OPERATORS OF HADAMARD TYPE ON SPACES OF
SMOOTH FUNCTIONS

Dietmar Vogt

Abstract

For an open set Q C R? we study the algebra M () of continuous linear oper-
ators admitting the monomials as eigenvectors. We give a concrete representation
of these operators. In classical cases they coincide with operators considered by
Hadamard in [5]. We also study the topology of M () and the algebra of eigenvalue
sequences.

In the present paper we study the continuous linear operators M on C*(Q2), Q C
R? open, which admit all monomials =% as eigenvectors. We give a representation
of those operators in the spirit of Domariski-Langenbruch [1], that is, we show that
they are given as (M f)z = T, F(nz) where T € &(V(Q2)) and V(Q) is the unital
semigroup of all diagonal matrices on R? which leave € invariant. For Q = R? these
are exactly the operators which were considered by Hadamard in [5], page 158 f. We
study, and determine, the topology of the algebra M () of such operators, inherited
from L(C*°(€2)), in terms of the topology of &’ (V(€2)) and specify all this for special 2.
Finally we collect some information on the algebra of ‘multipliers’, that is the eigenvalue
sequences of operators in M (€2).

The paper was motivated by the papers [1, 2, 3] of Domariski and Langenbruch, where
they studied the analogous problem for spaces of real analytic functions in one variable.
In the meantime they also extended there investigation to the multidimensional case
(see [4]). The situation in the smooth case, however, is quite different, due to the
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existence of cutoff-functions and to the different topological structure of the relevant
spaces. It deserves its own interest and it seems to be obvious that other spaces with
partition of unity and similar topological structure can be treated by the same methods.

I want to thank Pawel Domanski and Michael Langenbruch for useful conversations
and remarks.

1 Basics

Let Q € R? be an open subset, C°°(Q) the Fréchet space of infinitely differentiable
functions on Q. For any subset X C R? we set &'(X) := {T € &'(R?) : suppT C X}.
The proper topology, for our purposes, of &’(X) we discuss later.

We want to study the algebra M(Q2) C L(C*°(2)) of continuous linear operators on
C*°(92) which admit all monomial functions on 2 as eigenvectors, that is, for M € M (Q)
we have Mz = mqox® where m, € C are the eigenvalues. T' € M(?) if, and only if,
Tz € span{z®} for all a. Since the polynomials are dense in C*°(2) the operator 7" is
uniquely determined by the Tx® and, if T € M (2), by the m,. From this the following
is obvious:

Proposition 1.1 M(Q) is a closed commutative subalgebra of L,(C*°(Q)) and there-
fore also of Ly(C*°(Q)). In the topology inherited from Ly(C*°(2)) it is complete.

Here L,(C*(©2)) denotes L(C*°(R2)) equipped with the pointwise weak convergence
and Ly(C*°(Q2)) the same equipped with the uniform convergence on bounded sets.
By M,(Q) or My(Q2) we denote M(Q2) equipped with the topology inherited from
Ly (C*(9)) or Ly(C*(£2)), respectively.

From the Banach-Steinhaus Theorem and the fact that C°°(2) is a Montel space follows
that the sequential convergence in M, (€2) and in M(Q2) coincide.

Lemma 1.2 The map which assigns to every M € M(Q) the family (ma)aeNg s a
continuous algebra isomorphism from My(Q) to

AQ) = {(Ma)gerg * M € M(Q)} € CY
equipped with pointwise multiplication.
We follow [1] and set

V(Q):={yeR?:zycQforallzcQ} = ﬂQn-
neQ



Here 2y = (z1y1,...,7qyq) for z,y € R and Q, = {y € R? : ny € Q}, % =
(77%’ e nid) for n € (R\ {0})¢. Obviously V(Q) is multiplicatively closed with respect
to the multiplication (x,y) — zy in R? and 1 := (1,...,1) € V(Q).

The definition can, of course, be applied to any subset of R%.

EXAMPLES: 1. For any y € V(Q2) we define the operator V; by (V, f)(z) := f(xy).
Then V,, € M(Q).

