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1 Preliminaries

With D := {z ∈ C : |z| < 1} we set

A∞ := C∞(D) ∩H(D)

where H(D) denotes the holomorphic functions on D. Let E be a proper compact
subset of the unit circle. We will study the space

A∞(E) := A∞|E = {f |E : f ∈ A∞}

equipped with the quotient topology of the restriction map.

An equivalent representation of A∞ is

A∞ = {f ∈ C∞
2π(R) : all negative Fourier coefficients vanish}.

Here C∞
2π(R) denotes the 2π-periodic C∞-functions on R.

So A∞ can be considered as the space of all functions on R which have a Fourier
expansion f(t) =

∑∞
k=0 ake

ikt with rapidly decreasing Fourier coefficients (a0, a1, . . . ),
that is

∑∞
k=0 |ak|(k + 1)p < ∞ for all p ∈ N0.

The map F 7→ (a0, a1, . . . ) defines an isomorphism A∞ ∼= s, where s denotes the space
of rapidly decreasing sequences.

We will adopt throughout this draft the representation of A∞ as periodic C∞-functions.
Then A∞(E) is given in the following way: E ⊂ [0, 2π[ compact and A∞(E) is defined
as above.

We set IA(E) := {f ∈ A∞ : f |E = 0}, that is, IA(E) is the ideal of E in the algebra
A∞. Then

A∞(E) ∼= A∞/IA(E)
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and it is a nuclear Fréchet space.

Example: If E has not Lebesgue measure 0, then IA(E) = {0} hence A∞(E) = A∞.

Definition 1.1 E is called a Carleson set if∫ 2π

0
log

1

d(x,E)
dx < +∞.

Theorem 1.2 (Taylor and Williams, Novinger) The following are equivalent:

1. IA(E) ̸= {0}.

2. There is f ∈ A∞ such that {t ∈ [0, 2π[ : f(t) = 0} = E.

3. E is a Carleson set.

Lemma 1.3 If ε1, ε2, . . . denote the lengths of the disjoint intervals of which [0, 2π[\E
consists, then E is a Carleson set if, and only if,∑

n

εn log
1

εn
< +∞.

Proof: For 0 ≤ a < b we have

(1)

∫ b

a
log

1

d(x, {a, b})
dx = (b− a) log

1

b− a
+ (1 + log 2)(b− a).

If ]a, b[ is one of the disjoint intervals in [0, 2π[\E, then d(x,E) = d(x, {a, b}), from
where easily follows the equivalence. 2

Examples: 1. E = {x1, x2, . . . } ∪ {0}, xn ↘ 0. Then εn = xn − xn+1.

Assumption: There are q ∈ N, C > 0 such that xqn ≤ C εn for all n ∈ N.

Then∑
n

εn log
1

εn
≤ 2π logC + q

∑
n

εn log
1

xn
≤ 2π logC + q

∫ 2π

0
log

1

x
dx < +∞.

2. E = the classical Cantor set. Then, obtaining the εn from the stepwise construction,∑
n

εn log
1

εn
=

∞∑
k=1

2k−13−k log 3k =
log 3

3

∞∑
k=1

k

(
2

3

)k−1

= 3 log 3 < +∞.
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In both cases the set E is a Carleson set.

3. An example of a set of the type in case 1. failing our assumption and not being a
Carleson set would be xn = 1

logn for n = 2, 3, . . . .

In this case 1
n log(n+1) log n ≥ εn ≥ 1

(n+1) log(n+1) log n , log
1
εn

≥ log n for large n, from
which the claim is easily derived.

2 The problem

Claim (Patel 2011): For every Carleson set E the space A∞(E) does not have a
basis.

Basis: e1, e2, . . . is a basis of the topological vector space X if every x ∈ X has a unique
expansion x =

∑
n xnen.

It was an important Problem of Grothendieck whether every nuclear Fréchet space
has a basis. It was solved in the negative by Mityagin and Zobin . Many counterex-
amples have been given since then. If the claim was true it would have been quite
interesting as being appearing in a not ad hoc constructed natural environment as a
consequence of structural properties.

