manuscripta math. 90, 449 - 464 (1996) manuscripta

mathematica
© Springer-Verlag 1996

Continuous linear right inverses for partial
differential operators of order 2 and fundamental
solutions in half spaces

Reinhold Meise!, B. Alan Taylor?, and Dietmar Vogt?3

1 Mathematisches Institut, Heinrich-Heine-Universitat, Universitatsstr.1,D-40225 Diisseldorf,
Germany

2 Department of Mathematics, University of Michigan, Angell Hall, Ann Arbor, MI 48109,
USA

3 Fachbereich Mathematik, Bergische Universitit, Gaufistr. 20, D-42097 Wuppertal, Germany

Received December 8, 1995;
in revised form April 23, 1996

Summary. Let P be a complex polynomial in n variables of degree 2 and
P(D) the corresponding partial differential operator with constant coefficients.
It is shown that P(D) : C*°(R") — C*(IR") admits a continuous linear right
inverse 1if and only if after a separation of variables and up to a complex factor
for some ¢ € € the polynomial P has the form

Pzy,...en) = Qx1, oy 2p) + L(zrgr, oy zn) + €

where either r = land L = 0or r > 1, Q and L are real and @ is indefinite. The
proof of this characterization is based on the general solution of the right inverse
problem for such operators and the fact that for each operator P(D) of the given
form and each characteristic vector N there exists a fundamental solution for
P(D) supported by {z € IR” : (z, N) > 0}, which can be constructed explicitely
using partial Fourier transform. The existence of sufficiently many fundamental
solutions with support in closed half spaces implies that some right inverse can be
given by a concrete formula. An example shows that the present characterization
is restricted to operators of order 2.

Subject Classifications: 35E20, 35E05, 47TF05

0. Introduction

In the early fifties L. Schwartz posed the problem to characterize those linear
partial differential operators P(D) that admit a (continuous linear) right inverse
on the Fréchet space £(§2) of all infinitely differentiable functions on an open
set £2 in IR" respectively on the space D'(§2) of all distributions on £2. This
problem was solved in [6], [7]. Its solution was extended to differential complexes
over convex sets 2 by Palamodov [12] and to nonquasianalytic classes and
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ultradistributions in [8] and [9]. The evaluation of the general solution leads
essentially to two cases that are handled by different methods. In the case of
convex open sets §2, including 2 = IR", the existence of a right inverse for
P(D) on &£(2) or D'(£2) is equivalent to the fact that a Phragmén-Lindelof
condition depending on {2, holds for the plurisubharmonic functions on the
variety V(P) := {z € € : P(z) = 0}. For a comprehensive study of these
Phragmén-Lindeldf conditions we refer to [11]. In the case of open sets £2 with a
non-empty C*-boundary it turns out that P(D) admits a right inverse on £(£2)
or D'(2) only if P is hyperbolic with respect to each non-characteristic vector
that is normal to 02 at some point. However, the case of a characteristic half
space {2 remained open.

In the present paper we give a more detailed characterization of the differen-
tial operators P(D) of order 2 that admit a right inverse on £(IR"). For such
operators, the property is equivalent to the existence of a basis {Ny,...,N,}
of IR” such that P(D) admits fundamental solutions Ef in D'(IR") that are
supported in the closed half spaces Hy4(N;) determined by N;,1 < j < n.
Moreover, it is equivalent to the existence of some bounded open convex set
2 in R" for which P(D) admits a right inverse on £(£2). An example shows
that these equivalences fail for operators of order 3. The existence of sufficiently
many fundamental solutions supported by half spaces implies that the existing
right inverse on £(IR") can be given by a formula, involving only a finite
partition of unity and convolutions with appropriate fundamental solutions that
are constructed explicitely.

To prove our characterization, we reduce the study of general quadratic
polynomials to certain normal forms. For these we derive necessary conditions
using results from [11] and Holmgren’s uniqueness theorem. To show that these
necessary conditions are also sufficient, we prove that each polynomial which is of
degree 2 and real up to a possibly complex additive constant admits fundamental
solutions supported by any characteristic closed half space. This result can be
easily proved by applying Hérmander’s sophisticated characterization of the
operators admitting fundamental solutions with support in a characteristic half
space [4], Thm. 12.8.1. The intent is to give a simple, explicit formula for these
fundamental solutions.

Acknowledgement. Part of the work for this article was done while the first and last named
authors stayed at the Erwin Schrddinger Institute of Mathematical Physics in spring 1995.
They both thank the institute for support and hospitality. The second author gratefully
acknowledges support of his work by an award of the Alexander von Humboldt Stiftung.

1. Preliminaries

In this section we fix the notation and recall some results which will be used
subsequently.

