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Abstract

Euler operators are partial differential operators of the form P (θ) where
P is a polynomial and θj = xj∂/∂xj . They are surjective on the space of
temperate distributions on Rd. We show that this is, in general, not true
for the space of Schwartz distributions on Rd, d ≥ 3, for d = 1, however,
it is true. It is also true for the space of distributions of finite order on Rd
and on certain open sets Ω ⊂ Rd, like the euclidian unit ball.

Euler partial differential operators are operators of the form P (θ) where P is
a polynomial in d variables and θj = xj∂/∂xj the Euler derivative. They are
partial differential operators with variable coefficients which are singular at the
coordinate hyperplanes. Contrary to partial differential operators with constant
coefficients they admit distributional zero solutions with compact support, lo-
cated at the singular locus. On C∞(Rd) they are surjective onto the annihilator
of these zero solutions of the dual operator, which is also an Euler operator, in
particular they are not surjective but have closed range (see [1]). On the space
S ′(Rd) however they are surjective (see [7]). The same holds on D ′(R) (see [7] or
Theorem 2.4 below). They have dense range in D ′(Rd). This raised the question
whether they would be surjective on D ′(Rd) for all d. In section 2 we show that
this is not true in general, at least for d ≥ 3. We give examples of differential
equations P (θ)S = T without global solutions S, for instance P (θ) =

∑d
j=1 θ

2
j .

The reason in this case is not a natural obstruction as in the C∞-case, but impos-
sibility to get a solution of locally finite order for some T of infinite, but locally
of finite order. In Section 3 we show that on the space D ′F (Rd) of distributions
of finite order every non-trivial Euler differential operator is surjective, that is,
every equation P (θ)S = T admits a global solution. The same holds for the open
unit ball in Rd. More general, we give for open Ω conditions for global solvability
on D ′F (Ω) in terms of P (θ)-convexity and we give conditions, which imply P (θ)-
convexity for every non-trivial polynomial P .
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1 Preliminaries

We use the following notation ∂j = ∂/∂xj, θj = xj ∂j. For a multiindex α ∈ Nd
0

we set ∂α = ∂α1
1 ..∂αd

d , likewise for θα. For a polynomial P (z) =
∑

α cαz
α we

consider the Euler operator P (θ) =
∑

α cαθ
α and also the operator P (∂), defined

likewise.

P (θ) and P (∂) are connected in the following way. For x ∈ Rd we set Exp(x) =
(exp(x1), .., exp(xd)). Exp is a diffeomorphism from Rd onto Q+ :=]0,+∞[d. Its
inverse is Log(x) = (log(x1), .., log(xd)). The map CExp : f −→ f ◦Exp is a linear
topological isomorphism from C∞(Q+) onto C∞(Rd). For f ∈ C∞(Q+) we have
P (∂)(f ◦ Exp) = (P (θ)f) ◦ Exp that is P (∂) ◦ CExp = CExp ◦ P (θ). In this way
solvability properties of P (θ) on C∞(Q+) can be reduced to solvability properties
of P (∂) on C∞(Rd). This has been done in [6] and essentially used in [7]. There
it was shown that every non-trivial Euler operator is surjective on S ′(Rd), the
space of temperate distributions. This result will be used in Section 3. We will
also make use of the fact that for elliptic P (∂) distributional zero solutions of
P (θ) on some open Ω ⊂ Q+ are real analytic on Ω.

Throughout the paper we use standard notation of Functional Analysis, in par-
ticular of distribution theory, and of the theory of partial differential operators.
For unexplained notation we refer to [2], [3], [4],

2 Examples for non-solvability

We assume d ≥ 2 and on Rd+1 we use the variables (x, y), x ∈ Rd, y ∈ R.
We consider Euler differential operators on D ′(Rd+1) and study the solvability of
equations P (θ)S = T where

P (θ) = Q(θ1, . . . , θd) + θpy

and

T =
∞∑
n=0

fn(x)⊗ δ(n)(y).

with fn ∈ D ′(Rd) and supp fn ⊂ {x : |x| ≥ n}.

We assume that Q and the fn are chosen in such a way that every solution Fn of
(Q(θ) + (−n− 1)p)Fn = fn does not vanish on any open subset of the ‘quadrant’
Q+. We might choose Q(θ) =

∑d
j=1 θ

2
j and fn = δn where n = (n, . . . , n).

If we have such Fn a natural candidate would be S =
∑

n Fn(x)⊗ δ(n)(y) because

(2.1) P (θ)(Fn(x)⊗ δ(n)(y)) = ((Q(θ) + (−n− 1)p)Fn(x))⊗ δ(n)y .
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However, the series is not locally of finite order, hence does not define a distribu-
tion. Anyhow this shows the heart of the problem.

