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Abntract. Characterizations are given of those linear partial differential operators with constant 

coefficients which admit a continuous linear right inveme on c,,,(n) (reap. &f,)(R)) and/or D;,,(R) 

(resp. 'Diw)(R)), where R is an open set in R". The characterications are in the same spirit aa in 

the previous results of the authors on the existence of right inverses on Cm(R) and/or 'D'(R). 

0. Introduction 

In the early fifties L. SCHWARTZ posed the problem of determining when a linear 
differential operator P(D) with constant coefficients admits a (continuous linear) right 
inverse on &(R) or D'(R), R an open subset of R". This problem was solved by the 
present authors in [17] (see also [15], [16]) and for systems over convex open sets by 
PALAMODOV (23). 

In the present article we consider the same problem for the non - quasianalytic classes 
of Beurling type &(u)(!2), of Roumieu type &{,)(R) and for the corresponding classes 
of ultradistributions DD;u,(R) and Diu,(R), where w is a weight function in the sense 
of BRAUN, MEISE and TAYLOR (6). Extending our results in [li'), we characterize by 
various conditions when a given operator P ( D )  admits a right inverse on any of these 
classes. In particular, we show that P ( D )  admits a right inverse on t&)(R) (resp. 

&ju,(R)) if and only if it admits a right inverse on DD;w,(R) (resp. Diul(R)). A 
consequence of our characterization is that P ( D )  admits a right inverse on Diu,(R) if 
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and only if there exists a weight function n satisfying n = O(w)  such that P ( D )  admits 
a right inverse on DD;.,(R). Hence the Itoumieu case can be reduced to  the Beurling 
case. The proof of these results - to a certain extent - can be given by variations of the 
arguments that we used in [17]. However, as a new ingredient we need a recent result 
of BRAUN [3] on the local structure of ultradistributions, which extends an earlier one 
of KOMATSU [13]. Also we make extensive use of the results in [S]. 

To evaluate our characterization further, two cases are distinguished that are treated 
by different methods. For a bounded open set R with C' -boundary, an application of 
Holmgren's uniqueness theorem shows that P ( D )  has a right inverse on DD;w,(f2) only 
if P(D) is (w)-hyperbolic with respect to each non-characteristic vector N in the 
sense that there exists a fundamental solution EN E DD;w,(lRn) for P ( D )  which satisfies 
S u p p E ~  c {z E R" : ( z , N )  3 0). Using results on (w)-hyperbolic operators from 
[21], we show that an operator P(D)  admits a right inverse on DD;w,(R) for some 
bounded open set R with C' -boundary if and only if P ( D )  admits a right inverse on 
DD;w,(G) for each convex open set G. 

For convex open sets R an application of Fourier analysis gives that an operator P(D) 
admits a right inverse on DD;w,(R) if and only if the zero variety of P in 6" satisfies 
a condition PL(R, (w)) of PhragmBn-Lindelof type, which is related to  a similar but 
different condition which HORMANDER [ll] introduced to characterize when P(D) 
acts surjectively on all real-analytic functions on R. For a comprehensive study of 
the condition PL(R, (w) )  we refer to our article (201. 

The paper is organized as follows: In the preliminary Section 1 we introduce ultra- 
differentiable functions and ultradistributions. The existence of a right inverse for 
P(D) in the Beurling case is characterized in Section 2. The same is done for the 
Etoumieu case in Section 3. The connection between right inverses and w - hyperbolicity 
is investigated in Section 4 and in Section 5 we discuss the characterization of the ex- 
istence of right inverses in terms of Phragmh - Lindelof conditions. 

The main results of the present paper were announced in our survey article [19]. 

1. Preliminaries 

In this preliminary section we introduce the non - quasianalytic classes, the spaces 
of ultradistributions and most of the notation that will be used in the sequel. 

Definition 1.1. A continuous increasing function w : [0, m[ + [0, m[ is called a 

(a) there exists K 2 1 with w(2t)  5 K(1-t w ( t ) )  for all t 2 0, 
weight function if it satisfies the following conditions: 

(7) log t = o(w(t ) )  as t + 00, 

(a) cp : t w w ( e t )  is convex. 
For a weight function w we define 3 : 6: + [0, m[ by 3 ( z )  = ~ ( 1 . 1 )  and again call 

this function w ,  by abuse of notation. 
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The Young conjugate cp* : [0, m[-) IR of cp is defined by 

cp'(y) : = sup {zy - cp(s) : 2 2 0 ) .  

