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Abstract. It is shown that complemented subspaces of s, that is, nu-
clear Fréchet spaces with properties (DN) and (Ω), which are ‘almost
normwise isomorphic’ to a multiple direct sum of copies of themselves
are isomorphic to s. This is applied, for instance, to spaces of Whitney-
jets on the Cantor set or the Sierpiński triangle and gives new results
and also sheds new light on known results.

1. Introduction

In [8] it was shown that complemented subspaces of s which are normwise

stable are isomorphic to s. This could be applied to the space of Whitney-

jets on the Cantor set. The present note extends this result to a more general

situation, such that it can be applied to the space of Whitney-jets on self-

similar but connected sets like the Sierpiński triangle, which gives a new

result, and also to spaces of C∞-functions on intervals or on R which sheds

a new light on well-known results.

In the following note s will denote the space of rapidly decreasing se-

quences, that is, the space

s = {x = (x0, x1, . . . ) : |x|k :=
∑
n

|xn|(n+ 1)k < ∞ for all k ∈ N}.

Equipped with the norms |x|k it is a nuclear Fréchet space. It is isomorphic

to many of the Fréchet spaces which occur in analysis, in particular, spaces

of C∞-functions.

s is a special case of the class of power series spaces of infinite type. For

that we define for α : 0 ≤ α0 ≤ α1 ≤↗ +∞ the space

Λ∞(α) := {x = (x0, x1, . . . ) : |x|t =
∞∑
n=0

|xn|etαn < ∞ for all t > 0}.

Equipped with the norms | · |k, k ∈ N0, it is a Fréchet space. It is nuclear

if, and only if, lim supn log n/αn < ∞. With this definition s = Λ∞(α) with

αn = log(n+ 1).
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A Fréchet space with the fundamental system of seminorms ∥ · ∥0 ≤
∥ · ∥1 ≤ . . . has property (DN) if

∃p∀k ∃K, C > 0 : ∥ · ∥2k ≤ C∥ · ∥p ∥ · ∥K .

In this case ∥ · ∥p is called a dominating norm.

E has property (Ω) if

∀p ∃k ∀m ∃0 < θ < 1, C > 0 : ∥ · ∥∗k ≤ C∥ · ∥∗p
θ ∥ · ∥∗m

1−θ.

Here we set for any continuous seminorm ∥·∥ and y ∈ E ′ the dual, extended

real valued, norm ∥y∥∗ = sup{|y(x)| : x ∈ E, ∥x∥ ≤ 1}.
By Vogt-Wagner [9] a Fréchet space E is isomorphic to a complemented

subspace of s if, and only if, it is nuclear and had properties (DN) and (Ω).

It is a long standing unsolved problem of the structure theory of nuclear

Fréchet spaces, going back to Mityagin, whether every complemented sub-

space of s has a basis. If it has a basis then it is isomorphic to some power

series space Λ∞(α). The space Λ∞(α) to which it is isomorphic, if it has a

basis, can be calculated in advance by a method going back to Terzioğlu [5]

which we describe now.

Let X be a vector space and A ⊂ B absolutely convex subsets of X. We

set

δn(A,B) =

inf{δ > 0 : exists subspace F ⊂ X, dimF ≤ n with A ⊂ δB + F}.

It is called the n-th Kolmogoroff diameter of A with respect to B.

If now E is a complemented subspace of s, that is, E is nuclear and has

properties (DN) and (Ω), then we choose p such that ∥ · ∥p is a dominating

norm and for p we choose k > p according to property (Ω). We set

αn = − log δn(Uk, Up)

where Uk = {x ∈ E : ∥x∥k ≤ 1}. The space Λ∞(α) is called the associated

power series space and E ∼= Λ∞(α) if it has a basis. If lim supn α2n/αn < ∞
then, by Aytuna-Krone-Terzioğlu [2, Theorem 2.2], E ∼= Λ∞(α).

Instead of the Kolmogoroff diameters we will use in the sequel the ap-

proximation numbers of the connecting maps between the respective local

Banach spaces and estimate them against the Kolmogoroff diameters.

