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Abstract

We characterize those Fréchet spaces E for which Proj1A(Ω, E) = 0, where A(Ω, E)
is the (PLB)-space of E-valued real analytic functions on the open set Ω ⊂ Rd.
This has various consequences, among those a characterization of all (LB)-spaces
X for which Ext1(X, A(Ω)) = 0 in the category of (PLB)-spaces, which means that
every exact sequence

0 −−−−→ A(Ω) ı−−−−→ Y
q−−−−→ X −−−−→ 0

where Y is of type (PLB) splits.

Let E be a Fréchet space, ‖ ‖1 ≤ ‖ ‖2 ≤ . . . a fundamental system of seminorms,
Ω ⊂ Rd open and A(Ω, E) the space of E-valued real analytic functions on Ω, i.e. of
those E-valued functions f on Ω for which y ◦ f ∈ A(Ω) for all y ∈ E′. By Ek, k ∈ N
we denote the local Banach spaces and by jk

n : En → Ek for n ≥ k, jk : E → Ek

the canonical linking maps. Then we can describe A(Ω, E) also as the space of all
E-valued functions f on Ω so that jk ◦ f ∈ A(Ω, Ek) for all k ∈ N. Here A(Ω, Ek) is
the space of all Ek-valued functions which can be expanded onto their Taylor series in
a neighborhood of any point of Ω. Therefore A(Ω, E) can be written in a natural way
as projective limit

A(Ω, E) = lim projn H(Kn, En)

where K1 ⊂
◦

K2⊂ K2 ⊂ . . . is a compact exhaustion of Ω and H(Kn, En) denotes the
(LB)-space of germs of En-valued holomorphic functions on Kn. So A(Ω, E) is a (PLB)-
space, i.e. a countable projective limit of (LB)-spaces, and we may ask the question,
when Proj1A(Ω, E) = 0.

Let us recall that for a (PLB)-space Y = lim projnYn all reduced defining spectra
(Yn)n of (LB)-spaces are equivalent. Therefore Proj1Y = Proj1n Yn does not depend
on the (reduced) spectrum (Yn)n and is one of the most important invariants of such
a space. Its vanishing is, at least in the case of a (PLS)-space, equivalent to Y being
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ultrabornological. Its main significance is that it is the “cohomology of Y ”. Proj1 Y = 0
for a (PLB)-space Y allows to conclude from “local surjectivity” to surjectivity for
linear maps where Y appears as kernel. Spaces like D ′(Ω) of distributions, A(Ω) of real
analytic functions or L(E, F ) of continuous linear maps, where E and F are Fréchet
spaces, are (PLB)-spaces. For the first two we have Proj1 Y = 0. The fact that
Proj1A(Ω) = 0 or, equivalently, that A(Ω) is ultrabornological played an important role
in the proof in [9] that A(Ω) does not have a basis. For nuclear Fréchet spaces we have
Proj1L(E, F ) = Ext1(E, F ), hence Proj1L(E, F ) = 0 means that every exact sequence
0 → F → G → E → 0 of Fréchet spaces splits. A similar connection we will use below
to give a characterization of those (LB)-spaces for which Ext1PLB(X, A(Ω)) = 0. See
for that also the final remarks of §3.

Throughout the paper we use common terminology for locally convex spaces, in par-
ticular Fréchet spaces. For all this we refer to [24], for homological concepts to [32].

The author thanks P. Domański for useful conversations and remarks.

1 Main theorem

The answer to our problem is given in the first of our two main theorems. Throughout
this paper E will always denote a Fréchet space.

Theorem 1.1 Proj1A(Ω, E) = 0 if and only if E has property (Ω).

A Fréchet space with a fundamental sequence of seminorms (‖·‖n) defining the topology
is said to have property (Ω) if

∀ k ∃ l ∀ n, ϑ ∈]0, 1[ ∃ C ∀ u ∈ E′ ‖u‖∗l ≤ C ‖u‖∗kϑ‖u‖∗n1−ϑ.

Here ‖·‖∗ denotes the dual norm for ‖·‖. Property (Ω) is a linear topological invariant.
For its role see [29], [9], [2], [6], [23]. From [24, Lemma 29.13] we obtain the following
equivalence.

Remark E has (Ω) if and only if

∀ k ∃ l ∀ n, γ > 0 ∃ C ∀ r > 0 Ul ⊂ rUn +
C

rγ
Uk,

where Uk = {x ∈ E | ‖x‖k ≤ 1}.
Before we can prove Theorem 1.1 we need some preparations. In the following lemma
we do for (Ω) exactly what is done for (Ω) in [24, Lemma 29.16].

