A = A; + A, € gl(V). Then we have the Jordan-
Chevalley decomposition adgy(A) = adgiv)(As) + adgivy(An) € gl(gh(V)).

b) Let 2 be a finite-dimensional non-associative K-algebra. Then Der g () <g
End g () has Jordan-Chevalley decompositions, that is for any 0 € Der g () the
semisimple and nilpotent parts 9; € Endg (1) and 9,, € End (), respectively,
are derivations as well.

Proof. a) If A € gl(V) is nilpotent, then Agyv)(A) and pgiv)(A) are so as well,
and since Agi(v)Pgi(v) = Pgi(v)Agi(v) we infer that adgvy(A) = Agyvy(4) —
pgi(v)(A) is nilpotent, too; note that we have seen this argument in (4.3) already.

If A € gl(V) is semisimple, then by choosing a suitable K-basis of V we may
assume that A = Y7 | a;E;; is a diagonal matrix, where n := dimg (V) € Ny
and ay,...,a, € K are the eigenvalues of A. Letting {E11,...,E,n} C gl(V) be



the standard K-basis, we have adgv)(A)(Ei;) = Y1y ai(EiEij — EijEy) =
(a; — aj)E;j, for all 4,5 € {1,...,n}. Hence the standard K-basis of gl(V)
consists of eigenvectors for adgy)(4).

Thus, if A = A, + A, € gl(V) is a Jordan-Chevalley decomposition, then
adgvy(As) is semisimple, and adgy)(A,) is nilpotent. Finally, we obtain
[adgiv)(As), adgiv)(An)] = adgivy([As, An]) = 0, saying that adg ) (As) and
adgi(v)(An) commute. Hence we conclude that adgy)(As) and adgv)(Ay) are
the semisimple and nilpotent parts of adgv)(A) € gl(gl(V)).

b) Given 9 € Derg (), it suffices to show that 95 € Endg () is a derivation:
To this end, for a € K let 2, := T(x _q)n(0) := {x € A; (0 —a-idgy)"(z) = 0} be
the generalised eigenspace of 9 with respect to the polynomial (X —a)" € K[X],
where n := dimg (2); then 2 = P, Aq, and 9, acts as a - idy, on A,.

We have (9— (a-b) - ida) () = 2y ()a((9—a-ida)iz, (9—b-ida)" '),
for all x,y € A and a,b € K and k € Ny: We proceed by induction on k € Ny;
the case k = 0 being trivial, let k > 1. Then we have (0 — (a+b)-idy ) u(z,y) =
S (M) (0 (a+b)-ide) p((8—a-idg ), (9—b-idy)*~*~'y). The product rule

yields (90— (a-+)-ida)*p(z,y) = 32155 (V71 u((0—a-ida)'z, (0—b-idw)* i) +
Z’;l (f:ll)u((a —a-idy)'z, (0 —b-ide)*"'y). Now (kz.l) + (’f:ll) = (’f), for all
ie{l,...,k—1}, and (]S) =1= (ﬁ), implies the claim.

Using this we get (0 — (a + b) - idy)?"u(z,y) = Z?Zo (f)p((&' —a-idy)iz, (0 —
b-idy)" 'y) =0, for all z € A, and y € A,. Noting that A = T(x_)n(0) =
Tix—c)2n(0), for all c € K, we infer pu(Aq,Ap) <x Aqys, for all a,b € K. This
yields Osp(x,y) = (a+b)u(z,y) = plaz,y)+pu(z, by) = p(9sz,y) +p(z, dsy), for
all x € A, and y € 2Ap. Since A = @aeK A, this says that J, is a derivation. f

(6.4) Theorem: Cartan’s Criterion. Let K be a field such that char(K) =
0, let V be a finite-dimensional K-vector space, and let £ C gl(V) be a Lie
K-subalgebra. Then £ is solvable if and only if Tr(AB) = 0, for all A € [£, £]
and B € £.

Before proceeding to the proof we need a lemma:

Lemma. Let K be an algebraically closed field such that char(K) = 0, let
V be a finite-dimensional K-vector space, let U <x W <g gl(V), and let
M= {A e gl(V);[A,W] <k U} <k gl(V). Moreover, let A € M such that
Tr(AB) =0, for all B € M. Then A is nilpotent.

Proof. Let A = A;+ A, € gl(V) be the Jordan-Chevalley decomposition of A,
where A; is semisimple and A,, is nilpotent; hence we have to show that A; = 0.
By choosing a suitable K-basis of V we may assume that A; = diagfay, ..., a,] is
a diagonal matrix, where n := dimg (V) € Ny and ay, ..., a, € K are the eigen-
values of Ay; we may assume that n > 1. Hence letting £ := (a1,...,an)0 <o K
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be the finite-dimensional Q-subspace of K generated by the eigenvalues of Ay,
and &* := Homg(€, Q) be its dual, we have to show that £* = {0}:

Let A € £ and B := diag[A(a1), ..., A(ay)] € gl(V). By Lagrange interpolation
there is f € K[X] such that f(a;) = Ma;) €e Q C K, foralli € {1,...,n}, hence
B = f(As). Moreover, we have A; = fs(A), for some fs € K[X], implying that
B = f(fs(A)) commutes with A, and thus commutes with A,. This implies
that A, B is nilpotent, thus Tr(AB) = Tr(AsB) + Tr(A,B) = Tr(AsB).

Moreover, letting {E11,...,Enn} € gl(V) be the standard K-basis, we have
adgvy(As)(Eij) = (a; — aj)Ey;, and similarly, using the Q-linearity of A, we
get adgyvy(B)(Eij) = Ma; — aj)Eyj, for all 4,5 € {1,...,n}. By Lagrange
interpolation there is g € K[X] such that g(a; — a;) = Aa; —a;j) € Q C K, for
all 4,7 € {1,...,n}; note that for i = j we get ¢g(0) = 0.

Hence we have adg(v)(B) = g(adgi1)(As)). Moreover, we have adg)(As) =
(adgi(v)(A)), = fs(adgiv)(A)), for some f, € K[X] such that f,(0) = 0. We
conclude that adgy)(B) = h(adg)(A)), where h := g(f,) € K[X] fulfills
h(0) = 0. By assumption on A we have adgy)(A) - W < U, hence we infer
that adgv)(B) - W <k U as well, that is B € M.

This implies 0 = Tr(AB) = Tr(A;B) = >, Ma;)a; € €. Applying X yields
S Aa;)? =0 € Q, thus A(a;) =0, for all i € {1,...,n}, entailing A\=0. §

Proof: Cartan’s Criterion. Let K be an algebraic closure of K, and let
7K .= 7@ K denote the associated scalar extensions. Then we have (2?)(’“) =
(S(k))ﬁ, for all £ € Nyg. Hence £ is solvable if and only if ek is. Moreover,
the trace condition is fulfilled for all A € [£,£] and B € £ if and only if it is
so for all A € [€K,€K] and B € £K. Thus we may assume that K = K is

algebraically closed.

Let £ be solvable. Then by Lie’s Theorem we may assume that £ C by(K) C
gl (K), where d := dimg (V) € Ny. Then we have [£, £] C [b4(K),bq(K)] =
ng(K). Thus we get AB € by(K)ng(K) = ng(K), in particular implying
Tr(AB) =0, for all A € [£,£] and B € £.

Now let £ fulfill the asserted trace condition. By Lie’s Theorem again, £ is
solvable if and only if [£, £] is nilpotent. In turn, by Engel’s Theorem [£, £]
is nilpotent if and only if ad¢ ¢)([£, £]) consists of nilpotent K-endomorphisms
of [£, £]. Finally, the latter if fulfilled if [£,£] C gl(V) consists of nilpotent
K-endomorphisms of V', which we proceed to show:

We aim at applying the above lemma with U := [£, £] <x £ =: W, hence let
M = {C € gl(V);[C, £] <k [£,L]}; then [£,£] C £ C M. Letting A,B € £
and C' € M, we have Tr([4, B]C) = Tr(ABC — BAC) = Tr(BCA — CBA) =
Tr([B, C]A), where by definition of M we have [B,C] € [£, £], and thus by
assumption Tr([B, C]A) = 0. This shows that Tr([£, £]-C) =0, for all C' € M,
hence the above lemma says that [£, £] consists of nilpotent endomorphisms. §
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Corollary. A finite-dimensional Lie K-algebra £ is solvable if and only if
Tr(ade(z)ade(y)) =0, for all z € [£,£] and y € £.

Proof. The Lie K-algebra £ is solvable if and only if £/Z(£) = ade(£) C gl(£)
is so. Since [ade(£),ade(L)] = ade([£, £]), by Cartan’s Criterion the solvability
of ade(£) is equivalent to the trace condition given. i

II Semisimplicity

7 Semisimple algebras

(7.1) Semisimple Lie algebras. a) Let K be a field, and let £ be a finite-
dimensional Lie K-algebra. Then the sum rad(£) < £ of all solvable ideals of
£ is solvable again, hence is the unique maximal solvable ideal; it is called the
(solvable) radical of £. Similarly, the sum nil(£) < £ of all nilpotent ideals
of £ is nilpotent again, hence is the unique maximal nilpotent ideal; it is called
the nil radical of £. We have nil(£) C rad(£).

Lemma. We have rad(£) = {0} if and only if nil(£) = {0} if and only if £ does

not possess any non-zero commutative ideals:

Proof. Since nil(£) C rad(£), and any commutative ideal of £ is nilpotent, we
only have to show that the latter property implies rad(£) = {0}: Assume to the
contrary that rad(£) # {0}. Since rad(£) < £ is an ideal, the derived series of
rad(£) consists of ideals of £, whose second-last term is commutative. i

If rad(£) = {0} then £ is called semisimple; more generally, if rad(£) = Z(£)
then £ is called reductive. In particular, £ = {0} is the only semisimple
solvable Lie K-algebra, but any commutative Lie K-algebra is reductive.

In any case, we have rad(£/rad(£)) = {0}, that is £/rad(£) is semisimple: If
rad(£) € <L is an ideal such that J := J/rad(£) < £/rad(£) is solvable, then
since rad(£) is solvable J is solvable as well, hence J C rad(£) and thus J = {0}.

b) Let £4,...,£, be finite-dimensional Lie K-algebras, where n € Ny. Then
the direct sum £ := @?:1 £; of K-vector spaces becomes a Lie K-algebra with
respect to the componentwise Lie product, being called the direct sum of the
£;; for n =0 we let £ := {0}. From [£;, £;] = {0}, for all ¢ # j € {1,...,n}, we
conclude that any ideal of £; is an ideal of £, in particular £; < £ is an ideal.