We will consider Fréchet spaces with fixed fundamental systems of semi-

norms. An exact sequence 0 −→ E −→ H −→ G −→ 0 of such spaces

is called normwise exact if it induces for every k an exact sequence 0 −→
Ek −→ Hk −→ Gk −→ 0. We set ω := CN. The fundamental system of
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semi-norms on ω will be thought of being suitably chosen, depending on

the situation.

For all these concepts and further results of the structure theory of in-

finite type power series spaces see [7], for results and unexplained notation

of general functional analysis see [4].

2. Calculation of approximation numbers

Let

0 −→ E −→ H −→ G −→ 0

be a normwise exact sequence of Fréchet spaces and G = {0} or G = ω.

Then for every k > p we have a commutative diagram of Banach spaces

with exact rows

0 −−−→ Ek
ik−−−→ Hk

qk−−−→ Gk −−−→ 0yjE

yJ

yjG

0 −−−→ Ep
ip−−−→ Hp

qp−−−→ Gp −−−→ 0.

Here the spaces are the respective local Banach spaces, the vertical arrows

denote the canonical connecting maps. By assumption, the spacesGk andGp

are finite dimensional. Therefore the rows split. By P we denote a projection

in Hk on the, finite dimensional, range of some right inverse of qk, and we

set Q = id−P . Then Q is a projection on the range of ik. The inverse

i−1
k : R(ik) → Ek is continuous. We obtain

J = ip ◦ jE ◦ i−1
k ◦Q+ J ◦ P.

We set m := dimR(J ◦P ). Then we obtain for the approximation numbers

an+m(J) ≤ an(J − J ◦ P ) = an(ip ◦ jE ◦ i−1
k ◦Q) ≤ C an(jE)

for all n with a suitable constant C > 0.

We assume now that H is the direct sum of d copies of E, d ≥ 2 with

∥x1⊕· · ·⊕xd∥k =
∑d

j=1 ∥xj∥k for all k. Then J = jE⊕· · ·⊕jE and therefore

adn(J) = d an(jE). This implies

an+m(jE) ≤ ad(n+m)(J) ≤ adn+m(J) ≤ C adn(jE) ≤ C a2n(jE)

for all n.

We set an := an(jE) and extend it, by linear interpolation, to a decreasing

function at on [0,+∞). For n ≤ t ≤ n+ 1 we obtain

at+m+1 ≤ an+m+1 ≤ C a2n+2 ≤ C a2t.
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For t ≥ 2(m + 1) we have a 3
2
t ≤ C a2t and, therefore, for t ≥ 3(m + 1) we

get at ≤ C a 4
3
t. With another constant D > 0 we have

at ≤ Da 4
3
t, t ≥ 1.

For t =
(
4
3

)n−1
we obtain a

( 4
3)

n−1 ≤ Da( 4
3)

n and, by induction, a1 ≤

Dn a( 4
3)

n . This implies − log a( 4
3)

n ≤ n logD− log a1. For
(
4
3

)n ≤ t ≤
(
4
3

)n+1

we have

− log at ≤ − log a
( 4
3)

n+1 ≤ (n+1) logD−log a1 ≤
logD

log 4
3

log t+logD−log a1.

We have shown

Lemma 2.1. Under the above assumptions there are constants C1 and C2

such that

− log an(jE) ≤ C1 log n+ C2

for all n ∈ N.

If X and Y are Banach spaces X ⊂ Y with continuous imbedding j,

then for the unit balls UX and UY and all n we have

δn(UX , UY ) ≤ an(j) ≤ (n+ 1) δn(UX , UY ).

Therefore we have shown

Corollary 2.2. Under the above assumptions there are constants C1 and

C2 such that − log δn(Uk, Up) ≤ C1 log(n+ 1) + C2 for all n ∈ N0.

3. Main technical result

Let E fulfill the assumptions of the previous section. Moreover we as-

sume that E is isomorphic to s complemented subspace of s, that is, E has

properties (DN) and (Ω). Let ∥ ∥p be a dominating norm and ∥ ∥k a norm

chosen for ∥ ∥p according to (Ω). Then there are constants C1 and C2 such

that

αn := − log δn(Uk, Up) ≤ C1 log(n+ 1) + C2

for all n ∈ N0. Since E is isomorphic to a subspace of s which implies

the left inequality below, we have shown that there are (possibly changed)

constants C1 > 0 and C2 such that

1

C1

log(n+ 1)− C2 ≤ αn ≤ C1 log(n+ 1) + C2

for all n ∈ N0.

