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Abstract

In the present paper it is shown that for certain totally disconnected Carleson
sets E the restriction space A∞(E) = {f |E : f ∈ A∞} has a basis. Its isomorphism
type is determined. The result disproves a claim of S. R. Patel in [12]. To prove
our result we analyze restriction spaces C∞(E) = {f |E : f ∈ C∞(R)} and then,
using a result of Alexander, Taylor and Williams, we show that A∞(E) = C∞(E).
Among our examples there is the classical Cantor set and sets of type E = {xn :
n ∈ N} ∪ {0} where (xn)n∈N is a null sequence in R with certain properties.

In his paper [12] Patel claims the following result: let E ⊂ [0, 2π[ be a compact, totally
disconnected Carleson set then the space of restrictions of A∞ to E in its natural
locally convex topology fails to have a Schauder basis. This result would have provided
us with a wealth of quite natural counterexamples for the basis problem for nuclear
Fréchet spaces. This problem has, of course, been solved in the negative long time ago
by Mityagin and Zobin [7, 8, 9]. Further counterexamples have been given by Djakov
and Mityagin [5], Djakov [4] and Moscatelli [10]. Quite recently the author of this note
has given a very simple counterexample [19]. That the proof of Patel’s result has a gap
has been remarked widely. However it remained an interesting question whether the
result is correct or not. Unfortunately it is not. We present examples of sets E fulfilling
all the above mentioned assumption for which the restriction space A∞(E) has a basis.

In this paper A∞ will be considered as the space of all 2π periodic functions on R for
which all negative Fourier coefficients vanish. E will always denote a compact subset of
R and when it comes to considerations about A∞ we will always automatically assume
that E ⊂ [0, 2π[.

02000 Mathematics Subject Classification. Primary: 46E10. Secondary: 46A04,46A11,46A35,30E05.
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We recall that the sets E which are zero sets of an A∞-function have been characterized
by Taylor and Williams [13] and Novinger [11] by the Carleson condition∫ 2π

0
log

1

d(x,E)
dx < ∞.

The sets E with the property that for any (periodic) C∞-function f on R there is g ∈
A∞ such that f and g and all their derivatives coincide on E have been characterized by
Alexander, Taylor and Williams [2] by the strong Carleson-condition (ATW-condition):
there are constants C1, C2 such that

1

b− a

∫ b

a
log

1

d(x,E)
dx ≤ C1(b− a) log

1

b− a
+ C2

for all 0 ≤ a < b ≤ 2π.

For functional analytic terminology and results we refer to [6], for all notation concern-
ing power series space, invariants like diametral dimension, (DN), (Ω) etc. and related
results we refer also to the survey article [18].

1 Restriction spaces of C∞(R)

Let E ⊂ R be a closed set and 0 an accumulation point of E. We set

C∞(E) = {f |E : f ∈ C∞(R) and J(E) = {f ∈ C∞(R) : f |E = 0}.

Then we have in a natural way

C∞(E) ∼= C∞(R)/J(E)

and this makes C∞(E) a nuclear Fréchet space.

We want to characterize the functions φ ∈ C∞(E). Of course such a characterization
in terms of divided differences has been given by Whitney a long time ago, see [21] and
there is a vast literature on this problem. We will give a description in this special case
which fits to our purposes.

Lemma 1.1 If φ ∈ C∞(E), φ = f |E for f ∈ C∞(R) then f (p)(0) is uniquely deter-
mined by φ for all p ∈ N0.
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Proof: We proceed by induction. f (0) = f(0) = φ(0). If f (0), . . . , f (p) is determined,
then we have for x ∈ E, x ̸= 0

f (p+1)(ξ) =
(p+ 1)!

xp+1

(
f(x)−

p∑
j=0

f (j)(0)

j !
xj
)

with suitable ξ between 0 and x.

For x → 0 we have f (p+1)(ξ) → f (p+1)(0), hence we have

f (p+1)(0) = lim
x→0,x∈E

(p+ 1)!

xp+1

(
φ(x)−

p∑
j=0

f (j)(0)

j !
xj
)
.

In particular, this limit exists. 2

Definition 1.2 We set φ(p)(0) := f (p)(0) for some f ∈ C∞(R) with f |E = φ.

Corollary 1.3 If f ∈ J(E) then f is flat in 0, that is, f (p)(0) = 0 for all p.

