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S u m m a r y .  Let P be a complex polynomial in n variables of degree 2 and 
P(D) the corresponding part ia l  differential operator with constant coefficients. 
It is shown that  P(D) : C~176 ") ~ C~176 '~) admits a continuous linear right 
inverse if and only if after a separation of variables and up to a complex factor 
for some c 6 r the polynomial  P has the form 

p(xl, ..., x~) : Q(xl, ..., ~)  + L(~+I, ..., ~ )  + c 

where either r = 1 and L - 0 or r > 1, Q and L are real and Q is indefinite. The 
proof of this characterization is based on the general solution of the right inverse 
problem for such operators and the fact that  for each operator P(D) of the given 
form and each characteristic vector N there exists a fundamental solution for 
P(D) supported by {x 6 IR ~ : (x, N) >_ 0}, which can be constructed explieitely 
using part ial  Fourier transform. The existence of sufficiently many fundamental 
solutions with support  in closed half spaces implies that  some right inverse can be 
given by a concrete formula. An example shows that  the present characterization 
is restricted to operators of order 2. 

Subject Classifications: 35E20, 35E05, 47F05 

O. I n t r o d u c t i o n  

In the early fifties L. Schwartz posed the problem to characterize those linear 
part ia l  differential operators P(D) that  admit  a (continuous linear) right inverse 
on the Fr4chet space ,~(/2) of all infinitely differentiable functions on an open 
set ~ in ]R ~ respectively on the space ~)'(D) of all distributions on ~2. This 
problem was solved in [6], [7]. Its solution was extended to differential complexes 
over convex sets [2 by Palamodov [12] and to nonquasianalytic classes and 
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ultradistributions in [8] and [9]. The evaluation of the general solution leads 
essentially to two cases that are handled by different methods. In the case of 
convex open sets [2, including [2 = Ill ~, the existence of a right inverse for 
P(D) on s or 79'([2) is equivalent to the fact that a Phragm6n-Lindelhf 
condition depending on [2, holds for the plurisubharmonie functions on the 
variety Y(P)  := {z E ~ : P(z) = 0}. For a comprehensive study of these 
Phragm~n-Lindelhf conditions we refer to [1 1]. In the case of open sets [2 with a 
non-empty Cl-boundary it turns out that P(D) admits a right inverse on 8([2) 
or 79~([2) only if P is hyperbolic with respect to each non-characteristic vector 
that is normal to 0[2 at some point. However, the case of a characteristic half 
space f2 remained open. 

In the present paper we give a more detailed characterization of the differen- 
tial operators P(D) of order 2 that admit a right inverse on s For such 
operators, the property is equivalent to the existence of a basis {N1 , . . . ,  No} 
of ]R" such that P(D) admits fundamental  solutions El: in 79'(IR '~) that are 
supported in the closed half spaces H~(Nj) determined by Nj, 1 < j <_ n. 
Moreover, it is equivalent to the existence of some bounded open convex set 
[2 in lR" for which P(D) admits a right inverse on s An example shows 
that these equivalences fail for operators of order 3. The existence of sufficiently 
many fundamental solutions supported by half spaces implies that the existing 
right inverse on s '~) can be given by a formula, involving only a finite 
partition of unity and convolutions with appropriate fundamental solutions that 
are constructed explicitely. 

To prove our characterization, we reduce the study of general quadratic 
polynomials to certain normal forms. For these we derive necessary conditions 
using results from [11] and Holmgren's uniqueness theorem. To show that these 
necessary conditions are also sufficient, we prove that each polynomial which is of 
degree 2 and real up to a possibly complex additive constant admits fundamental  
solutions supported by any characteristic closed half space. This result can be 
easily proved by applying H6rmander's sophisticated characterization of the 
operators admitt ing fundamental  solutions with support in a characteristic half 
space [4], Thm. 12.8.1. The intent is to give a simple, explicit formula for these 
fundamental solutions. 

Acknowledgement. Part of the work for this article was done while the first and last named 
authors stayed at the Erwin SchrSdinger Institute of Mathematical Physics in spring 1995. 
They both thank the institute for support and hospitality. The second author gratefully 
acknowledges support of his work by an award of the Alexander yon Humboldt Stiftung. 

1. P r e l i m i n a r i e s  

In this section we fix the notation and recall some results which will be used 
subsequently. 

D e f i n i t i o n  1. Let [2 be an open subset of]I~ n. Then E(~2) denotes the complex 
vector space of all infinitely differentiable functions on [2, endowed with the 
Frdchet-space topology of uniform convergence of all derivatives on all compact 
subsets of[2. Also, 7)([2) denotes the space of all functions in C([2) which have 
compact support in [2. It is endowed with the standard (LF)-space topology. Its 
dual space 79~([2) is the space of all distributions on [2. 
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By ~ [ z l , . . . ,  z~] we denote the ring of all complex polynomials in n variables, 
which will be also regarded as functions on ~ .  For P E C [ z l , . . . ,  z~], 

P(z) = ~ a~,z ~, 
l~l<m 

with EI~t=m la~l ~: 0, we call 

P m :  z ~-~ E ac~z a 

I~l=m 
the principal part  of P .  Note that  Pm is a homogeneous polynomial of degree 
'gr/. 

