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Abstract

We study Hadamard operators on . /(R%) and give a complete char-
acterization. They have the form L(S) = S =T where x means the mul-
tiplicative convolution and T' € O (]Rf), the space of distributions which
are O-rapidly decreasing in infinity and at the coordinate hyperplanes. To
show this we study and characterize convolution operators on the space
Y (RY) of exponentially decreasing C>°-functions on R%. We use this and
the exponential transformation to characterize the Hadamard operators on
Z(Q), Q the positive quadrant, and this result we use as a building block
for our main result.

In the present note we study Hadamard operators on . /(R%), that is, continuous
linear operators on . ’(R%) which admit all monomials as eigenvectors and we
give a complete characterization. Operators of Hadamard type have attracted
some attention in recent times. Such operators on C°(R?) have been studied
and characterized in [10, 13], on & (R) in [1, 2, 3] and on &/ (R%) in [5]. There
you find also references to the long history of such problems. Their surjectivity
on C*(R?) has been characterized in [4]. Since it can be shown that Hadamard
operators commute with dilations our problem is, by duality, closely related to
the study of continuous linear operators in .#(R?) which commute with dilations.
In a first step we study such operators on . (Q), Q =]0, +oo[?. By means of the
exponential transformation this can be transferred to the study of convolution
operators on the space Y (R?) of C*™-functions on R? with exponential decay.

In a first part of the paper we study such operators and give a complete charac-
terization in terms of the class &} (RY) of exponentially decreasing distributions,
which is similar to the class &, of L. Schwartz of rapidly decreasing distributions,
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which are the convolution-multipliers in . (R¢). We study the class &} (R?) and
these results are of independent interest.

By means of the exponential transformation we obtain a description of the op-
erators on .%/(Q)) which commute with dilations in ). They have the form
¢ — Typ(zy) where T is a distribution in 07} (Q). These are the exponential
transforms of &} (R?), we call them #-rapidly decreasing distributions on Q. The
class 0';(R?) first appeared in [11] where the Hadamard operators in 2'(R9)
were described. For a more detailed study of this class and examples see [11, §3].

From there we obtain our main result: The Hadamard operators on .#’(R%) have
the form S + Sx T where T' € 0} (R?) the class of distributions on R¢ which are
f-rapidly decreasing in infinity and at the coordinate hyperplanes. It is a subclass
of 0 (R%), known from [11].

We use standard notation of Functional Analysis, in particular, of distribution
theory. For unexplained notation we refer to [6], [8], [9], [7].

1 Preliminaries

We use the following notation 9; = 9/dz;, §; = x; 8;. For a multiindex o € Nd
we set 0% = 07"..03", likewise for 6. 1 denotes the vector (1,...,1). For vectors
z,y € R? we will use the definition 2y = (2191, ...zqyq). This will hold except for
obvious cases like in the formula for the Fourier transform.

For a polynomial P(z) = Y c,2® we consider the Euler operator P(0) =Y .0
and also the operator P(0), defined likewise. The dual operator of P(6) is P(0*)
where 6* = —0 — 1, hence also an Euler operator.

For a € R? the dilation operator D, is defined by (D,T)¢ = |ay - - - aq| ' Tep(€/a).
For the distribution ¢ € .%/(R?) this yields D,z® = (az)®. For e € {—1,+1}4
this definition simplifies to (D.T)¢ = Tep(e€). These operators are called reflec-
tions .

For basic properties of Hadamard operators see [11]. They are a closed commu-
tative sub-algebra of L(.#/(R%)). Euler operators and dilations are of Hadamard
type, Therefore they commute with all Hadamard operators. On the other hand
we have:

Lemma 1.1 IfL € L('(R%)) commutes with 0; for all j and with all reflections
then it is a Hadamard operator.

Proof: We set T = L(z*) and have to show that T' € span{z®}. Since L
commutes with 6; we obtain 0,7 = «;T. By use of the exponential transformation
we obtain for () and likewise for all quadrants (). = eQ that T' = c.x® on Q.,



with constants c.. Since L commutes with reflections all ¢, must be equal and we
have T = cx® on RY.