Proof: This follows from Lemma 1.1 because f is an extension of 0 and g ≡ 0 is
another one. 2

Lemma 1.4 δp : φ 7→ φ(p)(0) is a continuous linear form on C∞(E).

Proof: If δ∞p is the same map considered on C∞(R) and ρ : C∞(R) → C∞(E) the
restriction map then δ∞p = δp ◦ ρ, hence δp is continuous, due to the definition of the
topology of C∞(E). 2

Lemma 1.5 ∆(φ) := (δp)p∈N0 defines a continuous, linear surjective map C∞(E) →
ω.

Proof: Continuity follows from Lemma 1.4, surjectivity from the E. Borel theorem.
2

We set J∞(0) := {f ∈ C∞(R) : f (p)(0) = 0 for all p} and J∞(0) := {φ ∈ C∞(E) :
φ(p)(0) = 0 for all p} = {f |E : f ∈ J∞(0)}.

If f ∈ J∞(0) we have for all x ∈ R and p ∈ N

f(x) =
f (p)(ξ)

p !
xp

3



where p is between 0 and x. Therefore for any 0 ≤ x ≤ R and p ∈ N0 we get, setting
∥f∥M := sup{|f(t)| : t ∈ M} for any function on a set M ,

(1) |f(x)| ≤ ∥f (p)∥[0,R]
|x|p

p !
.

From now on we assume that E = {x1, x2, . . . } ∪ {0}, where xn ↘ 0. We set εn =
xn − xn+1 and assume that εn ≥ εn+1 > 0 for all n.

Let χ ∈ D([−1
2 ,+

1
2 ]), χ even and χ ≡ 0 in a neighborhood of 0. We set χε(x) := χ(xε ).

For any sequence ξ ∈ ω the function

f(x) =

∞∑
n=1

ξn χεn(x− xn)

is in C∞(R \ {0}) and f(xn) = ξn for all n ∈ N.

Lemma 1.6 Let f be as above. Then f ∈ J∞(0) if, and only if, limn→∞
|ξn|
εpn

= 0 for
all p ∈ N0.

Proof: For all p we have

(2) sup
0<|x|≤xN

|f (p)(x)| = sup
n≥N

|ξn| ∥χ(p)
εn ∥R = ∥χ(p)∥R sup

n≥N

|ξn|
εpn

.

This proves the result. 2

We assume now that there is q ∈ N such that

(3) sup
n

xqn
εn

< ∞.

Remark 1.7 If condition (3) is fulfilled then for any scalar sequence ξ the following
are equivalent

1. limn→∞
|ξn|
εpn

= 0 for all p ∈ N0.

2. limn→∞
|ξn|
xp
n

= 0 for all p ∈ N0.

We set αn := − log xn. Because of
∑

n x
q
n ≤ C

∑
n εn < ∞ the space

Λ∞(α) := {ξ = (ξ1, ξ2 . . . ) : |ξ|p = sup
n

|ξ|epαn < ∞ for all p}

is nuclear, due to the Grothendieck-Pietsch criterion (see [6, 28.15]). We obtain
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Proposition 1.8 If condition (3) is fulfilled then Φ : φ 7→ (φ(xn))n∈N maps J∞(0)
isomorphically onto Λ∞(α).

Proof: If φ ∈ J∞(0) and f ∈ C∞(R) is any extension of φ then f ∈ J∞(0) and, due
to inequality (1) we have

|φ(xn)| ≤
∥f (p)∥[0,x1]

p !
e−pαn .

Since this holds for every extension f of φ we have

sup
n

|φ(xn)| epαn ≤ s(f)

where s is a continuous seminorm on J∞(0).

Obviously Φ is injective, surjectivity of Φ follows from Lemma 1.6. We have, using the
notation of Lemma 1.6

Φ−1(ξ) =

∞∑
n=1

ξn χεn(x− xn).

Continuity of Φ−1 follows from equation (2) with N = 1 or from the open mapping
theorem. 2

We will now investigate the structure of C∞(E).

Theorem 1.9 Let φ ∈ C(E). Then φ ∈ C∞(E) if and only if the following holds:
There are numbers Ap, p ∈ N0, such that A0 = f(0) and for all p ∈ N0 we have

(4) Ap+1 = lim
n→∞

(p+ 1)!

xp+1
n

(
φ(xn)−

p∑
j=0

Aj

j !
xjn

)
.