Lemma. We have rad(£) = @), rad(£;) and nil(£) = @, nil(£;).
Proof. We have rad(£;) < £;, hence rad(£;) < £ is a solvabe ideal, thus we

have @), rad(£;) <k rad(£). Similarly, since [£;, £;] = {0}, for all i # j, we
conclude that nil(£;) < £ is a nilpotent ideal, thus @;-_ nil(£;) < nil(£).
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As for the converse inclusions, we consider the natural projections m;: £ — £;
associated with the direct sum decomposition of £; then 7; is an epimorphism
of Lie K-algebras. Hence m;(rad(£)) < £; is a solvable ideal, implying that
mi(rad(L)) <k rad(L;), for all i € {1,...,n}. Thus we conclude that rad(£) C
(B, m)(rad(L)) <x P rad(L;). Similarly, m;(nil(£)) < £; is a nilpotent
ideal, implying that m;(nil(£)) <k nil(L;), for all ¢ € {1,...,n}. Thus we
conclude that nil(£) C (P, m)(nil(L)) <x P, nil(L;). t

Hence £ is semisimple if and only if the £; are so, for all i € {1,...,n}. In
particular, this is the case if the £; are simple, for all ¢ € {1,...,n}. We
will show in (7.4) that, for K a field such that char(K) = 0, this is indeed a
characterisation of semisimplicity.

Example: General and special linear algebras. Let K be a field such that
char(K) = 0, and let n € N. Then the Lie K-algebra £ := sl,,(K) is semisimple,
and the Lie K-algebra £ := gl (K) is reductive: (We will show later that £ is
actually simple for n > 2.)

Let K be an algebraic closure of K, then we have £K = s[,(K) and €K =
al,,(K). Since rad(£)X < £K is solvable, we have rad(£)X C rad(£X), and
similarly rad(€)% C rad(£X), while Z(£) = 3,(K) = 3,(K) N £ = Z(€X) N L.
Hence we may assume that K = K is algebraically closed.

For A € GL,(K) let Adg(A): £ — £: M — AMA~! be the associated in-
ner automorphism of the associative K-algebra €. Hence Ad5(A) also is an
automorphism of £ as Lie K-algebras. Since rad(ﬁ) < £ is the sum of all
solvable ideals of f}, we conclude that it is Aut(f))—invariant, in particular is
Ad;(GL, (K))-invariant. Moreover, since Tr(AMA™') = Tr(M), for all M € e
and all A € GL,,(K), this yields the Lie K-algebra automorphism Adg,-4(A) of
£; and since rad(£) 4 £ is Aut(£)-invariant, it is Ad - a(GL,(K))-invariant.

i)IfRC € is a solvable subalgebra, then by Lie’s Theorem there is A € GL,, (K)
such that A-&- A1 C b, (K). Hence 8 C A~!-b,(K) - A, implying that all
maximal solvable subalgebras of £ are Ad3(GL, (K))-conjugate to b, (K). If
A-b,(K)-A7Y for some A € GL,(K), is a maximal solvable subalgebra of £
containing rad(£), then rad(£) = A~ -rad(£) - A C b, (K).

Letting b, (K) := {A = [a;5];; € Z};aij = 0 for ¢ < j} be the opposite Borel
subalgebra of lower triangular matrices, then we also get rad(£) C b, (K).

~

Thus we have rad(£) C b,,(K)Nb,, (K) = t,(K). Letting A = diaglas,...,a,] €

rad(£), then for i # j € {1,...,n} we have [A, E;;| = (a;i —a;)E;; € rad(€) C

t,(K), hence we infer that a; = a;. This implies that rad(ﬁ) =0 (K) = Z(E)
ii) Similarly, if & C £ is a solvable subalgebra, then by Lie’s Theorem there is
A € GL,(K) such that A-&- A7 C b, (K)NEL. Hence RC A~ (b,(K)NEL)-
A, implying that all maximal solvable subalgebras of £ are Adgy-a(GLy(K))-
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conjugate to b,(K)N L. If A-(b,(K)NEg)- AL, for some A € GL,(K), is a
maximal solvable subalgebra of £ containing rad(£), then rad(£) = A~!-rad(£)
A C b, (K)N L. We also get rad(£) C b, (K) N £. Thus we have rad(£) C
b, (K)Nb, (K)NL=t,(K)N£L Now letting A = diag[ay,...,a,] € rad( ),
then for ¢ # j € {1,...,n} we have [A, E;;] = (a; — a;)E;; € rad( ) C t,(K),
hence we infer that a; = a;. This implies that rad(£) C 3,(K)N £ = {0}. i
(7.2) The Killing form. a) Let K be a field, and let £ be a finite-dimensional
Lie K-algebra. The K-bilinear form £ = keg: £ x £ — K on £ defined by
k(z,y) = Tr(ade(x)ade(y)), for all z,y € £, is called the associated Killing
form. Since x(z,y) = Tr(ade(xz)ade(y)) = Tr(ade(y)ade(x)) = k(y,x) the
Killing form is symmetric.

We have £([z,y],2) = Tr(ade([z,y])ade(2)) = Tr ([ de(),ade(y)lade(z)) =
Tr(ade(z)ade(y)ade(z) — ade(y)ade(z)ade(z)) = Tr(ade(z)ade(y)ade(z) —
ade(z)ade(z)ade(y)) = Tr(ade(z)lade(y), ade(2)]) = Tr(ade(z)ade([y, 2])) =
k(z, [y, 2]), for all z,y,z € £, hence the Killing form is associative; note that
we have seen this argument on traces in (6.4) already.

Lemma. Let J< £ be an ideal. Then we have k3 = Kg|yx3.

Proof. If U <y V are finite-dimensional K-vector spaces, and ¢ € Endg (V)
is such that (V) <k U, then U is p-invariant, and considering the matrix of
o with respect to a K-basis of V' obtained by extending a K-basis of U shows
that Tr(¢) = Tr(p|u)-

We apply this for U := J <y £ =V, where for x € J we have adg(z): £ —
J. Thus we have re(z,y) = Tr(ade(x)ade(y)) = Tr(ade(z)|s - ade(y)|s) =
Tr(ady(x)ads(y)) = ka(z,y), for all z,y € 7. i

b) Let rad(k) := {z € £;k(x, £) = {0}} <k £ be the radical of the K-bilinear
form k. Then rad(k) < £ even is an ideal: For x € rad(x) and y, z € £ we have
k([z,y],2) = K(z, [y, 2]) = 0, thus [z,y] € rad().

In particular, if £ is nilpotent, then adg(x)ade(y) is nilpotent, hence x(z,y) =
Tr(ade(z)ade(y)) = 0, for all z,y € £, implying that x is the zero form, in
other words rad(x) = £. Moreover, if char(K) = 0 then Cartan’s Criterion says
that £ is solvable if and only if [£, £] C rad(x).

Example: The special linear algebra of degree 2. Let £ := sly(K). Let-
ting {E, H, F'} C £ be the standard K-basis, by (2.2) the adjoint representation
ade: £ — gly(K) equals

0 -2 0 2.0 0 0 0 0
ade(E)=10 0 1|, ade(H)=1{0 0 0|, ade(F)=|-1 0 0
0 0 0 00 —2 0 2 0
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Hence all of adg(E)?, ade(F)?, ade(E)ade(H) and ade(H)adg(F) are trian-
gular matrices with zero diagonal entries, implying that x(E, E) = k(F, F) =
k(E,H) =k(H, F) =0, while

4 0 0 2 0 0
adg(H)*= 10 0 0| and adg(E)ade(F)= [0 2 0
0 0 4 00 0

yields k(H, H) = 8 and k(E, F) = 4. This shows that the Gram matrix of the
Killing form with respect to the standard K-basis is given as

00 4
G(k)= 0 8 0
40 0

In particular, x is non-degenerate if and only if char(K) # 2; note that in the
latter case k = 0, and indeed £ is nilpotent. i

(7.3) Theorem. Let K be a field, let £ be a finite-dimensional Lie K-algebra,
and let k be the associated Killing form.

a) If k is non-degenerate then £ is semisimple.

b) If char(K) = 0 then we have rad(x) C rad(£). In particular, the converse of
a) holds: If £ is semisimple then x is non-degenerate.

Proof. a) We show that, in general, any commutative ideal J < £ is contained
in rad(k): For x € J and y € £ we have (adg(z)ade(y))?: £ — £ — T —
J — [3,7] = {0}, thus ade(z)ade(y) is nilpotent, implying that k(x,y) =
Tr(ade(x)ade(y)) = 0, thus z € rad(k), and hence J C rad(x). Note that this
does not imply that rad(£) C rad(x).

Thus, specifically, if x is non-degenerate, that is rad(x) = {0}, then £ does not
have any non-zero commutative ideal, which is equivalent to rad(£) = {0}.

b) Let J := rad(k) < £. For x € J and y € £ we have Tr(ade(z)ade(y))

k(x,y) = 0; in particular for y € [J,7]. Since [ade(T),ade(T)] = ade([T,7]
Cartan’s Criterion implies that ade(J) C gl(£) is solvable. Since ade(J)

J/(3N Z(L)), this entails that J is solvable. Hence we have J C rad(£).

= R

This elucidates the relationship of semisimplicity and non-degeneration of the
Killing form. As for part b), the converse inclusion does not hold in general,
and the assumption on the characteristic of the underlying field K cannot be
dispensed of, inasmuch the assertion elsewise does not hold in general either.
This now yields the following name-giving characterisation of semisimplicity:

(7.4) Theorem. Let K be a field such that char(K

= 0, and let £ be a
semisimple finite-dimensional Lie K-algebra. Then £ = @[

1 £; is the direct
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sum of simple Lie K-algebras £1,...,£,, for some n € Ng; in other words, £ is
a semisimple £-module with respect to the adjoint representation.

Moreover, we have the orthogonal direct sum ke = @;;1 kg, of Killing forms,
the subalgebras £1, ..., £, are precisely the minimal non-zero ideals of £; any
ideal <L is semisimple, and has the form J = @, £;, forsome Z C {1,...,n};
any quotient £/7 = @ie{l,...,n}\z £, is semisimple; and £ is perfect.

Proof. Since £ is semisimple, the Killing form x = k¢ of £ is non-degenerate.
Recall that for any ideal 7 < £ we have k5 = K|3x7.

i) Let first J < £ be an ideal, then J+ := {z € £;x(x,T) = {0}} < £ is an ideal
as well: For z € J+ and y € £ we have «([z,v]),2) = x(z,[y,2]) = 0, for all
z € 7, hence [z,y] € 3. For 3N J+ < £ we conclude that k5~3. = 0, hence
Cartan’s Criterion implies that J N3~ is solvable, and thus JNJ+ = {0}. Since
dimg (3) + dimg (J1) = dimg (L), this shows that £ = J @ I+ as K-vector
spaces. Moreover, from [J, 1] <z INJ+ = {0} we infer that £ = J® T+ as Lie
K-algebras. Thus any ideal of J is an ideal of £, and we have the orthogonal
direct sum k = k3 @ K51, in particular entailing that x5 in non-degenerate.

Now we proceed by induction on dimg (£) € Np; the case £ = {0} being trivial.
Let {0} # J < £ be a minimal non-zero ideal. Then minimality implies that
J does not have any non-zero proper ideals, hence being non-commutative J is
simple. Thus if J = £ then we are done. If J <1 £ then we have {0} # J+ < £,
thus since J* is semisimple again we are done by induction.

ii) We have [£, €] = D], (&, &] = @, £ = £, that is £ is perfect.