For P E ~ [ z l , . . . ,  z,~] and an open set ~ in IR ~ we define the linear partial  
differential operator 

P ( D ) :  73'(9) ---+ 7~'(~2), P(D) f  := E a~i-I~lf(~)" 
I~l<m 

Then P(D) is a continuous endomorphism of 7)'(J2) and its restriction to s  
is a continuous endomorphism of s 

A distr ibution E in ~ ' ( IR" )  is called a fundamental solution for P(D) if 
P(D)E = 6, where 5 denotes the point  evaluation at zero. 

A vector N E lR2 \ {0} is called non-characteristic for P E ~ [ z l , . . . ,  z,] if 
Pro(N) r O. P(D) or P is called hyperbolic with respect to N e IR n if N is 
non-characteristic for P and if P(D) admits  a fundamental solution E E D'(IR ~) 
satisfying Supp E C H+(N) ,  where 

H i ( N )  := {x C IR n : + ( x , N )  > 0}. 

P(D) or P is called hyperbolic if it is hyperbolic with respect to some vector 
N E IR '~. 

We will say that  P(D) admits  a right inverse on s  (resp. on D'(S2)) if there 
exists a continuous linear map R : $(t2) ~ $(~2) (resp. R :  O ' ( a )  ~ D ' ( a ) )  
so that  P(D) o R = id~(n) (resp. = i d w ( w ) .  By [8], 2.10, P(D) admits a right 
inverse on 7) ' (~)  if and only if P(D) admits  a right inverse on 8(Y2). If this is 
the case the open set 9 is said to be P-convex with bounds. Note that  [8], 2.10, 
also shows that  many other propert ies are equivalent for 9 to be P-convex with 
bounds. 

To state several conditions which are equivalent to ]R" being P-convex with 
bounds and which are needed subsequently, we recall the following definition. 

D e f i n i t i o n  2. Let P E ~[za,. . . ,  zn] be non-constant. Then the zero variety of 
P is defined as 

V(P) := {z E ~"  : P(z) = 0}. 

A function u: V(P) ~ [-oo, oo[ is called plurisubharmonie (psh), if it is locally 
bounded from above and plurisubharmonic in the usual sense at all regular points 
Vreg C V. We assume in the sequel that at the singular points Vsing C V we have 

u(z) = l imsup  u(~) for all z E Vsing. 

By PSH(V(P))  we denote the set of all psh functions on V(P) which satisfy 
this condition. 
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By [7], 4.6, and 2.10 and [6] we have: 

T h e o r e m  1. For each non-constant polynomial P E ~ [ z l , . . . ,  Zn] the following 
assertions are equivalent: 

i. IRa is P-convex with bounds. 
2. For each r > 0 there exists R > 0 such that for each ~ E IR "~ with I~l > R 

there exists E E :D'(IR n) satisfying P ( D ) E  = 5 and SuppE C {x E IRa : 
I x -  ~1 >_ r}. 

3. V (P)  satisfies the following Phragmgn-Lindelfff condition PL(log): There 
exists A > 0 such that for each p > 0 there exists Bp > 0 such that each 
u E P S H ( V ( P ) )  satisfying (c 0 and (13) also satisfies (7), where 

(~) u(z) < I~zl + O(log(2 + Izl~)), z ~ v ' (e)  
(~) ~(z) <_ pl~zl, z ~ v ( P )  
(8) u(z) <_ Al~zl + Bp log(2 + Iz12), z ~ V(P). 

The following proposit ion shows that  under appropriate hypotheses a right 
inverse for P(D)  on s ") can be obtained by an explicit construction. 

P r o p o s i t i o n  1. Assume that P E q~[zt,. . . ,  za] admits fundamental solutions 
E l , . . . ,  Ek E 79'(1R a) so that Supp Ej C IR '~ \ Fj, where Fj is an open convex 
cone with vertex at zero for 1 < j < k. I fU~.=IF j covers the unit sphere of lR a 
then IR a is P-convex with bounds. 

Proof. Fix any fundamental  solution E0 for P(D)  and denote by F0 the open 
unit ball in IRa. Then choose a C~176 of unity k (~oj )j= o subordinate to 

k the cover ( -F j ) j=  o of lR  a and define 

k 

R ( f )  :----- ~ Ej �9 (~ j f ) .  
j = 0  

Then it is easy to check that  R is a continuous linear right inverse for P(D)  on 
E(IR a) and also on 79'(IRa). 

The following lemma is obvious, since E(]R a+k) can be identified in a natural  
way with the space of all C~176 on IR k with values in S(IRa). 

L e m m a  1. Let P e (~[zl , . . . ,zn] be non-constant and define Q ( z l , . . . ,  Zn+~:) := 
P(Zl, . . . , zn). Then IR a is P-convex with bounds if and only ifIR a+k is Q-convex 
with bounds. 

2. N e c e s s a r y  c o n d i t i o n s  for  d i f f e r e n t i a l  o p e r a t o r s  o f  o r d e r  two  

In this section we derive necessary conditions on a polynomial P of degree 
two, that  lRa is P-convex with bounds. To do this we show that  it suffices 
to consider operators having a certain normal  form. Then we discuss these 
normal forms using the Phragm6n-LindelSf condition stated in Theorem 1 and 
Holmgren's uniqueness theorem to get the desired necessary conditions. They 
are also sufficient, as we will show in the next section. 

First  we note that  each polynomial  P of degree two for which IR a is P-convex 
with bounds has a specific principal part .  
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L e m m a  2. Let P E ~ [ z l , . . . , z , ]  be of degree m > 0 and denote by Pm its 
principal part. I f  ]R ~ is P-convex with bounds then there exists A E �9 so that 
APm is real. 