We set S =T — cx®. Then suppS C Zyp ={§ : & ---&a =0} and 6,5 = ;5.
Since S is of finite order there is 8 € N¢ such that 2°S = 0. We have
0;(28) = B;z% S + 170, = (8; + a;) 7' S
where ' = (81,...,08; —1,..., B4). Repeating this we obtain:
0=0°2"8)=1bS
with b # 0. Therefore S = 0, that is, L(z®) = cx®. O

We set for z € RY
Exp(z) = (exp(z1), .., exp(zq)).
Exp is a diffeomorphism from R? onto Q := (0, +00)?. Therefore

Cixp 1 [ —> foExp

is a linear topological isomorphism from C*(Q) onto C*°(R%). For f € C>(Q)
we have P(0)(f o Exp) = (P(0)f) o Exp that is P(0) o Cpyp = Crxp © P(6). In
this way the study of Hadamard operators on () can be reduced to the study
of operators on R?. This has be done in [13] for C°°(Q). We apply the same
argument to the space .%(Q) where .7 (Q) = {f € Z(R?) : supp f C Q}.

As usual . (R?) denotes the Schwartz space of rapidly decreasing C*°-functions

on R? its dual ./(RY) the space of temperate distributions. We consider is
subspace .(Q) and its dual ./(Q).

We recall the following definitions of [9, Chap. VI, §8]: %" denotes the dual of
the space of C*°-space which are bounded including all derivatives and 2} the
dual of the space of C*®-space such that all derivatives are in L;(R?).

2 Convolution operators on C*-functions with
exponential decay

We start with studying convolution operators on the space of C'"*°-functions with
exponential decay on R? and its dual. We will transfer our results by the expo-
nential diffeomorphism to results on Hadamard operators on .#/(Q)) and use this
as building blocks to study Hadamard operators on .#'(R%). We set

Y(RY = {feC®RY) : sup|f@(z) el < oo for all @ and k € N}

= {f e C®RY : sup |f®(z)]e® < oo for all a and € R?}
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with its natural topology.

Then Y (R?) is a Fréchet space, closed under convolution and P(9) is a continuous
linear operator in Y (RY) for every polynomial P. Z(RY) C Y(RY) as a dense
subspace, hence Y (R?)" € 2'(R?). We obtain (see [14, Lemma 2.1]):

Lemma 2.1 Cg,,(#(Q)) = Y(RY).
We set w(z) =32, e 1ya€™. We have w € C>®(R%) and e/l < w(z) < 24kl
In analogy to [9, Chap. VII, §5, p. 100] we define
Definition 1 7' € 0} (RY) if w(kx)T € B’ for every k.
It is obvious that we might equivalently write w(kz)T" € &, for every k.
For the following theorem compare [9, Chap. VII, §5, Théoreme IX].
Theorem 2.2 For T € 2'(R%) the following are equivalent:
1. T € Oy(RY).

2. For any k there are finitely many functions ts such that e®*lty € L (R?)
and such that T =}, OPtg.

3. T eYRY and Typo(x +y) € Y(R?) for all o € Y (R?).

4. fly) = Top(x + y) is a exponentially decreasing continuous function (that
is sup | f(y)|e*¥l < oo for all k) for all ¢ € D(RY).

5. (w(kx)T) *  is a continuous bounded function for every k and ¢ € 2(R?).

Proof: (1) = (2) If w(kz)T' € 27, then, by a standard conclusion, there are
finitely many functions 75 € Lo (R?) such that w(kz)T = > 5 0P75. This yields

e = i) (s *”)‘%38% (s557)

B
_ 08 S e (gL (@) (1) doe
- 26 /ﬁuazgﬁag(a ) @l




where w(kz)t, € Loo(RY) for all the, finitely many, a.
(2) = (1) is straightforward, because we may assume that T' = 9°¢;.

(2) = (3) The first part is clear from (2). Assume T = 9%t e*TVlel|tg(2)| €
Loo(R?). Then

Top(z +y) = (1) / ()P (@ + y)de € C(RY)
and we have

MO Typ(x + )| < / M)t (2)[H V| @) (2 4 y)|da < oo,

If T € 05(R?) this holds for all summands in the representation of 7' with given
k and since we have for all k£ such a representation the claim is proved.

(3) = (4) is obvious.
(4) = (5) For p € 2(R?) and n € R? we obtain

("T) % 9)(y) = Tule™ply — 1)) = TV Dply — ) = (T 5 (7)) (y).

