A DIVISION THEOREM FOR REAL ANALYTIC FUNCTIONS

Dietmar Vogt

Abstract

We characterize those homogeneous polynomials \(P \in \mathbb{C}[z_1, \ldots, z_d] \) for which the principal ideal \((P) = P \cdot A(\mathbb{R}^d) \) is complemented in \(A(\mathbb{R}^d) \) or, equivalently, which admit a continuous linear division operator. The condition is the same that characterizes among the homogeneous polynomials those which are non-elliptic and \(P(D) \) is surjective in \(A(\mathbb{R}^d) \) and those for which \(P(D) \) admits a continuous linear right inverse in \(C^\infty(\mathbb{R}^d) \). It depends only on the type of real singularities.

In this note we study the problem when for a polynomial \(P \in \mathbb{C}[z_1, \ldots, z_d] \) the principal ideal \((P) = P \cdot A(\mathbb{R}^d) \) is complemented in the space \(A(\mathbb{R}^d) \) of real analytic functions or, equivalently, when there exists a continuous linear operator \(T \) in \(A(\mathbb{R}^d) \) so that \(T(P \cdot f) = f \) for every \(f \in A(\mathbb{R}^d) \). \(T \) and its dual operator which divides analytic functionals through \(P \) are called division operators, so we study, when \(P \) admits continuous linear division. We give a necessary condition which is also sufficient if either \(P \) is homogeneous or its real zero set is compact. So we get a complete characterization for the case of homogeneous polynomials.

In this case the principal ideal \((P) \) is complemented if and only if the variety \(V = \{ z \in \mathbb{C}^d : P(z) = 0 \} \) satisfies the so called local Phragmén-Lindelöf condition (\(=: PL_{loc} \) condition) in every real point. This condition appeared first in Hörmander \[9\] and it characterizes those non-elliptic homogeneous polynomials for which \(P(D) \) is surjective in \(A(\mathbb{R}^d) \). It also characterizes those homogeneous polynomials for which \(P(D) \) admits a continuous linear right inverse in \(C^\infty(\mathbb{R}^d) \) (see Meise, Taylor and Vogt \[14\]). It has been intensely studied in the meantime, see e.g. \[3, 4, 5, 15, 19\].

\begin{flushleft}
\textit{2000 Mathematics Subject Classification.} Primary: 46E10. Secondary: 46J20, 32C05, 32U05.
\textit{Key words and phrases:} real analytic functions, homogeneous polynomials, continuous linear division, Phragmén-Lindelöf condition.
\end{flushleft}
It is also interesting to compare our result with the classical results in the C^∞-case and in the case of entire functions. In the C^∞-case this comparison will be done in Section 4. The connection to the ideal property (= propriété des zéros) and the analytic ideal property will also be discussed there. By a result of Zahariuta [21] and Djakov-Mitiagin [6] the principal ideal $P \cdot H(\mathbb{C}^d)$ is always complemented in the space $H(\mathbb{C}^d)$ of entire functions.

1 Preliminaries

Throughout the paper $A(\mathbb{R}^d)$ will denote the space of complex-valued real analytic functions with its natural locally convex topology (see Martineau [13]). For compact $K \subset \mathbb{C}^d$ we denote by $H(K)$ the space of germs of holomorphic functions on K with its natural (LB)-topology, i.e. it is the inductive limit of the spaces $H^\infty(U_n)$ where the U_n runs through an open neighborhood basis of K. This understood, $A(\mathbb{R}^d)$ is the projective limit of the spaces $H(K_n)$ where K_n is any compact exhaustion of \mathbb{R}^d. For open $\omega \subset \mathbb{C}^d$ we denote by $H(\omega)$ the Fréchet space of holomorphic functions on ω with the compact open topology.

We use common notation for locally convex spaces. In particular for locally convex spaces E and F we denote by $L(E,F)$ the space of all continuous linear maps from E to F and we set $L(E) := L(E,E)$. The dual space E' is always assumed to carry its strong topology. For all unexplained concepts of functional analysis we refer to [16]. For homological concepts we refer to [20], for real analytic spaces to [8] and for concepts of pluripotential theory to [11].

Let V_a be the germ of a complex variety in the real point a. We assume always that it is given by a relatively compact open connected neighborhood Ω of a in \mathbb{C}^d and finitely many holomorphic functions f_1, \ldots, f_m on Ω so that $V_a = \{z \in \Omega : f_1(z) = \cdots = f_m(z) = 0\}$ and f_1, \ldots, f_m generate the ideal of V_a in \mathcal{O}_a. We set $X_a = V_a \cap \mathbb{R}^d$.

If the ideal of X_a in \mathcal{O}_a is generated by f_1, \ldots, f_m we call V_a the complexification of X_a.