Remark 1.2. (a) Each weight function w satisfies limt+m = 0 by the remark 
following 1.3 of [14]. 

(b) For each weight function w there exists a weight function u satisfying a( t )  = w ( t )  
Tor all large t > 0 and 0 1  [0,1) E 0. This implies cp,(y) = cpw(y) for rill large y,  
cp: ([0, m[) C [0, m[ and cp:' = cpo.  From this it follows that all subsequent definitions 
do not change if w is replaced by u. On the other hand they also do not change if w 
is replaced by w + c, c some positive number. Therefore we can and will assume that 
w ( 0 )  2 1. 

Definition 1.3. Let w be a weight function. 
(a) For a compact set K C IR" and A > 0 let 

(b) For a n  open set R C R" define 

€(wl(R) := proj proj E w ( K , n )  
+ K C C R  -mEN 

= { f E Cm(R) : I l j l lK,m < 00 for each K cc R and each m E IN}, 

and 

&{w}(R) := proj ind &w ( K , ; )  - KCCR -mEm 

= { j E Cm(R) : for each K CC R there is m E N with I l f l l ~ ,  

The elements of L((,,(R) (resp. l{w} (0)) are called w- ultradifferentiable functions of 
Beurling (resp. Roumieu) type on R. We write &,(a), where * can be either (w) or 
{w} at all occuring places. 

< m) 

(c) For a compact set K in IR" we let 

D,(K) := {f E &,(R") : Supp(f)  C K }  , 
endowed with the induced topology. For an open set R C IR" and a fundamental 
sequence (K j ) jEm of compact subsets of R we let 

Do,(R) := indD,(Kj) 
J -  

The dual DD:(R) of D*(R) is endowed with its strong topology. The elements of 
DD;w,(R) (resp. Diwl(R)) are called w - ultradistributions of Beurling (resp. Roumieu) 
type on R.  
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(d) For an open set R C R", an open subset U of R and X(R), being one of thc 
spaces introduced in (b) or (c), we let 

x(n, U )  := {f E x(n) : flu f 0). 

Remark 1.4. Definitions 1.1 and 1.3 are taken from BRAUN, MEISE and TAYLOR 
[6]. They are variations of the classical ones, introduced by BEURLING [l] (see also 
PETZSCHE and VOGT [24]). Though [6] is based on BEURLING's ideas, we shall mainly 
refer to it, since it is well adapted to our applications. If w is a subadditive function 
on (0, oo[ satisfying 1.1 (8) - ( b ) ,  then the classes &(u) and D(,) coincide with those of 
BEURLING [l]. In (61 it is shown that for each weight function w the spaces D(u)(Q)  
and D+j(R) are non-trivial. 

The classical case &(u) = C" is formally not a subcase of what we present here, 
since w := log' is not a weight function in the sense of Definition 1.1. However, it can 
be regarded as such if one interpretes cp* appropriately or if one uses an equivalent 
definition of &(,,,)(R) (see BRAUN, MEISE and TAYLOR (61, 4.5). 

Example 1.6. The following functions w : [0, oo[+ [0, oo[ are examples of weight. 
functions: 

1. w ( t )  = t",  0 < Q < 1,  
2. w ( t )  = (log (1 + t))? B > 1 ,  
3. w ( t )  = t(1og (e + t ) )+ ,  B > 1.  
Note that for w ( t )  = to,  the classes &(ul resp. coincide with the Gevrey classes 

r ( d )  resp. r { d )  for d := 1/a. 

Polynomials and partial differential operators. By C [ZI, . . . , z,] we denote 
the ring of all complex polynomials in n variables, which are also regarded as functions 
onC". F o r P E C [ z l ,  . . .  , Z ~ ] , P ( Z ) = ~ ~ ~ ~ ~ ~ ~ ~ Z " ,  w i t h ~ I Q I = m l a a l # O w e c a l l  

lal=m 

the principal part of P. Note that P, is a homogeneous polynomial of degree rn. 

operator 
For P as above and an open set R in IR" we define the linear partial differential 

P (D)  : Do:(R) - Do:@), P(D)f := c aa2-'"lf'"'. 
l 4 l m  

Then P ( D )  is a continuous endomorphism of DL(0) and its restriction to &,(a) is a 
continuous endomorphism of &* (0). 

