Prof. K. Bongartz H. Franzen BU Wuppertal Fachbereich C - Mathematik

24. Mai 2012

Lineare Algebra I

Beispiel 1

Aufgabe. Für $a \in \mathbb{R}$ sei A(a) die Matrix

$$A(a) = \begin{pmatrix} 1 & -1 & 1 \\ 0 & a+1 & 0 \\ 1 & -1 & a^2 \end{pmatrix}.$$

Bestimme den Rang von A(a) in Abhängigkeit von a. Gib für alle a mit Rang A(a) = 3 die inverse Matrix an.

Lösung.

1	-1	1	1	0	0
0	a+1	0	0	1	0
1	-1	a^2	0	0	1
1	-1	1	1	0	0
0	a+1	0	0	1	0
0	0	$a^2 - 1$	-1	0	1

subtrahieren I von III

Es ist also

Rang
$$A(a) = \begin{cases} 1, & a = -1; \\ 2, & a = 1; \\ 3, & a^2 - 1 \neq 0. \end{cases}$$

Für das weitere Vorgehen setzen wir $a^2-1\neq 0$ voraus. Wir dividieren II durch a+1 und III durch a^2-1 .

1	-1	1	1	0	0	
0	1	0	0	$\frac{1}{a+1}$	0	
0	0	1	$\frac{-1}{a^2-1}$	0	$\frac{1}{a^2-1}$	subtrahieren III von I
1	-1	0	$\frac{a^2}{a^2-1}$	0	$\frac{-1}{a^2-1}$	
0	1	0	0	$\frac{1}{a+1}$	0	
0	0	1	$\frac{-1}{a^2-1}$	0	$\frac{1}{a^2-1}$	addieren II zu I
1	0	0	$\frac{a^2}{a^2-1}$	$\frac{1}{a+1}$	$\frac{-1}{a^2-1}$	
0	1	0	0	$\frac{1}{a+1}$	0	
0	0	1	$\frac{-1}{a^2-1}$	0	$\frac{1}{a^2-1}$	fertig.

Es ist also

$$A^{-1} = \frac{1}{a^2 - 1} \begin{pmatrix} a^2 & a - 1 & -1 \\ 0 & a - 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

(wie eine Probe $AA^{-1} = E_3$ bestätigt).