We define

$$\omega_{a,V}(z) = \limsup_{\zeta \to z} \sup \{u(\zeta) : u \text{ plurisubharmonic on } V_a, u \leq 1, u \leq 0 \text{ on } X_a\}.$$

For two germs ω_a and $\tilde{\omega}_a$ we set $\omega_a \prec \tilde{\omega}_a$ if there is a constant $C > 0$ so that $\omega_a \leq C\tilde{\omega}_a$ in a neighborhood of a in $V_a \cap \bar{V}_a$. If $\omega_a \prec \tilde{\omega}_a$ and $\tilde{\omega}_a \prec \omega_a$ we write $\omega_a \sim \tilde{\omega}_a$ and call such germs equivalent. Then we obtain: Up to equivalence the germ of $\omega_{a,V}$ depends
only on the germ of V_a. If V_a is the complexification of X_a then, of course, it depends only on the germ of X_a. In this case we write also $\omega_{a,X}$.

Definition 1.1 V_a satisfies PL_{loc} if $\omega_{a,V} \prec |\text{Im } z|$.

A complex variety V satisfies PL_{loc} in the real point a if its germ in a satisfies PL_{loc}. The germ X_a of a real analytic variety in the real point a is of type PL if its complexification satisfies PL_{loc}. Notice that for a complex variety V and $X = V \cap \mathbb{R}^d$ the germ X_a can be of type PL, while V_a does not satisfy PL_{loc} in a.

Example: Let $V = \{ z : \sum_{j=1}^{d} z_j^2 = 0 \}$ and $d > 2$ then $X_0 = \{0\}$ and coincides with its complexification. Therefore X_0 is of type PL while V_0 does not satisfy PL_{loc}.

Definition 1.2 For a germ W_a of a subvariety of V_a we set $W_a^{PL} \subset V_a$ if $\omega_{a,W} \prec \omega_{a,V}$ on W_a.

Notice that with this notation we have $V_a^{PL} \subset \mathbb{C}_a^d$ if and only if V_a satisfies PL_{loc}.

Lemma 1.3 We have the following simple facts:

1. If $W_a^{PL} \subset \tilde{W}_a^{PL} \subset V_a$ then $W_a^{PL} \subset V_a$.

2. If V_a is in \mathbb{C}^{d_1} and W_b is in \mathbb{C}^{d_2}, $d_1 + d_2 = d$ then $V_a \times \{b\}^{PL} \subset V_a \times W_b$.

It should be pointed out that these relations remain unchanged, up to the base point, under biholomorphic maps defined in a neighborhood of a, mapping reals to reals. This is used, in particular, in connection with Lemma 1.3. (2).

We consider now a homogeneous complex variety V. We set

$$S = \{ z \in \mathbb{C}^d : \sum_{j=1}^{d} z_j^2 = 1 \}$$

and $V^0 = S \cap V$. Then V^0 is a complex variety and $V^0 \cap \mathbb{R}^d = X \cap S^{d-1} =: X^0$ is a compact real analytic variety.

In a neighborhood of $a \in X^0$ we identify by polar coordinates V_a with $(1 + \varepsilon \mathbb{D}) \times V_a^0$ where \mathbb{D} is the open unit disc. Therefore $V_a^{PL} \subset V_a$. If V_a satisfies PL_{loc} then also V_a^0.

3
Lemma 1.4 If V is homogeneous and satisfies PL_{loc} in any real point, the there exist a continuous linear extension operator $A(X^0) \to A(\mathbb{R}^d)$. In particular there exists a continuous linear extension operator $A(X^0) \to A(S^{d-1})$.

Proof: According to the previous V_0 satisfies PL_{loc} in any point of X^0. That means that X^0 is a compact subvariety of \mathbb{R}^d of type PL. By [19], Theorem 2.2 there exists a continuous linear extension operator $A(X^0) \to A(\mathbb{R}^d)$. If we compose it with the restriction map to S^{d-1} we get the second assertion. □

From there we get the following theorem (see [19], Theorem 7.2). We set $\mathbb{R}^d_* = \mathbb{R}^d \setminus \{0\}$, $X_* = \mathbb{R}^d_* \cap X$.

Theorem 1.5 If the homogeneous real analytic variety V satisfies PL_{loc} in any real point then there exists a continuous linear extension operator $A(X_*) \to A(\mathbb{R}^d_*)$.

Proof: The map $z \mapsto (\log ||z||, \frac{z_1}{||z||}, \ldots, \frac{z_d}{||z||})$ is a real analytic diffeomorphism from \mathbb{R}^d_* to $\mathbb{R} \times S^{d-1}$, and also from X_* to $\mathbb{R} \times X^0$. So we may identify $A(\mathbb{R}^d_*) \cong A(\mathbb{R}) \hat{\otimes}_\pi A(S^{d-1})$ and $A(X_*) \cong A(\mathbb{R}) \hat{\otimes}_\pi A(X^0)$. If $\varphi : A(X^0) \to A(S^{d-1})$ is the extension map of Lemma 1.4 then $id \hat{\otimes}_\pi \varphi$ leads to the extension map as claimed. □

2 Description of the problem

Let $P \in \mathbb{C}[x_1, \ldots, x_d]$ be a polynomial. We denote by $(P) = P \cdot A(\mathbb{R}^d)$ the principal ideal of P in the real analytic functions. The following Lemma is then quite obvious.