Lemma 1.2 The Fréchet space E has property (Ω) if, and only if, there exists a
bounded Banach disk B ⊂ E having the following property:
For each p ∈ N there exists q ∈ N so that for every γ > 0 there is D > 0 with

Uq ⊂ r B +
D

rγ
Up for all r > 0 (1)

If E is a Fréchet-Hilbert space, then B can be chosen as a Hilbert disk.
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Proof: Obviously the given condition implies that E has the property (Ω). To prove
the reverse implication we proceed, mutatis mutandis, exactly as in the proof of [24,
Lemma 29.16]. We indicate here, for the convenience of the reader, only the necessary
changes.

Instead of formula [24, Lemma 29.16, (1)] we choose q ∈ N with q > p in accordance
with property (Ω). Then we let C1 := 1 and choose, for each n ∈ N, n ≥ 2, a Cn ≥
max(n,C

n
n−1

n−1 ) with

Uq ⊂ rUn +
Cn

r2n
Up for all r > 0. (2)

This replaces formula [24, Lemma 29.16, (1)]. Now we choose εk := min
(

1
2 , C−1

k+2

)
and

arrive instead of formula [24, Lemma 29.16, (4)] at

Uq ⊂ rM +
(

r

Cn+1
+

Cn

r2n

)
Up for all r > 0 and n ∈ N, n > p. (3)

For r ≥ C
1

p+1

p+1 we choose n ∈ N with n > p, so that C
1
n
n ≤ r ≤ C

1
n+1

n+1 and obtain

Uq ⊂ rM +
2
rn

Up. (4)

This holds for r ≥ C
1

p+1

p+1 . Replacing 2 by a bigger constant, if necessary, we have it for
all r > 0. 2

For the next three results we will assume that E has property (Ω), B is as in Lemma
1.2 and for given p ∈ N we have chosen q ∈ N so that for every γ > 0 we have (1).

Corollary 1.3 There are an increasing function h and a decreasing function g, so that
for large r

h(r) = O(rε) for every ε > 0

g(r) = O(
1

rm
) for every m ∈ N

and
Uq ⊂ h(r) B + g(r) Up

for every r > 0.

Proof: We use Lemma 1.2 and set

g0(r) := sup
‖x‖q≤1

inf
y∈rB

‖x− y‖p.

Then g0 is decreasing and has the required asymptotic property and for every decreasing
g1 > g0 with the same asymptotic property we have Uq ⊂ r B+g1(r) Up for every r > 0.
By a standard construction we find now an increasing h so that h and g := g1 ◦ h have
the required asymptotic properties and g is decreasing. 2

For entire functions g1, . . . , gm on Cd and rj > 0, j = 1, . . . , m we put U = {z ∈ Cd :
maxj |gj(z)| < 1}. This is an analytic polyhedron. We will assume that it is bounded.
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Lemma 1.4 For every f ∈ H(U,Eq) there exist g ∈ H(Cd, Ep) and h ∈ H(U,EB) so
that jp

q ◦ f = g + jp ◦ h on U .

Proof: We may assume that U ⊂ Dd where Dd = {z ∈ Cd : |z|∞ < 1} and use the
classical method of Oka. For z ∈ U we put ϕ(z) = (z, g1(z), . . . , gm(z)) ∈ Cd+m = CN .
This defines a biholomorphic map ϕ from U onto a closed complex submanifold ϕ(U) of
DN . From the Cartan-Oka theory [18, Th. 7.2.7] and a tensor argument we conclude:
for every f ∈ H(U,Eq) there is F ∈ H(DN , Eq) with F ◦ ϕ = f .

We expand F into its power series

F (w) =
∑

β∈NN
0

aβwβ.

Then Cauchy’s inequalities yield: for every s > 0 there is Cs > 0 so that

‖aβ‖q ≤ Cs es|β|, β ∈ NN
0 .

Therefore we can find a sequence sj ↘ 0 and a constant C so that

‖aβ‖q ≤ C es|β| |β|, β ∈ NN
0 .

For given β we set r = e|β| and, by Lemma 1.3, find

uβ ∈ es|β| |β| h(e|β|) B

vβ ∈ es|β| |β| g(e|β|) Up

so that jp
q (aβ) = jp(uβ) + vβ for all β ∈ NN

0 . We set

h(z) =
∑

β∈NN
0

uβ ϕ(z)β, g(z) =
∑

β∈NN
0

vβ ϕ(z)β.

They obviously fulfill the assertion. 2

Lemma 1.5 Let K ⊂ Rd be compact and f ∈ H(K,Eq), then there exist g ∈ H(Cd, Ep)
and h ∈ H(K,EB) so that jp

q ◦ f = g + jp ◦ h in H(K,Ep).

Proof: This is an immediate consequence of Lemma 1.4 and the fact that K has a
neighborhood basis of analytic polyhedra (see [16, Lemma 5.4.1]). 2

We are now in the position to prove Theorem 1.1.