Since e o € P(R?) the right hand side is bounded, by (4). Adding over all
n € {+k, —k}? we obtain the result.

(5) = (2) This follows from Lemma 2.3. 0

The following Lemma is essentially an adaptation of [9, Chap. VI, §8, Théoreme
XXVI.

Lemma 2.3 Let w be measurable, w(x) > 0 for all v € R Let S € 2'(R?)
be a distribution such that sup, w(z)|S,p(z —y)| < oo for all p € 2(R?) then
there are finitely many measurable functions 15 with sup, w(x)73(z) < oo such

that S =735 Téﬁ).

Proof: We consider the map ¥ : 2(R?) — L. (R?) given by

U(p) = w(@)Syp(z —y).

Because of the Closed Graph Theorem W is continuous. Let B denote the unit
ball in R%. Then there is m € N such that U restricted to Z2(B) extends to
a continuous map 2™(B) — L.(R?), where 2™(B) denotes the Banach space
of m-times continuously differentiable functions with support in B. We choose
v € Z(B), v(x) =1 in a neighborhood of 0 and set g = vE € 2™(B) where E is
an elementary solution of A* k large enough. Then ¥(g) € L (RY) that means
7 := S % g is a measurable function with w(z)|7(x)| < C for suitable C' and we
obtain AFr = S+ Sxv) where v € 2(B). We have w(z)(S*1) = U(h) € Loo(R?).
Therefore the equality S = A¥r — S x 1) shows the result. O
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We have to fix our notation on the convolution of distributions. For distributions
T,S and a function ¢ we define (S * 1)y := S, (T,1)(x +y)) whenever this makes

sense.

Lemma 2.4 IfT € 0} (R?) and ¢ € Y (RY) then both Txp € Y(R?) and o*T €
Y (R are defined and equal and we have T x o = o x T = Typ(z — y) € Y (R?).
o+ T * ¢ is a continuous linear operator in Y (RY).

Proof: The first claim follows from Theorem 2.2, (3), the fact that Y (R?) is
closed under convolution and, finally, from the representation in Theorem 2.2,
(2). The second is then easily shown or follows from the Closed Graph Theorem.

O

This shows part of the following theorem.

Theorem 2.5 For an operator L € L(Y (R%)) the following are equivalent:

1. L commutes with translations.

2. There is T € O%(R?) such that Ly =T x ¢ for all p € Y(R?).

Proof: (2) = (1) is clear, we have to show the converse. We define T € Y (R?)
by Ty := (Ly)(0). Then by standard arguments we have (Ly)(x) = L(¢(- +
2))(0) = T,y +2) = To(r —y) = (T*)(x). Due to Theorem 2.2, (3) we have
T € 0},(R?), hence also T € 04 (R?) . O

The dual situation is a bit more complicated, since existence of 1" x .S and com-
mutivity is not a priori clear. We define:

Oy(RY) = {f € C®°(RY) : Ik € NgVa € N2 : sup | £ ()| el < 00},

zE€R4

Equipped with its natural locally convex topology Oy (R?) is the inductive limit
of a sequence of Fréchet spaces, that is, an (LF)-space and we have

Lemma 2.6 0% (R?) is the dual space of Oy(R?). For S € Y(R?) the map
o — Syp(x +1y) is a continuous linear map from Y (R?) to Oy (RY).

Proof: The first part by use of a standard argument using Theorem 2.2, (2).
For the second part we estimate

Syt = 15,50+ £ C sup [ e )
Y1PI>
< Ce sup |g0(7)(§)|ek|5|
&lyl<m
with C' and k depending on S and m =k + |a/. O

We obtain an analogue to Lemma 2.4.



Lemma 2.7 If T € O, (R?) and S € Y(R?) then both T * S € Y(R?) and
S*T €Y (RY are defined and equal. S+ T * S is a continuous linear operator
in'Y (RY).