Our main result will be

Theorem 2.1 For E = {2−n : n ∈ N} and the for E being the classical Cantor set
the space A∞(E) has a basis.

so disproving the above mentioned claim.

We will proceed in two steps:

1. Study the space C∞(E) := {f |E : f ∈ C∞(R)}.

2. Compare the spaces C∞(E) and A∞(E). Show that in our cases they coincide.

3 Structure of C∞(E)

A complete characterization of the function in C∞(E) has been given by Whitney
1934 . We will not use this and give a more suitable description in our special cases.
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Most of the following applies to arbitrary compact subsets E of R. But, due to our
intended application we will assume E ⊂ [0, 2π[. It is quite obvious that

E∞(R) := {f |E : f ∈ C∞(R)} = {f |E : f ∈ C∞
2π(R)} = {f |E : f ∈ C∞([0, π])}

and the quotient topologies of the restriction in all three descriptions coincide.

Therefore the topology of E∞(E) can be given by the quotient norms

|||φ|||k := inf{∥f∥k : f ∈ C∞(R), f |E = φ}

where ∥f∥k = sup{|f (p)(x)| : p = 0, .., k, x ∈ [0, 2π]}.

We set J(E) := {f ∈ C∞(R) : f |E = 0}, that is, J(E) is the ideal of E in C∞(R).
Then

C∞(E) = C∞(R)/J(E)

and C∞(E) is a nuclear Fréchet space.

Lemma 3.1 Let 0 be an accumulation point of E, φ ∈ C∞(E) and φ = f |E where
f ∈ C∞(R). Then f (p)(0) is uniquely determined by φ for all p ∈ N0.

Proof: We proceed by induction: f (0)(0) = f(0) = φ(0)

Assume f (0)(0), . . . , f (p)(0) to be determined. For x ∈ E, x ̸= 0 there is ξ between x
and 0 such that

f (p+1)(ξ) =
(p+ 1)!

xp+1

f(x)−
p∑

j=0

f (j)(0)

j!
xj

 .

For x → 0 we have ξ → 0 and therefore

(2) f (p+1)(0) = lim
x∈E,x→0

(p+ 1)!

xp+1

φ(x)−
p∑

j=0

f (j)(0)

j!
xj


and this determines explicitly f (p+1)(0). 2

Definition 3.2 φ(p)(0) := f (p)(0) where f ∈ C∞(R) with f |E = φ.

Corollary 3.3 If 0 is an accumulation point of E and f ∈ J(E) then f (p)(0) = 0 for
all p ∈ N0.
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Proof: f is an extension of φ ≡ 0. 2

Of course the previous applies, mutatis mutandis, to any accumulation point of E.

We set J∞(E) := {f ∈ C∞(R) : f (p)(x) = 0 for all p ∈ N0 and x ∈ E}. Then E (E) =
C∞(R)/J∞(E) is the space of Whitney-jets on E.

Corollary 3.4 If E is perfect, then J(E) = J∞(E).

and this implies

Proposition 3.5 If E is perfect, then C∞(E) = E (E).

This applies, in particular, to the Cantor set.

We will use the following two theorems.

Theorem 3.6 (Tidten) If E is the Cantor set, then E (E) is isomorphic to a com-
plemented subspace of s.

Theorem 3.7 (Aytuna, Krone, Terzioğlu) IF X is a complemented subspace of s
and X ⊕X ∼= X, then X has a basis, more precisely: then X ∼= Λ∞(α) for some α.

Here we define for any sequence α1 ≤ α2,≤ · · · ↗ +∞

Λ∞(α) = {ξ = (ξ1, ξ2, . . . ) : |ξ|p := sup
n

|ξn|epαn < +∞ for all p ∈ N0}.

Equipped with the norms | · |p this is a Fréchet space.

We obtain:

Proposition 3.8 If E is the Cantor set, then C∞(E) has a basis.