Definition 1. Let £2 be an open subset of R™. Then £(12) denotes the complex
vector space of all infinitely differentiable functions on 2, endowed with the
Fréchet-space topology of uniform convergence of all derivatives on all compact
subsets of £2. Also, D(R2) denotes the space of all functions in £(£2) whick have
compact support in 2. It is endowed with the standard (LF)-space topology. Its
dual space D'(£2) 1s the space of all distributions on §2.
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By €[z, ..., 2,] we denote the ring of all complex polynomialsin n variables,
which will be also regarded as functions on €". For P € C[zy,.. ., z4],
P(z) = Z as2%,
jalgm

with 37,12, laa] # 0, we call

Ppizr Z aq2”
jal=m
the principal part of P. Note that P,, is a homogeneous polynomial of degree
m.
For P € C[zy,...,2,] and an open set £2 in IR" we define the linear partial
differential operator

P(D):D'(2) - D'(2), P(D)f:= Z agi™lol o),

lal<m

Then P(D) is a continuous endomorphism of D'(§2) and its restriction to £(§2)
is a continuous endomorphism of £(£2).

A distribution E in D'(IR") is called a fundamental solution for P(D) if
P(D)E = §, where § denotes the point evaluation at zero.

A vector N € IR \ {0} is called non-characteristic for P € C{zy,...,2,] if
Pn(N) # 0. P(D) or P is called hyperbolic with respect to N € IR" if N is
non-characteristic for P and if P(D) admits a fundamental solution E € D'(IR")
satisfying Supp £ C H4(N), where

Hy(N):={z € R": £(z,N) > 0}.
P(D) or P is called hyperbolic if it is hyperbolic with respect to some vector
N e R".

We will say that P(D) admits a right inverse on £(£2) (resp. on D'(£2)) if there
exists a continuous linear map R : £(2) — &£(2) (resp. R : D(2) — D'(2))
so that P(D)o R = idg(qy (resp. = idpr(q)). By (8], 2.10, P(D) admits a right
inverse on D’(§2) if and only if P{D) admits a right inverse on £(§2). If this is
the case the open set {2 is said to be P-convex with bounds. Note that [§], 2.10,

also shows that many other properties are equivalent for £2 to be P-convex with
bounds.

To state several conditions which are equivalent to IR™ being P-convex with
bounds and which are needed subsequently, we recall the following definition.

Definition 2. Let P € C[zy,...,2,] be non-constant. Then the zero variely of
P is defined as
V(P):={ze€C": P(z) =0}.
A function u: V(P) — [—o00,00][ is called plurisubharmonic (psh), if it is locally
bounded from above and plurisubharmonic in the usual sense at all regular points
Vieg C V. We assume in the sequel that at the singular points Vying C V we have
u(z) = limsup u(€) for all z € Viing.

€ Vxe; E—z

By PSH(V(P)) we denote the set of all psh functions on V(P) which satisfy
this condition.
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By [7], 4.6, and 2.10 and [6] we have:

Theorem 1. For each non-constant polynomial P € Clz1, ..., z4] the following
assertions are equivalent:

1. BR" is P-convez with bounds.

2. For each r > 0 there exists R > 0 such that for each & € R™ with |§| > R
there erists E € D'(IR™) satisfying P(D)E = § and SuppE C {z € R" :
2~ > ).

3. V(P) satisfies the following Phragmén-Lindeldf condition PL(log): There
exists A > 0 such that for each p > 0 there exists B, > 0 such that each
u € PSH(V(P)) satisfying () and (B) also satisfies (y), where
() u(z) <9z]+ O(log(2 + |2]%)), z € V(P)

(8) u(z) < pIS2l, 2 € V(P)
(8) u(z) < A9z + B, log(2 + [212), = € V(P).

The following proposition shows that under appropriate hypotheses a right
inverse for P(D) on £(IR") can be obtained by an explicit construction.

Proposition 1. Assume that P € @[z, ...,2,] admits fundamental solutions
Ey,...,Ex € D'(IR") so that Supp E; C R™ \ I}, where I'; is an open convez
cone with veriez at zero for 1 < j < k. IfU;?=1Fj covers the unit sphere of IR™
then R™ is P-convez with bounds.

Proof. Fix any fundamental solution Fy for P(D) and denote by Iy the open
unit ball in IR™. Then choose a C*-partition of unity (y; )}Czo subordinate to

the cover (—I;)5., of IR" and define

k
R(f) =) Ej=*(pif).

j=0

Then it is easy to check that R is a continuous linear right inverse for P(D) on
E(IR") and also on D'(IR").

The following lemma is obvious, since E(IR**¥) can be identified in a natural
way with the space of all C®-functions on IR¥ with values in £(IR™).

Lemma 1. Let P € @[z, ..., z,) be non-constant and define Q(z1,. .., zn4x) :=
P(z1,...,2). Then R" is P-convez with bounds if and only if R™* is Q-conver
with bounds.