In this case Ap = φ(p)(0) for all p ∈ N0.

Proof: Necessity follows from Lemma 1.1. From this Lemma also follows that neces-
sarily Ap = φ(p)(0) for all p ∈ N0. We have to show that the condition is also sufficient.

Given the sequence Ap, p ∈ N0, there exists, due to the E. Borel theorem a function
g ∈ C∞(R) such that g(p)(0) = Ap for all p ∈ N0.
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We consider the function h = φ − g|E . We fix n0 which will be determined later. For
n ≥ n0 we have

h(xn) = φ(xn)− g(xn)

=

p∑
j=0

Aj

j !
xjn +

Ãp+1

(p+ 1)!
x(p+1)
n − g(xn)

=
Ãp+1

(p+ 1)!
x(p+1)
n − g(p+1)(ξ)

(p+ 1)!
x(p+1)
n

= (Ãp+1 − g(p+1)(ξ))
x
(p+1)
n

(p+ 1)!

Ãp+1 depends on n and converges to Ap+1 for large n, due to (4), ξ ∈]0, xn[ comes from
Taylor’s formula with Langrange remainder. Hence we have

lim
n→∞

|h(xn)|
xp+1
n

= lim
n→∞

1

(p+ 1)!
|Ãp+1 − g(p+1)(ξ)| = 0

for all p ∈ N0.

According to Lemma 1.6 and condition (2) there is a function H ∈ J∞(0) such that
H(xn) = h(xn) for all n ∈ N, that is H|E = h. We set f := g +H. Then f ∈ C∞(R)
and f |E = φ. 2

On C∞(E) we consider for p = 0, 1, . . . the following seminorms

|φ|p = sup
n

∣∣∣ p !
xpn

(
φ(xn)−

p−1∑
j=0

φ(j)(0)

j !
xjn

)∣∣∣.
We fix p. For every n the function φ 7→

∣∣∣ . . . ∣∣∣ is a continuous seminorm, since the δp

are continuous linear forms on C∞(E). The supremum exists for all φ, hence, due to
the Banach-Steinhaus theorem, the | · |p are continuous seminorms on C∞(E).

Theorem 1.10 The norms | · |p, p ∈ N0, are a fundamental system of seminorms in
C∞(E).

Proof: It suffices to show that C∞(E) is complete in the topology generated by the
| · |p. Let φk, k ∈ N, be a Cauchy sequence with respect to the | · |p, p ∈ N0.

Since |φ|0 = supn∈N |φ(xn)| = sup{|φ(x)| : x ∈ E} the sequence φk converges uni-
formly on E to a function φ ∈ C(E).
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For every p the sequence

p !

xpn

(
φk(xn)−

p−1∑
j=0

φ
(j)
k (0)

j !
xjn

)
, k = 1, 2, . . .

converges uniformly in n. Therefore the right hand side of

φ
(p+1)
k (0) = lim

n→∞

(p+ 1)!

xp+1
n

(
φk(xn)−

p∑
j=0

φ
(j)
k (0)

j !
xjn

)
converges for all p ∈ N0. We set for p ∈ N0

Ap+1 = lim
k→∞

φ
(p+1)
k

and arrive, by induction, at the condition (4) for φ ∈ C(E). By Theorem 1.9 we get
that φ ∈ C∞(E).

The proof that limk→∞ |φk − φ|p = 0 for all p is now standard. 2

Remark 1.11 The system of seminorms | · |p, p ∈ N0, is not increasing. To see this
we choose φ = P |E where P is a polynomial of degree m. Then |φ|p = 0 for p > m.
Fundamental system of seminorms means here that every continuous seminorm s on
C∞(E) can be estimated in the form s(φ) ≤ C maxp=0,...,P |φ|p.

2 C∞(E) and A∞(E)

Lemma 2.1 Condition (3) implies that E = {x1, x2, . . . } is a Carleson set.

Proof: We may assume that 0 < x1 ≤ 1 and obtain

∞∑
n=1

εn log
1

εn
≤ q

∞∑
n=1

εn log
1

xn
≤ q

∫ 1

0
log

1

x
dx = q.