Proof. If IR ~ is P-convex with bounds, then it follows from Theorem 1 and [11], 
4.1, that  ]R" is also Pro-convex with bounds. By [11], 2.6, each irreducible factor 
S of Pm also has this property. Hence V(S)  satisfies the Phragm~n-LindelSf 
condition PL(log) s tated in Theorem 1 Since S is homogeneous, [11], 3.3, implies 
that  V(S)  even satisfies the following condition (PL): There exists A > 1 such 
that  u E P S H ( V ( S ) )  which satisfies 

u(z) _< I~zl + o(Izl), z ~ v ( s )  and 

,~(z) < o, z ~ v ( s )  n r~ n 

also satisfies 

z,(z) < Al~z l ,  z ~ V(S) .  

Now fix Q E r  . . . .  , zn] and assume that  Qiv(s)n~t. = 0. We claim that Q 
vanishes on V(S).  Arguing by contradiction, assume there exists z0 E V(S)  such 
that  Q(zo) r O. This implies z0 E V(S)  \ IR n, hence there exists # > 0 such 
t ha t  log I pO(z0)l  > Ah~zol. Now note  tha t  v(z) := log l ~Q(z)[ satisfies the two 
hypotheses of (PL) and hence also the conclusion, which contradicts our choice 
of p. Consequently, Q Iv(s) = 0. Since S is irreducible, we get Q = R �9 S for 
some R E r  z,~]. Applying this to Q := Re(S), we obtain Re(S) = R0. S, 
where R0 has to be a constant. Since S was any irreducible factor of Pr,, the 
proof of the lemma is complete. 

Because of Lemma 2 it suffices to consider only polynomials with real 
principal part  when we want to determine all polynomials P of degree 2 for 
which IR" is P-convex with bounds. The following lemma shows that  we can 
reduce the general ease to the consideration of certain normal forms. 

L e m m a  3. Let Q E ~[Zl,. . . ,zn] have degree 2 and real principal part. Then 
there exist a real matrix A E GL(]I~") and a E O~ r~ so that P(z)  := Q(Az + a) 
has one of the following normal forms: 

r s (I) P(z)= ~ z}- ~ z 2+C, 1 <r<s<n, CEC 
1=1 j = r + l  

(II) P(z)= ~z}-  ~ z}.+Az,+x l < r < s < n - l ,  AEr 
I I 

j= l  j = r + l  

( ~ •  P ( z )  = z }  - z j  + ~ z , + l  + z , + 2 ,  1 < r < s < n - 5. 
j=1 j = r + l  

Further, we have: 

(i) An open set I2 in lR n is Q-convex with bounds if  and only if AtI2 = {Atz  : 
x E g2} is P-convex with bounds 

(it) Q(D) has a fundamental solution supported in a (characteristic) half space 
H if  and only if  P (D)  has a fundamental solution supported in AtH = 
{Atz  : z E H} .  
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Proof. Since the principal  par t  of Q is of degree 2 and real it is the quadrat ic  
form of a real symmet r i c  matr ix .  Hence there exists a real change of  variables 
so tha t  in these variables we have 

O(z) = 4 + L(zl, .  ,zn) + c 
j = l  j=r+l 

where 0 <: r < s <: n, L is a (ILlinear form and C E ~ .  Replacing Q by - Q  if 
necessary, we can assume 1 <: r < s < n. 

If L --- 0 then Q already is of type (I). Therefore  we can assume tha t  

L ( z ) = ~ b j z j  for s o m e b E ~ n ,  b e 0 .  
j----1 

Next  fix a.G ~n  and note tha t  

r 

(.) Q(zTa) : -  E z } -  
j=l  

2 2aj )z j  (bj - 2aj )z j  + + + 
j=r4-1 j = l  j~-r+l 

+ f i  bJzj +CI 
j = s + l  

r _ ~ aj n 
2 + ~ ~ a j b j .  where C '  :=  C + ~ a~ - 

j : l  j = r + l  j = l  

T h e n  we consider the following two cases: 
case l : s = n o r s < n a n d b j = 0 f o r s + l _ < j _ < n .  

1 Then  let aj := -~bj for 1 < j < r, aj :=  �89 for r + 1 _< j < s and aj ~ 0 
for s + 1 < j _< n. By (*), this choice implies  that  P(z) := Q(z + a) is of type 

(i). 
case 2: s < n and there exists k wi th  s +  1 < k < n and bk :~ 0. 

T h e n  define aj for j # k as in case 1 and let 

ak : = - ~ -  C + E a j -  aj + ajbj . 
j = l  j = r + l  j=l  

W i t h  this choice we get f rom (*) tha t  

j = l  j=r+l 

where l is a non- t r iv ia l  S- l inear  form in n - s variables. If  the range of the 
IR-linear map  l : I R " - '  ---* �9 has real d imension one we can find a real linear 
change A '  of the variables Z~+l, ..., zn so tha t  in the new variables P8+1, ..., P~ we 
have l(p) = Ap,+I for some A e ff~\{0). Hence P(z) : :  Q(A'(z + a)) is of type 
(II) in this case. 