4 Structure of C∞(E) if E has one accumulation point

We assume that E = {xn : n ∈ N} ∪ {0} where xn ↘ 0. In this section we set
εn = min(xn − xn−1, xn+1 − xn) and as before we make the

Assumption: There are q ∈ N, C > 0 such that xqn ≤ C εn for all n ∈ N.
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From our previous example we know that E is a Carleson set.

We introduce the following notation:

J∞(0) = {f ∈ C∞(R) : f (p)(0) = 0 for all p ∈ N0}
J∞(0) = {φ ∈ C∞(E) : φ(p)(0) = 0 for all p ∈ N0} = {f |E : f ∈ J∞(0)}

and we first study the space J∞(0).

We choose an even χ ∈ D [−1
2 ,+

1
2 ] with χ ≡ 1 in a neighborhood of 0 and we set

χε(x) := χ(xε ).

For any scalar sequence ξ = (ξn)n∈N we set f(x) :=
∑∞

n=1 ξnχεn(x − xn). Then f ∈
C∞(R \ {0}) and f(xn) = ξn for all n.

Lemma 4.1 f ∈ J∞(0) if, and only if, limn→∞
ξn
εpn

= 0 for all p ∈ N0.

Proof: For every p and N we have

sup
0<|x|≤|xN |

|f (p)(x)| = sup
n≥N

|ξn| ∥χ(p)
εn ∥ = ∥χ(p)∥ sup

n≥N

|ξn|
εpn

which proves the assertion. 2

The following holds without our general assumption on the sequence (xn)n∈N.

Lemma 4.2 1. If φ ∈ J∞(E) then limn→∞
1
xp
n
|φ(xn)| = 0 for all p ∈ N0.

2. If φ ∈ C(E) and limn→∞
1
εpn
|φ(xn)| = 0 for all p ∈ N0 then φ ∈ J∞(0).

Proof: 1. Let φ = f |E ∈ J∞(0), f ∈ J∞(0). Then we have

(3)
1

xpn
|φ(xn)| =

1

xpn
|f(xn)| ≤

1

p!
∥f (p)∥[0,xn]

and the right hand side converges to zero.

2. Follows from the previous Lemma, because

f(x) =

∞∑
n=1

φ(xn)χεn(x) ∈ J∞(0)

and f |E = φ. 2

Using our assumption on the sequence we obtain:
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Proposition 4.3 Let φ ∈ C(E). Then φ ∈ J∞(E) if, and only if, limn→∞
1
xp
n
|φ(xn)| =

0 for all p ∈ N0.

We set αn = − log xn and set, as defined before:

Λ∞(α) = {ξ = (ξ1, ξ2, . . . ) : |ξ|p := sup
n

|ξn|epαn < +∞ for all p ∈ N0}.

Equipped with the norms | · |p this is a Fréchet space.

Theorem 4.4 Φ : φ 7→ (φ(xn))n∈N maps J∞(0) isomorphically onto Λ∞(α).

Proof: That Φ is an algebraic isomorphism follows from the previous proposition.
From equation 3 we see that

|Φ(φ)|p ≤
1

p!
inf{∥f∥p : f ∈ C∞(R) with f |E = φ} = |||f |||p.

Therefore Φ is continuous and, due to the open mapping theorem, an isomorphism. 2

Theorem 4.5 Let φ ∈ C(E). Then φ ∈ C∞(E) if, and only if, there are numbers
Ap, p ∈ N0, such that A0 = φ(0) and for all p ∈ N0 we have

Ap+1 = lim
n→∞

(p+ 1)!

xp+1
n

(
φ(xn)−

p∑
n=1

Aj

j!
xjn

)
.

In this case Ap = φ(p)(0) for all p.

Proof: Necessity follows from formula 2, from there also that Ap = φ(p)(0) for all p.

To show sufficiency we us the E. Borel Theorem to find g ∈ C∞(R) with g(p)(0) = Ap

for all n ∈ N0.

We set h = φ− g|E and estimate:

(p+ 1)!
h(xn)

x
(p+1)
n

=
(p+ 1)!

xp+1
n

(φ(xn)− g(xn))

=
(p+ 1)!

xp+1
n

φ(xn)−
p∑

j=0

Aj

j!
xjn

− (p+ 1)!

xp+1
n

g(xn)−
p∑

j=0

g(j)(0)

j!
xjn

 .