Proof: A(Ω) has a complemented subspace F isomorphic to the 2π-periodic real
analytic functions in one dimension. For d = 1 this follows from [21], for d > 1 we may
use any circle in Ω and [4, Lemma 4.4] (more precise: the remark after this Lemma).
Since F is isomorphic to Λ′0(n) = {ξ ∈ Cd : supn |ξn|etn < +∞ for some t < 0}, the
result follows from [30, Theorem 4.2]. Notice that 0 = Proj1(F,E) ∼= Ext1(Λ0(n), E).
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To prove the converse we may assume that the fundamental system of seminorms is
chosen so that with a closed, bounded, absolutely convex set B

∀ k, γ > 0 ∃ C ∀ r > 0 : Uk+1 ⊂ rB +
C

rγ
Uk.

Let functions fk ∈ H(Kk, Ek) be given. We have to find a sequence of functions
Fk ∈ H(Kk, Ek) so that fk = Fk − jk

k+1 ◦ Fk+1 for all k.

First we use Lemma 1.5 to find, for k = 2, 3, . . . , functions gk ∈ H(Cd, Ek−1) and
hk ∈ H(Kk, EB) so that jk−1

k ◦ fk = gk + jk−1 ◦ hk in H(Kk, EB).

Clearly we have Proj1kH(Cd, Ek) = 0, hence there are Gk ∈ H(Cd, Ek) so that gk+1 =
Gk − jk

k+1 ◦Gk+1 for k ∈ N.

Since EB is a Banach space we have Proj1k H(Kk, EB) = Proj1A(Ω, EB) = 0. The
latter because of the same reason, as Proj1A(Ω) = 0 (see e.g. [10, Proposition 1.5]).
Hence there are Hk ∈ H(Kk, EB) so that hk = Hk −Hk+1 for all k = 2, 3, . . . .

Finally we set Fk = fk + gk+1 + jk
k+1 ◦ Gk+1 + jk ◦ Hk+1 ∈ H(Kk, Ek) to obtain

Fk − Fk+1 = fk for all k ∈ N and therefore the result. 2

2 Real analytic functions on subvarieties of Rd

Let Ω ⊂ Rd be open and let X be a coherent subvariety of Ω. This means that there is
an open pseudoconvex set Ω0 ⊂ Cd as and a closed complex subvariety V of Ω0 so that
X = V ∩ Rd and for any point x ∈ X the ideal of X in dOx coincides with the ideal
of V in dOx, i.e. every germ of a holomorphic function at x which vanishes on X also
vanishes on V .

A function f on X is called real analytic if it can be represented in a neighborhood
of any point by a power series. f then extends uniquely into a holomorphic function
F defined on a neighborhood of X in V . Since, by the Cartan-Grauert theorem (see
[5, 13]), Ω has a neighborhood basis in Cd of pseudoconvex sets, F can be extended
into a holomorphic function defined on a neighborhood of Ω.

For any open ω ⊂ Ω we set

GX(ω) = {f ∈ A(ω) : f |X = 0}.

This defines a subsheaf GX of the sheaf A of real analytic functions on Ω. It is the
restriction to Ω of the ideal sheaf JV of V , which is a coherent subsheaf of dO. This
implies that for every compact K ⊂ Ω there are finitely many generators f1, . . . , fl ∈
JX(Ω0) := Γ(Ω0, JX) such that the map

S : H(K)l −→ GX(K), S(g1, . . . , gl) :=
l∑

j=1

gjfj ,

is surjective (see [18, 7.1.6, 7.2.5]).
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Here GX(K) denotes the sections of GX over K and it is clear that

GX(K) = lim indnJ∞X (Un)

where Un is a basis of complex neighborhoods of K and J∞X (Un) are the bounded
sections on Un with the sup-norm. So GX(K) is a nuclear (LB)-space and the map
S is open, by the open mapping theorem for (LB)-spaces. Moreover, by [24, 26.26],
GX(K) ⊂ H(K) as a topological subspace.

Since, by [8, Proposition 1.2], GX(ω) as a closed subspace of A(ω) is an (PLB)-space,
we have that GX(ω) = lim projn∈NGX(Kn) if K1 ⊂ K2 ⊂ . . . is an exhaustion of
ω ⊆ Ω.

If E is a locally convex space then we set for ω ⊂ Ω open

GX(ω, E) = {f ∈ A(ω, E) : f |X = 0}.
This defines a sheaf G E

X of E-valued real analytic functions on Ω.

Therefore, by a simple tensor argument, for every Banach space B also the map

S ⊗ idB : H(K, B)l −→ GX(K, B), S ⊗ idB(g1, . . . , gl) :=
l∑

j=1

gjfj , (5)

is surjective.