If the range of I : IR '~-8 ---* ff~ has real d imension two then we can find a real 
l inear change A '  of  the variables z,+l,..., zn so tha t  P(z) :=  Q(A'(z + a)) is of 
type  (III) .  
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The assert ions (i) and (ii) are s imple  proper t ies  of how the symbols  Q(z) := 
e-i{"Z)Q(D)e i(~'z) behave under  l inear  t rans format ions  and mul t ip l ica t ion  by 
exponent ia ls .  For, if A E GL(IR n) then A t : IR n ~ IR ~ induces the pull-back 
m a p  (A')* on funct ions by (A')* : g(A'f2) ~ s tha t  defines the constant  
coefficient opera tor  P(D) = (A-*)* o Q(D) o (A')* act ing on g(At ~)  whose 
symbol  is P(z)  = Q(Az). Similar ly ,  P(z)  = Q(z+.a) is the symbol  of the opera tor  
P(D)  = M _ ~ o Q ( D ) o M , ,  where M~(f)  : x ~ e'a*f(z) is mult ip l ica t ion  by e i~*. 
Both  these maps  clearly t r ans fo rm right  inverses of Q(D) to ones for P(D) and 
vice-versa,  which implies  (i). Similar ly ,  suppor t s  of d is t r ibut ions  are t ransformed 
as indica ted  in (ii). 

L e m m a  4. For n E IN let P E IT[s, t, wl . . . . .  wn] have the form 

n 

P(s,  t, w) = as + . t  + 
j = l  

where A E IT\IR, p E IR andej = +1 for i < j <_ n. Then IP~ 2+~ is not P-convez 
with bounds. 

Proof. To argue by contradic t ion ,  assume tha t  IR ~+n is P-convex with bounds.  
Then,  by Theorem 1, the var ie ty  V ( P )  satisfies the condit ion PL(log) for certain 
constants  A > 0 and B o > 0 for p > 0. Let to := 2 (A+.2)  and note tha t  wi thout  
res t r ic t ion we can assume r = - 1 ,  I~1 _< 1 and A = e '~, where 5 < ~o < 7r - 5 
for some 5 sat isfying 0 < 6 < ~. Then  for R > 0 we let 

ZR := (/~2,0, ei~O/2R, 0 , . . . ,  0). 

Note  tha t  ~zR = Rs in  ~ and t ha t  P(zR) = 0, i.e. zR E V(P) .  We claim the 
following: 

(1) There  exist R0 > 0 and M > 0 so tha t  for R >_ R0 each z E V(P)  satisfying 
Iz - zn[ _< ~01~znl a l ready  satisfies I~zRI _< Ml~z  I. 

If (1) holds then [11], 4.7, (note t h a t  c = �89 by [10], 3.5) for w(t) = log(2 + ltl) 
impl ies  the existence of B' > 0 such tha t  

(2) R s i n  ~ < I~zRI < B(A+2)M+lW(ZR) <_ B 'w(R  2) = B' log(2 + R 2) 
for all R >_ Ro. 

Since this is a contradic t ion,  our a s sumpt ion  was wrong. Hence IR 2+" is not  
P-convex  with bounds.  

8 r  
8 n ( l + r ) s i n ~  and choose R0 > s in}  To prove (1) let r := to sin ~, M :=  sin ~ 

so large tha t  each p E IT sa t is fying [p - 1[ _< ~-o has the form p = ]pie ~ for 

some a e IR with I~l _ ~. Next fix R _> R0 and z = (s, t, w l , . . . ,  wn) in V(P)  
sat isfying 

(3) Iz - zR[ _< TR = t0[~zRI. 

F rom the definit ion of zR and (3) we get 

Is - R21 _< ~R and hence ~-~s _ 11 < ~ -< t%" 
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By our choice of R0 this implies s = Isle I~ for some a with [a[ _< ~, and it also 
implies 

(4) Isl>n 2 -TR=R 2 1 - ~  > 5 - .  

From (3) and the definition of zR we derive 

(5) [ t [ < r R  and [ w j [ < ( l + r ) R ,  l < j < n .  

Now assume that  max I~wj[ < sin 7)R. Since z is in V(P) we have 
8 n-0--q: j--1,...,n 

I f  w j  = Iwjle  i~~ for 1 < j < n t hen  

(7) I~(wy)l = Iw~l~lsin2~yl = 2lw~12l sin~o~ cos ~ l - -  2l~w~llw~l. 

Since 141 _< 8, we get from (4) -  (7) and our assumption 

y s i n - ~ < [ g A s l < l l ~ t l + - - - - f - R  < + s i n ~ < g R  sin~.  

From this contradiction we conclude that  our assumption was wrong. Hence 
there exists k with 1 < k < n satisfying 

sin ~ 1 sin ~ ll~znl. 
I~wkl >_ 8 - ~ T ~ R  - 8~(1 + r) sin ~ I~zRI = 

Obviously, this implies that  (1) holds. 

Remark 1. Note that  the proof of Lemma 4 also shows the following: Whenever 
w is a weight function as defined in [8], 1.1, which satisfies log(t) = o(w(t)) as t 
tends to oo and if P is as in Lemma 4 then P(D) does not admit a continuous 
linear right inverse on E(~)(IR '~) and also not on VI~)(IR" ). Here C(~)(IR n) 
denotes the Fr6chet-space of (w)-ultradifferentiable functions and 73~)(1PJ ~) 
denotes the (w)-ultradistributions on 1R" (see [8], 1.3, for the corresponding 
definitions). 

The following lemma is an easy consequence of Holmgren's uniqueness 
Theorem as it is stated in H6rmander [4], Thin. 8.6.8. For its formulation we let 
M • 1 4 9 1 6 2  n. 

L e m m a  5. Let P �9 (~[zl, . . . ,zn] be non-constant, let Pm denote its principal 
part and assume that 

C := {N �9 ]R'~: Prn(N) = 0} • # {0}. 