The second line converges to Ap+1 − g(p+1)(0) = 0. So there exists H ∈ J∞(0) with
H|E = h. We put f = H + g. Then f ∈ C∞(R) and f |E = φ− g|E + g|E = φ. 2
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Theorem 4.6 The norms

∥φ∥k := max
p=0,..,k

|φ(p)(0)|+ sup
n∈N

1

xpn

φ(xn)−
p∑

j=0

φ(j)(0)

j!
xjn


are a fundamental system of seminorms in C∞(E).

Proof: If f ∈ C∞(R) with f |E = φ then we have, by elementary estimates, ∥φ∥k ≤
3∥f∥k. Since that holds for any such f we obtain ∥φ∥k ≤ 3|||φ|||k for all k. So the
topology generated by the norms ∥ · ∥k is weaker than the topology of C∞(E).

By standard arguments one shows that C∞(E) is complete in this topology hence, by
the open mapping theorem, the topologies coincide. 2

We have already remarked that C∞(E) can be considered as well as a restriction space
of C∞(R) as also of C∞

2π(R). We collect some information about the latter space.

Lemma 4.7 The following norms are a fundamental system of seminorms for C∞
2π(R)

|f |n :=
∞∑

k=−∞
|ak|(|k|+ 1)n, n ∈ N0, ak Fourier coefficients.

The dual norms are

|µ|∗n =
∞
sup

k=−∞
|bk|(|k|+ 1)−n, n ∈ N0, bk = µ(eikt).

They satisfy |µ|∗n
2 ≤ |µ|∗n−1 |µ|∗n+1 for all n ∈ N.

Here for any seminorm ∥ · ∥ the extended real valued dual norm is defined by ∥µ∥∗ =
sup∥x∥≤1 |µ(x)|.

Theorem 4.8 If there is C > 0 such that xn ≤ Cxn+1 for all n ∈ N, then ∥ · ∥2k ≤
Ck∥ · ∥k−1∥ · ∥k+1 for all k with suitable Ck.

Proof: not given here, see the original paper [12].

Remak: The rather restrictive assumption on the sequence (xn)n∈N cannot be relaxed.
To show this we define

φ(xn) =
xmn
m!

for n > N, φ(xn) = 0 otherwise.
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We may assume that x1 ≤ 1. We obtain

1

xpn

φ(xn)−
p∑

j=0

φ(j)

j!
xjn

=
1

xpn
φ(xn) for p < m

=
1

xpn

(
φ(xn)−

xmn
m!

)
for p ≥ m

and therefore

= 0 for p < m, n ≤ N

=
1

m!
xm−p
n for p < m, n > N

=− 1

m!
xm−p
n for p ≥ m, n ≤ N

=0 for p ≥ m, n > N.

This yields:
for k < m

∥φ∥k =
1

m!
xm−k
N+1

for k = m

∥φ∥k = max(
1

m!
xN+1; 1) = 1

and for k > m

∥φ∥k = max(
1

m!
xN+1; 1;

1

m!
xm−k
N ).

For given k we choose m = k and obtain:

∥φ∥k = 1, ∥φ∥k−1 =
1

k!
xN+1, ∥φ∥k+1 =

1

k!
x−1
N .

The norm inequality in Theorem 4.8 then gives (k!)2 ≤ Ck
xN+1

xN

xN ≤ Ck(k!)
−2xN+1

for all N , hence the assumption in Theorem 4.6.

We use the following results:

Theorem 4.9 (V.) Let E and F be nuclear Fréchet spaces. A ∈ L(F,E) surjective
and there are constants Ck > 0 and p ∈ N0 such that

1. ∥Ax∥k ≤ Ck∥x∥k+p for all k and x ∈ F .
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2. ∥x∥2k ≤ Ck∥x∥k−1 ∥x∥k+1 for all k and x ∈ E.