We study the problem on a strip around Rd. We fix a function χ ∈ D([−2,+2])
with χ(y) = 1 for y ∈ [−1,+1] and consider functions ϕ(x, y) ∈ D(Rd+1) of the
form

(2.2) ϕ(x, y) =
m∑
n=0

ϕn(x)χ(y)yn/n! = ψ(x, y)χ(y)

with

(2.3) ψ(x, y) =
m∑
n=0

ϕn(x)yn/n!.

We obtain

P (θ∗)ϕ(x, y) =
m∑
n=0

(Q(θ∗) + (−n− 1)p)ϕn(x)χ(y)yn/n! + (Lψ)(x, y)

where L has the form

(Lψ)(x, y) =

p∑
j=1

(Ljψ)(x, y)χ(j)(y).

In particular supp (Lψ)(x, y) ⊂ {(x, y) : 1 ≤ |y| ≤ 2}.

Let now S be a solution of P (θ)S = T . We define Sn ∈ D ′(Rd) by

Sn(g) = S(g(x)χ(y)yn/n!)

for g ∈ D(Rd).

We obtain

(P (θ)S)ϕ =
m∑
n=0

Sn((Q(θ∗) + (−n− 1)p)ϕn) + S(Lψ)

=
m∑
n=0

((Q(θ) + (−n− 1)p)Sn)ϕn + S(Lψ)

=
m∑
n=0

(−1)nfn(ϕn).

We define Rn ∈ D ′(Rd) by

Rn = (−1)nfn − (Q(θ) + (−n− 1)p)Sn)
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and obtain for ψ like in (2.3)

(2.4)
( ∞∑
n=0

(−1)nRn ⊗ δ(n)
)
ψ = R(ψ)

where

R(ψ) = S(Lψ) =

p∑
j=1

S((Ljψ))(x, y)χ(j)(y)).

Both sides of (2.4) define distributions in (D(Rd) ⊗ E ([−2,+2])′ which coincide
on the dense subspace of functions ψ as in (2.3), hence they coincide. The left
hand side has support in Rd × {0}, while the right hand side has support in
{(x, y) : 1 ≤ |y| ≤ 2}. So both sides are zero and we have

(2.5) (Q(θ) + (−n− 1)p)Sn = (−1)nfn

for all n. Returning to ϕ of the form like in (2.2) we obtain

Sϕ =
m∑
n=0

Sn(ϕn) =
m∑
n=0

Sn(ϕ(0,n)(x, 0)) =
m∑
n=0

(−1)n(Sn ⊗ δ(n))ϕ.

So on the dense linear subspace of χ(y) ·D(Rd+1) consisting of functions ϕ(x, y)
of the form (2.2) we have

S =
∞∑
n=0

(−1)nSn ⊗ δ(n)

which implies that the sum must be locally finite contradicting our assumptions
on the solutions of equation (2.5). 2

We have shown:

Proposition 2.1 P (θ) as above is not surjective on D ′(Rd+1), d ≥ 2.

This leads to the first main result of this paper.

Theorem 2.2 For d ≥ 3 there are Euler operators which are not surjective on
D ′(Rd).

We have shown non-surjectivity in the following cases.

Examples 2.3 For even p and d ≥ 3 the operator
∑d

j=1 θ
p
j is not surjective in

D ′(Rd). This holds, in particular for the “Laplace-Euler”-operator
∑d

j=1 θ
2. The

same holds for
∑d−1

j=1 θ
2 + iθd and

∑d−1
j=1 θ

2 +θd, the Euler-operators corresponding

to the Schrödinger and to the heat equation and also for
∑d−1

j=1 θ
2
j−θ2d, the analogue

to the wave equation. So for d ≥ 3 we have counterexamples for the classical
elliptic, parabolic and hyperbolic polynomials.
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For d = 1 the situation is different (see the remarks at the end of [7]).

Theorem 2.4 Every non-trivial Euler-operator is surjective in D ′(R).

Proof: By the fundamental theorem of algebra it is enough to show it for θ− a,
a ∈ C. For T ∈ D ′(R) we want to solve (θ − a)S = T .