Then for any pairw,/2 of open subsets o f ] R  n with O ~ w  C/2 the set 

U : = { z � 9  there ezists ~ E w  such that [~,z]C/2, z - ~ � 9  

is open and each T �9 73'(/2) satisfying P(D)T = 0 and TI~, = 0 also satisfies 
T I u  = O. 
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L e m m a  6. Let P and C be as in Lemma 5. I f d i m ~  C > 2 then no open set ~2 
in IR ~ is P-convex with bounds. 

Proof. Arguing by contradiction, we assume that there exists an open set /? :/- 
0 in IR" which is P-convex with bounds. Let R : 7)'(II) ---, 7)'(11) denote a 
continuous linear right inverse for P ( D )  on 7)'(X?). Then fix a relatively compact 
open subset w :/: 0 of ~ and note that by the continuity estimates for R there 
exists a relatively compact set w' in 11, w' D w such that for x0 E J2 \ w' the 
distribution E ,  o := R(6,o) satisfies E ,  ol,o = 0. 

Next fix ~ E w and a one-dimensionM linear subspace g of C, let I denote 
the connected component of { in ({ + g) f)/2 and fix x0 E 1 \ w'. Then apply 
Lemma 5 with w and ~ \ {x0} to E~o and get an open neighborhood V of x0 
such that V C / ?  and 

V M SuppE,  o C { ( +  t(xo - ( )  : t  _> 1}nV =: M c l V .  

Next choose (1 E V \ M sufficiently close to x0 and another one-dimensional 
linear subspace gt of C satisfying gl :r g- Then apply Lemma 5 with V \ M 
and V \ {x0} to E~o to get an open neighborhood W C V of x0 such that 
Supp(E,  olW) = {x0}. Choose ~ G 7)(W) satisfying !o _~ 1 on some neighborhood 
of x0 and let T := (9~E~o) * 6-,0.  Then P ( D ) T  = 6 and SuppT = {0}. Since 
such a distribution T does not exist, we derived a contradiction. 

L e m m a  7. For n > 2 and k > 1 let P E ~ [ w l , . . . ,  w~+k] be of the form 

n n + k  
2 

j : l  j : n + l  

where ej = 4-1 for  1 < j <_ n and a s ~ ~ for  n + l  <_ j <_ n + k. I f  there exists an 
open set 11 7s ~ in IR ~ which is P-convex  with bounds then there exists 1 < I <_ n 
with e t r  s l .  

Proof. If all ej have the same sign then 

{ N  e IR "+k : P~(N)  = 0} = {w E IR '~+k : wl . . . . .  w, = 0}. 

Hence the real dimension of C = {N E IR ~+k : P2(N)  = 0} j- is at least 2. 
Therefore the result follows from Lemma 6 by contraposition. 

P r o p o s i t i o n  2. Let P E (~[z l , . . . ,  zn] be of one of three types stated in Lemma 
3 then IR '~ is P-convex  with bounds only i f  the following conditions are satisfied: 

I f  P is of type (I): r = s = l or s > r. 
I f  P is of type (H): A E ]R and s > r. 

Proof. (I): By Lemma 1 we can assume s = n. If s = r > 2 then IR" is not 
P-convex with bounds by Lemma 6. 

(II): By Lemma 1 we can assume s + 1 = n. If IR" is P-convex with bounds 
it follows from Theorem 1 and Lemma 4 that A has to be real. 

If r = 1 and s = r then P(Zl ,Z2)  = z 2 + )~z2 for some A E IR \ 10}. By 
HSrmander [4], Thm. 12.4.6, P is not hyperbolic. Hence IR 2 is not P-convex 
with hounds by [7], Thin. 4.11. 
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If r > 2 and s = r, we consider P as a polynomial in s + 2 variables. By 
Lemma 7, IR ~+2 is not P-convex with @)-bounds. Hence JR" is not P-convex 
with bounds by Lemma 1. 

(III): From Theorem 1, Lemma 1 and Lemma 4 it follows that ]R ~ is not 
P-convex with bounds in this case. 

In the next section we show that  the necessary conditions of Proposition 2 
are also sufficient. 

3. F u n d a m e n t a l  so lu t ions  s u p p o r t e d  by  a cha rac te r i s t i c  ha l f  space  

In this section we characterize the polynomials P of degree 2 for which ]1~ n is 
P-convex with bounds by proving the converse of Proposition 2. The essential 
step in the proof is based on the following lemma. 

L e m m a  8. For A E �9 define lhe polynomial Q(A, .) e ~[zl, z2] by Q(A, zl, z~) := 
zlz2 + A. Then there exisls a funclion E in Loo,loc(~ x ]R 2) salisfying 

(,) [E(A,&,(2)I <_ exp (~/2(1]~A l 1(20, (1 > 0, (2 E IR 

such 1hat E(A, .) is a fundarnenlal solution for Q(A, D) which satisfies 

SuppE(A,.)  C {(~i,(2) E ]R 2 :(1 _> 0}. 