Lemma 2.1 The following are equivalent:

1. There is a continuous linear operator $T = T_P \in L(A(\mathbb{R}^d))$ ("division operator") so that $T(Pf) = f$ for all $f \in A(\mathbb{R}^d)$.

2. There is a continuous linear operator $S = S_P \in L(A'(\mathbb{R}^d))$ so that $P \cdot S(\mu) = \mu$ for all $\mu \in A'(\mathbb{R}^d)$.

3. (P) is complemented in $A(\mathbb{R}^d)$.

Proof: Since (1) and (2) are just dual to each other it suffices to show the equivalence of (1) and (3). If (1) is given, then $f \mapsto P \cdot T(f)$ defines a continuous linear projection onto (P). If (3) is given and π a continuous linear projection onto (P), then (P) is a quotient of $A(\mathbb{R}^d)$, hence ultrabornological. By the Grothendieck-de Wilde Theorem the map $T_0 : Pf \mapsto f$ is continuous linear from (P) onto $A(\mathbb{R}^d)$. We set $T := T_0 \circ \pi$. □
Definition: We say that P admits continuous linear division if the equivalent conditions of Lemma 2.1 are fulfilled.

Since obviously P admits continuous linear division if and only if each of its irreducible factors does it, we may assume for our investigation, that P is irreducible. In this case we can describe (P) by the zeros of its functions.

We use the following notation:

\[V = \{ z \in \mathbb{C}^d : P(z) = 0 \} , \]
\[X = V \cap \mathbb{R}^d = \{ x \in \mathbb{R}^d : P(x) = 0 \} , \]

and we obtain:

Lemma 2.2 (P) is the set of all $f \in A(\mathbb{R}^d)$, for which there exists an open neighborhood ω of \mathbb{R}^d and a function $F \in H(\omega)$ so that $F|_{\mathbb{R}^d} = f$ and $F|_{V \cap \omega} = 0$.

Proof: If $f \in (P)$ then there is $g \in A(\mathbb{R}^d)$ so that $f = Pg$. There is an open neighborhood ω of \mathbb{R}^d and $G \in H(\omega)$ so that $G|_{\mathbb{R}^d} = g$. We put $F = PG$.

To show the converse we assume ω and F as described in the lemma. Then P divides F, i.e. there is $G \in H(\omega)$ with $F = PG$.

We set

\[H_V(X) = \{ (f, \Omega) : \Omega \text{ open neighborhood of } X \text{ in } V, f \text{ holomorphic on } \Omega \} \]

with $(f_1, \Omega_1) = (f_2, \Omega_2)$ if there exists an open set $\Omega \subset V$ with $X \subset \Omega \subset \Omega_1 \cap \Omega_2$ and $f_1|\Omega = f_2|\Omega$.

We obtain a natural restriction map $\rho : A(\mathbb{R}^d) \rightarrow H_V(X)$ by setting $\rho(f) = F|_{V}$, where F is an extension of f to a holomorphic function on an open neighborhood of \mathbb{R}^d.

Lemma 2.3 The sequence

\[0 \rightarrow (P) \hookrightarrow A(\mathbb{R}^d) \xrightarrow{\rho} H_V(X) \rightarrow 0 \]

is exact.

Proof: Due to Lemma 2.2 we have to show only the surjectivity of ρ. For given (f, Ω) we find, by use of the Cartan-Grauert Theorem, an open pseudoconvex set $\omega \subset \mathbb{C}^d$ so that $\mathbb{R}^d \subset \omega$ and $\omega \cap V \subset \Omega$. By the Cartan-Oka theory there exists an $F \in H(\omega)$ so that $F|_{\omega \cap V} = f$. \qed
3 Necessity of PL_{loc}

Using $|z| = \max_j |z_j|$ we put $D_r = \{ x \in \mathbb{R}^d : |x| \leq r \}$. By V_r we denote the pluricomplex Green function of D_r (see [11, p. 207]) and set

$$D_{r,\alpha} = \{ z \in \mathbb{C}^d : V_r(z) < \alpha \}, \quad W_{r,\alpha} = D_{r,\alpha} \cap V.$$

By $| |_{r,\alpha}$ we denote the norm of $H^\infty(D_{r,\alpha})$ and by $\| |_{r,\alpha}$ the norm in $H^\infty(W_{r,\alpha})$.

In complete analogy to [19] we obtain from [22, 23]

Lemma 3.1 For $0 < \alpha_1 < \alpha'_2 < \alpha_2 < \alpha_3$ we have $C > 0$ so that

$$|\eta|^{s_{\alpha_3-\alpha_1}}_{r,\alpha_2} \leq C |\eta|^{s_{\alpha_3-\alpha'_2}}_{r,\alpha_1} |\eta|^{s_{\alpha'_2-\alpha_1}}_{r,\alpha_3}$$

for all $\eta \in H^\infty(D_{r,\alpha_1})'$.