3. ∥y∥∗k
2 ≤ Ck∥y∥∗k−1 ∥y∥∗k+1 for all k and y ∈ F ′.

then E has a basis, more precisely: there is β such that E ∼= Λ∞(β).

Theorem 4.10 (V.) If lim sup αn+1

αn
< +∞, Λ∞(α) nuclear and

0 −→ Λ∞α) −→ Λ∞(β) −→ ω −→ 0

exact, then Λ∞(α) ∼= Λ∞(β).

Here ω := CN with the product topology.

Finally we obtain:

Theorem 4.11 If there are constants C > 0 and q ∈ N such that xqn ≤ Cεn and
xn ≤ Cxn+1 for all n, then C∞(E) ∼= Λ∞(α) where αn = − log xn. In particular,
C∞(E) has a basis.

Proof: We apply Theorem 4.9 to F = C∞
2π(R), E = C∞(E) and A : C∞

2π → C∞(E)
the restriction map. The assumptions are fulfilled by Lemma 4.7, Theorem 4.8 and the
fact that ∥Af∥k ≤ 3∥f∥k ≤ 3|f |k for every f ∈ C∞

2π(R) (cf. proof of Theorem 4.6).

This shows that C∞(E) is isomorphic to some space Λ∞(β)). By use of the E. Borel
theorem we have an exact sequence

0 −→ J∞(0) −→ C∞(E)
ρ−→ ω −→ 0

where ρ(φ) = (φ(p)(0))p∈N0 . Moreover xn ≤ Cxn+1 implies that for αn = − log xn
we have lim supn

αn+1

αn
= 1. Since in the above exact sequence J∞(0) ∼= Λ∞(α) and

C∞(E) = Λ∞(β) we obtain from Theorem 4.10 that C∞(E) ∼= Λ∞(β) ∼= Λ∞(α). 2

Example. xn = 2−n, εn = 2−n+1 hence xn ≤ 2εn, xn ≤ 2xn+1. Therefore C∞(E) ∼=
Λ∞(n) ∼= H(C). Here H(C) denotes the space of entire functions which is isomorphic
to Λ∞(n) by f 7→ (an)n∈N0 where f(z) =

∑∞
k=0 akz

k.
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5 Comparison of A∞(E) and C∞(E)

We will use the following result:

Theorem 5.1 (Alexander, Taylor, Williams) If there are constants C1, C2 such
that

(4)
1

b− a

∫ b

a
log

1

d(x,E)
dx ≤ C1 log

1

b− a
+ C2

for all 0 ≤ a < b ≤ 2π, then A∞(E) = C∞(E).

We first study the case of E = {x1, x2, . . . } ∪ {0}, xn ↘ 0. We set εn = xn − xn+1. To
study formula (4) in the special case of a = xM , b = xn we use formula (1) to obtain:

M−1∑
n=m

εn log
1

εn
=

∫ xm

xM

log
1

d(x,E)
dx− (1 + log 2)(xm − xM ).

Hence in this case the condition in Theorem 5.1 means the existence of C1, C2 such
that

(5)
1

xn − xM

M−1∑
n=m

εn log
1

εn
≤ C1 log

1

xn − xM
+ C2.

We use this to give an example of a Carleson set which does not fulfill the condition in
Theorem 5.1.

Example: We set E = {xm,k = 2−m+1 − k2−m−m2
: m ∈ N0, k = 0, .., 2m

2}.

We fix m ∈ N and consider inequality (5) for the points 2−m < 2−m+1 in E. We obtain:

2m2m
2
(2−m−m2

(m+m2) log 2) = (m+m2) log 2 ≤ C2m log 2 + C2.

This should hold for all m ∈ N which is impossible. So E does not fulfill the condition
in Theorem 5.1.