Proof: The existence of S % T follows from Theorem 2.2, (3), the existence of
T % S from Lemma 2.7. (T * S)p = (S * T)p for ¢ € 2(R?) equality follows by
direct calculation by use of Theorem 2.2, (2). The continuity of S — S x T is
obvious. O

Theorem 2.8 For an operator L € L(Y (R?)) the following are equivalent:

1. L commutes with translations.

2. There is T € O (R?) such that L(S) =T * S for all S € Y (R?)".

Proof: (2) = (1) is clear, we have to show the converse. The transpose
L* € L(Y(R%) also commutes with translation. Note that Y (R?) is Montel,
hence reflexive. Because of Theorem 2.5, Proof, there is T € 0% (R?) such that
(L*(p))(z) = T,p(z +y). So for S € Y(RY) we obtain (L(S), ) = (S, L*(p)) =
Sa(Typ(z +y)) = ((S* T)g) (@), O

3 Hadamard operators on .'(Q)

Let L be a Hadamard operator on .%/(Q), that is an operator which admits all
monomials as eigen-functions. We need some preparations, cf. Section 1 in [11].

For a € @) we define the dilation D, € L(%'(Q)) by

(DuT) =T, (al - aa “D@>

for T € .7'(Q) and ¢ € .¥(Q). By direct verification we see that D,{* = a*£®.

Like in [11, Lemma 1.1] we obtain that L commutes with dilations, that is,
D,oL =LoD,foralla€@.

Weset M = L* € L((Q)) and obtain like in [11, Lemma 1.3] that M commutes
with with dilations, that is,

Me(p(n€))[z] = (My)(nx)

for all p € . (Q) and 1 € Q.
For ¢ € .7(Q) we define now

T = (Mp)(1) = (Ld1) ().
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Then T € .'(Q) and for all n € @ we have

(1) (Mp)(n) = Tep(€)-

We have to determine the set of distributions in 7' € .%/(Q) such that
(2) Tep(-€) € #(Q) for all p € #(Q).

For T = Ctog(T') the condition (2) is equivalent to

(3) Teh(- 4 €) € Y(R?) for all ¢ € YV (RY)

which, by Theorem 2.2, is equivalent to 7' € & (R%).

In analogy to [11, Definition 3] we define the space 0 (Q) of 8-rapidly decreasing
distributions on Q).

Definition 2 T € 0},(Q) if for any k there are finitely many functions tg such
that (|z|** + |2|7**)ts € Loo(Q) and such that T =37, 0%tg.

By use of the description in Theorem 2.2, (2), we obtain:

Lemma 3.1 C} (0y(RY)) = 03(Q).

Hence we obtain the following translation of Theorem 2.2:

Theorem 3.2 For T € 2'(RY) the following are equivalent:

1. T e 04(Q)

2. For any k there are finitely many functions tg such that (Jx|* +|z|=2*)ts €
Loo(Q) and such that T =34 0Pt s

3. T e Q) and Trp(xy) € L(Q) for all p € L (Q).

4. fly) = Tpp(zy) is a rapidly decreasing continuous function (that issup | f(y)]
(Iy1** + ly|=2*) < oo for all k) for all ¢ € 2(Q).

5 ((|Jz)?* + |2|72M)T) x ¢ is a continuous bounded function for every k and

v € 2(Q).

We have obtained the following.

Theorem 3.3 L Hadamard operator on .#'(Q) if and only if there is T € O(Q)
such that L(S) = ST for all T € '(Q).

Here (S« T, ¢) = S.(T,¢(xy) for all p € L (Q).
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4 Hadamard operators on . '(R%)

Let now L be a Hadamard operator on .%/(R?) and M = L* € L((R%)) and
obtain like in [11, Lemma 1.3] that M commutes with with dilations, that is,

(4) Me(p(m8))[z] = (M) (nz)
for all ¢ € . (R?) and n € R%.
For ¢ € .7 (R%) we define now

(5) Te = (Mp)(1) = (Lé1)(p)-
Then T € ./ (R?) and for all n € R? we have
(6) (M) (n) = Tep(ns).

We have to determine the set of distributions in 7" € .%/(R?) such that T¢p(- &),
¢ € R?, extends to a function in .7(R9) for all ¢ € .7 (RY).

We want to use the results of Section 3. We denote by H;, j = 1,..,d, the
coordinate hyperplanes and set Zy = | ; H;.

S (RY) = {p € S (RY) : ¢ flat on Z,}.