Lemma 3.2 For $0 < \alpha_1 < \alpha_2 < \alpha_3$ and $f \in H^\infty(D_{r,\alpha_3})$ we have

$$|f|^{s_{\alpha_3-\alpha_1}}_{r,\alpha_2} \leq |f|^{s_{\alpha_3-\alpha_2}}_{r,\alpha_1} |f|^{s_{\alpha_2-\alpha_1}}_{r,\alpha_3}.$$

Since the restriction of $H^\infty(W_{r,\alpha})$ to $W_{r,\alpha'}$ is contained in the range of the restriction of $H^\infty(D_{r,\alpha})$ to $W_{r,\alpha'}$ we obtain from Lemma 3.1:

Lemma 3.3 For $0 < \alpha_1 < \alpha'_2 < \alpha_2 < \alpha_3$ we have $C > 0$ so that

$$\| \eta \|^{s_{\alpha_3-\alpha_1}}_{r,\alpha_2} \leq C \| \eta \|^{s_{\alpha_3-\alpha'_2}}_{r,\alpha_1} \| \eta \|^{s_{\alpha'_2-\alpha_1}}_{r,\alpha_3}$$

for all $\eta \in H^\infty(W_{r,\alpha_1})'$.

We set

$$A(\mathbb{R}^d) = \text{proj.} \text{ind}_a H^\infty(D_{r,\alpha})$$

with the locally convex limit topologies, and likewise

$$H_V(X) = \text{proj.} \text{ind}_a H^\infty(W_{r,\alpha})$$

and it easy to show that $H_V(X)$, equipped with this topology carries the quotient topology of $A(\mathbb{R}^d)$ under ρ. Both space are (PLB) spaces i.e. countable projective limits of unions of Banach spaces. From the exact sequence (1) we see that (P) is complemented if and only if ρ has a continuous linear right inverse.
Proposition 3.4 If (P) is complemented in $A(\mathbb{R}^d)$, then V satisfies PL_{loc} in every $x \in X$.

Proof: Let φ be a right inverse for ρ. From the theory of (PLB)-spaces (see e.g. [7, p. 63]) we know that for very r there is R so that we have a factorization expressed in the left square of the following commutative diagram

$$
\begin{array}{ccc}
A(\mathbb{R}^d) & \longrightarrow & A(D_r) \\
\uparrow \varphi & & \uparrow \tilde{\varphi} \\
H_V(X \cap D_r) & \longrightarrow & H_V(X \cap D_r) \\
\end{array}
$$

The unnamed maps are the natural restrictions.

Now, arguing precisely as in the proof of Lemma 5.3 of [19] we obtain $\epsilon > 0$ and C_α so that

$$
|\tilde{\varphi}f|_{r,\epsilon\alpha} \leq C_\alpha \|f\|_{R,\alpha}
$$

for all $f \in H^\infty(V \cap D_{R,\alpha})$.

We get the following chain of inequalities for $0 < \alpha_1 < \alpha_2 < \alpha_3$ and $f \in H^\infty(W_{r,\alpha_3})$

$$
\|f\|_{r,\epsilon\alpha_2} \leq |\tilde{\varphi}f|_{r,\epsilon\alpha_2} \\
\leq |\tilde{\varphi}f|_{r,\epsilon\alpha_1}\|\tilde{\varphi}f\|_{r,\epsilon\alpha_3} \\
\leq C_{\alpha_1}^{\alpha_3-\alpha_2}C_{\alpha_3}^{\alpha_2-\alpha_1}\|f\|_{R,\alpha_1}\|f\|_{R,\alpha_3}.
$$

By applying this to f^n, taking n-th roots and letting n go to infinity we obtain:

$$
\|f\|_{r,\epsilon\alpha_2} \leq \|f\|_{R,\alpha_2}^{\alpha_3-\alpha_2}\|f\|_{R,\alpha_1}^{\alpha_2-\alpha_1}.
$$

We set $\|f\|_{R,0} = \sup\{|f(x)| : x \in X \cap D_R\}$. Letting α_1 tend to 0 and replacing α_2 by α and α_3 by γ we get for $0 < \alpha < \gamma$ and $f \in H^\infty(W_{R,\gamma})$:

$$
\|f\|_{r,\epsilon\alpha} \leq \|f\|_{R,0}\|f\|_{R,\gamma}^{\frac{\gamma-\alpha}{\gamma-\alpha_1}}.
$$

This means that for any function $u(z) = c \log |f(z)|$ where f is holomorphic on $W_{R,\gamma}$, $c > 0$, so that $u(z) < 0$ on $\mathbb{R}^d \cap W_{R,\gamma}$ and $u(z) < 1$ on $W_{R,\gamma}$ we have

$$
u(z) \leq \frac{\alpha}{\gamma}, \quad z \in W_{r,\epsilon\alpha}.
$$
We fix now $0 < \rho < r$, $\gamma > 0$. Form the explicit form of the level sets of V_{D_r} (see [11], p. 207) we see that there is $\delta > 0$ so that for any $z \in \partial D_{r,\varepsilon\alpha}$, $\alpha < \gamma$, with $|x| \leq \rho$ we have $|y| \geq \delta \alpha$.