We set D0(R) = {ϕ ∈ D(R) : ϕ flat in 0}. We find S0 ∈ D0(R)′ such that
x|x|aS ′0 = T0 := T |D0(R) and put U0 = |x|aS0. Then θU0 = a|x|aS0 + x|x|aS ′0 =
aU0 +T0. Therefore (θ− a)U0 = T0. We extend U0 by the Hahn-Banach theorem
to U ∈ D ′(Rd). Then supp (θ − a)U − T ⊂ {0}. By [7] we find R ∈ S ′(R) such
that (θ − a)R = (θ − a)U − T . Then S = U −R solves the problem. 2

Remark: Let us remark, that our counterexample does not work for d = 1, that
is, in D ′(R2). Because in this case the Fn(x) (see the notation at the beginning
of this section) can be chosen with support in half-lines beginning with n, hence
the sum S =

∑
n Fn(x)⊗ δ(n)(y) is locally finite and defines a distribution.

3 Solvability in distributions of finite order

In our examples of differential equations P (θ)S = T the distribution T always
was of infinite order and, of course, locally of finite order. We showed that there
cannot exist a solution S locally of finite order. In the proof in [7], that for
temperate T there is always a temperate solution S, one essential feature was
that temperate distributions are always of finite order. We use the result of [7] to
show that for T of finite order there is always a solution S of finite order. Moreover
we develop a theory for arbitrary open subsets of Rd. We should remark that the
essential difficulty in [7] was to handle the behaviour in the singular locus of the
differential operator, that is, at the union of the coordinate hyperplanes. This
was overcome in [7] and we can use it here to provide local solvability.

From now on P (θ) is an arbitrary non-trivial Euler operator. Ω and ω denote
open subsets of Rd, D ′k(Ω) the distributions of Sobolev order k on Ω, see below.

We follow the notation in [4, §14]. We denote by Hk the Sobolev space of order
k ∈ N. For open Ω ⊂ Rd the space Hk

0 (Ω) is the closure of D(Ω) in Hk. We set

H−k• (Ω) = Hk
0 (Ω)′. Every T ∈ H−k• (Ω) can be extended to T̃ ∈ (Hk)′ ⊂ S ′(Rd).

Due to [7, Theorem 3.5] and Grothendieck’s factorization theorem, applied to the
surjective endomorphism P (θ) of S ′(Ω), we obtain:

Lemma 3.1 For every k ∈ N there is m ∈ N such that for every Ω the following
holds: for very T ∈ H−k• (Ω) there is S ∈ H−m• (Rd) such that P (θ)S = T on Ω.

For every k and m = mk chosen according to Lemma 3.1 we set

E(Ω) = {T ∈ H−m• (Ω) : P (θ)T ∈ H−k• (Ω)}.
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We obtain an exact sequence

(3.1) 0 −→ Nm(Ω)
j−→ E(Ω)

P (θ)−→ H−k• (Ω) −→ 0

where Nm(Ω) = {T ∈ H−m• (Ω) : P (θ)T = 0} and j is the imbedding. This
yields, due to reflexivity:

(3.2) Nm(Ω)′ = E(Ω)′/P (θ∗)Hk
0 (Ω).

We need some notation.

Definition 3.2 For Ω ⊂ Rd open D ′F (Ω) is the space of distributions of finite
order. We set

D ′k(Ω) = {T ∈ D ′(Ω) : T |ω ⊂ H−k• (ω) for all open ω ⊂⊂ Ω}.

Then we have D ′F (Ω) =
⋃
k∈N D ′k(Ω).

Definition 3.3 An open set Ω ⊂ Rd is called P (θ)-convex if for every k ∈ N the
following holds: for every ω1 ⊂⊂ Ω there is ω2 ⊂⊂ Ω such that for every ω ⊂⊂ Ω
and ϕ ∈ Hk

0 (ω) with suppP (θ∗)ϕ ⊂ ω1 we have suppϕ ∈ ω2.

Remark 3.4 By replacing ω2 with ω̃2, ω2 ⊂⊂ ω̃2 ⊂⊂ Ω, we obtain ϕ ∈ Hk
0 (ω̃2).

Therefore we may use Definition 3.3 as ending with: such that for every ω ⊂⊂ Ω
and ϕ ∈ Hk

0 (ω) with suppP (θ∗)ϕ ⊂ ω1 we have ϕ ∈ Hk
0 (ω2).

We can show the second main result of this paper:

Theorem 3.5 If Ω ⊂ Rd is open and P (θ)-convex, then P (θ) is surjective in
D ′F (Ω).

Proof: Let Ω ⊂ Rd be an P (θ)-convex open set. We fix k. Then we can
find an exhaustion ω1 ⊂⊂ ω2 ⊂⊂ .. of Ω such that for every n ∈ N the sets
ωn ⊂⊂ ωn+1 ⊂⊂ ωn+2 are in the relation described in Definition 3.3 in the
version of Remark 3.4.