2. For a € N¢ we set Do f(z) := 220%f(z). Then D, € M(Q).

3. For o € Nd and y € V(Q) we set Dy, f(z) := 2% f(®)(2y). Then Dy, € M(Q).

Further examples we will obtain in the next section.

2 Representation

An open neighborhood U of V() we call a distinguished neighborhood if UV (Q2) C U.
All Q,, are distinguished neighborhoods of V' (§2). For every distinguished neighborhood
of V() we have V(Q) C V(U).

Lemma 2.1 ForanyT € &' (V(Q)) and f € C*(Q) we set My f(z) := Ty f(zy). Then
M7 € M(Q) and mq = Tyy®.

Proof: For compact sets B C ) the set {y : yB C Q} is a distinguished neighborhood
of V(). Therefore there is a distinguished neighborhood U of V' (2) such that BU C .

We fix ' CC Q and choose a distinguished neighborhood U of V() such that Q'U C Q.
For any f € C*°(Q) the function (z,y) — f(zy) is a C*°-function on Q' x U. Therefore
for any T € &’(U) the function x — T, f(xy) is defined on €’ and z — Ty f(zy) is in
C>®(Q). For T € &V (Q)) this means that My f(x) is defined for every z € Q and
Mrf e C™®(Q). O

EXAMPLE: For T = 53(,&) we obtain Mr = D, 4. In particular we obtain for y = 1 that
My = D,.

Weset MC'(Q) :={M € L(C*(Q),C(2)) : M admits all monomials as eigenvectors}.

Lemma 2.2 For every M € MC(Q) there is T € &' (V(Q)) that M = Mp. In partic-
ular M € M(Q).

Proof: Let ' cC Q be open. Then we find a compact K C , C and p such that

sup (M) < Clfllxep = C sup{|f ¥ (@)] : = € K, |a] <p}.
n



For any n € Q' N (R\ {0})? we define T, € &'(R?) by T, f := (M f,))(n) where f,(z) =
f (%x) Our continuity estimate implies that with some K, C' and p depending only on
Q' we have

(1) Tofl < Clfyl

K,p-

We apply the formula to f(xz) = 2® and obtain T,2% = m, where Mz®* = mqa®.
Since the polynomials are dense in C*°(R?) and all T;, coincide on the polynomials, T,
does not depend on 7, that is, all 7}, define one T’ € &’ (R?) which in the moment still
depends on . We have

(2) ITf] < Cllfnllxp
for all p € &' N (R\ {0})% .

Let now 7 € ' be arbitrary. For sake of simplicity and without restriction of generality
we assume that n = (91,...,1,,0,...,0) and n; # 0 for j = 1,...,v. We set 1. =
(M, yMu,&,...,€) and for 0 < ¢ < g9 we have 7. € (V.

We consider now f € Z(R?) such that supp fNEK, =0. Weset H :={z € RY : zypq =
.-+ =1x4 = 0} and notice that K, = {(%,,%) cx € KNHY} xRV, Then we can
find 0 < e < g such that supp f,,. N K = (. From estimate (2) now follows that Tf = 0
and we have shown that suppT C K, C €Q,,.

By the same argument as used before we see that T' does not depend on the set ' from
which the construction starts. Therefore supp T’ C (), cq 2y = V(€2). O

Theorem 2.3 M(Q) = MC(Q) ={My : T € &'(V(Q))}.

Proof: By Lemmas 2.1 and 2.2 we have M (Q2) C MC(Q) C {My : T € &'(V(Q))} C
M(S2). O

By the isomorphism of Theorem 2.3 there is an algebra structure on &”(V(Q2)) defined.
To understand this structure we make the following definition: for T, S € &’(R?) and
f € C®(RY) we set (TxS)f = Ty(Sy,f(zy)). This makes &(R?) a commutative algebra
with 1. We have supp (T'x S) C suppT - supp S.

Let us recall that the sets V(€2) are of special nature: If V = V() for some open
Q Cc R? then 1 € V and V is closed under multiplication. Now it is clear from the
previous that for any set V' which contains 1 and is multiplicatively closed the space
&'(V) is an subalgebra with 1 of &'(R%).