Let us observe also that if K1 ⊂ K2 ⊂ . . . is an exhaustion of ω ⊆ Ω, then

GX(ω,E) = lim projn∈NGX(Kn, En).

In particular, GX(ω,E) is a (PLB)-space. We obtain:

Lemma 2.1 If E has property (Ω) then Proj1GX(Ω, E) = 0.

Proof: We apply Lemma 1.5 to the functions g1, g2, . . . in (5) and proceed as in the
proof of Theorem 1.1. 2

Since for every compact K ⊂ Ω we have an exact sequence

0 −−−−→ GX(K) i−−−−→ H(K)
q−−−−→ H(X ∩K) −−−−→ 0

where i is the imbedding and q the restriction map, the same holds Banach valued.
Therefore we have for every n an exact sequence

0 −−−−→ GX(Kn, En) iEn−−−−→ H(Kn, En)
qEn−−−−→ H(X ∩Kn, En) −−−−→ 0..

Since A(X,E) = lim projnH(X ∩Kn, En) we obtain a long exact sequence

0 −→ GX(Ω, E) iE−→ A(Ω, E)
qE

−→ A(X, E) −→ Proj1GX(Ω, E) −→
−→ Proj1A(Ω, E) −→ Proj1A(X, E) −→ 0.

Now we are able to extend our main theorem to the case of real analytic varieties.
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Theorem 2.2 If dimX ≥ 1 then Proj1A(X,E) = 0 if and only if E has property (Ω).
In this case every E-valued real analytic function on X can be extended to Ω.

Proof: If E has property (Ω) then the fourth and fifth term in the long exact sequence
above vanish by Theorem 1.1 and Lemma 2.1, respectively. Therefore every E-valued
real analytic function on X can be extended to Ω and Proj1A(X, E) = 0.

We have to show necessity of property (Ω). Let d0 = dimX. We choose x0 ∈ X so that
X is a manifold of dimension at least d0 in a neighborhood of x0. For d0 ≥ 2 let S be a
real analytic diffeomorphic copy of the unit circle in this neighborhood, then S is a real
analytic submanifold of Rd. By [31] there is an extension operator to the whole of Rd,
hence to X, and therefore Proj1A(S, E) = 0 which implies that X has (Ω). For d0 = 1
we may assume that x0 = 0 and that R := {(t, 0, . . . , 0) : t ∈ R} is a tangent to X in
0. Then there is a neighborhood U of 0 in X and ε > 0 so that for π1 : x 7→ x1 the map
ϕ = π1|U is a real analytic diffeomorphismus from U onto (−ε, ε). We choose r < ε
and find a projection P0 from A(−ε, ε) onto the space Ar of r-periodic real analytic
functions on R. Then P : f 7→ (P0(f ◦ ϕ−1)) ◦ π1|X is a projection in A(X) onto a
subspace isomorphic to Ar

∼= H(S1). Now we proceed as previously. 2

For dimX = 0, which means that X is a discrete subset of Ω, we have A(X,E) = EX

hence Proj1A(X,E) = 0. Moreover, due to a tensor argument, qE is surjective for any
Fréchet space E, since for every f ∈ A(X, E) we find even F ∈ H(Ω, E) with F |X = f .
So this is a special case, interpolation is always possible.

Even for dimX ≥ 1 we cannot expect to conclude much about E from the surjectivity
of qE . There are varieties X so that there is a continuous extension operator A(X) →
A(Ω). A characterization in the compact case is given in [31]. Any compact real
analytic submanifold has this property. A concrete extension operator for the case of
the unit circle in R2 is given in [4]. if X has this property then clearly qE is surjective
for any Fréchet space E. However Proj1GX(X, E) need not to be zero.

3 Examples

Before we go on in the theory we want to study some consequences of Theorems 1.1
and 2.2 for solving equations with real analytic parameters. We will use the following
Lemma.

Lemma 3.1 If 0 −→ E −→ F
ϕ−→ G −→ 0 is an exact sequence of Fréchet spaces

then we obtain an exact sequence

0 −→ A(Ω, E) −→ A(Ω, F )
ϕ∗−→ A(Ω, G) −→ Proj1A(Ω, E) −→
−→ Proj1A(Ω, F ) −→ Proj1A(Ω, G) −→ 0.

Proof: We may assume that for every n we have an exact sequence 0 −→ En −→
Fn −→ Gn −→ 0 of local Banach spaces which yields an exact sequence

0 −→ A(Kn, En) −→ A(Kn, Fn) −→ A(Kn, Gn) −→ 0.
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This proves the claim. 2

We derive immediately the following corollary. We use the notation of Lemma 3.1.

Corollary 3.2 Let F have property (Ω). Then ϕ∗ is surjective if and only if E has
property (Ω).