On the other hand∑
n

εn log
1

εn
=

∞∑
m=1

2m
2
2−m−m2

(m+m2) log 2 = log 2

∞∑
m=1

2−m(m+m2) < +∞

hence E is a Carleson set.
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We will need the following elementary inequality. For that let 0 < a ≤ b. From the
mean value theorem we obtain a < ξ < a+ b such that

(a+ b) log(a+ b)− a log a = b(log ξ + 1) ≤ b(log(a+ b) + 1) ≤ b log b+ (1 + log 2)b

and this implies

(6) a log
1

a
+ b log

1

b
≤ (a+ b) log

1

a+ b
+ 2 log b.

Assume now that 0 < a1 ≤ a2 ≤ · · · ≤ am with
∑k

j=1 aj ≤ ak+1 for k = 1, . . . ,m − 1.
Set a =

∑m
j=1 aj , then we obtain, using estimate (6) inductively,

(7)

m∑
j=1

aj log
1

aj
≤ a log

1

a
+ 2a.

Assumption: xn+1 ≤ εn for all n ∈ N.

We analyze estimate (4) under this assumption. Let 0 < a < b. We assume

xM+1 ≤ a ≤ xM , xm+1 ≤ b ≤ xm

and set ]αj+1, αj [ := ]xj+1, xj [ ∩ ]a, b[, ε′j = αj − αj+1 and assume first m < M

M∑
j=k+1

ε′j = xk+1 − a ≤ xk+1 ≤ εk for m ≤ k < M.

By use of formulae (4) and (7) we obtain∫ xm+1

a
log

1

d(x,E)
dx ≤

M∑
n=m+1

ε′n log
1

ε′n
+ 4(xm+1 − a)

≤ (xm+1 − a) log
1

xm+1 − a
+ 6(xm+1 − a).

To handle the case m = M or the interval ]xm+1, b[ we have to estimate the following
situation 0 < A ≤ α < β ≤ B. We set ξ′ = min(ξ, A+B

2 ), ξ′′ = max(ξ, A+B
2 ) and obtain∫ β

α
log

1

d(x, {A,B})
dx =

∫ β′

α′
log

1

x−A
dx+

∫ β′′

α′′
log

1

B − x
dx

≤
∫ β′

α′
log

1

x− α′ dx+

∫ β′′

α′′
log

1

β′′ − x
dx

= (β′ − α′) log
1

β′ − α′ + (β′ − α′) +

+(β′′ − α′′) log
1

β′′ − α′′ + (β′′ − α′′).
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Considering the cases α ≤ β ≤ A+B
2 , A+B

2 ≤ α ≤ β, α < A+B
2 < β separately we arrive

in every case at∫ β

α
log

1

d(x, {A,B})
dx ≤ (β − α) log

1

β − α
+ 3(β − α).

The factor three appears only in the last case and comes from the application of (6).

With A = xm+1, B = xm and α = a, β = b this takes care of the case m = M . With
A = α = xm+1, β = b we obtain, using (6) for the last estimate,∫ b

a
log

1

d(x,E)
dx =

∫ xm+1

a
log

1

d(x,E)
dx+

∫ b

xm+1

log
1

d(x,E)
dx

≤ (xm+1 − a) log
1

xm+1 − a
+ 6(xm+1 − a) +

+(b− xm+1) log
1

b− xm+1
+ 3(b− xm+1)

≤ (b− a) log
1

b− a
+ 8(b− a).

We have shown, rephrasing the assumption xn+1 ≤ εn,

Theorem 5.2 If xn ≤ 2εn for all n ∈ N then C∞(E) = A∞(E).

If εn−1 ≥ εn for n = 2, 3, . . . or, equivalently xn ≤ 1
2(xn−1 + xn+1) then the above

assumption is special case of the assumption in Section 4. It can also be written as
2xn+1 ≤ xn. Hence we have the following final result for the case of sets with only one
accumulation point.

Theorem 5.3 If (εn)n∈N is decreasing and there is C > 0 such that 2xn+1 ≤ xn ≤
Cxn+1 for all n ∈ N then A∞(E) = C∞(E) ∼= Λ∞(α) with αn = − log xn. In particular,
the space A∞(E) has a basis.

Example: For E = {2−n : n ∈ N} the space A∞(E) has a basis, more precisely
A∞(E) = C∞(E) ∼= Λ∞(n) ∼= H(C).