Finally, if 3 << £ is an ideal, then the above argument shows that J is semisimple
again and a direct sum of minimal non-zero ideals of £. Hence it remains to
be shown that any minimal non-zero ideal {0} # J < £ is amongst £1,...,£,:
Indeed, [J,£] < £ and [J, £;] < £ are ideals, for all ¢ € {1,...,n}, where since
Z(£) = {0} we have [J,£] # {0}, thus {0} # J = [J,£] = B;_,[J, & by
minimality shows that J = £;, for a unique ¢ € {1,...,n}. i

(7.5) Theorem: Zassenhaus. Let K be a field. If £ is a finite-dimensional Lie
K-algebra with non-degenerate Killing form, then we have adg(£) = Derg (£).

In particular, if char(K) = 0 and £ is a semisimple Lie K-algebra, then any
derivation of £ is inner.

Proof. Let 0 € Derk(£). Then we have the K-linear map £ — K: x —
Tr(adg(z) - 9). Since the Killing form k = kg of £ is non-degenerate, there is
a unique d € £ such that k(z,d) = Tr(ade(x) - 9), for all x € £. We show that
0 =adg(d) € Derg (£):

To this end let ¢ := 0 — ade(d). Then we have Tr(ade(z) - §) = Tr(ade(z) -
0) — Tr(adg(z)ade(d)) = Tr(ade(x) - ) — k(x,d) = 0, for all x € £. Recalling
that [§,ade(z)] = ade(dx) € Derg (L), we get k(0z,y) = Tr(ade(dx)ade(y)) =
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Tr([6,ade(z)] - ade(y)) = Tr(d - [ade(z),ade(y)]) = 0, for all z,y € £. Thus
from k being non-degenerate, we infer that dx = 0, hence § = 0. i

(7.6) Abstract Jordan-Chevalley decomposition. a) Let K be an alge-
braically closed field such that char(K) = 0, and let £ be a semisimple Lie
K-algebra. The above considerations allow us to define Jordan-Chevalley de-
compositions in £, without presupposing an embedding into a linear Lie algebra:

Let x € £. Since Derg(£) <x Endg(£) has Jordan-Chevalley decomposi-
tions, see (6.3), we have ade(x) = ade(x)s + ade(z), € Derg(L), where
ade(r)s € Endg (L) is semisimple, adg(z), € Endg(£) is nilpotent, as well
as [ade(z)s,ade(x),] = 0. Now we have £ = £/7(£) & ade(L) = Derg (L),
hence there are unique elements z,, x, € £ such that ade(zs) = ade(x)s and
ade(z,) = ade(x),; hence zs € £is ad-semisimple and z,, € £ is ad-nilpotent.

The elements z; € £ and z,, € £ are called the semisimple and nilpotent
parts of z € £, respectively. We have ade(xs + 2,) = ade(xs) + ade(x,) =
ade(x)s+ade(z), = ade(x), implying & = x5+ x,; and we have ade ([xs, 2,]) =
[ade(xs),ade(z,)] = [ade(x)s,ade(z),] = 0, implying [zs, x,] = 0.

Proposition. Let 3 < £, and let £ — £/J: z — T be the natural map. If
x = x5+ x, € L is the abstract Jordan-Chevalley decomposition of = € £, then
T = T3 + T, € £ is the abstract Jordan-Chevalley decomposition of T € £.

Proof. Since £ := £/7 is semisimple again, it has abstract Jordan-Chevalley
decompositions. Moreover, we have adg(7): £ — £: 7 — [z,y] = ade(x)(y),
that is adg(7) is the map induced by ad¢(x) by naturally passing to the quotient.

Hence, since ade(xs) € gl(£) is semisimple, that is has a multiplicity-free min-

imum polynomial, we infer that adg(7;) € gl(£) is semisimple as well. Sim-
ilarly, since adg(z,) € gl(£) is nilpotent, that is has a power which is the

zero map, we infer that adg(7;,) € gl(£) is nilpotent as well. Finally, we have

[T5, Tn) = [vs,xn] = 0, hence we infer that [adg(T5), ads (7)) = ads([75, Tn)) =

adg([zs,2,]) = 0. Thus, by uniqueness, we conclude that T = Z; + T, is the
abstract Jordan-Chevalley decomposition of T € £. i

In particular, if : £ — gl(V) is a representation, where V is a finite-dimensional
K-vector space, then ¢(z) = ¢(xs) + ¢(x,) is the abstract Jordan-Chevalley
decomposition of p(z) € ¢(£), where ¢(£) C gl(V) is a linear Lie algebra. This
leads to the following question:

b) If £ C gl(V) is a linear Lie algebra, there also might be Jordan-Chevalley
decompositions in £ being inherited from gl(V'), which a priorily need not co-
incide with abstract Jordan-Chevalley decompositions. We will show in (8.3)
that these always do coincide. In the following case this is actually immediate:

Let £ := sl,(K) C gl,,(K) =: £, wheren € N. For A € £let A = A,+A, € £be
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the Jordan-Chevalley decomposition, where A; € Lis semisimple and A4,, € €is
nilpotent. Then we have Tr(A4,,) = 0, thus A, € £, and hence A, = A— A, € £
as well. This shows that £ has Jordan-Chevalley decompositions.

Now £ is semisimple, thus has abstract Jordan-Chevalley decompositions. By
(6.3), adg(As) is semisimple, hence ade(A;) is so as well; similarly, adg(A,)
is nilpotent, hence adg(A,,) is so as well; finally we have [ade(As),ade(4,)] =
ade([As, An]) = 0. Thus, by uniqueness, we conclude that A = A; + A,, coin-
cides with the abstract Jordan-Chevalley decomposition of A € £.

8 Semisimple modules

(8.1) Casimir elements. Let K be a field, and let £ be a finite-dimensional
Lie K-algebra.

a) Let 8: £ x £ — K be a non-degenerate symmetric associative K-bilinear
form on £; for example, the Killing form x of £ has these properties. Letting
B := {x1,...,x,} C £ be a K-basis, where n := dimg(£) € Ny, there is a
unique dual K-basis B* := {x},...,2;} C £ with respect to 8, defined by
B(wi, x}) = 045, for all 4, j € {1,...,n}.

The action ade(z) € gl(£) of x € £ in the adjoint representation is given in
terms of structure constants. More precisely, with respect to the K-basis B
we have [z,z;] = > I a;j(x)z;, where a;;(z) € K, hence we let adg(z) =
[aij(w)]i; € gl,(K). Likewise, with respect to the K-basis B* we have [z, z}] =
>oimy ajj(z)x;, where af;(z) € K, hence we let adp«(z) = [aj;(x)]i; € gl,(K).

Using associativity we have a;;(z) = B(X1_; anj(@)zk, z}) = B[z, z,],2}) =
—5([333'790]7%?) = _6(xj7 [Z‘,l‘ﬂ) = _6(373'722:1 GZZ(JZ)J?Z) = _a;i(x)’ for all
i,7 € {1,...,n}, that is the representing matrices fulfill adg«(z) = —adg(z)*".

b) Let V' be a finite-dimensional K-vector space, and let ¢: £ — gl(V') be a
representation. Then let C,(3,B) := Y i, ¢(xi)p(z}) € gl(V) be the Schur
element of ¢ associated with 3 and B. Note that C (3, B) is contained in the
unital associative K-subalgebra of gl(V') generated by ¢(£).

We proceed to determine [p(z),C,(8,B)] = Y i lp(x), o(z:)e(x})] € gl(V):
Using the fact that the adjoint map is a derivation, we obtain [¢(z), Cy(8, B)] =
Yoy ([ga(x), o(x)]e(xl) + o(x;)[p(x), <p(a::‘)]) Since ¢ is a representation, we
infer [p(2), Cp (8, B)] = 37, (#([z, zi])o(2]) + (@i)p([2,2]])), where using
structure constants yields [p(z), Cy(8,B)] = >, Z?Zl (aji(z)e(z;)(a)) +
aj;(x)p(za)p(@;)) = 3o, Y7 (ai(@)e(@)e(}) + aj(@)e(zi)e(e})) = 0,
for all € £. In other words, C,, (5, B) commutes with ¢(£), that is C,,(5,B) €
Endg (V) is an endomorphism of V' as an £-module.

c) Moreover, ¢ gives rise to a K-bilinear form on £ defined by B,(z,y) =
Tr(p(z)p(y)), for all z,y € L.

Since B, (z,y) = Tr(p(z)p(y)) = Tr(p(y)e(r)) = By(y,z) and B, ([z,y], 2)
Tr(p([x, y])e(2)) = Tr([p(z), p(y)]p(2)) = Tr(p(z)e(y)e(2) — p(Yy)e(T)p(2)) =
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Tr(p(x)e(y)e(z) — o(@)p(2)e(y)) = Tr(e(@)p(y), ¢(2)]) = Tr(e(@)e(ly, 2]) =
Bo(z, [y, 2]), for all z,y,z € £, the form f, is symmetric and associative. In

particular, associativity implies that J := rad(8,) < £ is an ideal: For x € J
and y, z € £ we have B, ([z,y],2) = B,(z, [y, 2]) =0, thus [z,y] € J.

d) Now let char(K) = 0 and £ be semisimple, and moreover let ¢ be faithful,
that is ker(¢) = {0}. Then for z € J and y € £ we have Tr(p(z), p(y)) =
By (z,y) = 0; in particular this holds for y € [J,7]. Since [p(3), p(T)] = ¢([3,7]),
Cartan’s Criterion implies that J = ¢(J) C gl(V) is solvable, hence J = {0},
that is 3, is non-degenerate.

Note that we have seen these arguments in (7.2) and (7.3) already: Indeed, since
ker(ade) = Z(£) = {0} the adjoint representation adg is faithful, and we just
have Baq. = K, the Killing form of £.

Then the Schur element Cy(B) := Cy,(By, B) € gl(V) is called the Casimir
element of ¢ with respect to B. Then we have C,(B) € Ende(V), and its trace
equals Tr(Cy(B)) = 3211, Tr(e(xi)p(a))) = 3011y Be(wi, 27) = n = dimg (£).
If ¢ additionally is irreducible, then the Casimir element C,(B) € gl;(K'), where
d := dimg (V) € N, by Schur’s Lemma and Tr(Cy,(B)) # 0, is an invertible
matrix. In particular, if K is algebraically closed then it is a scalar matrix,
where from Tr(C,(B)) =n we get C, := Cy,(B) =% - E; = gizi((é)) - B4, which
in this case is independent of the K-basis B C £ chosen.

Example: The special linear algebra of degree 2. Let char(K) = 0 and
£ :=sl3(K), which has the standard K-basis S := {E, H, F'} C £, see (2.2).

i) We consider the tautological representation ide: £ — gly(K), which is irre-
ducible: Assume to the contrary that there is a proper non-zero £-submodule
U < K?*! which hence is 1-dimensional, then U is contained in an eigenspace
with respect to H, thus U = ([1,0]")x or U = ([0, 1]"") k, where the former is
not F-invariant and the latter is not E-invariant, a contradiction.

