Aufgabe 1

Sei (G, \circ) eine Gruppe mit neutralem Element e. Zeigen Sie:

- a) Für alle $a, b \in G$ gilt $(a \circ b)^{-1} = b^{-1} \circ a^{-1}$.
- b) Gilt $x \circ x = e$ für alle $x \in G$, so ist G abelsch.

Aufgabe 2

- a) Erstellen Sie die Gruppentafel von $(\mathbb{Z}/5\mathbb{Z}, +)$.
- b) Erstellen Sie die Gruppentafel von $((\mathbb{Z}/5\mathbb{Z})\setminus\{0\},\cdot)$.

Aufgabe 3

Beweisen oder widerlegen Sie folgende Aussagen.

- a) Die Verknüpfung $\circ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definiert durch $x \circ y := x y$ für $x, y \in \mathbb{R}$ ist assoziativ.
- b) Die Verknüpfung $\circ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ definiert durch $x \circ y := x + y x \cdot y$ für $x, y \in \mathbb{R}$ besitzt ein neutrales Element.
- c) Für eine abelsche Gruppe (G, \circ) gilt $x \circ x = e$ für alle $x \in G$.

Aufgabe 4

Betrachten Sie $\mathbb{Q}[\sqrt{2}] := \{a + b \cdot \sqrt{2} \mid a, b \in \mathbb{Q}\} \subset \mathbb{R}.$

- a) Zeigen Sie, dass $\mathbb{Q}[\sqrt{2}]$ mit der üblichen Addition und Multiplikation ein Körper ist.
- b) Bestimmen Sie das Inverse bezüglich der Addition von $1-2\cdot\sqrt{2}$.
- c) Bestimmen Sie das Inverse bezüglich der Multiplikation von $1 + \sqrt{2}$.