Proof. Let J0 denote the Bessel function of order zero, i.e. 

oo 1~  l J ~  
( - - )  t2n eitsin(d~ 

J0(t) = ~ 4-(n!)2 = 
n-----O ~r 

(see e.g. Courant and Hilbert [1], Kap. VII, (10) and (21)). We define 

o o  r t  

n - - u ~  

Y _ 1 exp ( -  2v'~ ~V'~I~ sin ~)d~ 
271 7r 

and note that P is analytic in A, (a and (2. 
To estimate the modulus of P ,  fix A E �9 with ReA < 0 and let ~ = 

~ + i~, where ~,/3 are real. Then o~ ~ - ~2 = Rea _< 0 impfies ]~l < I~1, hence 
21al 2 < 2la~] = I~a] and consequently IRev/XI = I~1 < ~Ab-~/2. Now use this 
to estimate the integral representation for P and to get 

IP(~,&,~)I < exp (x/2~11gAI 1(21) if ReA _< 0,(1 >__ O, (2 >_ O. 

Since P(A,(1,(2) = P ( - A , ( 1 , - ( 2 ) ,  the same estimate holds if ReA > 0,(1 > 0 
and (2 < 0. 

Next let 



Continuous linear right inverses 459 

{ -P (A,~I , (~ )  if ~1 > 0 , ~ > 0  and R e A < 0  

E(A,~I,r := P(A,~I,~2) if ~1 > 0,~2 < 0 and Re), > 0 

0 otherwise 

Then E is in Loo.loc(r x I1~2), satisfies (*) and vanishes whenever ~1 < 0. Hence 
the proof of the lemma is complete if we show Q(A, D)E(A, -) = 5. To do this fix 
A E (I? with ReA <: 0 and note that 

0P  02P ;~ 
P (~ ,0 , {2 )=  1, ~ I ( A , { 1 , 0 ) = 0 ,  0~--~-~2 ( ,~1, r  =AP(A,r162 

Consequently, we have for each ~, E 77(IR=): 

(Q()~, D)E()~,.))~o = E()~, " ) (Q()L-D)T)  

d0 vq2 O~-1 (a' ") ~-~d~, d(~ -/- 

= ~ ( o )  = ~(~,) 

The case ReA > 0 follows by the same arguments. 

P r o p o s i t i o n  3. For n >_ 2 assume that P E r  has degree 2 and that 
P = Po + ic, where Po E IR[z l , . . . ,  zn] and c E It{. Then for each characteristic 
vector N ~ 0 there exists a fundamental solution E for P( D) satisfying SuppE C 
H+(N).  

Proof. If P admits a characteristic vector N we may assume without restriction 
that N = el and hence 

H + ( N ) = { x e l R  ~ : x l  > 0 } = : H .  

Moreover, P has the form 

P(~) = ( IA ( ( ' )  + PI(~') + ic, 

where A is a real afline form and P1 a real polynomial, both depending only on 
(~ = (~2,. . . ,  ~ ) .  Now distinguish the following three cases: 

case 1: A = 0 
ease 2: A is a real constant 
case 3: A is not constant, 

in which different arguments are applied, case 1: Choose a fundamental solution 
E1 E "D#(]R n- l )  for P l ( D ' ) + i c  and note that E := 5~ |  has the required 
properties in the present case. 

case 2: For ~ C D(IR ~) denote by ~ its partial Fourier transform with respect 
to x', i.e. 

( 1 " ~ n - i i ~  " " ' ' 
~(xl ,~ ' )  := \ ~ , /  . - ,  e-'(:~ '" )~p(Xl, z')dx',  
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and define 

To see that the integral exists, note that Supp~ C [-a,c~] x lR "-1 for some 
> 0 and that 

�9 X l  

since P1 is real. From this it follows easily that E is in 73~(IR n) and that SuppE C 
H. Using integration by parts and Fourier's inversion formula, one obtains that 
E is a fundamental solution for P(D). 

case 3" After a real linear change in the ~; variables, we may assume that 
A(~ r = ~2 + a for some a E IR. Hence P has the form 

P(~) = ~1(~2 + a) + b~ + ~2L(~") + P2(~") + ic 

= (~1 + n(~") - 2ab)(~2 + a) + b(~ + a) 2 + P3(~") + ic, 

where b is a real number, L is a real affine form and P2, P3 are real polynomials 
in ~" = (~3,-.. ,~n). Next fix F e 79(11% n) and let ~ denote its partial Fourier 
transform with respect to x ' .  Then define 

f f+oofoo F~ := (270 "-2  J~t--:  J-oo J0 exp ( - i  (L(-~") 2ab) xl + a(bZl + x2))" 

�9 E (P3(-~")  + ic, xl, x2) ~ (xl, bxl + x2, ~")dzldx2d~", 

where E(,k, xl, z2) denotes the function from Lemma 8. Using this lemma, it 
is easy to check that F is in 73~(IR n) and SuppF C H. To show that F is 
a fundamental solution for P(D), fix X e C2(IR 2) and note that for any real 
number R 

OlD2 (exp(-i(Rxl  + a(bxl + x2)) X (Xl, bxl + x2)) 
= exp(- i (Rxl  + a(bZl + x2)) 

�9 { ( - 0 1  + R)(-D2 + a) + b(-D2 + a) 2) X} (zl,bxl + x~). 

Note further that for r E 7)(IR"), ~ := P ( - D ) r  and R := L( -~")  - 2ab we 
h a v e  

= ( { ( - D 1  + R)(-Dg. + a) + b(-D2 + a) ~} r  (xl, x,)I ~ II ) 

+ (P3(-~")  + ic) ~b(xl, x2, ~"). 