2. Necessary conditions for differential operators of order two

In this section we derive necessary conditions on a polynomial P of degree
two, that JR™ is P-convex with bounds. To do this we show that it suffices
to consider operators having a certain normal form. Then we discuss these
normal forms using the Phragmén-Lindeldf condition stated in Theorem 1 and
Holmgren’s uniqueness theorem to get the desired necessary conditions. They
are also sufficient, as we will show in the next section.

First we note that each polynomial P of degree two for which IR” is P-convex
with bounds has a specific principal part.
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Lemma 2. Let P € @[z1,...,2,] be of degree m > 0 and denote by Py, ils
principal part. If R™ is P-conver with bounds then there exists A € € so that
AP, is real.

Proof. If R" is P-convex with bounds, then it follows from Theorem 1 and [11],
4.1, that IR" is also P,,-convex with bounds. By {11}, 2.6, each irreducible factor
S of P also has this property. Hence V(S) satisfies the Phragmén-Lindelof
condition PL(log) stated in Theorem 1 Since S is homogeneous, {11], 3.3, implies
that V(S) even satisfies the following condition (PL): There exists A > 1 such
that u € PSH(V(S)) which satisfies

u(z) < |Qz] + of|z]), z€ V(S) and

u(z) <0, z€ V(S)NIR"?
also satisfies

u(z) < A|Sz|, z € V(9).

Now fix Q € @{zy,...,2,] and assume that Q[y(s)nm~ = 0. We claim that Q
vanishes on V(S). Arguing by contradiction, assume there exists zo € V(S) such
that Q(zo) # 0. This implies 25 € V(S) \ IR", hence there exists p > 0 such
that log| pQ(z0)] > A|S20|. Now note that v(z) :=log| pQ(z)| satisfies the two
hypotheses of (PL) and hence also the conclusion, which contradicts our choice
of p. Consequently, @ |v(sy = 0. Since S is irreducible, we get @ = R - S for
some R € Q[z1,..., z,]. Applying this to @ := Re(S), we obtain Re(S) = Ry- S,
where R has to be a constant. Since S was any irreducible factor of P, the
proof of the lemma is complete.

Because of Lemma 2 it suffices to consider only polynomials with real
principal part when we want to determine all polynomials P of degree 2 for
which IR™ is P-convex with bounds. The following lemma shows that we can
reduce the general case to the consideration of certain normal forms.

Lemma 3. Let Q € @z, ..., 2,) have degree 2 and real principal part. Then

there ezist a real matriz A € GL(IR") and a € C" so that P(z) := Q(Az + a)
has one of the following normal forms:

(I) P(z)= jz;:l zJ2 —

(D) P()=Y -
i=1

22+C, 1<r<s<n, CeC
22+ Az 1<r<s<n—1, A€ C\{0}

.
(III) P(z)= sz— 3 zf+iz,+1+z,+g, 1<r<s<n—-2.
ST fs

Further, we have:

(i) An open set 2 in R is Q-convez with bounds if and only if A'Q2 = {A'z :
z € 2} is P-conver with bounds

(i) Q(D) has a fundamental solution supported in a (characteristic) half space
H if and only if P(D) has a fundamental solution supported in A'H =
{Alz:z € H}.
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Proof. Since the principal part of Q is of degree 2 and real it is the quadratic
form of a real symmetric matrix. Hence there exists a real change of variables
so that in these variables we have

Q2) = Zz - Z z2+L(z1,...,zn)+C

j=r+l1

where 0 < r < s < n, L is a C-linear form and C € C. Replacing @ by —@Q if
necessary, we can assume 1 <r<s<n.
If L =0 then Q already is of type (I). Therefore we can assume that

L(z) =Y bjz; for some be C", b#0.
i=1
Next fix a € € and note that

3

(*) Q(z+a) = sz?— Z z +Z(b + 2a;)z; + Z (bj — 2a;)z;

j=r+1 j=1 j=r4l
n
+ Z ijj +C’
j=s+1
r s n
where C’ ::C+Za? - E a?—i-}:ajbj
j=1 j=r+1 j=1

Then we consider the following two cases:

case l:s=nors<nandbj=0fors+1<j<n

Thenleta_, :=—~b forl<_7<r aj 1= —b forr+1<j5<s anda, =0
fors+1<j<n. By (*) this choice implies that P(z) = Q(z + a) is of type
I
(- case 2: s < n and there exists k with s+ 1 < k <n and b # 0.
Then define g; for j # k as in case 1 and let

r s s
ag ::—% C+Za]2-— Z a?+2ajbj).
j=1 j=1

j=r+1

With this choice we get from (*) that

Qz+a)= Zz -~ Z z + (2541, s 2n)

j=r+1

where [ is a non-trivial ¢-linear form in n — s variables. If the range of the
R-linear map | : IR"™* — € has real dimension one we can find a real linear
change A’ of the variables z,41, ..., 2, S0 that in the new variables Pag1y - Pr WE
have I(p) = Aps41 for some A € (I}\{O} Hence P(z) := Q(A'(z + a)) is of type
(II) in this case.