Therefore there is A so that for any $u(z) = c \log |f(z)|$ where f is holomorphic on $W_{R,\gamma}$, $c > 0$, so that $u(z) < 0$ on $R^d \cap W_{R,\gamma}$ and $u(z) < 1$ on $W_{R,\gamma}$ we have

$$u(z) \leq A |\text{Im} z|, \quad z \in W_{r,\varepsilon\gamma} \cap \{z : |\text{Re} z| \leq \rho\}.$$

By standard arguments (cf. [19]) we conclude that V has PL_{loc} in any $x \in R^d \cap V \cap D_{\rho}$.

As r and $\rho < r$ was arbitrary this proves the result.

4 Consequences of the necessary condition

Before we narrow our focus to homogeneous polynomials for which we are able to prove the converse of Proposition 3.4 and obtain a complete characterization, we show some consequences of the necessary condition proved so far.

If V satisfies PL_{loc} in some point $a \in X$, then for any $f \in \mathcal{O}_a$ with $f|_{X_a} = 0$ we have $f|_{V_a} = 0$, i.e. the ideal \mathcal{I}_{X_a} of X_a in \mathcal{O}_a coincides with the ideal \mathcal{I}_{V_a} of V_a and, for irreducible P, is $P \cdot \mathcal{O}_a$. Since $\tilde{P}(z) := \overline{P(z)}$ vanishes on X_a the polynomial P must, in this case, divide \tilde{P}, i.e. P has to be proportional to a real polynomial. For general P satisfying PL_{loc} in a we know that every irreducible factor satisfies PL_{loc} in a. Therefore every irreducible factor which vanishes in a has to be proportional to a real polynomial. Finally we conclude from the equality of ideals that $\dim R X_a = \dim C V_a = d - 1$.

If V satisfies PL_{loc} in every $a \in X$ we get immediately:

Corollary 4.1 If (P) is complemented in $A(R^d)$ then $P = P_1 P_2$ where P_1 has no real zeros and P_2 is a real polynomial, X is of pure dimension $d - 1$ and $H_V(X) = A(X)$.

For all this cf. [10], [14], [15], [19]. We may prove an even stronger local version. Let $a \in X$ and $P_a = f_1 \cdots f_p$ an irreducible decomposition of the germ P_a of P in \mathcal{O}_a. Put $V_{a,j}$ the germ of the complex zero variety of f_j in a and $X_{a,j} = V_{a,j} \cap R^d$. Then every $V_{a,j}$ satisfies PL_{loc}, hence $X_{a,j}$ is coherent, of pure dimension $d - 1$, and f_j is up to a unit in \mathcal{O}_a real on R^d.

Proposition 4.2 If P is a real polynomial and (P) complemented in $A(R^d)$ then for every $a \in X$ the germ X_a is coherent and the germ P_a has an, in \mathcal{O}_a, irreducible decomposition $P_a = f_1 \cdots f_p$, where all $f_j \in \mathcal{O}_{a}^{\mathbb{R}}$, and their real zero varieties are coherent and have pure dimension $d - 1$.
We use the following notation:
We set \(J_X = \{ f \in A(\mathbb{R}^d) : f|_X = 0 \} \), \(J_V = \{ f \in H(\mathbb{C}^d) : f|_V = 0 \} \). Moreover we set \((P)^\infty = P \cdot C^\infty(\mathbb{R}^d)\) and \(J^\infty_X = \{ f \in C^\infty(\mathbb{R}^d) : f|_X = 0 \} \). We say that \(P \) has the ideal property (or propriété des zéros) if \((P)^\infty = J^\infty_X\) and that \(P \) has the analytic ideal property if \((P) = J_X\).

Lemma 4.3 If \(P \) has the ideal property then also the analytic ideal property. If \(P \) has the analytic ideal property and \(X_a \) is coherent in every \(a \in X \) then \(P \) has the ideal property.

Proof: For the first part see [2, Proposition 3]), the second follows from [12, Theorem 3.10] and a partition of unity argument. \(\square \)

Since it is obvious from the previous that the \(PL_{\text{loc}} \) condition being fulfilled in every point of \(X \) implies the analytic ideal property, and it implies also coherence of \(X \) in every \(a \in X \), we obtain from Lemma 4.3:

Theorem 4.4 If \((P)\) is complemented in \(A(\mathbb{R}^d) \) then \(P \) has the ideal property and the analytic ideal property.

Now, from results of Bierstone and Schwarz [1] and Langenbruch [10, Theorem 1.6] we know that \((P)^\infty\) is complemented in \(C^\infty(\mathbb{R}^d)\) if and only if \(P \) has the ideal property and we can conclude:

Corollary 4.5 If \((P)\) is complemented in \(A(\mathbb{R}^d) \), then \((P)^\infty\) is complemented in \(C^\infty(\mathbb{R}^d)\).