Hence 

exp ( - i ( R z l  + a(bxl + x2)) ~ (xl,  bxl + x2,~")E(P3(-~') + iv, xl, x2) 
= {D1D2(exp ( - i (Rx l+a (bx l+x2 ) ) r  

+ e x p ( - ( R z l  + a(bxl + ;c2))(P3(-~") + ic)~b(xl,x2,~")} 
�9 E(P3(-~") + ic, xl, x2). 

By our choice of E(,~, .), this implies 
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( P ( D ) F ) ( r  = F ( ~ , ) =  (27r)"-2 / r  0 , ( " )d ( "  = r 
JIR 

by Fourier 's  inversion formula. Hence F has all the required properties. 

Remark 2. It is easy to check tha t  in all the cases which we discuss in the 
proof of Proposi t ion 3, condit ion 12.8.1 (iii) of Hhrmander  [4] is satisfied. Hence 
Proposi t ion 3 is a consequence of [4], T h m .  12.8.1. We give the above proof since 
it is e lementary and constructive. 

L e m m a  9. Let P = Po + ico, where Po E IR[zl , . . . ,zn] and co E lR. If the 
principal part P2 of P is an indefinite quadratic form (hence has at least rank 
2) then ]R n is P-convex with bounds. 

Proof. After a real linear change of variables we may assume that  

P ( x l , . .  .,x,~) = xj - xj + + C, 
j=l j=r+l 

where L is a real linear form, C E �9 and r > 1, s ~ r-t- 1. If N E IR ~ \ {0} is 
characteristic for P then Proposi t ion 3 implies tha t  P(D)  admits  a fundamenta l  
solut ion EN satisfying S u p p E N  C H+(N) .  Hence the result follows from 
Proposi t ion 1 if we show that  for each x E IR" \ {0} there exists a characteristic 
vector N �9 IR n \ { 0 }  such that  x �9 H+(N).  To prove this, fix x = ( X l , . . . , X n )  
and consider the following cases: 

case 1: there exists s < j < n such tha t  xj 75 O. Then N := sign(xj)ej does 
the job.  

case 2: there exists 1 ~ j _< r such tha t  xj r 0. Then  let N := s ign(xj)ej  § 
Ae~, where ~ = 1 i fxs  >_ 0 and A = - 1  if x~ < 0. 

case 3: there exists r + 1 ~ j _< s such tha t  x i ~ 0. Then  let N := 
- s i g n ( x j ) e j  + #e l ,  where # = 1 if Xl >_ 0 and g = - 1  if xl < 0. 

T h e o r e m  2. Let P �9 ~[Z l , . . . ,  zn] be a polynomial of degree 2 in normal form 
(see Lemma 3). Then IR '~ is P-convex with bounds if and only if P satisfies the 
necessary conditions stated in Proposition 2. 

Proof. Assume that  P is of type (I) .  If r = s = 1 then P is an ordinary 
differential operator  in Xl. Hence its kernel in one variable admits  a topological 
complement .  Therefore, the result follows from Lemma 1 in this case. 

If s > r then the principal  par t  of P is indefinite. Hence the result follows 
from Lemma  9. 

If P is of type (II)  and  satisfies ~ �9 IR as well as s > r then its principal 
par t  is indefinite and P is real. Hence the result follows from Lemma 9. 

If P is a real polynomial  of degree 2 in n > 2 variables and if its principal part  
has at least rank 2 then the P-convexi ty  with bounds  of IR '~ can be characterized 
by a condi t ion on P and by other interest ing properties, as we will show next. 
To do so we need the following proposi t ion which is interesting on its own. 

P r o p o s i t i o n  4. Let N �9 IR ~ be a characteristic vector for P �9 ~ [ z , . . . ,  z~] and 
assume that the following two conditions are satisfied: 

1. IR n is P-convex with bounds 
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2. there exists a fundamental solution E in 7)'(JR n) for P(D) with Supp(E) C 
H_(N).  

Then H+(N) is P-convex with bounds. 

Proof. Without  restriction we can assume that  N = ( 0 , . . . , 0 , 1 ) ,  so that  
H+(N) = {z E IR" : x ,  > 0}. Then we choose a function r E 8(11(") 
with Supp(r  C {(x ' ,xn)  E ]R~ : xn _< 2exp(- Ix ' ]~)}  and r  = 1 for all 
z = (z ' ,  x , )  E IR" with x ,  _< exp(- ix '12) .  Next we fix a fundamental solution E 
for P(D) with Supp(E)  C H_(N),  according to (2). Then it is easy to check that  
for each f E C(H+(N)) ,  the convolution E * ( r  can be defined as an element 
of E(H+(N)) and that  the map f ~ E * ( r  is a continuous endomorphism of 
~(H+(N)). According to (1), there exists a continuous linear right inverse R for 
P(D) on ,~(]Ra). Therefore it is easy to check that  

S : f ~ E .  (Of) + R((1 - r  , f E ,~(H+), 

defines a right inverse for P(D) on S(H+(N)). Hence H+(N) is P-convex with 
bounds. 

Remark 3. Note tha t  Proposit ion 4 extends the sufficient results for the P-  
convexity with bounds of open half spaces that  were known so far, namely, 
[7], 3.2 (non-characteristic) and 3.6 (characteristic). 

T h e o r e m  3. Assume that P E ]R[xl, . . . ,  in] is of degree 2 and that its principal 
part P2 has at least rank 2. Then the following assertions are equivalent: 

1. JR" is P-convex with bounds 
2. P is not elliptic and each characteristic half space H+(N) is P-convex with 

bounds 
3. there exists an open half space H which is P-convex with bounds 
4. there exists an open set f2 ~ O in ]Rn which is P-convex with bounds 
5. P2 is indefinite. 