To obtain examples where this can be applied, we observe that any quojection has
property (Ω). A Fréchet space is called a quojection if it is the projective limit of Banach
spaces with surjective linking maps. Typical examples are the spaces Cm(Ω), Lp

loc(Ω),
Hs

loc(Ω), Bloc
p,k(Ω) in the sense of Hörmander [15, Definition 2.2.1]. Here m ∈ N0,

1 ≤ p ≤ ∞, s ∈ R, k a temperate weight function as defined in [15, Definition 2.1.1]
and Ω an open subset of Rd. That for a quojection Proj1A(Ω, E) = 0 has already been
observed in [2].

If Z denotes one of these spaces then A(T, Z(Ω)) where Ω is an open subset of Rd and
T an open subset or a coherent subvariety of Rd with dimT ≥ 1 (e.g. a submanifold
of Rd), is the set of all functions f(x, t) so that for every t0 ∈ T and every seminorm
‖ ‖ on Z(Ω) there is a neighborhood U1 of t0 and on this neighborhood an expansion
f(x, t) =

∑
α cα(x)(t − t0)α so that

∑
α ‖cα‖|t − t0|α < ∞. We may also consider the

elements of A(T,Z(Ω)) = Z(Ω)⊗̂πA(T ) =: Z(Ω, T ) as functions in Z(Ω) depending on
a real analytic parameter t running through T .

Those spaces appear, for instance, in the following situation: let P (D) be a linear partial
differential operator with constant coefficients. We use the notation of [15, Chapter II].
Then, by [15, Theorem 2.3.4] and [15, Theorem 3.5.5], we get for P (D)-convex Ω an
exact sequence

0 −−−−→ Np,P̃ k(Ω) −−−−→ Bloc
p,P̃ k

(Ω)
P (D)−−−−→ Bloc

p,k(Ω) −−−−→ 0 (6)

where Np,P̃ k(Ω) is the space of solutions of the homogenous equation.

We obtain the following

Proposition 3.3 For every g = g(x, t) ∈ Bloc
p,k(Ω, T ) there is f ∈ Bloc

p,P̃ k
(Ω, T ) so that

P (Dx)f(x, t) = g(x, t) for all t ∈ T if and only if Np,P̃ k(Ω) has property (Ω). If P (D)
is elliptic and Ω convex this is never fulfilled, except for d = 1.

Proof: The first part is an immediate consequence of Corollary 3.2, the second follows
from the fact that Np,P̃ k(Ω) = {f ∈ A(Ω) : P (D)f = 0} and the latter space is a

Fréchet subspace of A(Ω). If it has property (Ω) then it is finite dimensional (see the
proof of [9, Theorem 3.7]), which means that d = 1. 2

Other operators for which we know that Np,P̃ k(Ω) does not have property (Ω) are
the hypoelliptic operators which appear in Langenbruch [20], among which is the heat
equation.

In precisely the same way as in Proposition 3.3 we can show that an elliptic operator
P (D) on A(Rd) acting only on 1 < n < d variables is never surjective. We use there
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that Proj1A(Rd) = 0. This is a well known example of De Giorgi and Cattabriga [7]
for nonsurjectivity.

4 Consequences of the main theorem

There are other natural, related but not equivalent ways of considering the space
A(Ω, E) as a projective limit: A(Ω, E) = lim projnA(Ω, En), where En runs through a
fundamental system of local Banach spaces or A(Ω, E) = lim projnA(Kn, E) where the
Kn are a compact exhaustion of Ω.

Proposition 4.1 For every Fréchet space E we have Proj1A(Ω, E) = Proj1nA(Ω, En).

Proof: We consider the canonical resolution (see [24, p. 317]) of E

0 −−−−→ E
i−−−−→ ∏

n En
σ−−−−→ ∏

n En −−−−→ 0.

where σ(xn)n = (inn+1xn+1 − xn)n and inn+1 is the canonical linking map. We apply
Lemma 3.1 and observe that due to

Proj1A(Ω,
∏
n

En) =
∏
n

Proj1A(Ω, En) = 0

we have
Proj1A(Ω, E) =

∏
n

En/im(σ) = Proj1nA(Ω, En),

the latter by definition. 2

In the following we denote by G either GX for some variety or A , i.e. X may be empty.
We set for the Fréchet space E and every compact K ∈ Cd

G(K,E) = limprojk G(K, Ek).

Then we have
G(Ω, E) = lim projn G(Kn, E).