Now, returning to the set V(§2) for some open €2, we see from the very definition that
for T, S € &'(Q2) we have Mp,g = My o Mg. Collecting all this information we have:



Proposition 2.4 The map T — My is an algebra isomorphism from (&' (V(2)),*) to

3 Topologies

We will now study more precisely the topology of M(£2). We remark that for every
distinguished neighborhood of V() we have V() C V(U) and therefore, due to
Theorem 2.3 and with natural identification, M (Q2) C M (U).

We define for ' cc Q
U=Ugy:={yeR?: yQ cc}
and obtain

Lemma 3.1 U is a distinguished open neighborhood of V() such that UQ' C Q.

Proof: To show that U is open we fix y € U, then y Q' CC €, hence there is § > 0 such
that y Q' + Bs CC Q. Here Bs = {z : |z| < §}. Choose € > 0 such that Q’'B. C By,
then (y+ B.)Q CyQ + B.QY CyQ + Bs CC Q. So U is open. Clearly V(Q) C U
and U is distinguished. a

We set for ' cC Q
M(Q,Q) ={M € L(C>®(Q),CB(')) : M admits all monomials as ’eigenvectors’}.

Here C'B(§Y') is the space of all bounded continuous functions on €' with the sup-norm
topology.

Proposition 3.2 T — My defines a topological isomorphism from &' (U) onto M (£2,€)).

Proof: We fix a compact set K C U and assume that

ITfl<C  sup |fD().
la|<p,zeK

From that we obtain for M = My

IMfllo = sup [T, f(zy)| < CCy  sup  |f)(2)]
eV |a|<p,zeQV K

where C depends only on " and p. Clearly Q'K CcC Q.



We have shown that T — My maps equicontinuous subsets of &’(U) into equicontinu-
ous, hence bounded, subsets of M (9, ). Since &”(U) is bornological the map T' +— My
is continuous from &’(U) to M(Q, Q).

To show the reverse direction, we assume that M C M (£, ) is equicontinuous. Then
equation (2) in the proof of Lemma 2.2 holds with the same C, K, P for all M € M.
We fix one n € 'N(R\ {0})¢ and see that {T : Mz € M} is equicontinuous in &’ (R?).

On the other hand we see from the proof of Lemma 2.2 that for all these T" we have
supp T’ C (V,eqr Ky ={y € R? : Q' C K} which is a compact subset of U. So we have
shown that for any equicontinuous set M C M (£2,Q') the set {T € &(U) : My € M}
is equicontinuous, hence bounded, in &’ (U).

We consider now the map T — My as a continuous linear map from &”(U) to L(C*(2),
CB()). The latter space is a (DF)-space and the bounded and the equicontinuous
sets coincide. For any equicontinuous set M C L(C*°(Q2), CB(§')) we know by the
previous, that {T" € &'(U) : My € M} ={T € &'(U) : My € MNM(Q,Q)} is
equicontinuous, hence bounded, in &’(U). By Baernstein’s Lemma [6, 26.26], it follows
that T +— Mrp is an injective topological homomorphism into L(C*° (), CB()) hence

an isomorphism onto M (2, Y). O
Let now w; CC wp CC ... be an exhaustion of Q. We set U, = U,,,. Then U; D
Us D ... is a decreasing sequence of open neighborhoods of V(£2) and it is clear that

N, Un =V (£2). We set
SI(V(9)) = lim proj,,&"(Un).

Here &'(U,,) carries its usual topology. It is clear that the topology of &/(V(Q2) does
not depend on the choice of the exhaustion of €.

Now we obtain immediately from Proposition 3.2

Proposition 3.3 T — My establishes a topological isomorphism MC(2) = &/(V ().

Finally we have:

Theorem 3.4 M(Q) = MC(Q) = &/(V(Q)) topologically, the last isomorphism is
established by T — M.