Let 8 := Biq, be the K-bilinear form on £ associated with ide. All of E?,
F?2 EH and HF are triangular matrices with zero diagonal entries, implying
that 8(E,E) = 8(F,F) = 8(E,H) = 8(H,F) = 0, while H? = B (1)] and

0 0
B with respect to S is given as

EF = L 0} yields B(H,H) = 2 and B(E, F) = 1. Hence the Gram matrix of

G(B) =

= o O
o NN O

1
0
0

Hence the dual K-basis of £ associated with S is $* := {F, 1H,E} C £. Thus
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we get the Casimir element Ciq, = Ciq,(S) = EF + %H2 + FE, that is
0_710+§0+007%07§,E€[(K).
e =g o/ Tlo L Tlo 1) T o 2] T ekl

for K algebraically closed this was to be expected from Tr(Ciq, ) = 3.

ii) We consider the adjoint representation adg, which since £ is simple is irre-
ducible. The associated K-bilinear form is the Killing form f,q, = &, whose
Gram matrix with respect to S is given as, see (7.2),

G(k) =

=~ O O
O o O

4
0
0
Hence the dual K-basis associated with S, with respect to the Killing form &, is

S* = {iF, %H, iE} C £. Thus we get the Casimir element Cyq, = Caq.(S) =
1ade(E)ade(F) 4 tade(H)ade(H) + fade(F)ade(E) € gl(K), thus

100 100 00 0
Cadge = |0 2 0|+ [0 0 O|+|0 § 0| =FE;e€gl(K);
0 0 0 00 3 00 3

for K algebraically closed this was to be expected from Tr(Chq,) = 3.

(8.2) Theorem: Weyl. Let K be a field such that char(K) = 0, and let £ be a
semisimple Lie K-algebra. Then any finite-dimensional £-module is semisimple.

Proof. Let V # {0} be a finite-dimensional £-module.

i) Let first U <¢ V be an £-submodule such that dimg (V/U) = 1. Then the
induced representation £ = [£,£] — [gl(V/U),gl(V/U)] <k sl(V/U) = {0}
is trivial, hence we may just write V/U = K. In order to show that U has
a complement in V', we proceed by induction on dimg (U) € Np; the case of
U = {0} being trivial, we may assume that U # {0}.

If U is reducible, then let {0} # U’ <¢ U be a non-zero proper £-submodule.
Thus we have U/U’ <g¢ V/U’ such that (V/U")/(U/U') =2 V/U = K. Since
dimg (U/U’") < dimg(U), by induction there is U’ <¢ X <e¢ V such that
X/U" <¢ V/U' is a complement of U/U’; that is we have V/U' = U/U' & X/U’,
where X/U’ = K. Since dimg(U’) < dimg (U), by induction again there is
a complement W <o X of U’; hence we have X = U’ & W, where W = K.
Thus we have V. = U+ X = U+ U +W = U + W, where dimg(U) +
dimg (W) = dimg (U/U")+dimg (U")+dimg (W) = dimg (U/U’)+dimg (X) =
dimg (U/U")+dimg (X/U")+dimg (U') = dimg (V/U")+dimg (U’) = dimg (V)
shows that U N W = {0}, implying that V =U @& W.

Hence we may now assume assume that U is simple. Let Cy € gl(V) be a
Casimir element of V', with respect to some K-basis of £; note that since any
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quotient of £ is semisimple again we may assume that V is faithful. Since Cy
is contained in the unital associative K-algebra generated by the image of £
in gl(V), we conclude that Cy acts both on U and V/U = K. With respect
to the latter, Cy acts by the zero map. Moreover, since by (8.1) we have
Try (Cy) = dimg (£) # 0, we infer that Cy cannot possibly act on U by the
zero map as well. Hence Schur’s Lemma implies that Cy acts invertibly on U.
Thus we conclude that dimg (ker(Cy)) =1, and V = U @ ker(Cy ) as K-vector
spaces. Since Cy € Endg (V) we have Cy (zv) = z(Cyv) =0, for all z € £ and
v € ker(Cy ), that is ker(Cy ) <g V is a complement of U in V.

ii) We are now prepared to tackle the general case: In order to show that V is
semisimple, let {0} # U <g¢ V be an £-submodule, for which we show that it
has a complement in V: To this end we consider the £-module Homg (V,U). Let
V = {¢ € Homg(V,U);p|luy = A, -idy for some A\, € K} <g Homg(V,U).
Then, since U # {0}, we have a surjective K-linear map ¥V — K: ¢ — A,
having kernel U := {¢ € V; A, = 0} < V such that dimg (V/U) = 1. Moreover
we have (zp)(u) = z(p(u)) — p(zu) = Ay - 2u — Ay - zu = 0, for all p € V and
x € £ and u € U, thus (zp)|y = 0, in other words z¢ € U. This shows that
U <e¢V <e¢ Homg (V,U) such that £-V <g U, hence V/U is a trivial £-module.

Thus applying (i) there is ¢ € V such that A, # 0 and V = U & (). Since
plu = Ay - idy we conclude that ¢: V' — U is surjective and U Nker(yp) = {0},
entailing that V = U @ ker(p) as K-vector spaces. Finally, from z¢ = 0, for all
xz € £, we get 0 = (xp)(v) = x(e(v)) — p(av), for all v € V, that is p(zv) =
z(p(v)), or equivalently that ¢ is an £-homomorphism, thus ker(p) <¢ V. 4

(8.3) Theorem. Let K be an algebraically closed field such that char(K) = 0,
let V' be a finite-dimensional K-vector space, and let £ C gl(V') be a semisimple
linear Lie K-algebra. Then £ has Jordan-Chevalley decompositions, that is for
any A € £ the semisimple and nilpotent parts A, € gl(V) and A, € gl(V),
respectively, are elements of £ as well. Moreover, Jordan-Chevalley decomposi-
tions in £ and abstract Jordan-Chevalley decompositions in £ coincide.

Proof. Letting € := gl(V), by (6.3) we have adz(A4)s = adg(4s) € g[(f}) and
adg(A), = adgz(A4,) € g[(f)). Since adz(A)s and adg(A), are polynomials in
adE(A), from adE(A) - L <k £ we get adE(AS) L <k £ and adE(An) L <k L
as well. In other words, we have both A, 4, € N3(£).

o~ o~ o~

But we have £+ Z(£) 9 N3(£), where Z(£) = K -idy and Z(£) N £ = {0},
so that this is not sufficient to show straightaway that A5 and A,, belong to £.
Thus we look for a smaller Lie K-subalgebra of £ containing £:

For any £-submodule U <g¢ V', we consider the Lie K-subalgebra £y := {M €
E;M U <k U, Try(M) =0} C E; in particular we have £y = sl(V), where
s(V) N Z(L) = {0}. Let & := Ng(&) NNy<,y Lo C £, which is a Lie K-
subalgebra such that &N Z(£) = {0}. Since for any U <g¢ V we have £ =
[£, L] — [gl(U),gl(U)] <k sl(U), we conclude that £ <x R and hence £ < R.
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Moreover, since Ay, A, € € are polynomials in A, from A-U <k U we infer
that As - U <x U and A, - U <k U as well, and then from Try(A4) = 0 and
A, being nilpotent we infer that Try(A,) = 0 = Try(A4s) as well. Thus we
conclude that both Ag, A,, € K. We proceed to show that £ = &:

The Lie subalgebra & C € is an £-submodule, with respect to the adjoint
representation of £ restricted to £. Hence by Weyl’s Theorem there is an £-
submodule £ <¢ £ such that 8 = £& £. We have to show that £ = {0}: Since
(£, 8] <k [£,N3(£)] <k £ we have [£, ] = {0}, in other words & is a trivial
£-module. Hence for any M € £ we have [£, M] = {0}, that is M € Endg¢(V).

Letting U <g¢ V be a simple £-submodule, by Schur’s Lemma we have M|y =
A -idy, for some A € K, where from Try (M) = 0 we infer that A = 0, hence M
acts on U by the zero map. Again by Weyl’s Theorem, V' is the direct sum of
simple £-submodules, entailing M = 0 € £. Hence we conclude that £ = {0}.

Finally, ade(As) = adg(As)|e is semisimple, ade(A,) = adz(A,)|e is nilpo-
tent, and [ade(As),ade(A,)] = ade([As, An]) = 0. Hence by the uniqueness of
abstract Jordan-Chevalley decompositions we conclude that A = A, + A, € £
is the abstract Jordan-Chevalley decomposition. i

In particular, as was promised in (7.6), if £ is a semisimple Lie K-algebra and
©: L — gl(V) is a representation, then for z € £ with abstract Jordan-Chevalley
decomposition ¥ = x5 + z,, where =, € L is semisimple and x, € L is nilpo-
tent, p(x) = o(xs) + p(zn) € (L) C gl(V) is the (abstract) Jordan-Chevalley
decomposition of ¢(x), where ¢(x,) is semisimple and (z,,) is nilpotent.

9 Modules for sl,

(9.1) Weights. Let K be a field such that char(K) = 0, and let £ := sly(K) be
the special linear algebra of degree 2; recall that £ is simple. Let {E, H,F'} C £

be the standard K-basis, that is F := [8 (ﬂ and H := [(1) _01] and F :=

{(1) 8] Then we have [E, F] = H and [H,E] = 2F and [H, F| = —2F.
Let V be a finite-dimensional £-module. Let V) := T\(H) = {v € V;Hv =
M} <k V be the eigenspace of the action of H on V with respect to A € K. If
Vi # {0}, that is A € K is an eigenvalue of the action of H, then A is called a
weight of H on V', any vector 0 # v € V) is called a weight vector, and V) is
called the associated weight space.

Weight spaces are related to each other as follows: Letting v € V), for some
A € K, we have HEv = [H,E] - v+ EHv = 2Ev + AEv = (A + 2)Ev and
HFv=[H,F]-v+FHv = —-2Fv+ AFv = (A—2)Fv, implying that Ev € V4o
and Fv € Vy_s. The action of E and F on V is also called the upward and
downward ladder operator, respectively.

A weight vector v € V such that EFv = 0 is called maximal; similarly, if F'v =0
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then it is called minimal. Moreover, a weight A € K such that V4o = {0} is
called maximal; similarly, if Vy_s = {0} then it is called minimal. Any weight
vector with respect to a maximal weight is maximal, and any with respect to a
minimal weight is minimal. As soon as there is a weight at all, then since there
are only finitely many of them, there also are maximal and minimal weights.

(9.2) Weight strings. We keep the setting of (9.1).

In order to show that weights always exist, let K be an algebraic closure of K.

Then we have £ := sly(K) = £ ®k K as Lie K-algebras, where the standard
K-basis {E,H,F} C £ can be identified with the standard K-basis of £.

We consider the £-module V :=V @ K. Since H € £ C gl,(K) is semisimple,
hence is abstractly semisimple, we conclude that H acts semisimply on V, thus
we have V = @, . V. as K-vector spaces. Similarly, since E, F € £ C gly(K)
are nilpotent, hence are abstractly nilpotent, we conclude that E and F' act
nilpotently on V, and thus on V' as well; alternatively, this also follows from the
fact that there are only finitely many weights of H on V. Now let V # {0}.