If the range of I : IR*~* — C has real dimension two then we can find a real
linear change A’ of the variables z,41, ..., zn s0 that P(z) := Q(A'(z + a)) is of
type (III).
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The assertions (i) and (ii) are simple properties of how the symbols Q(z) :=
e"'(”")Q(D)e"("”) behave under linear transformations and multiplication by
exponentials. For, if A € GL(IR") then A* : IR® — IR" induces the pull-back
map (A")" on functions by (A!)* : £(A'§2) — £(£2) that defines the constant
coeflicient operator P(D) = (A™*)* o Q(D) o (A')* acting on (A £2) whose
symbolis P(z) = Q(Az). Similarly, P(2) = Q(z+a) is the symbol of the operator
P(D) = M_,0Q(D)oM,, where My(f) : z — €' f(z) is multiplication by e**.
Both these maps clearly transform right inverses of Q(D) to ones for P(D) and
vice-versa, which implies (i). Similarly, supports of distributions are transformed
as indicated in (ii).

Lemma 4. Forn € N let P € C[s,t,w,...,w,] have the form

P(s,t,w) = s+ put + ZE]"LU]?
i=1

where A € C\IR, p € R ande; = %1 for1 < j < n. Then IR**" is not P-conver
with bounds.

Proof. To argue by contradiction, assume that IR?*™ is P-convex with bounds.
Then, by Theorem 1, the variety V(P) satisfies the condition PL(log) for certain
constants A > 0 and B, > 0 for p > 0. Let ¢g := 2(A +2) and note that without
restriction we can assume €, = —1,|p] < 1 and A = €', where § < p < 71— §
for some 6 satisfying 0 < é < %. Then for R > 0 we let

zr = (R2,0,€¥/2R,0,...,0).

Note that Szg = Rsin £ and that P(zg) = 0, i.e. zr € V(P). We claim the
following:

(1) There exist Ry > 0 and M > 0 so that for R > Ry each z € V(P) satisfying
|z — zr{ < to|Qzg| already satisfies |Szg| < M|[Qz].

If (1) holds then [11], 4.7, (note that ¢ = %, by [10], 3.5) for w(t) = log(2 + |¢])

implies the existence of B’ > 0 such that

(2) Rsin% < IS92r| € Biataym1w(zr) < B'w(R?) = B'log(2 + R?)
for all R > Rq.

Since this is a contradiction, our assumption was wrong. Hence IR?t" is not
P-convex with bounds.

. 8n(1 sin £ 8
To prove (1) let 7 := #gsin %,M = —71(—4__—?————2— and choose Ry > — Té
sin 2 sin 3

so large that each p € € satisfying |p — 1| < gz- has the form p = |plete for
some « € IR with |a] < 552—. Next fix R > Rp and z = (s,t,wy,...,ws) in V(P)
satisfying

(3) |z — 2zr] € TR = t0|Qzg|.

From the definition of zp and (3) we get

|s — R% < 7R and hence ‘}% —ll <
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By our choice of Rp this implies s = |s|e!® for some a with |a| < %, and it also
implies

2 _ _p2f1_T R_2
(4) Is|> R?~ 7R = 2 (1 R)Z2'

From (3) and the definition of zg we derive
5) [t < TR and [wj] < (1+7)R, 1<j<n.
sin%

mR, Since z is in V(P) we have

Now assume that max ISw;| <
J=1l,...,n

(6) [s|sin(p + a) = FAs = — (#Si + Zfig(wf)) ‘

j=1
If w; = |w;le’¥i for 1 < j < n then
(M) I1S(w)] = Jw; || sin 2p;| = 2{w;|?| sin g; cos ;| = 2|Sw;||wj].
Since |a] < %, we get from (4) - (7) and our assumption

2

R smé < [SAs) < |t 43 2 —2R?< ( i

T g . 6 3
—< 2 —
4)R512_8Rsm

9 Rsind 5

From this contradiction we conclude that our assumption was wrong. Hence
there exists k with 1 < k < n satisfying

)

sin 3 1 sin 5
Sy | > Z__R= 2
ISwil 2 8n(l+71) 8n(l+r)sin¥

Obviously, this implies that (1) holds.

(921l = 2192l

Remark 1. Note that the proof of Lemma 4 also shows the following: Whenever
w is a weight function as defined in [8], 1.1, which satisfies log(t) = o(w(t)) as ¢
tends to co and if P is as in Lemma 4 then P(D) does not admit a continuous
linear right inverse on &(,)(IR") and also not on D(,\(IR"). Here &y)(R")
denotes the Fréchet-space of (w)-ultradifferentiable functions and ’DEw)(IR")
denotes the (w)-ultradistributions on IR"™ (see [8], 1.3, for the corresponding
definitions).