Example: The real zero variety of the irreducible polynomial \(P(x, y) = y^3 - x^3(1 + x^2) \) is of pure dimension 1. In \(\mathcal{O}_0 \) it decomposes into one real and two complex factors, hence, by Proposition 4.2 \(P \) is not complemented. In \(A(\mathbb{R}^d) \) it decomposes into two real valued factors,

\[
\begin{align*}
 f_1(x, y) &= y - x^{3/2}(1 + x^2), \\
 f_2 &= \left(y + \frac{x}{2} \sqrt{1 + x^2}\right)^2 + \frac{3}{4}x^2(1 + x^2)^{3/2}.
\end{align*}
\]

\(f_1 \) describes \(X \), \(f_2 \) vanishes in 0 only. Hence \(P \) does even not have the analytic ideal property. On the other hand there is a continuous linear projection in \(A(\mathbb{R}^d) \) onto \(J \), namely \(f(x, y) \mapsto f(x, y) - f(x, x \sqrt{1 + x^2}) \).

Let us remark that the description in Proposition 4.2 corresponds to the characterization of the ideal property contained in Bochnak [2, Corollaire 2].

Let \(P \) have the ideal property and \(\pi \) be a continuous linear projection in \(C^\infty(\mathbb{R}^d) \) onto \((P)^\infty\). Assume now that \((P)\) is not complemented, then \(\pi \) necessarily sends some
\[f \in A(\mathbb{R}^d) \] to \(\pi(f) \in C^\infty(\mathbb{R}^d) \setminus A(\mathbb{R}^d) \), because \(\pi A(\mathbb{R}^d) \subset A(\mathbb{R}^d) \) would, due to the closed graph theorem, imply that \(\pi|_{A(\mathbb{R}^d)} \) is a continuous linear projection in \(A(\mathbb{R}^d) \) onto \((P)\).

5 Sufficiency of \(PL_{loc} \), local case

From Proposition 3.4 and [19], Theorem 2.2 we get the following theorem. Notice that \(PL_{loc} \) in any real point of \(V \) implies that \(X \) is coherent (see [19]), hence \(A(X) = H_v(X) \).

Theorem 5.1 If \(X \) is compact, then \((P)\) is complemented if and only if \(V \) satisfies \(PL_{loc} \) in any \(x \in X \).

We will now study the case of a homogeneous \(P \). As a first step we extend the proof of [19], Proposition 4.5, i. e. the sufficiency part of Theorem 2.2 there, from the case of compact \(X \) to a semiglobal result in the general case.

Theorem 5.2 If \(V \) satisfies \(PL_{loc} \) in any real point, then for every compact \(K \subset \mathbb{R}^d \) there is a continuous linear map \(\varphi_K : A(X) \to H(K) \) so that \(\varphi_K f|_{K \cap X} = f|_{K \cap X} \) for all \(f \in A(X) \).

Proof: We choose \(r > 0 \) so that \(K \) is contained in the interior of \(D_r \). We use the following neighborhoods of \(D_r \)

\[U_{r,\alpha} = \{ z : |x| < r + \alpha, |y| < \alpha \}. \]

They are analytic polyhedra.

By a compactness argument the \(PL_{loc} \)-condition gives us a neighborhood

\[U = \{ z : |x| < R, |y| < \gamma \} \]

of \(D_r \) in \(\mathbb{C}^d \) and constants \(A \) and \(\gamma_0 > 0 \), so that for any plurisubharmonic function \(u \) on \(V \) with \(u(z) < 1 \) for \(z \in U \cap V \) and \(u(x) < 0 \) for \(x \in U \cap X \) we have \(u(z) \leq A|\text{Im } z| \) for \(z \in U_{r,\gamma_0} \).

Let \(\omega(z) = \omega(D_r \cap X, U_{r,\gamma} \cap V, z) \) the relative extremal function on \(U_{r,\gamma} \cap V \), i. e. the upper regularization of

\[\sup\{ u(z) : u \text{ plurisubharmonic on } V, u < 1 \text{ on } U_{r,\gamma} \cap V, u < 0 \text{ on } D_r \cap X \}. \]

Then the above condition says that there is a constant \(A \) and \(\gamma_0 > 0 \) so that