We investigate this case in an analogous manner. We consider the canonical resolution

0 −−−−→ G(Ω)
j−−−−→ ∏

n G(Kn) σ−−−−→ ∏
n G(Kn) −−−−→ 0

belonging to the projective limit we want to investigate. Here j(f) = (jnf)n and
σ(fn)n = (jn

n+1fn+1 − fn)n, where jn and jn
n+1 are the natural restriction maps. This

yields for every p an exact sequence

0 −−−−→ G(Kp, Ep)
Jp−−−−→ ∏p

n=1 G(Kn, Ep)
Σp−−−−→ Zp −−−−→ 0

where Jpf = (jn
p f)p

n=1 and Σp(fn)p
n=1 = (jn

n+1fn+1 − fn)p−1
n=1 and we have set Zp =

imΣp ⊂ ∏p−1
n=1 G(Kn, Ep).
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It is easily seen that the projective spectra (Zp)p and (
∏p

n=1 G(Kn, Ep))p are equivalent.
Therefore we obtain an exact sequence

0 −→ G(Ω, E) J−→
∏
n

G(Kn, E) Σ−→
∏
n

G(Kn, E) −→ Proj1G(Ω, E) J1−→

J1−→
∏
n

Proj1G(Kn, E) Σ1−→
∏
n

Proj1G(Kn, E) −→ 0.

This case is essentially different from the previous one as the last two terms in the
long exact sequence will not vanish in general. In fact they will vanish if and only
if Proj1G(Kn, E) = 0 for all n, i.e. if E has property (Ω), and in this case also
Proj1G(Ω, E) = 0. So the proof of the necessity of condition (Ω) fails in this case. Even
more: necessity cannot be expected. For E with property (DN) we can find for any
sequence fn ∈ G(Kn, E), n ∈ N a bounded Banach disc B ⊂ E so that fn ∈ G(Kn, EB)
for all n ∈ N (cf. [3]). This implies Proj1n G(Kn, E) = 0 since the proof is reduced to
the Banach space case. However a Fréchet space belongs to the classes (Ω) and (DN) if
and only if it is finite dimensional. So the following result has only trivial intersection
with the result [3, Theorem 3].

Proposition 4.2 If E has property (Ω) then Proj1n G(Kn, E) = 0.

Proof: In this case Proj1G(Ω, E) = 0 and we conclude like in the proof of Proposition
4.1. 2

It should be finally remarked that the results on Proj1n G(Kn, E) = 0 remain unsatisfac-
tory and are probably far from a characterization. This is part of the difficult problem
of studying projective spectra of (PDF)-spaces and of evaluating characterizations for
the vanishing of Proj1 in this case (see [11], [19]).

5 Application to the functor Ext

We are now ready to prove our second main result. We resume the notation G = GX

where X is a coherent real analytic variety or G = A , i.e. X = ∅. We need some more
notation.

Let in this section E be a complete (LB)-space. That means that E =
⋃

n En, En ⊂
En+1 for all n, where En is a Banach space with the norm || ||∗n and the imbeddings
are continuous. We may assume || ||∗n ≥ || ||∗n+1. E carries the finest locally convex
topology making all imbeddings En ↪→ E continuous. We call it an (LS)-space if the
imbeddings En ↪→ En+1 are compact.

We will use the following preliminary lemma.

Lemma 5.1 Let E be a barrelled (DF)- space so that E′
b has property (Ω). Let K be

a compact subset of Cd and let for some l ∈ N
H(K)l −−−−→ Y

q−−−−→ E −−−−→ 0
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be an exact sequence of locally convex spaces, so that for every bounded set B ⊂ E there
is a bounded set B̃ ⊂ Y so that q(B̃) ⊃ B, then q has a continuous linear right inverse.

Proof: We set Z = ker q, i : Z ↪→ Y the identical injection. By assumption the dual
sequence

0 −−−−→ E′
b

q′−−−−→ Y ′
b

i′−−−−→ Z ′b −−−−→ 0 (7)

is algebraically exact, Z ′b and E′
b are Fréchet spaces, q′ is an isomorphic imbedding, i′ is

continuous and surjective. Moreover Z, as a quotient of H(K)l, is barrelled. Therefore
for every bounded, hence equicontinuous set M ⊂ Z ′b there is an equicontiunuous, hence
bounded set M̃ ⊂ Y ′

b so that i′(M̃) ⊃ M . Since Z ′b is a Fréchet space, this implies that
i′ is open. Therefore the sequence (7) is (topologically) exact, which implies that also
Y ′

b is a Fréchet space (see [26, Corollary 2.4.4]).

H(K)′b is nuclear and has property (DN) (for the definition see e.g. [24, p. 368]). To
see this we apply [28, Satz 5.1] to three open neighborhoods K ⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Ω3 ⊂⊂
Cd of K. Therefore Z ′b ⊂ (H(K)′b)

l has the same properties. By an easy modification of
[30, Theorem 5.1] the sequence (7) splits. Hence there is a right inverse λ ∈ L(Z ′b, Y

′
b )

for i′.

