Bergische Universität Wuppertal PD Dr. Jürgen Müller PD Dr. Thorsten Weist

Aufgabe 1

Es seien K ein Körper, \mathfrak{A} eine unitale assoziative K-Algebra und V ein endlich-dimensionaler **komplementierter** \mathfrak{A} -Modul; das heißt, zu jedem \mathfrak{A} -Untermodul $U \leq_{\mathfrak{A}} V$ gibt es ein Komplement $W \leq_{\mathfrak{A}} V$ mit $V = U \oplus W$. Man zeige, dass V halbeinfach ist; das heißt, V ist direkte Summe einfacher \mathfrak{A} -Untermoduln.

Aufgabe 2

Es seien K ein algebraisch abgeschlossener Körper, $\mathfrak L$ eine einfache K-Lie-Algebra, und β eine nicht-ausgeartete symmetrische assoziative K-Bilinearform auf $\mathfrak L$. Man zeige, dass β bis auf K-Vielfache eindeutig bestimmt ist.

Aufgabe 3

Es seien K ein Körper, \mathfrak{L} eine K-Lie-Algebra, und V ein \mathfrak{L} -Modul.

- a) Man zeige: Der K-Vektoraum ($V \otimes_K V$)* kann mit dem K-Vektoraum aller K-Bilinearformen auf V identifiziert werden. Welche Teilräume entsprechen dabei jeweils den symmetrischen, schief-symmetrischen bzw. alternierenden Bilinearformen? Wie operiert $\mathfrak L$ also auf dem Raum der Bilinearformen?
- b) Man betrachte \mathfrak{L} bezüglich der adjungierten Darstellung. Man zeige: Eine K-Bilinearform β auf \mathfrak{L} ist genau dann assoziativ, wenn $\mathfrak{L} \cdot \beta = \{0\}$ gilt.

Aufgabe 4

Es sei K ein Körper mit $\operatorname{char}(K) = 0$. Man bestimme das Casimir-Element der Lie-Algebra $\mathfrak{L} := \mathfrak{sl}_3(K)$ bezüglich der tautologischen Darstellung, als Linearkombination der K-Standardbasis von \mathfrak{L} .