The second sum is a lower Riemann sum for the integral whence the second estimate.
2

We will now carefully study the Carleson condition and also the strong Carleson con-
dition of Alexander-Taylor-Williams (ATW-condition), see [2] . We start with a simple
calculation:
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For 0 ≤ a < b we obtain

(5)

∫ b

a
log

1

d(x, {a, b})
= (b− a) log

1

b− a
+ (1 + log 2)(b− a).

For A < B and a ∈ [A+B
2 , B] we have∫ B

a
log

1

d(x, {A,B})
dx =

∫ B

a
log

1

B − a
dx = (B − a) log

1

B − a
+ (B − a).

For a ∈ [A, A+B
2 ] we get∫ B

a
log

1

d(x, {A,B})
dx ≤

∫ B

A
log

1

d(x, {A,B})
dx

= (B −A) log
1

B −A
+ (1 + log 2)(B −A)

≤ 2(B − a) log
1

B − a
+ 2(1 + log 2)(B − a)

since B − a ≤ B −A ≤ 2(B − a).

Therefore we have in both cases

(6)

∫ B

a
log

1

d(x, {A,B})
dx ≤ 2(B − a) log

1

B − a
+ 5(B − a).

In the same way we get for b ∈ [A,B]

(7)

∫ b

A
log

1

d(x, {A,B})
dx ≤ 2(b−A) log

1

b−A
+ 5(b−A).

We need another elementary inequality. For 0 < a ≤ b we have, using the mean value
theorem, with a < ξ < a+ b

(a+ b) log(a+ b)− a log a = b(log ξ + 1)(8)

≤ b(log(a+ b) + 1)

≤ b log b+ b log 2 + b,

and therefore

(9) a log
1

a
+ b log

1

b
≤ (a+ b) log

1

a+ b
+ 2 b.
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Assume now that we have numbers 0 < a1 ≤ a2 ≤ . . . am with

k∑
j=1

aj ≤ ak+1.

for k = 1, . . . ,m − 1 We set a =
∑m

j=1 aj and we obtain by inductive use of estimate
(9)

(10)

m∑
j=1

aj log
1

aj
≤ a log

1

a
+ 2 a.

We return to our previous setting and we have shown:

Lemma 2.2 If xk+1 ≤ εk for all k ∈ N then

(11)
1

b− a

∫ b

a
log

1

d(x,E)
dx ≤ log

1

b− a
+ 16

for 0 ≤ a < b ≤ x1.

Proof: First we apply for any j formulas (5), (6) or (7), respectively, to the interval
[αj+1, αj ] = [xj+1, xj ] ∩ [a, b] and obtain in any case

(12)

∫ αj

αj+1

log
1

d(x,E)
dx ≤ 2(αj − αj+1) log

1

αj − αj+1
+ 4 (αj − αj+1).

If b ∈ [αm+1, αm] then we obtain by use of formula (10)

(13)

∫ αm+1

a
log

1

d(x,E)
dx ≤ 2(αm+1 − a) log

1

αm+1 − a
+ 8 (αm+1 − a).

Applying formula (9) to (12), with j = m, and (13), we arrive at∫ b

a
log

1

d(x,E)
dx ≤ 2(b− a) log

1

b− a
+ 16 (b− a)

which is equivalent to (11). 2

We set now for E ⊂ [0, 2π]

A∞(E) = {f |E : f ∈ A∞}.

From the result of Alexander, Taylor and Williams [2, Theorem 1.1.] we obtain

Theorem 2.3 If xn+1 ≤ εn for all n ∈ N we have C∞(E) = A∞(E).
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3 Structure of C∞(E)

We will now investigate the linear topological structure of C∞(E). Clearly it it nuclear
and, being a quotient of C∞(R), it has property (Ω). We will show that for suitable
sequences (xn)n∈N it has also property (DN). The argument we will be using is due to
Tidten. In fact the proof of the following theorem is an easy adaptation of the proof
of Tidten [15, Satz 1] where we have Whitney jets and E is 1-perfect.

First we will define an increasing fundamental system of seminorms for C∞(E). We set

Rpφ(xn) = φ(xn)−
p∑

j=0

φ(j)(0)

j !
xjn.

and define

∥φ∥k := max
p=0,...,k

{
|φ(p)(0)|+ sup

n∈N

|Rpφ(xn)|
xpn

}
.