The following lemma is an easy consequence of Holmgren’s uniqueness
Theorem as it is stated in Hormander [4], Thm. 8.6.8. For its formulation we let
MLt ={zeR":(z,m)=0forall me M}, if M # 0 is a subset of R".

Lemma 5. Let P € Cfzy,...,2s] be non-constant, let Py, denote its principal
part and assume that

C:={N €R": P,(N) =0}* # {0}.
Then for any pair w, 2 of open subsets of R"™ with § # w C £ the set
Uw={z€R: thereezists £€w suchthat [{,z]C 2, z~€€C}

is open and each T' € D'(£2) satisfying P(D)T = 0 and T\, = 0 also safisfies
Ty = 0.
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Lemma 6. Let P and C be as in Lemma 5. If dimg C > 2 then no open set 2
in IR" is P-conver with bounds.

Proof. Arguing by contradiction, we assume that there exists an open set 2 #
@ in IR™ which is P-convex with bounds. Let R : D'(£2) — D'(£2) denote a
continuous linear right inverse for P(D) on D’(§2). Then fix a relatively compact
open subset w # @ of 2 and note that by the continuity estimates for R there
exists a relatively compact set w’ in 2, w' D w such that for zo € 2\ w’ the
distribution E;, := R(é;,) satisfies Ez,|, = 0.

Next fix £ € w and a one-dimensional linear subspace g of C, let I denote
the connected component of € in (£ + ¢) N 2 and fix zo € I\ w'. Then apply
Lemma 5 with w and 2\ {z¢} to E,, and get an open neighborhood V of zg
such that V C {2 and

VNSuppEs, C{+t(zo—&):t>13NV=MnV.

Next choose & € V \ M sufficiently close to zo and another one-dimensional
linear subspace g; of C satisfying gy # g. Then apply Lemma 5 with V\ M
and V \ {z0} to E;, to get an open neighborhood W C V of zg such that
Supp(Ez.lw) = {z0}. Choose ¢ € D(W) satisfying v = 1 on some neighborhood
of zg and let T := (pEy,) * 6_5,. Then P(D)T = é and SuppT = {0}. Since
such a distribution T does not exist, we derived a contradiction.

Lemma 7. Forn > 2 and k> 1 let P € Clws,. .., Wnyk] be of the form

n n+k
Pw)=) ejwi+ Y ajw;
ji=1 j=n+1

wheree; =1 for1<j<nanda; € C forn+1<j<n+k. Ifthere exists an
open set 2 # O in R™ which is P-convez with bounds then there exists 1 <1< n
with &) # €1.

Proof. If all €; have the same sign then
{(NeR"™ . P(N)=0}={we R 1w, = = w, =0}.

Hence the real dimension of C = {N € IR** : P,(N) = 0}* is at least 2.
Therefore the result follows from Lemma 6 by contraposition.

Proposition 2. Let P € @[z1,...,2,] be of one of three types stated in Lemma
3 then R"™ is P-convex with bounds only if the following conditions are satisfied:

IfPisoftype (I):r=s5=1o0rs>r.
If P is of type (II): A€ R and s > r.

Proof. (1): By Lemma 1 we can assume s = n. If s = r > 2 then R” is not
P-convex with bounds by Lemma 6.

(II): By Lemma 1 we can assume s + 1 = n. If IR® is P-convex with bounds
it follows from Theorem 1 and Lemma 4 that A has to be real.

If r = 1and s = r then P(21,23) = 2z} + Azg for some A € R\ {0}. By
Hérmander [4], Thm. 12.4.6, P is not hyperbolic. Hence IR? is not P-convex
with bounds by {7], Thm. 4.11.
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If r > 2 and s = r, we consider P as a polynomial in s + 2 variables. By
Lemma 7, IR**? is not P-convex with (w)-bounds. Hence IR" is not P-convex
with bounds by Lemma 1.

(I11): From Theorem 1, Lemma 1 and Lemma 4 it follows that IR™ is not
P-convex with bounds in this case.

In the next section we show that the necessary conditions of Proposition 2
are also sufficient.

3. Fundamental solutions supported by a characteristic half space

In this section we characterize the polynomials P of degree 2 for which IR” is
P-convex with bounds by proving the converse of Proposition 2. The essential
step in the proof is based on the following lemma.

Lemma 8. For A € € define the polynomial @Q(A, ) € Clz1, z2] by Q(A, 21, 22) =
z1z2 + A. Then there exists a function E in Lo joc(T X IRZ) salisfying

() IEO&.&) <exp (VIERNEN), 6 >0, & €R
such that E(},-) is a fundamental solution for Q(X, D) which satisfies
SuppE(},-) C {(&1,€2) € R : &1 > 0}.