The space Λ∞(α) with α = (α0, α1, . . . ) defined as above is the associated

power series space of the space E and we have shown that Λ∞(α) = s. Since
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log(2n + 1) ≤ log 2 + log(n + 1) hence lim supn log(2n + 1)/ log(n + 1) = 1

we obtain by the Theorem of Aytuna-Krone-Terzioğlu (see introduction)

Theorem 3.1. If E is isomorphic to a complemented subspace of s and if

there exists a normwise exact sequence

0 −→ E −→ E ⊕ · · · ⊕ E −→ G −→ 0

where the middle space has d ≥ 2 direct summands and G = {0} or G ∼= ω,

then E ∼= s.

4. Application

In a first remark we want to point out that Theorem 3.1 gives a structural

reason why spaces like C∞(I), I compact interval in R, are necessarily

isomorphic to s. This follows alone from properties (DN), (Ω) and nuclearity.

All C∞(I) are normwise isomorphic. For the proof we may assume that

I = [−1,+1] and we define q : C∞([−1, 0])⊕C∞([0,+1])) → ω by q(f⊕g) =

(f (p)(0)− g(p)(0))p∈N0 .

We now will apply Theorem 3.1 in two cases. For the first case let K

be the classical ternary Cantor set and we consider the the space E(K)

of Whitney jets on K. We set J(K) := {f ∈ C∞(R) : f |K = 0} = {f ∈
C∞(R) : f (p)|K = 0 for all p}. The second equality holds, sinceK is perfect.

Then E(K) = C∞(R)/J(K) and this implies that E(K) is a nuclear Fréchet

space with property (Ω). By a theorem of Tidten [6] it has also property

(DN). Therefore it is isomorphic to a complemented subspace of s (see [9]).

By obvious identifications we have

E(K) ∼= E(K ∩ [0, 1/3])⊕ E(K ∩ [2/3, 1]) ∼= E(K)⊕ E(K)

with normwise isomorphy, that is, the assumptions of Theorem 3.1 are ful-

filled with G = {0}. Therefore we have shown

Theorem 4.1. If K is the classical Cantor set, then E(K) ∼= s.

This result has been also shown in [8]. In [1] it has been shown that the

diametral dimensions of E(K) and s coincide, from where, by means of the

Aytuna-Krone-Terzioğlu Theorem one can derive the same result.

The second case will be the Sierpiński triangle. For its construction we

start with a compact equilateral triangle, for instance, given by the points

P1 = (0, 0), P2 = (2, 0), P3 = (1,
√
3) in R2. In a first step we remove from

it the open equilateral triangle given by the points P4 = (1/2,
√
3/2), P5 =

(3/2,
√
3/2), P6 = (1, 0). For the remaining three triangles we repeat the

procedure, etc. We obtain a compact set S, called Sierpiński triangle. The
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subsets S1, S2, S3 of S given as S intersected with the triangle given by

P1, P4, P6, or P3, P4, P5, or P2, P5, P6, respectively, are copies of S scaled by

the factor 1/2. We obtain a normwise exact sequence

0 −→ E(S) −→ E(S1)⊕ E(S2)⊕ E(S3)
q−→ G −→ 0.

where G =
(
R3)N

2
0 ∼= ω and

q(f1 ⊕ f2 ⊕ f3) =

(f
(α)
1 (P4)− f

(α)
2 (P4), f

(α)
2 (P5)− f

(α)
3 (P5), f

(α)
3 (P6)− f

(α)
1 (P6))α∈N2

0
.

Since E(Sj) ∼= E(S) for j = 1, 2, 3 with normwise isomorphy, one of the as-

sumptions of Theorem 3.1 is fulfilled. In Frerick-Jordá-Wengenroth [3] it is

shown that E(S) admits a continuous linear extension operator (even with-

out loss of derivatives) E(S) −→ C∞(L) where L denotes a large rectangle

in R2. This follows from the Main theorem there, together with direct verifi-

cation of the conditions, see also loc. cit. Introduction, p. 4. Therefore E(S)
is isomorphic to a complemented subspace of s. We have shown:

Theorem 4.2. If S denotes the Sierpiński triangle, then E(S) ∼= s.
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