Since |φ(p)(0)| ≤ |φ|p and

sup
n∈N

|Rpφ(xn)|
xpn

≤ x1 |φ|p+1

for all p the ∥ · ∥k are continuous seminorms on C∞(E). Because

p !

xpn
Rp−1φ(xn) =

p !

xpn
Rpφ(xn) + φ(p)(0)

we have
|φ|p ≤ p ! ∥φ∥p

for all p. Therefore the ∥ · ∥k are a fundamental system of seminorms in C∞(E).

Theorem 3.1 If there is a constant C such that xn ≤ C xn+1 for all n ∈ N, then
C∞(E) has property (DN).

Proof: We follow the proof of Tidten [15, Satz 1]. We present it here, with the
necessary changes (in fact, simplifications), for the convenience of the reader.

i) We want to show that there is a constant C1, such that for M > 1, k ∈ N and
φ ∈ E∞(E) with ∥φ∥k−1 ≤ 1 and ∥φ∥k+1 ≤ M we have:

|Rk−1φ(xn)|
xkn

≤ C1M
1/2

for all n ∈ N.
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We set

Q :=
Rk−1φ(xn)

xkn
.

For M ≤ x−2
1 we obtain i) with any C1 ≥ x−2

1 :

|Q| ≤ |Rkφ(xn)|
xkn

+
1

k !
|φ(k)(0)| ≤ ∥φ∥k ≤ ∥φ∥k+1 ≤ M ≤ x−2

1 ≤ C1 ≤ C1M
1/2.

Let now M > x−2
1 . We consider wo cases.

In the case of M1/2 ≥ 1/xn we obtain i) with any C1 ≥ 1.

|Q| = 1

xn

|Rk−1φ(xn)|
xk−1
n

≤ 1

xn
∥φ∥k−1 ≤

1

xn
≤ M1/2 ≤ C1M

1/2.

It remains the case of 1/x1 < M1/2 < 1/xn. Because of x1 > M−1/2 there is a maximal
m ∈ N sucht that xm > M−1/2. For that m we have

xm+1 ≤ M−1/2 < xm ≤ C xm+1.

We set x̃ := xm+1 and we have

x̃ ≤ M−1/2,
1

x̃
< CM1/2, xn < M−1/2 < Cx̃.

We obtain ∣∣∣∣Q− 1

k !
φ(k)(0)

∣∣∣∣ =
|Rkφ(0)|

xkn
(14)

= xn

∣∣∣Rk+1φ(xn)

xk+1
n

+
1

(k + 1) !
φ(k+1)(0)

∣∣∣
≤ xn ∥φ∥k+1 ≤ xnM.

We set

Q̃ :=
Rk−1φ(x̃)

x̃k

and obtain, replacing in (14) xn with x̃ = xm+1,

(15)

∣∣∣∣Q̃− 1

k !
φ(k)(0)

∣∣∣∣ ≤ x̃M.
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From (14) and (15) we obtain

(16) |Q− Q̃| ≤ (xn + x̃)M ≤ 2M1/2.

Because of ∥φ∥k−1 ≤ 1 we have

(17) |Q̃| = 1

x̃

|Rk−1φ(x̃)|
x̃k−1

≤ 1

x̃
≤ CM1/2.

From (16) and (17) we get:

|Q| ≤ |Q− Q̃|+ |Q̃| < (C + 2)M1/2.

So, finally, w have shown the claim of i) with C1 = max{x−2
1 , 2C + 1}.

ii) Let φ be like in i). From (4) we know that

φ(k)(0) = lim
n→∞

k !
Rk−1φ(xn)

xkn
.

Therefore i) implies |φ(k)(0)| ≤ k !C1M
1/2.

We obtain
|Rkφ(xn)|

xkn
≤ |Rk−1φ(xn)|

xkn
+

1

k !
|φ(k)(0)| ≤ 2C1M

1/2.

and therefore

∥φ∥k = max
{
∥φ∥k−1, |φ(k)(0)|+ sup

n∈N

|Rkφ(xn)|
xkn

}
≤ max{1, k !C1M

1/2 + 2C1M
1/2}

≤ C2M
1/2

with C2 = (k ! + 2)C1.