Proof: It is shown like in the proof of Proposition 3.2 that T"+— M7y is a continuous
linear map &/(V(2)) — M (). Hence we have a chain of injective continuous linear
maps &/ (V(Q)) = M(Q) = MC(Q) the combination of which is, by Proposition 3.3,
a topological isomorphism. Therefore all maps are topological isomorphisms. O



The U, are, in general, not a neighborhood basis of V(€2) as shown by the following
example:

EXAMPLE: Let Q = {(z,y) € R? : 1 <y < 2}. Then it is easily seen that V(Q2) =
{(z,1) : = € R}. We choose e sequence 2 > r; > rg >,--- \, 1 and set w, =
{(z,y) : |z| <n,rm <y< %} For this exhaustion of £ we obtain U, = {(z,y) €
R? : L <y < r,}, that is, a basis for all neighborhoods U O V() which contain a
strip Rnx]l —e,1+¢[

In this case V() is closed. Another example is:

EXAMPLE: Let Q = {(x,y) € R? :O<x,1<y<2} Then V(Q) = {(z,1) : 0 < z}
and we may choose the exhaustion w, = {(z,y) : = < r<n,r,<y< } For this

exhaustion of € we obtain U,, = {(z,y) € R? : 0 < x, Tn <y <rph
In this case V() is not closed, but it is closed in all Uy,.

In these cases the description of the topology is much simpler. We need a definition:

Definition 1 Let X C RY. We say that &' (X) carries the standard topology, if X is
locally compact, o-compact and &' (X) = lim ind, 8" (K,,), where K1 CC Ko CC ... is
some/any compact exhaustion of X. In this case we write &.(X) for &'(X) equipped
with this topology.

Lemma 3.5 If Q C R? is open and X C Q is closed in Q then X is locally compact,
o-compact and &'(Q) induces the standard topology on &'(X).

Proof: Since &’(X) is a closed subspace of the (DFS)-space ’(2), it is a (DFS)-space,
hence bornological in the induced topology. Since the topology of lim ind,&"(K,,) is
clearly stronger, the result follows from the open mapping theorem (see [6], 24.30). O

Theorem 3.6 1. IfV(Q) is closed then M (Q2) = &'(V(Q)) equipped with the canonical
(DF)-topology inherited from &' (R?).

2. If V(Q) is closed in some U, then in all V(Uy,) for m >n, and M(Q) = &'(V(Q))
equipped with the canonical (DF)-topology inherited from &' (Uy,).

In both cases V() is locally compact, o-compact and M(Q) = &/(V(2)).

s

Proof: It suffices to show 2. &/(V(£2)) = lim proj;o mé"(’n)(V(Q))) where (n) denotes
the topology induced by &’(U,). By Lemma 3.5 all these topologies coincide with the

standard topology. a

Theorem 3.6 applies, of course, if V(2) is finite. A little more sophisticated is the
following case:



Lemma 3.7 If V(Q)\ V(Q) is finite, then V() is closed in some U, hence Theorem
3.6, 2. applies.

Proof: Since (), Up = V() there is Uy, such that (V(Q)\ V() N U, = 0. Since
V(Q) C U, for all n this shows the result. O

It is a quite interesting problem, when V' (€2) is closed in some U,. In this connection
the last example is somehow typical. Before we discuss it we state that V(Q)-Q C Q
and, by definition, V() - Q C Q. If now y € V(Q) \ V(Q), then yQ C Q but yQ ¢ Q.
Therefore the map x +— yx is not open, that is, there is j such that y; = 0. If we denote
the coordinate hyperplanes by H; = {z : z; = 0} and set H = (J; H}, then we have

shown that V() \ V() € H and therefore (V(Q)\ V(Q))-Q c HNQ (cf. [4]).

For d = 1 we have H = {0} and therefore V() \ V(2) C {0}. Therefore Lemma 3.7
applies and we have shown:

Theorem 3.8 In the one-dimensional case V() is locally compact, o-compact and
T — My establishes an isomorphism M(Q) =2 &/(V(Q)).

4 Examples

We consider now some concrete cases. We remark that in all these cases (except, of
course, the general cases 1., 2. in Lemma 4.2) Theorem 3.6, resp. Lemma 3.7, applies,
that is, V(Q) is locally compact, o-compact and M (Q) = &7(V(Q)).