We obtain a projective spectrum of exact sequences

0 −→ Nm(ωn)
j−→ E(ωn)

P (θ)−→ H−k• (ωn) −→ 0

and the sequence

0 −→ kerP (θ) −→ E(Ω)
P (θ)−→ D ′k(Ω)

is the projective limit of this spectrum, where E(Ω) = {T ∈ D ′m(Ω) : P (θ)T ∈
D ′k(Ω)}.
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Assume that µ ∈ Nm(ωn)′ vanishes on Nm(ωn+2) then, by (3.2), we have µ =
P (θ∗)ϕ, where ϕ ∈ Hk

0 (ωn+2). Then, by choice of the exhaustion, ϕ ∈ Hk
0 (ωn+1).

This implies, again by (3.2), that µ vanishes on Nm(ωn+1).

We have shown that Nm(ωn+2)|ωn is dense in Nm(ωn+1)|ωn in the topology of
Nm(ωn). Therefore P (θ) : E(Ω)→ D ′k(Ω) is surjective.

The argument is standard. For the convenience of the reader we give the proof:
for every n we find Sn ∈ E(ωn) such that P (θ)Sn = T |ωn . We set R1 = R2 = 0
and determine inductively Rn ∈ Nm(ωn). Let Rn be determined. Then Un =
Sn+1 − Sn + Rn ∈ Nm(ωn) and for n ≥ 2 we find Rn+1 ∈ Nm(ωn+1) such that
‖Un−Rn+1‖ωn−1 = ‖(Sn+1−Rn+1)−(Sn−Rn)‖ωn−1 ≤ 2−n. Clearly S = limn(Sn−
Rn) exists everywhere on Ω and P (θ)S = T . 2

To get examples of P (θ)-convex sets we need some preparation. We set Q+ =
]0,+∞[d. For e ∈ {−1,+1}d we set Qe = eQ+. We remark that for any e we
have Me ◦ P (θ) = P (θ) ◦Me where Meϕ(x) = ϕ(ex). So the behaviour of P (θ)
on Q determines the behaviour on all ‘quadrants’.

A set M ⊂ Q+ is called m-convex (cf. [6]) if xty1−t ∈ M for all x, y ∈ M and
0 < t < 1. M ⊂ Q+ is m-convex if and only if LogM is convex. We call it strictly
m-convex if LogM is strictly convex. A set M ⊂ Rd

∗ is called strictly m-convex if
e(M ∩Qe) ⊂ Q+ is strictly m-convex for all e ∈ {−1,+1}d. We obtain:

Proposition 3.6 If Ω has an exhaustion ω1 ⊂⊂ ω2 ⊂⊂ . . . of open sets such
that ωn∩Rd

∗ is strictly m-convex with C2-boundary for all n, then Ω is P (θ)-convex
for all P (θ).

Proof: On test functions ϕ we have P (θ∗)ϕ = P (−1− θ)ϕ =: P ∗(θ)ϕ. Assume
that ϕ ∈ Hk

0 (ωN) and suppP (θ∗)ϕ ⊂ ωn. Then ϕ̃ := ϕ ◦ Exp is a function on
Log (Q+ ∩ ωN) and suppP ∗(∂)ϕ̃ ⊂ Log(Q+ ∩ ωn). By assumption Log (Q+ ∩ ωn)
is strictly convex with C2-boundary. Therefore it is, for any non-trivial P , an
intersection of non-characteristic half-spaces. By Holmgren’s theorem (see [3,
Theorem 8.6.8]), supp ϕ̃ ⊂ Log (Q+ ∩ ωn), hence Q+ ∩ suppϕ ⊂ ωn. Applying
this to Meϕ for all e we obtain suppϕ∩Rd

∗ ⊂ ωn, hence suppϕ ⊂ ωn ⊂ ωn+1. 2

Remark: The property of the ωn we really used was, that Log(e ωn ∩Q+) is an
intersection of non-characteristic half spaces for all n.

Due to the concavity of log we get:

Lemma 3.7 If M ⊂ Q+ is strictly convex and with any y ∈ M and x ≤ y (that
is xj ≤ yj for all j) also x ∈M , then M is strictly m-convex.

From Lemma 3.7, Proposition 3.6, Theorem 3.5 and (for p = ∞) the Remark
above we get the following examples.

7



Examples 3.8 For every non-trivial P the Euler differential operator P (θ) is
surjective on D ′F (Rd) and on D ′F (Ω) where Ω is the open unit ball of `dp, (1 ≤ p ≤
+∞), in particular, the open euclidian unit ball in Rd.
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