The space Z, as a quotient of H(K)l, is reflexive. Therefore the map λ′ ∈ L((Y ′
b )′b, Z) is

a left inverse for i′′. Since E and Z are barrelled, also Y is barrelled (see [27, Theorem
2.6, (a)] or [26, Proposition 4.2.3]). Therefore Y ⊂ (Y ′

b )′b as a topological subspace and
L := λ′|Y is a left inverse for i which implies that q has a right inverse. 2

We are now ready to prove our second main result. We say q : Y → E lifts bounded
sets with closure if for every bounded set B ⊂ E there is a bounded set B̃ ⊂ Y so that
q(B̃) ⊃ B. For a thorough discussion of this see [1].

Proposition 5.2 Let E be a barrelled (DF)-space and G a coherent sheaf of real ana-
lytic functions on Ω. If E′

b has property (Ω) then every exact sequence of locally convex
spaces

0 −−−−→ G(Ω) ı−−−−→ Y
q−−−−→ E −−−−→ 0, (8)

where q lifts bounded sets with closure, splits.

Proof: We choose some exhaustion (Kn)n∈N and apply the standard push-out con-
struction (see e.g. [32, Definition 5.1.2]) to the exact sequence (8) and the canonical
map jn : G(Ω) → G(Kn). Due to the functorial properties of the push-out we get for
every n a commutative diagram with exact rows

0 −−−−→ G(Kn) in−−−−→ Yn
qn−−−−→ E −−−−→ 0xjn

n+1

xhn
n+1

xid

0 −−−−→ G(Kn+1)
in+1−−−−→ Yn+1

qn+1−−−−→ E −−−−→ 0xjn+1

xhn+1

xid

0 −−−−→ G(Ω) ı−−−−→ Y
q−−−−→ E −−−−→ 0.

11



Since every bounded set in E is in the closure of the image under q of a bounded set in
Y , the same is true for every qn. For every n the space G(Kn) is a quotient of H(Kn)l

for some l ∈ N. Therefore, by Lemma 5.1 for every n the map qn has a right inverse
Rn ∈ L(En, Yn).

For every n the map Rn−hn
n+1◦Rn+1 gives rise to a map An ∈ L(E,G(Kn)) which, due

to [14], can be represented by a kernel fn ∈ G(Kn, E′
b), this means An(x) = 〈fn(·), x〉.

By Corollary 4.2 we find gn ∈ G(Kn, E′
b) so that fn = gn − gn+1 in G(Kn, E′

b) for
all n ∈ N. We define Bn by x 7→ 〈gn(z), x〉, then Bn ∈ L(E, G(Kn)) and Anx =
Bnx−Bn+1x for all x ∈ E in G(Kn).

Finally we obtain Rn − in ◦ Bn = jn
n+1 ◦ (Rn+1 − in+1 ◦ Bn+1) so these maps define a

map R ∈ L(E, Ỹ ) where Ỹ = lim projn Yn.

It is immediately seen that we have a commutative diagram with exact rows

0 −−−−→ G(Ω) ı̃−−−−→ Ỹ
q̃−−−−→ Exid

xh

xid

0 −−−−→ G(Ω) ı−−−−→ Y
q−−−−→ E −−−−→ 0.

We conclude that q̃ is surjective, that h is bijective and that R is a continuous linear
right inverse for q̃. Let L̃ be the corresponding left inverse for ĩ. We set L = L̃ ◦ h ∈
L(Y,G(Ω)) and obtain L ◦ i = L̃ ◦ h ◦ i = L̃ ◦ ĩ = id. Therefore i has a left inverse. 2

Remark 5.3 If E is an (LB)-space, E = lim indkEk, where Ek is a Banach space, Bk

its unit ball, and if for every k there is a bounded set B̃k ⊂ Y so that q(B̃k) ⊃ Bk, then
q lifts bounded sets with closure. This is true, because the sets Bk are a fundamental
system of bounded sets in E.

We use this remark in the following lemma.

Lemma 5.4 If in the exact sequence (8) the space Y is a (PLB)-space and E an (LB)-
space, then q lifts bounded sets with closure.

Proof: Let Y = lim projn Yn where the Yn are (LB)-spaces, Then there is m so that q
factorizes through Yn for all n ≥ m, i.e. we have q = qn ◦ hn where qn ∈ L(Yn, E) and
hn : Y → Yn is the canonical map. We may assume that m = 1.

We set up the following commutative diagram with exact rows

0 −−−−→ Zn
in−−−−→ Yn

qn−−−−→ Yn/Zn −−−−→ 0xhn

xhn

xĥn

0 −−−−→ G(Ω) ı−−−−→ Y
q−−−−→ E −−−−→ 0

where Zn is the closure of hn(A(Ω)) in Yn.