We obtain immediately:
Theorem 4.1 If V() is finite then M () = span{D,, : a € Nd,y € V(Q)}. If, in

particular, V() = {1} then M(Q) = span{D,, : a € Nd}. M(Q) carries the standard
topology of a countably dimensional space.

To obtain better knowledge of this and similar cases, we study now V(2) for special
types of sets. For more such examples of sets V() see also [4]. The following cases are
easy:

Lemma 4.2 1. If Q is bounded, then V(Q) C {z : || < 1}.

2. If Q is bounded away from 0 then V(2) C {z : |z| > 1}.

3. If Q is bounded and bounded away from 0 then there is j such that V() is contained
in the union of the two hyperplanes {x : x; =1} and {z : z; = —1}.
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4. If Q is bounded, bounded away from 0 and invariant under permutations of the
variables then V(Q) C {z : |z;| =1 for all j}.

Proof: 1. Assume there is € V(Q) with |z|,c = > 1. Choose j such that |z;| =r
and § € Q such that x;§; # 0. Set R = supgcq |{|oo- Then we have for every n € N
that 22"¢ € Q and therefore

R > [0*"¢|oo > "¢
which yields a contradiction.

2. Assume that z € V() with |z|cc < 1 and & € Q. Then 2"¢ € Q for all n € N and
lim,, "¢ = 0 contradicting the assumption on Q. Therefore |z|o > 1 for all x € V().

3. From 1. and 2. we conclude that || = 1 for all x € V(). Since V(Q) is
multiplicatively closed this implies that there is j such that |z;| =1 for all z € V(2),
which is the same as our claim.

4. is an immediate consequence of 3. a

Easy consequences of 3. are the following. They show that the case of Theorem 4.1
really occurs.

ExaMmpLE: If Q is bounded, connected and bounded away from all coordinate planes
{z : 2; =0} then V(@) = {1}.

ExampLE: If Q@ = {z : r < |z|, < R} where 0 < p < oo and 0 < r < R then
V(Q) = {z : |z;| =1 for all j} hence finite.

A little more sophisticated are the following examples.

Lemma 4.3 Let f € C[0,1] be non-negative, f(0) = 0, and Q = {(x,y) € R? :
0 <z <1,y < flx)}. Iflimesyo f(2€)/f(§) = 0 for all 0 < x < 1 then V(Q) =
10, 1[x{0} U{1} x [-1,41] and V() \ V(©2) = {(0,0)}.

Proof: The implication D is obvious. Assume (z,y) € V() and 0 < z < 1, then
lyln < f(x€) for all 0 < n < f(§). Therefore |y| < f(x€)/f(§) for all 0 < £ < 1 which
implies y = 0. Since z < 0 cannot happen, this proves the result. O

ExampLE: If Q = {(z,y) € R? : |y| < "'/} then V(Q) =)0, 1[x{0} U {1} x [~1, +1].
By an analogous argument one shows:
EXAMPLE: If Q = {(z,y) € R? : |y| < e~} then V() = Rx {0}U[—1, +1] x [—1, +1].

The most relevant examples of sets Q are the open unit ball and the whole of R%. The
first case is contained in the following result:



Theorem 4.4 Let Q C R? be a bounded open set with the following properties:
1. If x € Q and |y;| < |zj| for all j then also y € Q.
2. Q is invariant under permutations of the variables.

Then V() = Q :={z : |x|eo < 1} and every M € M(S2) has the following form:
Z / 9o () 1) (zy)dy,
la|<m

with go € L1(Q) for all a.
On the other hand every such formula defines an operator M € M ().

For Q = R? we obtain:

Theorem 4.5 V(R?) =R and every M € M(R?) has the following form.:

= > /ga )1 (wy)dy,
|a|<m

with go € L1(RY) with compact support for all a.
On the other hand every such formula defines an operator M € M(R?).

The operators in Theorems 4.4 and 4.5 have been considered in Hadamard [5], page
158 f.

5 Multiplier sequences

An interesting question is the description of A(2), that is, of the multiplier sequences.
From Theorem 2.3 we get the following result:

Proposition 5.1 A(Q) := {(Tyya)aeNg T e&(V(Q) .