Proof. Let Jo denote the Bessel function of order zero, i.e.

m

— - (_—1)7] 2n __ 1 it sin ¢
Jg(t)_Z:Olln(n!)zt =5 eltsinéqe

-7

(see e.g. Courant and Hilbert [1], Kap. VII, (10) and (21)). We define

o0 /\"
P(M6&1,&) = Jo(iVA-VEibs) =) €06
n=0

] — (n!)?

- L exp(=2V /€1 €2 sin ¢)d(

27 J_

and note that P is analytic in A, £; and &,.

To estimate the modulus of P, fix A € © with ReA < 0 and let VA =
« + i, where a, f are real. Then a? — % = ReA < 0 implies |a| < |f], hence
2|a|? < 2|afB] = |SA] and consequently |[Rev/A| = |a| < /|SA]/2. Now use this
to estimate the integral representation for P and to get

POV &) < exp (VEEISATEal) if ReA < 0,620, &2 0,

Since P(X,€1,€2) = P(—A, &1, —&,), the same estimate holds if ReA > 0,& > 0
and £, < 0.
Next let
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—P()\,6,8) if & >0,62>0 and Red <0
E(X\&1,8):=< P(A&,8)  if £ >0,62<0 and ReA >0

0 otherwise

Then E is in Leg joc(T % IRQ), satisfies (*) and vanishes whenever & < 0. Hence
the proof of the lemma is complete if we show Q(A, D)E(},-) = 6. To do this fix
A € € with ReX < 0 and note that

opP 2P

Consequently, we have for each ¢ € D(IRZ):
(@A, DYEQ, )¢ E(, QA —-D)p)

I / —P(, )( g +)\<p> d&dfz

9P
/ 9 (0 §2)dEs — / T (/\) d€1d€2+

[T PO pdedes
o Jo
= ¢(0) = 6(p).
The case ReA > 0 follows by the same arguments.

P(/\,O:fz) = 13 (A 51162) - )‘P(’\ 61)62)

Proposition 3. Forn > 2 assume that P € Q[zy, ..., 2z,] has degree 2 and that
P = Py +ic, where Py € R[z1,...,2,) and ¢ € R. Then for each characteristic
vector N # 0 there ezists a fundamental solution E for P(D) satisfying SuppFE C
H,(N).

Proof. If P admits a characteristic vector N we may assume without restriction
that N = e; and hence

H(N)={zeR":2, >0} = H
Moreover, P has the form

P(§) = &1A(E) + Pu(E) +ic,

where A is a real affine form and P; a real polynomial, both depending only on
= (é2,...,&n). Now distinguish the following three cases:

case 1: A=0

case 2: A is a real constant
case 3: A is not constant,

in which different arguments are applied. case 1: Choose a fundamental solution
E, eD (IRn ) for Pi(D')+ic and note that E := §,, ® E1(z’) has the required
properties in the present case.

case 2: For ¢ € D(IR") denote by @ its partial Fourier transform with respect

to z', i.e.
1 n-1 o
(-’Cl,f ) = (2‘[’) / ” e_i(x 4 )‘p(zl) .’El)d.’l)’,
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and define
oo
E(p) := (2m)*~! / { / exp(—i(Py(—¢') + ic)%)@(zl,f’)dxl} de.
R~ LJo

To see that the integral exists, note that Supp@ C [—a,a] x IR*™! for some
a > 0 and that

A Pu(—€) 4 i) EL )
exp( z(Pl(—£)+zc)A) ‘ < exp ( 7 ),
since Py is real. From this it follows easily that £ isin D'(IR") and that SuppE C
H. Using integration by parts and Fourier’s inversion formula, one obtains that
E is a fundamental solution for P(D).

case 3: After a real linear change in the &’ variables, we may assume that
A(€') =& + a for some a € IR. Hence P has the form

P(¢) E1(Ea + a) + bE3 + £ L(E") + Po(€") +ic
(61 + L(€") — 2ab)(&2 + a) + b(€2 + a)* + P3(€") + ic,

where b is a real number, L is a real affine form and P,, P5 are real polynomials
in £ = (£3,...,&s). Next fix ¢ € D(IR?) and let & denote its partial Fourier
transform with respect to z”. Then define

Hl

+00 oo
Fios= @™ o /_oo /o exp (—i (L(~€") — 2ab) 21 + a(bz; + 22))-

B (P3(—€”) + iC, 1, 1?2) 8’5 (zl) bxl + mz,ﬁ'/)d:z:ldx?_df",

where E(), z1,%3) denotes the function from Lemma 8._Using this lemma, it
is easy to check that F is in D'(IR") and SuppF C H. To show that F is

a fundamental solution for P(D), fix x € C?(IR?) and note that for any real
number R

Dy Dy (exp(—i(Rzy + a(bzy + z2)) x (21, bz + 73))
= exp(—i(Rz; + a(bz, + z2))
{(=D1 + R)(=Ds + a) + (= D2 + a)?) x} (21, br1 + z2).