Let vy € V) be a maximal vector, where A € K, and for i € N let v; =
%F%o € Va_o; <% V. Then by definition we have Fv; = (i + 1)v;11, for
all i € Nyg. Moreover, we have Fv; = (A — i + 1)v;_1, for all i € Ny, where
we additionally let v_; := 0 € V: Proceeding by induction on i € Ny, the
case © = 0 is clear by the definition of maximality; hence letting i > 1 we
have iE’Ui = EF’Ui_l = [E,F] c V-1 + FEUi_l = H’Ui_l + ()\ — i+ 2)FU1‘_2 =
A=2i+ 21+ (N—i+2)(i — Dvi—1 = i(A — i+ 1)v;_1; finally the result
follows from dividing by <.

Since F' acts nilpotently, let m € Ny be such that v, is minimal, that is v, # 0
but v;,+1 = 0. In particular, for i = m + 1 we get 0 = Fv,1 = (A — m)vp,,
which since v, # 0 implies that A = m € Ny. Thus in particular any maximal
weight is a non-negative integer. Moreover, if v € V' is any weight vector, where
X € K, then since E acts nilpotently there is I € Ny such that Elv e V,\+2l is
maximal, implying that A + 2] € Ny, thus A € Z is an integer.

Hence we conclude that all the eigenvalues of the action of H € £ on V are
in Z C K. Thus we actually have V' = @, VA as K-vector spaces. Hence,
picking a maximal vector vg € V), where A € Ny C K, all of the above discussion
holds verbally for V instead of V.

Now let U := (vg, . ..,vm)x <k V. Since vy, ..., v, are non-zero and belong to
distinct weight spaces, we conclude that {vg, ..., v,,} is K-linearly independent,
and thus dimg (U) = m + 1. Moreover, the above formulae show that U <g V
actually is an £-submodule. With respect to the K-basis given, H acts by the
diagonal matrix H(™) := diag[\, A — 2, ..., \ — 2m] = diag[m,m —2,...,—m] €
gl 1 (K), in particular saying that each weight occurring has a 1-dimensional
weight space associated with it, while £ and F' act by the following strictly
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upper and lower triangular matrices in gl,,, | (K), respectively:
0 m -
0 m-1

0 -2
EM .= " . Fm) =

— O
N O

0 1

(9.3) Theorem: Simple sl;-modules. We keep the setting of (9.2).

Let V be simple. Then V is uniquely determined by m := dimg (V)—1 € Ny. In
this case, V has precisely m + 1 weights {m,m —2,..., —m}; in particular, m €
Np is the unique maximal weight, being called the associated highest weight.
All weight spaces are 1-dimensional; in particular, up to scalar multiples there
is a unique maximal weight vector, being called a highest weight vector.

Conversely, for any m € Ny there actually exists a simple £-module V(") such
that dimg (V™) =m + 1.

Proof. Let V be simple. Picking a maximal vector vg € V,,, <g V, where
m € Ny is the associated weight, and letting U := (vq, ..., vm)k as above, from
V being simple we infer that U = V. Hence we have dimg (V) = m+1, showing
that m is uniquely determined. Consequently, V' is uniquely determined as well,
and has the asserted properties.

It remains to be shown that for any m € Ny the K-vector space K (" +tDx1 he-
comes an £-module, where E, H and F act by the matrices E(™) H(m™) F(m) ¢
gl 1 (K), respectively, given above. To do so, we have to verify the commuta-
tors [E0™), FOM] = H0m and [H0™), B0 = 250 and [H0m, Fm] = 2p0m),
We have [H™, F(™)]; ;= (m—2i)-i—i- (m—2(i—1)) = —2i = (=2F™), 4, ,,
for all s € {1,...,m}, the other entries of [H("™), F(™)] are zero anyway. Simi-
larly, for the non-zero entries of [H(™) E(™)] we get [H(™), E(™)]; ;1 = (m —
2(i—1)) (m—(i—1)) — (m—(i—1)) (m—2i) = 2m—2(i—1) = (2E™); ;14, for all
i € {1,...,m}. Finally, the off-diagonal entries of [E(™) F(™)] are zero, and we
have [E(™), F(™)];; = (m—(i—1))-i—(i—1)(m—(i—2)) = m—2(i—1) = (H™)y,
forallie {1,...,m+ 1}. i

Example. For m = 0 we have dimg (V(®) =1 and H® = E© = F© = o],
thus we get the trivial representation. For m = 1 we have dimg (V) = 2,

where H() = {(1) _OJ and F(1) = {8 (1)] and F(1) = {(1) 8}, thus we recover

the tautological representation; this shows again that the latter is irreducible.
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For m = 2 we have dimg (V®)) = 3, where

2 0 0 02 0 00 0
HP =10 0 0| andE®@ =10 0 1| and FP =1{1 0 0
00 —2 00 0 020

This representation is equivalent to the adjoint representation ade: Since £
is simple, adg is irreducible, hence it suffices to observe that dimg (L) = 3.
More precisely, ade(H) has the weight spaces £2 = (E)x and £y = (H)g
and £_o = (F)g. Choosing the highest weight vector vy := E, we get vy :=
ade(F)(E) = [F,E] = —H and vy := ade(F)*(E) = 3[F,[F,E]] = —F. Using
the matrices of adg with respect to the standard K-basis {F, H, F'} C £, with
respect to the K-basis {E, —H,—F} C £ we indeed get

2.0 0

diag[1,—1,—1]- [0 0 0 | -diag[l,—1,-1] = H®?,
0 0 -2
[0 —2 0]

diag[l,—1,—1]- [0 0 1| -diag[l,—1,—1] = E®,
0 0 0]
[0 0 0]

diag[1,—-1,-1]- |-1 0 0| -diag[1,—1,—1] = F?,
[0 2 0]

(9.4) Theorem: Arbitrary sl;-modules. We keep the setting of (9.3).

Let V be arbitrary, and let V = EBfZl V(i) be a decomposition of V as a direct
sum of simple £-submodules, where k € Ng and m; > mg > --- > my, > 0; recall
that by Weyl’s Theorem V is semisimple.

Then the number k and the highest weights myq, ..., my occurring are uniquely
determined by V'; more precisely, we have k = dimg (Vp) +dimg (V7). Moreover,
we have dimg (Vy) = dimg (V_y), for all A € Z.

Proof. If ¢: £ — gl(V) is the representation associated with V', the Jordan-
Holder Theorem, applied to the unital associative K-subalgebra of gl(V)
generated by ¢(£), implies the uniqueness of the multiset of isomorphism types
of simple modules occurring in a composition series of V' as a ¢(£)-module. But
having the description of the simple £-modules at hand, we may argue much
more precisely using weights:

We proceed by induction on dimg (V) € Ny; the case of V' = {0} being clear,
we let V # {0}. For any m € Ny and A € Ny, we have V;m) = {0} if A > m,

and V,\™ # {0}. Hence we infer that V) = @?:1 V)\(mi) = {0} if A > my, and
Vin, # {0}. In other words, we have m; = max{\ € Ny; V) # {0}}, showing
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that my is uniquely determined by V. Now we have V/V (™) =~ @fﬁ y(mi),
and since V(™) £ {0} we are done by induction.

Moreover, for m even we have dim (V\™) = 1 and dimg (V,"™) = 0, and for m
odd we have dimK(VO(m)) =0 and dimK(Vl(m)) = 1, showing that dimK(VO(m))—i—
dimK(Vl(m)) = 1 in all cases, implying the assertion on k. Finally, we have
dim (V™) = dimg (V7)€ {0,1}, for all m € Ny and A € N. i

The above leads to the following combinatorial decomposition algorithm: We
have V = V' @ V", where V' := @_, V=2 and V" := @;_, V=1 for
some r,s € Ny, and where we may assume that m; > mo > --- > m, > 1 and
ny > ng > -+ > ng > 1. Now, factorising the characteristic polynomial of the
action of H on V yields the K-dimensions dy := dimg(V)) € Ny of the weight
spaces, for all A € Ny; note that we can safely ignore negative weights here.

Thus we get d' := [d};j € N] := [dax—2 € No; A € N] and d" := [d};j € N] :=
[dax—1 € Ng; A € N]. The sequences dy > dy > --- and df > dj > --- are
non-increasing, hence can be considered as partitions of 3, d; and >, d7,
respectively. Thus we have m; := |{j > 1;d; > i}/, for all i € {1,...,7}, and
n; == [{j > 1;dj > d}|, for all i € {1,...,s}, in other words, the associated
conjugate partitions are given as (d')’ = [my;4 € N] and (d”) = [n;i €N f

10 Cartan decomposition

(10.1) Toral subalgebras. Let K be an algebraically closed field such that
char(K) = 0, and let £ be a semisimple Lie K-algebra. A Lie K-subalgebra of
£ is called toral if it consists entirely of semisimple elements, in the sense of
abstract Jordan-Chevalley decompositions.

Proposition. a) There is a non-zero toral Lie K-subalgebra of £.
b) Any toral Lie K-subalgebra of £ is commutative.

Proof. a) It suffices show that £ possesses a non-zero semisimple element;
indeed, if € £ is semisimple, then (x) is a toral Lie K-subalgebra:

By the abstract Jordan-Chevalley decomposition, the existence of a non-zero
semisimple element is equivalent to the existence of a non-nilpotent element.
To see this, assume to the contrary that all elements of £ are nilpotent, that is
ad-nilpotent. Then by Engel’s Theorem £ is nilpotent, a contradiction.

b) Let T C £ be a toral Lie K-subalgebra. We have to show that ads(z) = 0,
for all z € ¥: Since x is semisimple, adg(z) is semisimple, hence adz(x) is
semisimple as well. Thus we show that ads(z) has no non-zero eigenvalue:

Assume to the contrary that 0 # y € Th(z) := Th(adz(z)) <k T is an eigen-
vector of adz(x) with respect to some eigenvalue 0 # A € K, that is we have
[x,y] = Ay # 0 € . In particular, we have [y,y] = 0, thus y € Ty(y). Now y
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being semisimple, adz(y) is semisimple as well, and we have z = Y j x; € T,
where n := dimg (%) € Ny and z; € T, (y), for some A\; € K. Then 0 # —\y =
ly, 2] =325 x,20 Ni%i € To(y) N Dorex Tr(y) = {0} is a contradiction. i

(10.2) Cartan decomposition. a) Let K be an algebraically closed field
such that char(K) = 0, and let £ be a semisimple Lie K-algebra. Moreover,
let {0} # $H C £ be a maximal toral Lie K-subalgebra, that is § is a toral Lie
K-subalgebra, and for any toral Lie K-subalgebra $ C ¥ C £ we already have
T C $. The chosen subalgebra $) C £ is kept fixed in the sequel.

Since $) is commutative, we infer that ade(9) <x Endg (L) consists of pairwise
commuting semisimple K-endomorphisms of £. Hence ad¢($) is simultaneously
diagonalisable, that is there is a K-basis of £ consisting of eigenvectors for all
elements of ade($)). Hence considering the K-linear forms induced by ade($)
on its simultaneous eigenspaces, we are led to the following:

Let £4 = Nhen Tam)(h) = {2 € £[h,z] = a(h)z forall h € H} <k £, for
all @ € H* := Homg (9, K). In particular, for « = 0 € H* we get £y = {z €
L;[h,x] =0 for all h € H} = Ce(H), the centraliser of § in £, which is a K-Lie
subalgebra of £. Since § is commutative, we have {0} # $ C C¢($), and since
H L Z(L) = {0} we infer that Ce($) # £.