That means, the problem of determining A(Q2) is a multidimensional, distributional
moment problem (of course without positivity request). One has to determine the set
of all scalar families (m,,) aeng for which there is a distribution with support in V(Q)

with Tyy® = m, for all a € Nd.

Corollary 5.2 A(Q) depends only on V(Q). If V(Q) C V() then A(QY) is a subalge-
bra of A(SY). In particular A(Q) € A(R?Y) for all Q.
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By definition we obtain for M = M € M()

Mexp)(x) = 3 ma T

On the other hand we obtain by use of Proposition 5.1 and Theorem 2.3:
M (exp) = Ty exp(-y) = Z(T)
where . denotes the Laplace transform. We have shown:

Theorem 5.3 For M = Mp € M(S) we have that M(exp) = Z(T) is an entire
function, me = L(T)(0) for all a.

Let ¢ denote the finite scalar sequences. We obtain:

Corollary 5.4 ¢ C A(Q) if, and only if, 0 € Q.
Proof: ¢ C A(Q) iff all polynomials are contained in {Z(T) : T € &' (V(Q))} iff
de &' (V(Q) it 0e V(Q)iff 0 € Q. 0

ExaMmPLE: If V(Q) = {1} (see example before Theorem 4.4) then we have &' (V(Q)) =
span{(sgﬁ) : 3 € N¢} hence

ZL(&"(V(Q))) = span{z”e® : € N¢} = {p(x)e” : p polynomial}.

So, with p(z) = >4 c/g%—f we obtain A(Q2) = {(3X <, cs (g))a . a € N&} where always
only finitely many cg are not zero.

To get another description we set for a subset B C R¢
W(B):={zeC?: xjzj# 1forallz € Band j=1,...,d}.

If B is compact then W(B) is open and contains a neighborhood of zero. We set on

W({1})

<
C(z) = | | T
1 J

Then T,C(zy) is defined on W (suppT') and holomorphic there. For small |z| its con-
vergent power series expansion is

T,C(zy) = Z maz®.
Therefore we have:
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Proposition 5.5 Hmsup),|_,o ma’ < 00.

This implies that every My defines a tame diagonal operator on H(C%) = A (n!/%).

Theorem 5.6 If 0 € Q, T € &' (V(Q)) and mo = Tx® then the Taylor series of
Mrf (whether convergent or not) is ), camax® if Y, cax® is the Taylor series of f
(whether convergent or not).

Proof: Since f — mqf(®(0) and f — (Mg f)(®(0) are continuous linear functionals
on C'*°(€Q2) which coincide on the monomials, hence on the polynomials which are dense
in C*(2), they coincide on C*°(2). O

In contrast to the case of real analytic function the property of My in Theorem 5.6 does
not determine an operator uniquely, because, given such an operator M the operator
f +— @M f has the same property for any ¢ € C°°(2) which is constant near 0. We
have even more.

Proposition 5.7 Let 0 € Q). For every numerical family (ma)aeNg there is an operator

M € L(C*(9)) such that the Taylor series of M(f) (whether convergent or not) is
Yoo Camax® if 3 cax® is the Taylor series of f (whether convergent or not).

Proof: We choose a closed ball B around 0, such that B C €. We set
G :={(f,g) € C®°(Q) x C=(Q) with ¢\ (0) = maf @ (0) for all & € NZ}.

Then the maps 71 : (f,g9) — f|p and w2 : (f,g) — g are continuous and surjective
linear maps from G to C*°(B) and C*°(Q) respectively.

We consider the exact sequence
0 — C®(Q, B) x C*®(2,{0}) — G =% C>°(B) — 0.

Here C*°(Q2, M) denotes the set of all C*°-functions on  which vanish on M with all
their derivatives. These spaces have property (£2), C°°(B) has property (DN). Therefore

the exact sequence splits and 7 has a continuous linear right inverse p : C*°(B) — G.
We set M f := (my 0 p(f|p) for f € C*(Q). Then M is the desired map. 0
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