\[\omega(z) \leq A|\text{Im } z|, \quad z \in V \cap U_{r,\gamma_0}. \]
We set
\[\tilde{V}_{r, \alpha} = V \cap U_{r, \alpha}, \quad V_\beta = \{ z \in V : \omega(z) < \beta \} \]
and obtain for \(0 < \alpha < \gamma_0 \)
\[\tilde{V}_{r, \alpha} \subset V_{A\alpha} \]
Changing our previous notation we denote now by \(|| \cdot ||_{r, \alpha} \) the norm in \(H^\infty(U_{r, \alpha}) \) and by \(|| \cdot ||_\beta \) the norm in \(H^\infty(V_\beta) \). In analogy to Lemmas 3.1 and 3.2 we obtain
For \(0 < \alpha_1 < \alpha_2 < \alpha_3 \) and \(\eta \in H^\infty(U_{r, \alpha_1})' \) we have
\[||\eta||_{r, \alpha_2}^{\alpha_3 - \alpha_1} \leq C \|||\eta||_{r, \alpha_1}^{\alpha_3 - \alpha_2} \||\eta||_{r, \alpha_3}^{\alpha_2 - \alpha_1}. \]
For \(0 < \alpha_1 < \alpha_2 < \alpha_3 \) and \(f \in H^\infty(V_{\alpha_3}) \) we have
\[|f|_{r, \alpha_2}^{\alpha_3 - \alpha_1} \leq |f|_{r, \alpha_1}^{\alpha_3 - \alpha_2} |f|_{r, \alpha_3}^{\alpha_2 - \alpha_1}. \]
Moreover we have for any small \(\alpha \) the following diagram with exact row:
\[
\begin{array}{cccccc}
0 & \longrightarrow & H(U_{r, \alpha}) & \xrightarrow{M_{P}} & H(U_{r, \alpha}) & \longrightarrow & H(\tilde{V}_{r, \alpha}) & \longrightarrow & 0 \\
& & & & & & \uparrow & & \\
& & & & & & H(V_{A\alpha}) & & \\
\end{array}
\]
where \(M_{P} \) is the multiplication with \(P \) and the unnamed arrows are the restriction maps.
As in the proof of [19], Proposition 4.5, we conclude that there is a continuous linear map \(\varphi : A(X) \rightarrow H(D_r) \) with the desired property. \(\square \)
If \(V \) satisfies \(PL_{loc} \) in any real point then we have for every \(n \in \mathbb{N} \) a map \(\varphi_n \in L(A(X), H(D_n)) \) with \(\varphi_n(f)|_X = f|_X, \) for all \(F \in A(\mathbb{R}^d) \). If there exists a sequence \(\psi_n \in L(A(X), H(D_n)) \), \(n \in \mathbb{N} \), so that (omitting the restriction map) \(\psi_{n+1} - \psi_n = \varphi_n \) for all \(n \), then we obtain a right inverse \(\varphi \) for \(\rho \). Therefore for a proof that \((P) \) is complemented it would suffice to show that \(\text{Proj}_{\rho}^1 L(A(X), H(D_n)) = 0 \). Unfortunately this is not known. However, in the homogeneous case we can use a simpler argument.

6 Sufficiency of \(PL_{loc} \), homogeneous case

Let \(P \) now be a homogeneous polynomial of degree \(m > 0 \) so that \(V \) satisfies the \(PL_{loc} \)-condition in every real point. In consequence \(P \) cannot be elliptic.
Therefore $X \neq \{0\}$. We set as previously $\mathbb{R}^d_* = \mathbb{R}^d \setminus \{0\}$, $X_* = \mathbb{R}^d_* \cap X$.

From Theorem 1.5 we obtain:

Lemma 6.1 There exists a continuous linear extension operator $A(X_*) \longrightarrow A(\mathbb{R}^d_*)$.

So we have an extension operator near 0 and one off 0. To patch them together we need the following lemma. For $0 \leq r < \rho \leq \infty$ we put $D^0_{r,\alpha} = \{ x : r < \| x \| < \rho, \| \text{Im} \, x \| < \alpha \}$.

Lemma 6.2 For any $0 < r < \rho$ there are σ_1, σ_2 with $0 < \sigma_1 < r < \rho < \sigma_2 < \pi/2 < R$.

Proof: Due to the real analytic diffeomorphism $x \mapsto (\arctan x_1, \ldots, \arctan x_d)$ it suffices to replace ψ_∞ by $\psi_R : H(D^0_{\sigma_1}) \longrightarrow H(D^R_r)$ for large $R > \sigma_2$ in the statement of the lemma. In fact, one would need only to consider the case of $0 < \sigma_1 < r < \rho < \sigma_2 < \pi/2 < R$.

We put $w(z) = \sqrt{\sum_{j=1}^d z_j^2}$ and set for small $\alpha > 0$

$$D^0_{r,\alpha} = \{ z \in \mathbb{C}^d : r - \alpha < w(z) < \rho + \alpha; \| \text{Im} \, z \| < \alpha \}.$$

The $D^0_{r,\alpha}$ are analytic polyhedra and $\bigcap_\alpha D^0_{r,\alpha} = D^0_r$. From Zaharjuta [22, 23] we learn that for the spaces $H^\infty(D^0_{r,\alpha})$ we have inequalities like in Lemma 3.1.

Since $D^0_{0,\alpha} \cap D^R_{r,\alpha} = D^0_{r,\alpha}$ we obtain by the Cartan-Oka theory the exactness of the row in the following diagram:

$$
\begin{array}{cccccc}
0 & \longrightarrow & H(D^0_{0,\alpha}) & \longrightarrow & H(D^0_{0,\alpha}) \oplus H(D^R_{r,\alpha}) & \longrightarrow & H(D^r_{r,\alpha}) & \longrightarrow & 0 \\
& & & \uparrow & & & & & \\
& & & & & H(U_{\alpha}) & & & &
\end{array}
$$

Here $U_{\alpha} = \{ z : \omega(z) < \alpha \}$ where $\gamma < \sigma_1$ and $\omega(z) = \omega(D^0_{\sigma_1}, D^0_{\sigma_1}, \gamma, z)$ is the relative extremal plurisubharmonic function. Comparison with the pluricomplex Green function of neighborhoods of points in $D^\sigma_{\sigma_1}$ shows that for small α and suitable $A > 0$ we have $\omega(z) \leq A|\text{Im} \, z|$ on $D^\rho_{r,\alpha}$, hence $D^\rho_{r,\alpha} \subset U_{\alpha}$. The vertical arrow in the diagram now means the restriction map.