Note further that for ¢ € D(R"), ¢ := P(~D)¢ and R := L(—£") — 2ab we
have

Be122,6) = ({(=Di+B)(=Dy+a)+b(~Ds + )’} §) (1, 22,€")
+ (P3(—€") + ic) Y(z1, 22, €").
Hence

exp (—i{Rzy + a(bzy + z3)) & (=1, bzy +f2,f”)E(P3(-€") + ic, ), z3)
= {D]_DQ (exp(—i(Rzl + a(bzy + z3))Y(x1, bz + xz,f"))

+exp(—(Rzy + a(bzy + 22))(Ps(—€") + ic)lz(zl,xg,ﬁ”)}
'E(P3('—-€”) + iC, z1, .’L'z).

By our choice of E(},-), this implies
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(PDIF)W) = Flg) = 2oy~ [ 50,0,¢"de" = w(0),

by Fourier’s inversion formula. Hence F' has all the required properties.

Remark 2. It is easy to check that in all the cases which we discuss in the
proof of Proposition 3, condition 12.8.1 (iii) of Hormander [4] is satisfied. Hence
Proposition J is a consequence of [4], Thm. 12.8.1. We give the above proof since
it is elementary and constructive.

Lemma 9. Let P = Py + ico, where Py € Rz, ...,2,] and ¢o € R. If the
principal part Py of P is an indefinite quadratic form (hence has at least rank
2) then R™ is P-convez with bounds.

Proof. After a real linear change of variables we may assume that

P(zy,...,zn) =Y 2l ~ > 2l +L(z)+C,
ji=1

j=r+41

where L is a real linear form, C € Candr > 1, s >r+ 1. If N € R"\ {0} is
characteristic for P then Proposition 3 implies that P(D) admits a fundamental
solution En satisfying Supp Ey C H4(N). Hence the result follows from
Proposition 1 if we show that for each # € IR" \ {0} there exists a characteristic
vector N € IR" \ {0} such that z € H{(N). To prove this, fix £ = (z1,...,25)
and consider the following cases:

case 1: there exists s < j < n such that z; # 0. Then N := sign(z;)e; does
the job.

case 2: there exists 1 < j < r such that z; # 0. Then let N :=sign(z;)e; +
Aey, where A=1ifz, > 0and A = -1if z, < 0.

case 3: there exists  +1 < j < s such that z; # 0. Then let N :=
—sign(z;)e; + pey, where p=1if z; > 0 and p = -1 if 2y < 0.

Theorem 2. Let P € @(zy,...,2,] be a polynomial of degree 2 in normal form
(see Lemma 8). Then IR” is P-convez with bounds if and only if P satisfies the
necessary conditions stated in Proposilion 2.

Proof. Assume that P is of type (I). If » = s = 1 then P is an ordinary
differential operator in z;. Hence its kernel in one variable admits a topological
complement. Therefore, the result follows from Lemma 1 in this case.

If s > r then the principal part of P is indefinite. Hence the result follows
from Lemma 9.

If P is of type (II) and satisfies A € IR as well as s > r then its principal
part is indefinite and P is real. Hence the result follows from Lemma 9.

If P is a real polynomial of degree 2 in n > 2 variables and if its principal part
has at least rank 2 then the P-convexity with bounds of IR™ can be characterized
by a condition on P and by other interesting properties, as we will show next.
To do so we need the following proposition which is interesting on its own.

Proposition 4. Let N € IR" be a characieristic vector for P € Cz,..., 25} and
assume that the following two conditions are satisfied:

1. R" is P-convez with bounds
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2. there exists a fundamental solution E in D'(IR") for P(D) with Supp(E) C
H_(N).

Then Hi(NY) is P-conver with bounds.

Proof. Without restriction we can assume that N = (0,...,0,1), so that
Hi(N) = {& € R" : z, > 0}. Then we choose a function ¢ € E(IR")
with Supp(¢) C {(z',z4) € R" : z, < 2exp(—|z’|?)} and ¢(z) = 1 for all
z = (z',z,) € R® with z, < exp(—|z’|?). Next we fix a fundamental solution £
for P(D) with Supp(E) C H-(N), according to (2). Then it is easy to check that
for each f € E(H4(NN)), the convolution E * (¢ f) can be defined as an element
of E(H4+(N)) and that the map f — E x (¢f) is a continuous endomorphism of
E(H(N)). According to (1), there exists a continuous linear right inverse R for
P(D) on E(IR™). Therefore it is easy to check that

St f—Ex@f)+R(1—-9)Hlu,vy , FEEH),

defines a right inverse for P(D) on E(H(N)). Hence Hy(N) is P-convex with
bounds.

Remark 8. Note that Proposition 4 extends the sufficient results for the P-
convexity with bounds of open half spaces that were known so far, namely,
[7], 3.2 (non-characteristic) and 3.6 (characteristic).