If £, # {0}, for some 0 # a € H*, then « is called a root of £, and £, <x £
is called the associated root space. Let ® C $* \ {0} be the set of roots of £;
since £9 = Ce($) # £ we have ® # (). Actually, in view of the following lemma
we deduce that @ is finite, and that we have the Cartan decomposition or
root space decomposition £ = Ce() © P, e La as H-modules.

Lemma. Let ay,...,a, € H* be pairwise distinct, for some n € N, and let 0 #
x; € Lq,, for alli € {1,...,n}. Then {z1,...,2,} is K-linearly independent.

Proof. Assume to the contrary that {zi,...,z,} is K-linearly independent,
where we may assume n > 2 to be chosen minimal, and such that we have
S A = 0 for some Aq,..., A\, € K such that \,—1 # 0 # \,. Let h € §
such that «,(h) # an,—1(h); interchanging «,, and «,_1 if necessary we may
assume that a,(h) = 1 # a,_1(h). Then we have 0 = ade(h)(>_1; Niwi) =
Yo Made(R) (@) = Y0, Mici(h)x;, thus subtracting Y"1 ; \iz; = 0 yields
Yoy Ai(ai(h) — 1)x; = 0, where o, (h) =1 and a,,—1(h) # 1 imply that this is
a shorter non-trivial K-linear combination yielding zero, a contradiction. i

b) We set out to examine how the root spaces interfere with the Killing form
of £. Here is the first result into that direction, which will be needed in the
following theorem; subsequently we will elucidate this much further:

Proposition. Let x be the Killing form of £. If o, € ® U {0} such that
a # —f3, then we have k(£q,£3) = 0, that is £, and £ are orthogonal to each
other. In particular, the restriction of k to Ce($)) is non-degenerate.



Proof. The associativity of « yields a(h)k(z,y) = ([h, z],y) = —k([z, h],y) =
—k(z, [h,y]) = —B(h)k(x,y), for all z € £, and y € L£3. Thus letting h €
such that (a+ B8)(h) # 0, we infer that x(x,y) = 0.

Now let z € rad(k|c,(5)xce(s))- Since Ce($) = £o <x £2, for all a € P, we
infer that z € rad(k). Since & is non-degenerate this entails z = 0. il

Example: The special linear algebra of degree 2. Let £ := sly(K). We
show that any non-zero toral Lie K-subalgebra $ C £ satisfies Ce($) = 9, and
is GLg(K)-conjugate to (H)x C £:

If 0 # A € £ is semisimple, then it has eigenvalues £+, for some 0 # A € K.
Hence A is GLo(K)-conjugate to AH. Thus we may assume that H € §). Next,
any element of M € gl,(K) centralising H leaves the eigenspaces of H invariant:
For any v € Ty(H) <g K?*!, where A € {&1}, we have HMv = M Hv = AMwv,
saying that Mv € Ty(H) as well. Thus, since T1(H) = (e1)x and T_1(H) =
(e2) i, we have Cyp, (k) (H) = t2(K), and hence Ce(H) = t2(K) N £ = (H)k.
Thus, $ being commutative, we have $ C Co(H) = (H)x C 9. 1

Hence we may assume that 9 = Ce(H) = (H)k. Let H* € H* be the element
dual to H € $, that is H*(H) = 1. Then we have £opy+» = {A € &;[H, A] =
2A} = (E)k and £ o = {A € &£;[H,A] = —2A} = (F)k, yielding the
Cartan decomposition £ = (H)g @ (E)k @ (F)k. Hence the root spaces of £
are precisely the weight spaces of H on the adjoint module, and we have ® U
{0} = {AH*; X € {2,0,—-2}} C H*, where {2,0, -2} are the weights occurring.
Finally, recall that the Gram matrix of the Killing form of £ with respect to
the standard K-basis {E, H, F'} C £ is given as follows, see (7.2), reflecting the
above orthogonality properties:

00 4
Gk)= |0 8 0
4.0 0

(10.3) Theorem. Let K be an algebraically closed field such that char(K) = 0,
and let £ be a semisimple Lie K-algebra. Then any maximal toral Lie K-
subalgebra $ C £ is self-centralising, that is we have C¢($)) = $. In partic-
ular, the restriction of x to §) is non-degenerate.

Proof. i) Let 8 := Ce($) = {z € £;ade(x)(H) = {0}}. Recall that ade(xs) =
adg(z)s and ade(z,) = ade(x), are polynomials without constant coefficient in
ade(x), for all z € £. Hence for z € 8 we have ade(x5)(9) = {0} = ade(z,)(9)
as well, saying that =g, x,, € R, too. In other words, K contains the semisimple
and nilpotent parts of its elements.

Now let € & be semisimple. Then [z, 9] = {0} implies that H + (z)x < &
is a Lie K-subalgebra. Since the sum of two commuting semisimple elements
is semisimple again we conclude that $ + (z)x is toral, whence maximality of
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$) entails that $ + (x)x = 9, that is z € $. In other words, the semisimple
elements of R are contained in §.

Letting = x5+, € K be arbirary again, we have adg(z) = adg(zs)+adg(zy).
Since x5 € $ we have [zs, & = {0}, that is adg(zs) = 0. Thus adg(x) =
adg(z,) = ade(x,)|g = ade(2)n|g is nilpotent, hence Engel’s Theorem implies
that R is nilpotent.

ii) Next, we record the following fact: If z € £ is nilpotent and y € Ce(x), then
we have [adg(z),ade(y)] = ade([z, y]) = 0, that is ad¢(z) and ade(y) commute,
hence adg(z) being nilpotent implies that ade(x) - ade(y) is nilpotent as well,
thus k(z,y) = Tr(ade(z) - ade(y)) = 0.

Now we consider the center Z(R) of 8 = Ce($)), where thus  C Z(RK). Hence
for x € Z(R) C R we have z,,z, € & as well, where moreover z; € H C Z(R),
thus we have z,, € Z(8) as well. In other words, Z (&) contains the semisimple
and nilpotent parts of its elements.

We show that Z(R) is toral; this by the maximality of $) implies that Z(K) = $:
Assume to the contrary that there is ¢ € Z(f) which is not semisimple, then
we may assume that 0 # x € Z(R) is nilpotent. Hence we have x(x,y) = 0, for
all y € R, that is 0 # z € rad(k|gxg) = {0}, a contradiction.

iii) We show that k|gxs is non-degenerate: Let z € rad(k|gxg), that is
k(z,9) = {0}, and let y € &, where we may assume that y is semisimple or
nilpotent. If y is semisimple, then we have y € $), by assumption implying that
k(z,y) = 0. If y is nilpotent, then since 2 and y commute we get x(z,y) = 0 as
well. Hence we infer that «(z, 8) = {0}, that is « € rad(k|axs) = {0}.

In particular, this entails that $ N [R], K] = {0}: For x € $ and y, z € R, by the
associativity of k we have k(z, [y, 2]) = k([z,y], 2) = 0, that is x(9, [R, R]) = {0},
thus 9 N [], 8] <k rad(k|gxgp) = {0}.

Hence it now suffices to show that £ is commutative; then we have ) = Z(R) =
RK: Assume to the contrary that [], K] # {0}. Since £ is nilpotent, and [], K] <R
is adg-invariant, by (5.3) there is 0 # z € [R, £] such that [&, z] = 0, that is
z € Z(8) = H. Thus we infer that 0 # z € H N [R, &] = {0}, a contradiction. f

Corollary. The maximal toral subalgebra §) is a Cartan subalgebra of £,
that is a self-normalising nilpotent Lie K-subalgebra; in particular, §) is a max-
imal nilpotent Lie K-subalgebra.

Proof. Recall first that any proper subalgebra of a nilpotent Lie algebra is
strictly contained in its normaliser; hence the last statement follows from the
first. Thus we only have to show that N¢($)) C $: Hence let € Ne(9).

By the Cartan decomposition we may write © = ¢ + ) cq Ta, Where 2o € $
and r, € £,, and where ® C $* are the associated roots. Hence we have
[h,x] = [h,zo] + D pcalls o] = D aco a(h)zo € $, for all h € . This implies
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a(h)x, =0, for all & € ® and h € $. Now, for any a € ¢ there is h € $ such
that a(h) # 0, implying that z, = 0. Hence we conclude that z = z¢ € . {

11 Roots

(11.1) Roots. Let K be an algebraically closed field such that char(K) = 0,
and let £ be a semisimple Lie K-algebra, with Killing form x, and Cartan
decomposition £ = ﬁ@@aeq) £, as H-modules, where $ C £ is a maximal toral
Lie K-algebra and & C $* are the associated roots. We proceed to elucidate
the structure of the set of roots. We first collect a few immediate properties:

Proposition. a) We have (®)x = H*.

b) For a € ® and any 0 # z € £, we have s(z, £_,) # {0}. In particular, we
have k(Lq4, £_o) # {0}, and thus & = —o.

c) For a, 3 € ® U {0} we have [£,,L5] <k Laip; recall that £ = H. In
particular, for o € ® the elements of £, are nilpotent.

Proof. a) Assume to the contrary that (®)x # $*. Then we get [, cq ker(a) =
Nac(a), ker(a) # {0}. Hence let 0 # h € § such that a(h) =0, for all a € @.
Then we have [h, £,] = {0}, for all « € ®. Since [h,H] = {0} as well, we
conclude that h € Z(£) = {0}, a contradiction.

b) Assume to the contrary that k(z, £_,) = {0}; then we have x(z, £3) = {0},
for all 3 € ® U {0}, that is 0 # z € rad(x), a contradiction. In particular, this
shows that £_, # {0}, that is —«a € ®.

c) For h € $ we have [h, [z, y]] = [[h, 2], y| + [z, [h, y]] = a(h) [z, y] + B(h)[2,y] =
(a+ B)(h) - [z,y], for all € £, and y € L4, thus [z,y] € Lays.

If © € £,, then we get ade(2)¥(£5) <k Lkasp, for all B € & U {0} and
k € No. If a £ 0, since ® U {0} C H* is finite, there is k = kg € Ny such that
ka+ B ¢ ® U {0}, hence adg(z)* = 0 for k := max{ks € Np; 3 € ® U {0}}. ¢

Now, since the restriction of k to $ is non-degenerate, we have the isomorphism
H — H*: h— Ky of K-vector spaces, where kp,: 9§ — K: z +— k(h,z), allowing
to identify $* with $. Conversely, for a € $H* let t, € $ such that x;, = «a, that
is t, € $) is the unique element such that a(h) = k(t,, h) € K, for all h € 9.