Proof. (1) ~ (2): By a classical result of Grothendieck (see [7], 2.11 for its 
extension), P is not elliptic since (1) holds. If U E JR" \ {0} is characteristic for 
P then Proposition 3 implies that  P(D) admits  a fundamental  solution that  has 
support  in H_(N).  This and (1) show that  the hypotheses of Proposition 4 are 
satisfied. Hence H+(N) is P-convex with bounds. 

(2) ::r (3) ::r (4): These implicat ions hold by obvious reasons. 
(4) ~ (5): We transform P into its normal form according to Lemma 3 and 

note that  condition (4) also holds for the transformed operator. By Lemma 7 its 
principal part  is an indefinite form. Since P and the transformed operator have 
equivalent principal parts,  (5) holds. 

(5) ~ (1): This holds by Lemma 9. 

C o r o l l a r y  1. For each non-constant polynomial P E ~[zl . . . . .  z,,] of degree 2 
the following assertions are equivalent: 

1. ]R" is P-convex with bounds 
2. there exists a basis { N1, . . . ,  Nn} of]R" and fundamental solutions Ep,.. . ,  E~ 

for P(D) satisfying Supp E~: C H+(Nj) for 1 < j < n 
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3. there exists a basis {N1 . . . .  ,Nn} ofIR ~ for which H=I:(Nj) is P-convex with 
bounds for all j 

,~. there exists an open half space H which is P-convex with bounds 
5. there exists a bounded convex open set f2 in IRn which is P-convex with 

bounds. 

Proof. (1) =:t, (2): By Lemma 2 and 3 we can assume that up to a constant 
factor and a real orthogonal change of variables, P2 is a quadratic form induced 
by a real diagonal matr ix  and that  the affine part  of P is as in Lemma 3. By 
Proposit ion 2 there are two cases: Either P2 is indefinite or P ( x l , . . . , x ~ )  -- 
ax~ + c where a E IR \ {0}, c E (E. If P2 is indefinite then the proof of Lemma 
9 shows that  N 1 , . . . ,  Nn exist and can be chosen to be characteristic for P.  
In the remaining case P admits  fundamental  solutions E+ having support in 
{x E IR" : q-z1 > 0, zj = 0 for 2 < j < n).  Hence (2) holds also in this case. 

(2) ::~ (3): By Proposit ion 1, the present hypothesis implies (1). Hence (3) 
follows from Proposit ion 4. 

(3) ==~ (4) and (5): This follows from the fact that  P-convexity with bounds 
is invariant under translat ions and finite intersections (see [7], 2.10). 

(4) or (5) ~ (1): This is an immediate  consequence of [7], 4.5, and [11], 2.11. 

Remark 4. In Franken and Meise [2], 3.6, it is shown that the conditions (2) 
and (5) of Corollary 1 are equivalent for each homogeneous polynomial P E 
r z.]. 

The following example shows that  Corollary 1 does not hold for arbitrary 
polynomials  without addit ional  hypotheses. 

Example 1. Let P E (g[zl, z2, z3] be given by P(Zl, z2, z3) = z13+z2+z3 . 3  3 Then IR3 
is P-convex with bounds while P(D)  does not admit  any fundamental solution 
E supported by a closed half space. 

To prove this note that  IR 3 is P-convex with bounds by [7], 4.9. If N E ]1~3 
is non-characteristic for P and if we assume that  P(D)  admits a fundamental 
solution E satisfying SuppE C H+(N)  then P is hyperbolic with respect to N, 
which is easily seen not to hold. Hence there is no such fundamental solution. 

If N E S 2 is characteristic for P then we use Hhrmander [5], Thm. 4.2, to 
show that  there is no fundamental  solution E E 29'(IR n) for P(D)  satisfying 
SuppE C H+(N).  By this theorem it suffices to show 

(1) there exists w E IR 3 so that  the polynomial r ~ P ( w + r N )  does not vanish 
identically and has some non-real zero. 

To prove (1) fix a characteristic vector N = (a, b, c) E S 2 and let w = (1, 1, 1). 
Then it is easy to check tha t  

P ( w + r g ) = 3 ( r  2 + ( a + b + c ) r + l ) ,  r E C .  (2) 

Because of 

we have 

sup ( ~ : ~ e S  2 = v ~ ,  
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< --- <i. 

H e n c e  t h e  e q u a t i o n  (2)  h a s  n o n - r e a l  zeros  for  e ach  N E S 2, a n d  c o n s e q u e n t l y  
(1)  ho lds .  

Remark 5. E x a m p l e  1 in c o n n e c t i o n  w i t h  F r a n k e n  a n d  Me i se  [2], T h m .  3.5, 

i m p l i e s  t h a t  n o  c o n v e x  o p e n  b o u n d e d  se t  in  IR 3 is P - c o n v e x  w i t h  b o u n d s  for t h e  
d i f f e r en t i a l  o p e r a t o r  

O 3 0 3 0 3 

Next let Q(D) denote this operator, acting on g(]R4). Then IR 4 is Q-convex 
with bounds and obviously Q(D) admits a fundamental solution supported by 
the hyperplane x4 = 0. Hence the open half spaces (x E IR 4 : +x4 > 0) are 
Q-convex with bounds by Proposition 4. However, the arguments which we used 
above imply that no bounded open set /2 in IR 4 is Q-convex with bounds. 
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