Aufgabe 1

Welche der folgenden Paare (G, *) sind eine Gruppe, wobei G eine Menge und $*: G \times G \to G$ eine Verknüpfung ist? Beweisen Sie Ihre Aussage.

- a) $(\mathbb{R}\setminus\{0\},*)$, wobei $*:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ definiert ist durch $x*y:=\frac{x}{y}$;
- b) $(S_n, *)$, wobei $*: S_n \times S_n \to S_n$ definiert ist durch $\sigma * \tau := \tau \circ \sigma$;
- c) $(G(\mathbb{N}), *)$, wobei $G(\mathbb{N}) := \{ f : \mathbb{N} \to \mathbb{N} \mid f \text{ bijektiv } \} \text{ und } * : G(\mathbb{N}) \times G(\mathbb{N}) \to G(\mathbb{N}) \text{ definiert ist durch } \sigma * \tau := \tau^{-1} \circ \sigma^{-1};$
- d) $(\mathbb{Z}\setminus\{\pm m\},+)$ für ein festes $m\in\mathbb{Z}$.

Antworten.

a) ($\mathbb{R}\setminus\{0\}$,*) ist keine Gruppe, da die Verknüpfung nicht assoziativ ist. Zum Beispiel gilt

$$(1*1)*2 = \frac{1}{2} \neq 2 = 1*(1*2).$$

b) Wir zeigen, dass $(S_n, *)$ eine Gruppe ist. Zunächst ist die Verknüpfung assoziativ, weil für $\sigma, \sigma_1, \sigma_2 \in S_n$ gilt, dass

$$(\sigma * \sigma_1) * \sigma_2 = \sigma_2 \circ (\sigma_1 \circ \sigma) = (\sigma_2 \circ \sigma_1) \circ \sigma = \sigma * (\sigma_1 * \sigma_2),$$

wobei wir die Assoziazivität von (S_n, \circ) ausnutzen.

Man zeigt wie im Fall von (S_n, \circ) , dass id_{<u>n</u>} das neutrale Element ist und dass die Umkehrabbildung σ^{-1} das Inverse von σ ist.

c) $(G(\mathbb{N}),*)$ ist keine Gruppe, da die Verknüpfung nicht assoziativ ist. Sei zum Beispiel $\rho \in G(\mathbb{N})$ mit $\rho \neq \rho^{-1}$ und $\sigma = \tau = \mathrm{id}_{\underline{n}}$. Dann gilt

$$(\sigma \ast \tau) \ast \rho = \rho^{-1} \circ (\mathrm{id}_{\underline{n}} \ast \mathrm{id}_{\underline{n}})^{-1} = \rho^{-1} \circ (\mathrm{id}_{\underline{n}}^{-1} \circ \mathrm{id}_{\underline{n}}^{-1})^{-1} = \rho^{-1} \circ \mathrm{id}_{\underline{n}} = \rho^{-1},$$

aber

$$\sigma*(\tau*\rho)=(\rho^{-1}\circ\mathrm{id}_n^{-1})^{-1}\circ\mathrm{id}_n^{-1}=(\rho^{-1})^{-1}\circ\mathrm{id}_{\underline{n}}=\rho.$$

Beachte, dass $\operatorname{id}_{\underline{n}}^{-1} = \operatorname{id}_{\underline{n}}$ und $(\rho^{-1})^{-1} = \rho$.

d) $(\mathbb{Z}\setminus\{\pm m\},+)$ für ein festes $m\in\mathbb{Z}$ ist keine Gruppe, weil $\mathbb{Z}\setminus\{\pm m\}$ nicht abgeschlossen gegenüber der Addition ist. Zum Beispiel gilt

$$(m-1)+1=m\notin\mathbb{Z}\backslash\{\pm m\}.$$

Aufgabe 2

Beweisen Sie folgende Aussagen:

a) Sei $m \ge 1$. Dann ist $m\mathbb{Z} = \{mn \mid n \in \mathbb{Z}\}$ eine Untergruppe von $(\mathbb{Z}, +)$.