Theorem. a) We have (t,;a € ) = .

b) For « € ® and any = € £, and y € £_, we have [x,y] = k(z,y) - to € H; in
particular we have [£4,£_,] = (ta)x # {0}.
c) For a € ® we have a(ty) = k(ta, ta) # 0.
Hence we may let h,, := ﬁia € 9, being called the associated coroot; note

that we have a(hy) =2 and h_, = m (=te) = —m to = —hq.
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d) For a € ® let 0 # e, € £,. Then letting f, € £_, such that [eq, fo] = ha
gives rise to the Lie K-subalgebra R, := (eq, ha, fo)x C £, such that sly(K) —
Ra: E—eq, H— hy, F— f, is an isomorphism of Lie K-algebras.

Proof. a) By the above identification we have $* = (P) g = (to;0 € P)g < H
as K-vector spaces, thus (t,;a € ®) g = 9.

b) By the associativity of & we have x(h, [z,y]) = k([h,2],y) = a(h)k(z,y) =
K(ta, Mk(x,y) = k(h, k(2,y)ta), for all h € $. Thus the non-degeneracy of the
restriction of k to $) implies that [z, y] = k(x, y)ta.

c) Assume to the contrary that a(tq) = K(ta,ta) = 0. Then let z € £, and
y € £_, such that k(z,y) # 0; we may assume that x(z,y) = 1. Then we
have [x,y] = t, and by assumption we have [t,,x] = a(ty)r = K(ta,ta)r =0
and [te,y] = —a(te)y = —K(tasta)y = 0. Thus R := (z,y,ta)xk C £ is a
3-dimensional nilpotent Lie K-subalgebra, such that [R, 8] = Z(R) = (to) k-

Hence adg(R) C gl(£) is nilpotent and thus solvable. Thus by Lie’s Theorem
ade(R) stabilises a flag in £, thus is contained in a Borel subalgebra of gl(£).
The derived subalgebra of the latter consists of nilpotent matrices, hence since
to € [R, R] we infer that ade(t,) is nilpotent. Since t, € $ C £ is semisimple,
we infer that ade(t,) is semisimple as well. This entails that ade(t,) = 0, hence
0 # ty € Z(L) = {0}, a contradiction.

d) Since k(eq, £_4) # {0} there is 0 # y € £_, such that k(eq,y) # 0. Hence
we may choose f, # 0 such that [en, fo] = ha; recall that h, # 0. This
shows that dimg(R,) = 3. Moreover, we have [h,,e,] = a(ha)eq = 2e, and
[has fa] = —a(ha) foa = —2fq. Thus the K-basis {eq, ha, fo} C R, satisfies the
commutator rules of the standard K-basis {E, H, F'} C sly(K), hence & C £ is
a Lie K-subalgebra, and the map given is an isomorphism of Lie K-algebras.

(11.2) Theorem. We keep the setting of (11.1), and let @ € ®. Then we have
a) (g N®={+a} and b) dimg(L,) = 1.

Proof. Let &, := (e, ha, fa)x be any Lie K-subalgebra as above, and let
V=5 @O#GK Lea <k L£; recall that $ = £y. Since [ha, Lea] <k Leq and
[eas Leal <k Let1)a and [fa, Lea] <k L—1)a We conclude that V is a R,-
submodule of £, with respect to the adjoint representation. Since [hq, $H] = {0}
and a(hy) = 2, we conclude that the weight space decomposition of V' as a
Rq-module is as given above. Moreover, the non-zero weights occurring are of
the form ca(hq) = 2c € Z, entailing that we have £.o # {0} only if 0 # ¢ € 1Z.

We have $) = ker(a) @ (ha)k. For h € ker(a) we have [eq, h] = —a(h)eq =0
and [fo,h] = a(h)fa, = 0. Hence since [hq,h] = 0 anyway we conclude that
ker(a) <x V is a trivial &,-submodule of V. Moreover, R, = (€4, ha, fa)K
is a (simple) KR,-submodule of V' as well, with associated weights 0 and +2.
Hence we get the 8,-submodule U := ker(a) @ R, of V, whose weight space
decomposition is given as U = 9 @ (eq)k B (fa) K-
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Since V' is a semisimple R,-module, U can be considered as summand in a
direct sum decomposition of V. Since U encompasses the full weight space
9 of £ associated with the weight 0, we conclude that U encompasses all the
weight spaces of V associated with an even weight. Thus the only even non-zero
weights of V' are +2, each having a 1-dimensional weight space. Hence we have
Leo # {0}, for some 0 # ¢ € Z, if and only if ¢ € {£1}, in which case we have
Lo = (ea)k and £_, = (f4) Kk, showing (b). In particular, we have £,, = {0}.

Now, assuming that £1, # {0}, repeating the above argument with %o instead
of a yields £, = {0}, a contradiction. Hence we have £1, = {0}, saying that
1 is not a weight of V, in turn entailing that V' does not have any odd weights,
in other words V=@ L, B L_o =9 D (ea)x D (fa)x = U, showing (a). 4

Corollary. For any 0 # e, € £, there is a unique f, € £_, such that [e,, fo] =
he. Hence we have &, = (hy)k © £, ® £_, as K-vector spaces, being the Lie
K-subalgebra of £ generated by {£,,£_,}. Moreover, £ is as a Lie K-algebra
generated by {£,;a € O}

Proof. The Lie K-algebra R, is generated by {eq, fo}. Since (hy;a € Oy =
(ta;a € )¢ = $H we have £ =) 4 R as K-vector spaces. 1

(11.3) Theorem. We keep the setting of (11.2), and let 5 # +a € ®.

a) Let ;s € Ny be chosen maximal such that 8 — ra € ® and 8 + sa € @,
respectively. Then we have 8+ ia € ®, for all i € {—r,..., s}, being called the
a-string through 8. Moreover, we have 3(hy) = — s € Z, being called the
associated Cartan integer; in particular, we have 8 — 8(hy)a € ®.

b) We have [£,, £3] = Lq4p; recall that £,45 # {0} if and only if o+ 3 € .

Proof. Let V := @,.;, £s1ia <k £. Since we have [ha, Ls1ia] <k £a4ia and
[eas Lo1ial <k Lat(i+1)a and [fo, £s1ia]l <k L4 (i—1)a, We conclude that V' is
a R,-submodule of £, with respect to the adjoint representation. Since we have
(B+ia)(hy) = B(ha) + 2i, we conclude that the weight space decomposition of
V as a Ry-module is as given above. Since we have dimg (£54:q) < 1, we get
dimg (Vo) + dimg (Vy) < 1. Thus V is a simple K,-module. In particular, we
have eq - Va(h,) = V(h,)+2, translating into [£4, £s] = £514, showing (b).

The weights of V' form an arithmetic progression with steps of width 2. Thus
the associated roots form the string 8 — ra,...,5,...,8 + sa, where r, s € Ny
are as given above. Comparing the minimal and the maximal weights of V' we
get B(ha) —2r = (8 —ra)(ha) = —(8+ sa)(ha) = —B(ha) — 2s, thus we finally
deduce that S(hy) = r — s € Z, completing the proof of (a). i

Note that the a-string through « is {—«, 0, a}, where slightly more generally we
allow for 0 occurring; hence we have r = 2 and s = 0, where indeed a(hy) =2 =
r—s and a — a(hy)a = —a. Similarly, the a-string through —a is {—«, 0, a},
hence r = 0 and s = 2, where —a(hy) = —2=7r—s and —a + a(hs)a = a.
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(11.4) Root systems. We keep the setting of (11.3).

a) Recall the mutually inverse identifications $ — $*: h — k;, and H* —
$H: o — ty, where t, € $ is the unique element such that a(h) = ki (h) =
K(ta,h) € K, for all h € . We get a symmetric non-degenerate K-bilinear
form (-,-) on $H* by (o, 8) := k(ta, tg) = a(tg) = B(ta) € K, for all a, 8 € H*.

In particular, for a« € ® the coroot h, := #ta) -ty € $ can be identified with
aV = 2. .a € H*; by a slight abuse the latter is also called the associated

(ov,cx)

coroot, and we let ®V := {aV;a € ®} C H*. Hence for a, 8 € ® we get
(B,aV) = 2<<f§‘>> = 6(H(if"tu)) = B(ha) € Z, the associated Cartan integer. In
particular, we have 8 — B(hy)a = 8 — 2B.a) o — g — (B,aYa € D.

(a,a)

Let A := {a1,...,qq} € & C H* be a K-basis of $* consisting of roots,
where | := dimg($) € N is called the rank of £ with respect to $; then
{Payy---sha,} C $ is a K-basis as well. Let Ca := [<ai,a}/>]ij € Z'! be the
associated Cartan matrix. Since A C $* and {hq,, ..., o, } C 9 are K-bases,
we infer that Cx is invertible over K, and thus over Q.

Proposition. Let & := (A)g C H* be the Q-subspace of $* with Q-basis A.
Then we have ® C & and ®V C &, and (-,-) restricts to a positive definite
symmetric Q-bilinear form on &.

Proof. For f € & let § = 22:1 c;ay, for some ¢; € K. Then we have
(B,af) = Zézl ci{og, o), for all j € {1,...,1}, which in terms of matrices
yields the system of linear equations [(3, oY), ..., (B, &))] = [c1,...,¢]-C for the
unknowns [c1,...,¢] € K. Since [(8,aY),...,(8,o))] € Z' and C € GL;(Q)

we infer that [cy,...,¢] € Q!, thus 3 € &, showing that ® C &.

Next, for any (3,7 € $*, by the Cartan decomposition £ =H & P,y La as H-
modules, we get (3,7) = k(tg,t,) = Tr(ade(ts)-ade(t,)) = D cq a(ts)a(ty) =
Zaeé K(tm tﬁ)ﬁ(tav t“/) = Za€<1><a’ B> <a= 'V>'

Now let 5 € ®. Then we have (3, 5) = k(ts,tg) # 0, that is § is not isotropic.
Moreover, we have (8, 8) = 3, c4 (@, 3)?, thus dividing by (3, 8)? yields ﬁ =

Y aca (%)2 = 1Y acala, BY)? € Q, entailing that (8, 8) € Q. Hence we
have 8V = szﬁ € &, showing that ®* C &,.

We have (o, 8) = 1(a,8Y)(8,8) € Q, for all o, 8 € ®. This shows that (-,)
restricts to a Q-bilinear form on &. From (8, 5) = 3 s, B)2, for all 8 € &,
being a sum of squares in Q, we infer that (8,8) > 0. If (8,5) = 0 then
(a, B) = 0, for all @ € ®, which since ® contains a K-basis of $* entails that
B € rad((-,-)) = {0}. Thus (-, -) is positive definite on &. i

b) Now let € := & ®qg R be the scalar extension of & associated with the field
extension Q C R. Hence identifying & with & ® 1 C &£, we get the R-basis
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A C &. Moreover, (-,-) gives rise to a positive definite symmetric R-bilinear
form on &, that is a scalar product on &, so that £ becomes a Euclidean space.

The finite subset ® C £\ {0} is a (reduced) root system, that is i) (®)r = €&,
i) (a)e N @ = {a}, i) 224 € Z, and iv) 8 — 22%a € @, for all 0, 8 € &.

(o, ) a,a)

Root systems are intimately connected to the following notion:

(11.5) The Weyl group. a) Let £ # {0} be an Euclidean space with scalar
product (-,-). For 0 # a € £ let oV := 2~ a € &; note that we have (a, a) > 0.