Next we study the A∞(E) for the classical Cantor set. So E will denote in the sequel
this set. We first make the

Remark: (3kE) ∩ [0, 1] = E for all k ∈ N0.
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This is the reason to state the following elementary formula: For M ⊂ [0, 1] and a > 0
we have

(8)

∫ a

0
log

1

d(x, aM)
dx = a log

1

a
+ a

∫ 1

0
log

1

d(x,M)
dx.

Let now 0 ≤ a < b < 1 be given. We set b− a := γ = 0, γ1γ2 . . . γm where the last term
denotes the triadic expansion of γ which we assume to be finite.

We set a0 = a and ak := a + 0, γ1 . . . γk for k = 1, . . . ,m. That means ak+1 =
ak + γk+13

−k−1. Therefore∫ b

a
log

1

d(x,E)
dx =

m−1∑
k=0

∫ ak+1

ak

log
1

d(x,E)
dx.

We study the k − th term. It is an integral over an interval of length γk+13
−k−1 and

γk+1 can take on the values 0, 1, 2. If γk+1 = 0 the term is 0, hence we assume γk+1 = 1
or 2.

We consider the subdivision of [0, 1] into 3k intervals of lengths 3−k. We call them
windows and we call a window:
white, if it has been already been excluded from the Cantor set,
black, if it waits for treatment.

We first assume that γk+1 = 1 and we consider three cases.

1st Case: Our interval is contained in a white window, then∫ ak+1

ak

log
1

d(x,E)
dx ≤

∫ 3−k−1

0
log

1

x
dx = 3−k−1 log

1

3−k−1
+ 3−k−1.

2nd Case: Our interval is contained in a black window. We estimate the integral by the
integral over the whole window. Shifting the lower end of the window into 0 and then
multiplying by 3k we get the again the Cantor set. By use of formula (8) we obtain∫ ak+1

ak

log
1

d(x,E)
dx ≤ 3−k log

1

3−k−1
+D03

−k

where D0 = log 3 +
∫ 1
0 log 1

d(x,E) dx and this estimate is valid also in the 1st case.

3rd Case: Our interval hits a black and a white window. Then we estimate roughly by
the sum of the estimates in the 1st and 2nd case and this estimate is, of course valid
for all three cases.
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If γk+1 = 2 we have two intervals of length 3−k−1. Therefore we may estimate by two
times the estimate of the previous 3rd case and therefore four times the estimate in the
2nd case. So finally we obtain:∫ ak+1

ak

log
1

d(x,E)
dx ≤ 4 · 3−k log

1

3−k−1
+ 4D03

−k

≤ 12γk+13
−k−1 log

1

3−k−1
+ 4D0γk+13

−k−1

≤ 12γk+13
−k−1 log

1

γk+13−k−1
+Dγk+13

−k−1.

where D = 4D0 + 12 log 2.

So we have∫ b

a
log

1

d(x,E)
dx ≤ 12

m−1∑
k=0

γk+13
−k−1 log

1

γk+13−k−1
+D(b− a).

We wish to apply inequality (7). Therefore we need

m−1∑
k=n

γk+13
−k−1 ≤ 2

∞∑
k=n

3−k−1 = 3−n ≤ 3−ν

where ν = max{k ≤ n : γk ̸= 0}. Now (7) delivers∫ b

a
log

1

d(x,E)
dx ≤ 12(b− a) log

1

b− a
+ (24 +D)(b− a)

for all triadic numbers a < b in [0, 1[. Since E is Carleson, the function log 1
d(x,B) is

integrable, hence both sides of the above inequality depend continuously on a and b.
Therefore the inequality is true for all 0 ≤ a < b ≤ 1 and we have proved:

Proposition 5.4 If E is the classical Cantor set then A∞(E) = C∞(E).

Together with our previous results we have shown:

Theorem 5.5 If E is the classical Cantor set then A∞(E) has a basis. It is isomorphic
to some Λ∞(α).

Theorems 5.3 and 5.5 show our main result Theorem 2.1.
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