This implies easily that ∥φ∥k ≤ C2∥φ∥1/2k−1∥φ∥
1/2
k+1 for all k ∈ N. 2

4 Sets with one accumulation point

We made assumptions on the sequence (xn)n∈N in (3), in Lemma 2.2 and in Theorem
3.1. They all are fulfilled if we have with suitable C > 0

(18) 2xn+1 ≤ xn ≤ Cxn+1

because this implies xn+1 ≤ εn and therefore also xn = xn+1 + εn ≤ 2εn.
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Theorem 4.1 If (18) is fulfilled then A∞(E) = C∞(E) ∼= Λ∞(α) where αn = − log xn.

Proof: By Theorem 2.3 we have A∞(E) = C∞(E). Since (18) implies (3) we obtain
from Proposition 1.8 that J∞(0) ∼= Λ∞(α). Therefore have an exact sequence

0 −→ Λ∞(α) −→ C∞(E) −→ ω −→ 0

where ω denotes the space of all scalar sequences. Because of (18) the space Λ∞(α) is
stable. For the diametral dimensions we get ∆(Λ∞(α)) ∩∆(ω) = ∆(Λ∞(α)) and this
is stable. So we obtain from [17, Proposition 4.2.] that ∆(C∞(E)) = ∆(Λ∞(α)) and
this is stable.

Clearly C∞(E) has property (Ω) since it is a quotient of C∞(R), by Theorem 3.1 it
has also property (DN) and, of course it is nuclear. By Aytuna-Krone-Terzioğlu [1,
Theorem 2.2] we get Λ∞(E) ∼= Λ∞(α). 2

Example 4.2 Let xn = 2−n. Then (18) is fulfilled and C∞(E) = A∞(E) ∼= H(C).

For the isomorphism we remark that, due to αn = n log 2, the space Λ∞(α) is easily
seen to be isomorphic to the space H(C) of entire functions on C.

5 The Cantor set

Let now E be the classical Cantor set. It is known since a long time that it is a Carleson
set (see Beurling [3]). We will show that it fulfills also the ATW-condition.

For that we will use that (3kE) ∩ [0, 1] = E for all k ∈ N. We will again need an
elementary formula: For that let M ⊂ [0, 1] be a compact subset. We have for a > 0

(19)

∫ a

0
log

1

d(x, aM)
dx = a log

1

a
+ a

∫ 1

0
log

1

d(t,M)
dt.

Let now 0 ≤ a < b < 1 be given. We set b − a := γ = 0, γ1 γ2 . . . where the last
term denotes the triadic expansion of γ, finite if possible. In a first step we restrict
ourselves to the case of γ with a finite expansion, say γ = 0, γ1 . . . γm. We set a0 = a
and ak = a+ 0, γ1 . . . γk, that means ak+1 = ak + γk+13

−k−1. We obtain∫ b

a
log

1

d(x,E)
dx =

m−1∑
k=0

∫ ak+1

ak

log
1

d(x,E)
dx.
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Since γk takes only the values 0, 1, 2 we have to estimate from above integrals over
intervals of length 3−k−1 or 2 · 3−k−1.

Now we consider the subdivision of [0, 1] into 3k intervals of length 3−k and refer to the
classical stepwise construction of the Cantor set. Some of the intervals, we call them
windows, have already been excluded from the Cantor set, we call them white, some
wait for treatment, we call them black.

We restrict now to the nontrivial case of γk+1 ̸= 0. Our interval of length 3−k−1 or
2 · 3−k−1 hits at most two of the windows. If it is of length 3−k−1 and completely in a
white window the worst case is (see equation(5))∫ 3−k−1

0
log

1

x
dx = 3−k−1 log

1

3−k−1
+ 3−k−1.

If it is of length 2 · 3−k−1 and completely in a white window we estimate roughly by 2
times the previous case and obtain for both cases

(20)

∫ ak+1

ak

log
1

d(x,E)
dx ≤ 2

∫ 3−k−1

0
log

1

x
dx ≤ 3−k log

1

3−k−1
+ 3−k.

If it is completely in a black window we take into account that, by shifting the lower
end of the window into zero and multiplying by 3k we obtain E. The interval [ak, ak+1],
if nontrivial, extends to an interval of length 1/3 or 2/3. Therefore we have, estimating
by the integral over the whole window and using (19),

(21)

∫ ak+1

ak

log
1

d(x,E)
dx ≤ 3−k log

1

3−k−1
+D0 3

−k.

where

D0 = log 3 +

∫ 1

0
log

1

d(x,E)
dx.