()
For 0 # a € &€ let s, € Endr(€) be defined by s,: 8 +— 8 — (3,a")a, for all
B € . Then using (o, o) = 2 we get sq(a) = a — (o, a¥)a = —a. This yields
Sasa(B) = sa(B) — (B,a")sa(a) = B — (B,a")a + (B,aY)a = B, for all B € £,
saying that (s,)? = idg, in particular s, € GL(E).
MOI‘eOVer, we have <SO¢(B)7SOC(,7)> = </B - <B7av> Y — <7’av>a> = <ﬂ77> -
(B, 0¥ ), v) = (v, @) (B, a)+ (B, ¥ )y, @), a) = (B,7) — 52y (B, @) (e, 1) +
isometry, that is s, € O(€) is an orthogonal map.
Indeed, s, fixes (a)g < € elementwise: We have (3,aV) = ﬁ(ﬁ,a) =0, for

all B € (a)x, and hence s,(8) = 8 — (8,a")a = B. Thus from &€ = (a)g & (a)z
we infer that s, € O(E) is the reflection in the hyperplane orthogonal to «. In
parricular, we have det(s,) = —1, that is s, € O(E) \ SO(E).

b) Let ® C &£ be a root system. Then let W := (s, € O(E); @ € P) be the
associated Weyl group.

For all o, 8 € ® we have s,(8) = 8— (8,a")a € ® again. Thus W permutes P,
hence we get a permutation representation p: W — Sg into the symmetric group
on ®. Since (P)r = & we conclude that p is faithful, that is the only element of
W fixing ® elementwise is the identity map. Thus p is an embedding, so that
W can be viewed as a subgroup of the finite group Sg¢; in particular W is finite.

Here we end our developments. To summarize, given a semisimple Lie K-algebra
£ over an algebraically closed field K such that char(K) = 0, we have managed
to exhibit a root system and a Weyl group associated with £. But this is merely
the beginning of a longer story: The root system coming up does not depend
on the choice of a maximal toral subalgebra. Moreover, semisimple Lie algebras
are isomorphic if and only if they have isomorphic root systems. Moreover,
root systems are of a combinatorial nature, and are rigid enough to allow for a
complete classification, where finally for any root systems conversely there is a
semisimple Lie algebra attached to it.

But this we do not prove here. Instead, we are content with giving an immediate
result to indicate the flavour of the combinatorics involved, and to present the
special linear algebras as an explicitly worked example.
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(11.6) Lemma. In the setting of (11.3), let o, € ®. Then the a-string
through 3 contains at most four roots. In particular we have [(8,a")| < 3.

Proof. Considering the a-string {8 — ra,...,B5,...,8 + sa} C ® through S,
where r, s € Ny, the first statement is equivalent to saying that r + s < 3, which
using (B,a") = B(ha) = r — s entails the second statement. Now:

Since the a-string through +a is given as {—a«, 0, «} we may assume that 5 #
+a. Now assume to the contrary that the a-string through £ contains at least
five roots, where we may additionally assume that §—2«a, 5—«, 8, B+a, B+2a €
®. Then (B+2a)+ 8 =2(a+p) € ® and (B+2a) — 8 = 2a € P shows that the
B-string through 3 + 2« consists of 3 + 2« alone. This implies (3 + 2, 3Y) = 0
and hence (8 4 2a,8) = 0. Similarly, (8 —2a) + 8 = 2(8 — «) € ® and
(8 —2a) — f = —2a € ® shows that the fS-string through 8 — 2« consists of
B — 2a alone, implying (8 — 2a, 8Y) = 0 and hence (8 — 2, 3) = 0. Adding
yields (8, 8) = 0, that is § is isotropic, a contradiction. i

(11.7) Example: Special linear algebras. Let K be an algebraically closed
field such that char(K) = 0, and let £ := sl,(K), where n € N, having standard
K-basis

{Bii— Biprip5i€{1,...,.n=1}} U{Ei;;i #j€{1,...,n}} C L.

Recall that [Ekk7Eij] = (5k,i — 5k,j)Eij S g[n(K), for all 4,4,k € {1, e ,n}.

i) Let  := t,(K)N L = (Hy,,...,Hp—1)xk C £, where we let Hy := Ey; —
Eii15+1 € £, for k€ {1,...,n— 1}. Since $ consists of semisimple matrices,
we conclude that $ is toral. From the above commutator rules we infer that
{E;j;i# 3 €{l,...,n}} C £ consists of simultaneous eigenvectors of §.

We show that $) is a maximal toral Lie K-subalgebra of £, or equivalently
that $) is is self-centralising: Let x € Cg($)), where since ) C C¢($) we may
assume that z = 37, a;;E;; € £, for some a;; € K, and we have to show
that + = 0. Now we have 0 = [Ekk — E”,x} = Ei;ﬁj aij[Ekk — EllaEij] =
Z#j @ij (0, — Ok,j — 615+ 615) By, for all k # 1 € {1,...,n}. In particular, for
k=1 and ! =j we get Op; — Ok, — 014 + 615 = 2, implying that ax = 0.

ii) From [Hy, Eij] = [Epk — Ext1,k41, Bij] = Ok — Org1i — Okj + Okr1,5) Eij,
foralli# j e {1,...,n} and k € {1,...,n — 1}, the associated root a;; € H* is
given as follows: We have oj; = —a;, hence assuming that ¢ < j we get

2, if {i,5} = {k,k + 1},
-1, ifi=k+1lorj=k,

1, ifj—1#i=kori+1#j=F,
0, if{¢,j}n{k,k+1}=0.

@ij(Hy) =

In particular, the latter roots are pairwise distinct. Hence the Cartan decom-
position £ with respect to § is given as £ = $H & @#j(EmK, and we have
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¢ = {a;; € H*1 # j € {1,...,n}}. Alternatively, since we know that all root
spaces are 1-dimensional, the roots given must be pairwise distinct.

iii) From [E,s, Es] = Enq, forallr < s <t € {l,...,n}, we get a,y = qps + Q.
In particular, we infer that o;; = Zi;ll Qpry1, foralli < j € {1,...,n}. Thus
letting o := v 41, foralli € {1,...,n— 1}, and A:={a1,...,ap_1} C @ we
infer that (A)g = (P)x = H*, so that A C H* is a K-basis consisting of roots.

For i < j € {1,...,n}, we observe that any a;; € ® is a non-negative lin-
ear combination of A, and hence that any a;; = —ay; € ® is a non-positive
linear combination of A. Thus these are called positive and negative roots,
respectively, and @ is the disjoint union of positive and negative roots.

The linear combinations in question have integral coefficients, the latter are even
in {0,4+1}. Hence we conclude that for positive roots a # 3, a-string through
B consists of 3 alone, or of {a,« + B} or of {& — B, a}. In other words, using
the earlier notation, we have r = s =0,orr =0and s =1,or r =1 and s = 0.
Thus the associated Cartan integer is (3,a") € {0,—1, 1}, respectively. (For
both phenomena, integrality and positivity, we have not seen explanations.)

iv) We determine the Killing form x = ¢ of £. To this end let g = gl, (K).
Then we have £ = Z(£) &£, €] = (E,)x ® £ as £-modules. The adjoint action
of A € € being given as X — [A,X] = AX — XA, for all X € €, with respect
to the standard K-basis of £ we get adgz(A) = A® E, — E, ® A", where ®
denotes the Kronecker product of matrices.

Hence we get adg(A) -ads(B) = (A® E, — E, ® A")(B® E, — E, ® B¥) =
AB® E, — A® BY — B® A" + E,, ® A™B™, for all A, B € £, which yields
r3(A,B) = Tr(adg(A) - ads(B)) = Tt(AB® E, —A® B" — B A" + E, ®
AYBY) = Tr(AB)Tr(E,,) — Tr(A)Tr(B') — Tr(B) Tr(A™) + Tr(E, ) Tr (A" B) =
2nTr(AB) —2Tr(A)Tr(B). Since we have adE(A)|Z(E) = 0 anyway, we conclude
that Tr(adgz(A)|e - adg(B)|e) = Tr(adg(A) - adz(B)). Hence we get (A, B) =
Tr(adg(A) - ade(B)) = 2nTr(AB), for all A, B € £.

Hence the Gram matrix of the restriction kgxgs of k to § is given as, with

respect to the K-basis {Hy,,...,H,—1} C 9,
2 -1
-1 2 -1
G(I‘iﬁxﬁ)ZQ’n ez(n—l)x(n—l)
-1 2 -1

v) We determine the elements t;; := t,,, € 9, for all i # j € {1,...,n}. Since
the identification map $H* — H: o — t, is K-linear, we have —t;; = t;; =

1;11 ty, for all i < j € {1,...,n}, where t; := t; ;41 € $. Thus it suffices to
determine the associated elements for the roots in A = {ay,...,a,—1}. For
those we have [a;(H1),...,0;(Hp—1)] = [0,...,0,—1,2,—1,0,...,0], the entry
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2 occurring in position i, for all ¢ € {1,...,n — 1}. Hence by inspection we get
ti = 5=H; = 2 (Ey — Eip1,401) € 9. This in turn entails t;; = Y/_1t, =
e S (B — Brii1) = 5 (B — Ejj) €9, forall i # j € {1,...,n}

We determine the coroots h;j := ha,; € 9, for alli < je{l,...,n}. We have

"‘i(tw’tj) = 471L2’€(E — Ej;, By — Ej ) = Iz ( (E“,E”) QKE(Eiiijj) +
ka(Ejj Ejj)) = 22(2-(2n—2) +2-2) = 1. Thus the associated coroot is
given as h;; = ﬁ ij = 2n-ty; = By — Ej; € 9; in particular we have

hi == h; ;41 = H; € $. Thus from [E;;, Ej;] = E;; — Ejj = H;j we infer that
ﬁu = Ra,; C £ has standard K-basis {E;;, Hij, Eji} C Rij.

vi) Pulling back with the identification map we get the associated coroot a;/j =
2n - a5 € H* forall i < j € {1,...,n}. For the K-bilinear form (-,-) on $H*
pulled back from kg« we have

1 2, ifi=j,
<oz,;,o¢;-/> = ai(hj) = K(ti7hj) = TH(Hi’Hj) = —17 lf |’L —]| = 1,
n 0, ifli—j|>1,
for all i,5 € {1,...,n — 1}. Hence we obtain the associated Cartan matrix
2 -1
-1 2 -1
Ch = . GZ(n 1)x(n—1)
-1 2 -1
-1 2

(We observe that Ca is symmetric, for which we have not seen an explanation.)
We have (ai;, aij) = 55(auj,a;) = +, for all i < j € {1,...,n}, hence all
roots have the same length /{(a;j, ;) = ﬁ; similarly, we have {(«, a”> =

170

2n - (@ij, ap;) = 4n, hence all roots have the same length ,/(aivj,aij) = 2\/n.

<047170éjy> _ 1 _ .
Moreover, we have T ST 3 (@i, ), for all 4,5 € {1,. 1};
hence «; and «; are perpendicular if and only if |i — j| > 1, while for |i —jl =1

the angle between «; and «a; equals —’T.
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