Theorem 3. Assume that P € R{z1,...,z,] is of degree 2 and that its principal
part Py has at least rank 2. Then the following assertions are equivalent:

1. R" is P-convez with bounds

2. P is not elliptic and each characteristic half space H(N) is P-conver with
bounds

3. there exists an open half space H which is P-convexr with bounds

4. there exists an open set 2 # 0 in IR™ which is P-conver with bounds

5. P, is indefinite.

Proof. (1) = (2): By a classical result of Grothendieck (see [7}, 2.11 for its
extension), P is not elliptic since (1) holds. If N € R" \ {0} is characteristic for
P then Proposition 3 implies that P(D) admits a fundamental solution that has
support in H_(N). This and (1) show that the hypotheses of Proposition 4 are
satisfied. Hence Hy(N) is P-convex with bounds.

(2) = (3) = (4): These implications hold by obvious reasons.

(4) = (5): We transform P into its normal form according to Lemma 3 and
note that condition (4) also holds for the transformed operator. By Lemma 7 its
principal part is an indefinite form. Since P and the transformed operator have
equivalent principal parts, (5) holds.

(5) = (1): This holds by Lemma 9.

Corollary 1. For each non-constant polynomial P € Q[z1,...,z,] of degree 2
the following assertions are equivalent:

1. R is P-convez with bounds
2. there exists a basis {N1,..., No} of R” and fundamental solutions Eli, o BX
for P(D) satisfying Supp E]:E C Hi(Nj) for1<j<n
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3. there exists a basis {N1,...,Nn} of IR® for which Hy(N;) is P-convez with
bounds for all j

4. there exists an open half space H which is P-convez with bounds

5. there exists a bounded conver open set §2 in R™ which is P-conver with
bounds.

Proof. (1) = (2): By Lemma 2 and 3 we can assume that up to a constant
factor and a real orthogonal change of variables, P; is a quadratic form induced
by a real diagonal matrix and that the affine part of P is as in Lemma 3. By
Proposition 2 there are two cases: Either P, is indefinite or P(z1,...,2,) =
az} + ¢ where a € R\ {0}, ¢ € €. If P, is indefinite then the proof of Lemma
9 shows that Ny,..., N, exist and can be chosen to be characteristic for P.
In the remaining case P admits fundamental solutions E1 having support in
{z € R" : £z, > 0,z; =0 for 2 < j < n}. Hence (2) holds also in this case.

(2) = (3): By Proposition 1, the present hypothesis implies {1). Hence (3)
follows from Proposition 4.

(3) = (4) and (5): This follows from the fact that P-convexity with bounds
is invariant under translations and finite intersections (see [7], 2.10).

(4) or (5) = (1): This is an immediate consequence of 7], 4.5, and [11], 2.11.

Remark 4. In Franken and Meise [2], 3.6, it is shown that the conditions (2)
and (5) of Corollary 1 are equivalent for each homogeneous polynomial P &

Clz1, ..., 2zn).

The following example shows that Corollary 1 does not hold for arbitrary
polynomials without additional hypotheses.

Ezample 1. Let P € ©[z1, 22, 23] be given by P(z1, 22, 23) = 2§+ 23+23. Then R3
is P-convex with bounds while P(D) does not admit any fundamental solution
E supported by a closed half space.

To prove this note that IR® is P-convex with bounds by [7}, 4.9. If N € R?
is non-characteristic for P and if we assume that P(D) admits a fundamental
solution E satisfying SuppE C H4(N) then P is hyperbolic with respect to N,
which is easily seen not to hold. Hence there is no such fundamental solution.

If N € S? is characteristic for P then we use Hormander [5], Thm. 4.2, to
show that there is no fundamental solution E € D'(R") for P(D) satisfying

SuppE C H4(N). By this theorem it suffices to show

(1) there exists w € IR? so that the polynomial 7 —+ P(w+ 7N) does not vanish
identically and has some non-real zero.

To prove (1) fix a characteristic vector N = (a,b,c) € S? and let w = (1,1,1).
Then it is easy to check that

(2) Pw+rtN)=3(r*+(a+b+c)r+1), T€C.

Because of
3
sup {Zﬁj €€ 52} = /3,
ji=1

we have
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9 2
atb+e\" [v8) 3
2 - 2 4

Hence the equation (2) has non-real zeros for each N € S?, and consequently

(1) holds.

Remark 5. Example 1 in connection with Franken and Meise [2], Thm. 3.5,
implies that no convex open bounded set in IR? is P-convex with bounds for the

differential operator
AN AN A
(=) + @) + (&)

Next let Q(D) denote this operator, acting on £(IR*). Then R* is Q-convex
with bounds and obviously @(D) admits a fundamental solution supported by
the hyperplane z4 = 0. Hence the open half spaces {z € IR* : £z4 > 0} are
@-convex with bounds by Proposition 4. However, the arguments which we used
above imply that no bounded open set £2 in IR* is Q-convex with bounds.
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