For the norms in $H^\infty(U_{\alpha})$ we obtain, due to the maximality of ω the inequalities like in Lemma 3.2. As previously by small changes of the α we can set up the scheme for the application of [18] and obtain the result. **□**
Proposition 6.3 If V satisfies PL_{loc} in any point of X, then there is a continuous linear extension operator $\varphi : A(X) \rightarrow A(\mathbb{R}^d)$.

Proof: By Theorem 5.2 there is a continuous linear operator $\varphi_0 : A(X) \rightarrow H(D_{\sigma_1}^{\sigma_2})$ so that $\varphi_0 f = f$ on $X \cap D_{\sigma_1}^{\sigma_2}$, and by Lemma 6.1 there is a continuous linear map $\varphi_\infty : A(X) \rightarrow A(\mathbb{R}^d)$ so that $\varphi_\infty f = f$ on X^*.

We choose $\chi : A(X) \rightarrow H(D_{\sigma_1}^{\sigma_2})$ so that $P \cdot \chi f = \varphi_0 f - \varphi_\infty f$ on $D_{\sigma_1}^{\sigma_2} \cap X$. With ψ_0 and ψ_∞ of Lemma 6.2 we put for $f \in A(X)$ $\varphi f = \varphi_0 f - P \cdot \psi_0(\chi f)$ on D_0^ρ and $\varphi f = \varphi_\infty f + P \cdot \psi_\infty(\chi f)$ on D_∞^ρ.

On D_0^ρ we have

$$(\varphi_0 f - P \cdot \psi_0(\chi f)) - (\varphi_\infty + P \cdot \psi_\infty(\chi f)) = P \cdot \chi f - P \cdot \chi f = 0.$$

Therefore φ is well defined and the assertion is proved. \qed

7 Main theorems

From Propositions 3.4, 6.3 and Theorem 5.1 we obtain the following characterization:

Theorem 7.1 If P is homogeneous or has a compact real zero set then (P) is complemented if and only if V satisfies PL_{loc} in every real point.

If we restrict our attention to the homogeneous case and combine our result with the results in [15, Theorem 3.13], [9] and [14] then we have the following result:

Theorem 7.2 For homogeneous P the following are equivalent:

1. The principal ideal of P is complemented in $A(\mathbb{R}^d)$.
2. $P(D)$ is non-elliptic and $P(D) : A(\mathbb{R}^d) \rightarrow A(\mathbb{R}^d)$ is surjective.
3. $P(D) : C^\infty(\mathbb{R}^d) \rightarrow C^\infty(\mathbb{R}^d)$ has a continuous linear right inverse.
4. V satisfies PL_{loc} in any real point of V.

13
8 Examples and further results

Concrete example of homogeneous polynomials to satisfy or not satisfy PL_{loc} in every real point of its zero variety, we call them of type PL from now on, can be found in [3], [4], [5], [9], [14], [15], [19]. We present some of them. We always assume, without restriction of generality, that $P \in \mathbb{R}[x_1, \ldots, x_n]$.

If $n = 2$ the P is a product of linear forms, and PL means that all of them must be real. General, not necessarily homogeneous, P is of type PL if and only if all real singularities of X are intersections of smooth lines (see [5]). A good example is $P_1(x, y) = y^2 - x^2 + x^4$ (lemniscate), a bad one $P_2(x, y) = y^2 - x^3 + x^5$ (see [19]).

For $\deg P = 2$ the polynomial P is of type PL if and only if the underlying quadratic form is indefinite or the product of two real linear forms (see [9]).

Similarly, if $n \geq 3$ and P has the form

$$P(x_1, \ldots, x_n) = \sum_{k=1}^{n} a_k x_k^m,$$

then P is of type PL if and only if either m is odd or the a_k have different signs or only one $a_k \neq 0$ (see [14]).

We recall that a real analytic variety $X \subset \mathbb{R}^d$ is called of type PL if its complexification in every point satisfies PL_{loc}. Now with exactly the same modifications of the proof of [19], Proposition 4.5. as applied to show Theorem 5.2 we can prove

Theorem 8.1 If X is of type PL, then for every compact $K \subset \mathbb{R}^d$ there is a continuous linear map $\varphi_K : A(X) \to H(K)$ so that $\varphi_K f|_{K \cap X} = f|_{K \cap X}$ for all $f \in A(X)$.

This modification could serve to extend [19], Theorem 2.2 also to noncompact real analytic varieties. That would be immediate if $\text{Proj}^1_L(A(X), H(K_n)) = 0$ which, unfortunately, is not known.

References

14

Bergische Universität Wuppertal, FB Math.-Nat., Gauss-Str. 20, D-42097 Wuppertal, Germany
e-mail: dvogt@math.uni-wuppertal.de