We will show that M((R?%)) C #(R?). For that it suffices to show that
L(S(Zy)) € S (Zy). Here ¥ (Z,) denotes the temperate distributions with
support in Z.

By F we denote the Fourier transform and remark that for all 5

(7) OjoF =Fob;, O;oF=TFol,.

We set L = Fo LoF ! and since ¢ commutes with L we conclude by use of (7)
that L commutes with 6; for all j. By straightforward calculation we see that L

commutes with all reflections. By Lemma 1.1 this implies that L is a Hadamard
operator. We have L = F 1o Lo F.

We have F(6@®) = i*(27)~%2z* hence L(F5®) = moF5@. Finally we obtain
(8) L(5) = a6,
where L(z%) = mqz®.

EXAMPLE: L = 6 then [ = 6* = —f — 1. Since iy = —k — 1 we obtain
06 = (—k — 1)6™) which, of course, can be verified by direct calculation.

In fact, we will need this result only for d = 1. We set x = (z1,2'), ' = (22, .., 24)
and consider distributions of the form T, = 6(®(z,) ® S(2'), S € ' (R%1).

9



We fix o/ = (g, .., ag) and ¥ € Z2(R?1). For T € .'(R%) and ¢ € ./ (R) we set
(RyT) := T(p(x1)(2'). This defines a map Ry : . '(RY) — #'(R).

For U € '(R) we set L,(U) := (Ry o L)(U ® 2*') € #'(R). We obtain for
a € Npand & = (o, d)

Li(z%) = Rw(Lxé‘) = Rw(mdxé‘) = mg /f“lw(f) d¢ x“.

Hence L; is a Hadamard operator on .#’/(R) and, by (8), 8% is an eigenvector
of Ly. This means L;(0¥) = 11,6, hence (—1)%pa¢(0) = T(¢(x1),v(z")) for
all p € .7(R) where T' = L(§® @ ).

We choose x € Z(R) , x = 0 in a neighborhood of 0, and set ¢, (z) = %7 x().

Then pg = (—1)*T(@a(z1), ¥ (2")). Setting pa () = T'(pa(z1),¥(2")) we obtain
a distribution y, € &/(R*"!) such that

L(6@ @ 2%) = 6@ @ .

We fix o € Ny and we have shown, that z* € {S € .Z/(R*') : L(T,) €
50 @ Z(R*1)} for all o € Ni~*. Since this set is a closed linear subspace of
Z'(R41) we have shown: L(T,) € 6 @ . (R41) for all S € .7 (RI1).

Distributions 7" € ./ (H;) have the form

m

T=> 6" (x1) ® Su(z')

a=0

(cf. [8, Chap III, Théoreme XXXVI]). So we have shown L('(H,)) C ./'(H,).
By an analogous argument this holds also for H;, j = 2, .., d.

Since .'(Zy) = Z;l:l "'(H;) (see [14, Lemma 3.3]) we have shown:

Lemma 4.1 L(.¥'(Z)) C " (Zp).

As an immediate consequence we obtain:

Proposition 4.2 M(.7(R%)) c .(R%).

We put M, () = M(p)|g for p € A(Q). Then My € L(/(Q)) and L := M} €
L('(Q)) is a Hadamard operator. From Theorem 3.2 we get Ty = L, (1) =
Tlrq) € Ou(Q).

Clearly we can do this for all quadrants Q. = {z : ex € Q}. We set M.(¢) =

M(p)|g for ¢ € Z(Q.) and T,.(p) = (M.p)(1) for ¢ € #(Q.). By the same
arguments as before we obtain that T, € 0, (Q.) (defined in obvious analogy).

In analogy to Definition 2 we define the space of distributions on R¢, which are
O-rapidly decreasing in infinity and at the coordinate hyperplanes.
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Definition 3 T € 0 (RY) if for any k there are finitely many functions tg such
that (| + |z|7**)ts € Loo(R?) and such that T =3 ;0°t.

Then we have for T" as defined in (5):
Lemma 4.3 T := > T. € Oy(RY) and Ty gay = T.

For T € 0 (R?) and ¢ € .(R?) we define (Mrp)(x) = Tep(Ex) which is defined
for all z € R4

Lemma 4.4 My is a continuous linear operator in #(R?), Ly = M3 is a
Hadamard operator.