b) Sei (G,*) eine Gruppe mit neutralem Element 1 und definiere für $n \in \mathbb{Z}$:

$$x^{n} := \begin{cases} \underbrace{x * \dots * x}, & \text{falls } n \ge 1 \\ 1, & \text{falls } n = 0 \\ \underbrace{x^{-1} * \dots * x^{-1}}, & \text{falls } n \le -1 \end{cases}$$

Dann ist $\langle x \rangle := \{x^n \mid n \in \mathbb{Z}\}$ eine Untergruppe von G.

Beweise.

a) Zunächst ist $m\mathbb{Z} \neq \emptyset$, da $0 \in m\mathbb{Z}$. Seien $m_1, m_2 \in m\mathbb{Z}$. Dann gibt es $n_1, n_2 \in m\mathbb{Z}$, so dass $m_1 = mn_1$ und $m_2 = mn_2$. Dann gilt

$$m_1 + m_2 = mn_1 + mn_2 = m(n_1 + n_2) \in m\mathbb{Z}.$$

Außerdem gilt für $mn \in m\mathbb{Z}$, dass $m(-n) = -mn \in \mathbb{Z}$. Damit ist $m\mathbb{Z}$ eine Untergruppe.

b) Zunächst gilt $x^0 = 1 \in \langle x \rangle$. Seien $x^n, x^m \in \langle x \rangle$. Dann gilt

$$(\underbrace{x * \dots * x}_{n\text{-mal}}) * (\underbrace{x * \dots * x}_{m\text{-mal}}) = \underbrace{x * \dots * x}_{(n+m)\text{-mal}} \in \langle x \rangle.$$

Außerdem gilt für $x^n \in \langle x \rangle$, dass $x^{-n} = (x^n)^{-1} \in \langle x \rangle$. Damit ist $\langle x \rangle$ eine Untergruppe.

Aufgabe 3

Seien $(K, +, \cdot)$ ein Körper und $u, v, x, y, z \in K$, wobei $u, v \neq 0$. Zeigen Sie:

- a) x(y-z) = xy xz;
- b) (-x)y = x(-y) = -(xy);
- c) (-x)(-y) = xy;
- d) x(y-z) = xy xz;
- e) $(xu^{-1})(yv^{-1}) = (xy)(uv)^{-1}$;
- f) $(xu^{-1}) + (yv^{-1}) = (xv + yu)(uv)^{-1}$.

Beweise.

a) Es gilt

$$x(y-z) = x(y+(-z)) = xy + x(-z) = xy + (-(xz)) = xy - xz,$$

wobei wir in der zweiten Gleichung die Distributivität und in der dritten Gleichung b) ausnutzen.

b) Wegen 0y = 0 und der Distributivität folgt

$$xy + (-x)y = (x + (-x))y = 0y = 0.$$

Damit folgt wegen der Eindeutigkeit des Inversen, dass (-x)y = -(xy). Analog zeigt man x(-y) = -(xy).

c) Mit b) und mit -(-xy) = xy für $x, y \in K$ aus Bemerkung 9.7 folgt

$$(-x)(-y) = -(x(-y)) = -(-(xy)) = xy.$$

- d) d) folgt aus a)...
- e) Es wurde auf Blatt 9 gezeigt, dass $u^{-1}v^{-1}=(vu)^{-1}=(uv)^{-1}$. Die Kommutativität bzw. Assoziativität liefert dann

$$(xu^{-1})(yv^{-1}) = (xy)(u^{-1}v^{-1}) = (xy)(uv)^{-1}.$$

f) Mit $u^{-1}v^{-1}=(vu)^{-1}=(uv)^{-1}$ und der Distributivität folgt

$$(xv+yu)(uv)^{-1} = xv(uv)^{-1} + yu(uv)^{-1} = xvu^{-1}v^{-1} + yuu^{-1}v^{-1} = (xu^{-1}) + (yv^{-1}).$$