Therefore we have in all cases, estimating roughly by the sum of estimate (20) and
estimate (21),∫ ak+1

ak

log
1

d(x,E)
dx ≤ 2 · 3−k log

1

3−k−1
+ (D0 + 1) 3−k

≤ 6 γk+13
−k−1 log

1

3−k−1
+ 3(D0 + 1) γk+13

−k−1

≤ 6 γk+13
−k−1 log

1

γk+13−k−1
+Dγk+13

−k−1
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where D = 6 log 2 + 3(D0 + 1). Therefore

(22)

∫ b

a
log

1

d(x,E)
dx ≤ 6

m−1∑
k=0

γk+13
−k−1 log

1

γk+13−k−1
+D (b− a).

To apply estimate (10), counting reversely, we need the following:

m−1∑
k=n

γk+13
−k−1 ≤ 2

∞∑
k=n

3−k−1 = 3−n ≤ γν3
−ν .

where ν is the biggest number ≤ n with γν ̸= 0. If there is none we are done, we have
to add no further summand.

From (22) and (10) we get now∫ b

a
log

1

d(x,E)
dx ≤ 6 (b− a) log

1

b− a
+ (D + 15) (b− a)

for all triadic numbers in [0, 1[. Since we know that E is Carleson, that is log 1
d(x,E) is

integrable over [0, 1], the left and the right hand side depend continuously on a and b.
Therefore the estimate is true for all 0 ≤ a < b ≤ 1.

Applying the result of Alexander, Taylor and Williams [2, Theorem 1.1.] we have
shown:

Proposition 5.1 If E is the classical Cantor set we have A∞(E) = C∞(E).

Remark 5.2 Because of Corollary 1.3 the functions f ∈ J(E) vanish on E including
all their derivatives. That means C∞(E) = E (E), the space of Whitney jets on E.

From Tidten [15, Folgerung, p.76] we know that E (E) is isomorphic to a complemented
subspace of s. Clearly C∞(E) is stable, because

C∞(E) ∼= C∞[0, 1/3]⊕ C∞[2/3, 1] ∼= C∞(E)2.

Again, using Aytuna-Krone-Terziğlu [1, Theorem 2.2] (or Wagner [20, Theorem 1]), we
obtain

Theorem 5.3 If E is the classical Cantor set then A∞(E) = C∞(E) and A∞(E) has
a basis. In fact, it is isomorphic to a power series space of infinite type.
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6 Final remarks

We return to the notation of Section 1 and assume that (3) holds. We define for
f ∈ J∞(0)

Pf(x) = f(x)−
∞∑
n=1

f(xn)χεn(x− xn).

Then due to (1) and Lemma 1.6 P is a linear map from J∞(0) to J(E) which is
continuous by estimates (1) and (2). We have shown:

Lemma 6.1 If (3) is fulfilled, then P is a continuous projection in J∞(0) onto J(E).

Corollary 6.2 If (3) is fulfilled, then J(E) has property (Ω).

Proof: J∞(0) has property (Ω) by Tidten [16, Satz 2.2] and (Ω) is inherited by
complemented subspaces. 2

We obtain:

Theorem 6.3 If there is q ∈ N and C > 0 such that xqn ≤ Cεn and xn ≤ Cxn+1 for
all n ∈ N, then there is a continuous linear extension operator from C∞(E) to C∞(R).

Proof: We have the natural exact sequence

0 −→ J(E) −→ C∞(R) ρ−→ C∞(E) −→ 0

where ρ is the restriction map. J(E) has property (Ω) by Corollary 6.2, C∞(E) has
property (DN) by Theorem 3.1 and all spaces are nuclear. By the (DN)-(Ω)-splitting
theorem (see [6, 30.1]) the sequence splits, hence ρ has a continuous linear right inverse,
that is, there is a continuous linear extension operator. 2

Examples for this are not only exponentially decreasing sequences xn but also, for
example, xn = 1/n, n ∈ N.

Let us finally remark that for E being the classical Cantor set there is a continuous
linear extension operator from C∞(E) = E (E) to C∞(R) by Tidten [15, Folgerung,
p.76].
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