12



We get for every n exact sequences

0 −−−−→ L(`1(I), Zn)
i∗n−−−−→ L(`1(I), Yn)

q∗n−−−−→ L(`1(I), Yn/Zn) −−−−→ 0xhn∗
n+1

xhn∗
n+1

xĥn∗
n+1

0 −−−−→ L(`1(I), Zn+1)
i∗n+1−−−−→ L(`1(I), Yn+1)

q∗n+1−−−−→ L(`1(I), Yn+1/Zn+1) −−−−→ 0.

Here we use the notation ψ∗(ϕ) := ψ ◦ ϕ. The surjectivity of q∗n is due to a simple
application of Grothendieck’s factorization theorem [24, 24.33]. Since

Proj1nL(`1(I), Zn) = Proj1nL(`1(I), G(Kn))
= Proj1nG(KN , `∞(I)) = Proj1G(Ω, `∞(I)) = 0

the map q∗ : L(`1(I), Y ) → L(`1(I), E) is surjective.

Let now E = lim indkEk where Ek is a Banach space and Bk its unit ball. We choose
an index set I and a map ϕ : `1(I) → Ek which maps the unit ball of `1(I) onto Bk.
By the previous we find ψ ∈ L(`1(I), Y ) so that q ◦ ψ = ϕ. We set B̃k = ψ(U) where
U is the unit ball of `1(I) and get q(B̃k) = Bk. 2

If, therefore, E is an (LB)-space and Y a (PLB)-space then the sequence (8) splits if
E′

b has property (Ω), without further assumptions on q or E. We express this in the
following proposition.

Proposition 5.5 Whenever E is an (LB)-space and its dual E′
b has property (Ω), then

Ext1PLB(E, G(Ω)) = 0.

Theorem 5.6 Let E be an (LB)-space. Then Ext1PLB(E, A(Ω)) = 0 if and only if E′
b

has property (Ω).

Proof: It remains to show necessity of (Ω). If d = 1 then either G = A or X
is a discrete set in Ω, hence there is g ∈ H(Ω0) so that G(Ω) = g · A(Ω). There-
fore in both cases G(Ω) ∼= A(Ω) which has a complemented subspace isomorphic to
H(S1). So we have 0 = Ext1(E, H(S1)) ∼= Proj1L(En, H(S1)) ∼= Proj1E′

n⊗̂πH(S1) ∼=
Proj1L(H(S1)′b, E

′
n). This implies, in particular, that Proj1E′

n = 0. Therefore

Ext1(H(S1)′b, E
′
b) ∼= Proj1L(H(S1)′b, E

′
n) = 0.

By [30, Theorem 4.2] then E′
b has property (Ω).

If d ≥ 2 then we chose x = (x1, . . . , xd) ∈ Ω \ X, hence there is a small circle S =
{(ξ, x2, . . . , xd) : |ξ − x1| = ε} ⊂ Ω with S ∩ X = ∅. Clearly the restriction map
G(Ω) → A(S) is surjective. So we may choose a function g ∈ G(X) so that g|S = 1.
We choose a continuous linear extension operator R0 : A(S) → A(Rd) (see [4, Remark
4.6]) and put R(f) = g ·R0(f) for f ∈ A(S). This defines a continuous linear extension
operator R : A(S) → G(Ω). Hence A(S) ∼= H(S1) is complemented in G(Ω) which
implies Ext1PLB(E, H(S1)) = 0. Therefore, as before, E′

b has property (Ω). 2
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Let now X be a compact coherent subvariety of Ω. We have an exact sequence

0 −−−−→ GX(Ω) −−−−→ A(Ω)
q−−−−→ A(X) −−−−→ 0

where q is the restriction map. Guided by the case of a complex subvariety one could
hope to solve the problem when there is a right inverse for q, i.e. a continuous linear
extension map A(X) → A(Ω), by looking for cases where Ext1(A(X), GX(Ω)) = 0.
This attempt however fails.

Proposition 5.7 If Ω is connected then Ext1(A(X), GX(Ω)) = 0 if and only if X is a
finite set.

Proof: A(X)′b is nuclear and has property (DN) (see the proof of Lemma 5.1). If it has
also property (Ω) then, by [29], it is a nuclear Banach space, hence finite dimensional.
This means that the set X is finite. 2

A complete solution of the above mentioned problem is given in [31].

Let us close with some final remarks. While for nuclear Fréchet spaces E and F there
are well known necessary and sufficient conditions for Ext1(E,F ) = 0 (see [12], [30],
[32]) which can be transferred by dualization also to the case of (LB)-spaces, the case
of (PLB)-spaces is much more difficult (see [19]). Only special cases are really known:
Ext1(D ′,D ′) = 0 [8], conditions for certain (PLB) power series spaces [19] and, related
to the present case, in [6] it was shown for a Fréchet space E that Ext1(A(Ω), E) = 0 if
and only if E has property (Ω). The present result carries on this work and again shows
the important role of property (Ω) for the study of spaces of real analytic functions.
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