Proof: We have to estimate U(z) := 27(Mgpp) @ (x). We first recall that
Oz p(Ex) = (07¢p)(€x) and (07)76%p(€) = €% 32,5 pu(§) ) (€) =1 €79(€), where

the p, are polynomials.

We choose k = k(a — 7) large enough and obtain
V(r) = 377/9%5(5) £ o\ (€x) de = 567_0‘/9576(5)(&)&90(“)(553) dg
= e [ 7€) (€0 v ds = [ )€ (€a) oo

and therefore
ke < ([ Irs()€1de) el

Here ||¢|| := sup, |#79(z)| is a continuous semi-norm on .#(R?). This shows the
first part of the claim.

For the second part we have to study [ z7(Mry)(x)dz. We obtain

/ x” / 0P 75() () dg) dz — / 0P 75(€) / (€x) (g:c)dx) de
- (/WWGK”1%>/ p(a)da
= (=7 - 1)5</ )& ”‘1615 /x”so
= [na")pla)de.
We have shown that Lyaz” = m.2” and this completes the proof. O
For S € Z'(RY), T € 04(RY) we define SxT € L(7'(R%)) by
(S*T)(p) = Su(Tep(éx)) for all p € 7 (RY).

The following is the main result of this paper.
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Theorem 4.5 1. For every T € O (R%) the map S — S T is a Hadamard
operator on ' (R?).

2. For every Hadamard operator L on #'(R?) there is T € O(R%) such that
L(S) = ST forall S € &' (RY).

Proof: The first part is Lemma 4.4. For the second part we choose T' = L(d7),
then (Mp)(n) = Tep(né) for all n € RY (see (6)). This equation is true for all
neRYif o e.7(RY). By Lemma 4.3 there is T € & (R%) such that T'o = Ty for
¢ € .Z(RY). This means that Lz(S) = S % T defines a Hadamard operator and
L(S)p = Lz(yp) for all ¢ € #(R?). Therefore L — Lz is a Hadamard operator
such that (L— Lz)S vanishes on . (R?) for all S € .#/(R?), hence (L—Lz)z® = 0
for all o and therefore L — Lz = 0. Finally we have T' = L(61) = L5(61) = T.
Therefore we have L(S) = ST for all S € ./(R?). O

5 Final remarks

In [11] the Hadamard operators in 2'(R?) were characterized. We can express
the Main Theorem of [11] in the following way:

Theorem 5.1 The Hadamard operators on 2'(R?) are the operators of the form
S+ SxT where T € O (RY) and supp T has positive distance to the coordinate
hyperplanes.

This follows from the fact that for a distribution T € 2'(R%), the support of which
has positive distance of the coordinate hyperplanes, the conditions T € &, (R?)
and T € 0 (R%) coincide. For the definition of &% (R?) see [11, Definition 3].

This implies:
Corollary 5.2 Every Hadamard operator on 2'(R?) maps #'(R?) into ./ '(R?).

By o(z) = I \ﬁ—ﬂ we denote the signum of z. For o € Nd and T = %75 with
(|z|?* + |z|7%)ts € Loo(R?) and k large enough we define

o(x) s ()
r(Z5) = / (@) (07)' Sy d.
Therefore, using a proper representation, we can define T(;X(ﬂ) for any T €

O} (R?). The definition does not depend on the representation, as the following
result shows.

Theorem 5.3 If T € 0} (R%) and L(S) := ST the related Hadamard operator

on ./'(R%), then the eigenvalues of L with respect to x are m, = T(;a(f)l)

12



The Proof is the same as the proof of Theorem 4.2 in [11]. In a remark after the
proof there it is pointed out that it holds in a very general context.

We could also, in analogy to Section 2, define

Op(RY) .= {f € C®RY) : Ik € NgVa € N¢: sup [0 f(z)|(|z|*+|z| %) < +o00}.

z€RY

Equipped with its natural locally convex topology &y (R?) is the inductive limit
of a sequence of Fréchet spaces, that is, an (LF)-space and we have

Lemma 5.4 0} (R%) is the dual space of Oy (R?).

This can be derived from Lemma 2.6 by use of the exponential transformation

applied to all quadrants, or by direct verification. In this setting the term 7' (;f—f)l)

is properly defined.
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