Definition 1.6. For P as above and an open set R in IR" we let 

N(R) := {f E Di(R) : P ( D ) f  = 0) and N(R) := N(R) n &*(R). 



Meise/Taylor/Vogt, Continuous Linear Right Inverses 217 

Right inverses. For locally convex spaces E and F we let 

L( E ,  F )  := { A  : E -+ F : A is continuous and linear } . 
A map A E L ( E ,  F) is said to admit a right inverse, if there exists R E L(F, E) so 
rhat A 0 R = idF. 

2. Right inverses on D{u)(fl) and &)(fl) 

For a given weight function w and for an open set R in R" we characterize in this 
section the partial differential operators P ( D )  that admit a continuous linear right 
inverse on DiY)(R)(resp. on f(,l(R)). In particular, we show that P ( D )  has a right 
inverse on D{,)(R) if and only if P(D) has a right inverse on €,,)(R). Up to Lemma 
2.6 this could be done as in Section 2 of (17). However, we prefer a somewhat different 
line of argument. The results of the present section will be evaluated further in the 
subsequent sections. 

Throughout this section, w denotes a given weight function. For an open set R in 
lRn and E > 0 let 

1 
R, := s E R : l s l < -  a n d d i s t ( s , a R ) > E  { E 

where 1 . I denotes the Euclidean norm on R". 

L e m m a  2.1. Let R be an open set in R" and let P be a complex polynomial in n 

1. P ( D )  : DD;Y)(R) + D{,,(R) admits a right inverse; 
2. for each E > 0 there exists 0 < 6 < E SO that for each f E V{,)(fl, a,) there exists 

3. for each E > 0 there exists 0 < 6 < E so that for each p E N(%) there exists 

4. for each E > 0 there exists 0 < 60 < E so that for all 0 < C < u < q < 6 < 60 and 

variables. Then we have (1) 3 (2) * (3) 3 (4) for the following assertions: 

g E D{,)(n,%) with P(D)g  = f ;  

v E N(R) with V I R ,  = pInz ; 

each < E nq \ Ra there ezists Et E D{,,(lR") so that 

(i) SUPP Et c (R" \ a,) - <, 
(ii) P(D)Et = 6 + Tc where SuppTt C (0, \ 0,) - <. 

Proof .  Mutatis mutandis this can be shown as in Lemma 2.1 of [17]. 0 

Lemma 2.2. Let P be a complex polynomial an n variables, R an open set in R" 
and ( R k ) k E N  an exhaustion of fl by  relatively compact subsets. Let 00 := 0-1 := 
R-2 := 0 and assume that for each k E No there exists a continuous linear map 
Ak : D{,)(n, n k )  -+ D{,,(R, R k - 2 )  which Satisfies 

(*I P(D)Ak(f) lR,+,  = f lR1.+1 for f E D[,)(R,Rk).  
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Then P ( D )  admits a right inverse on D[w,(R). 

Proof .  By the following induction argument we define a sequence (&)kerno in 
L D' (0) which satisfies ( ( w )  ) 
(2.1) P ( D ) R I : ( ~ ) I ~ , + ,  = fin,+, for all f E D[w)(f i )  , k E NO. 

If we let & := A0 then (*) and = 0 imply that (2.1) holds for k = 0. Assume 
that Rk is already defined so that (2.1) is satisfied. Then note that because of (2.1) 
we have 

f - w w k ( f )  E DD;w)(R,Rk+l) for all f E .o;,)(n). 
Therefore we can define 

Finally note that (1) implies P ( D ) R  = idp;,,(n). 0 

Remark 2.3. It is easily seen that Lemma 2.2 remains true if the symbol D[w, is 
replaced everywhere by one of the symbols & ( w ) ,  D{,) or &{,,,I.' 

Lemma 2.4. Assume that for P E Q: [ZI, ... , zn] and an open set R C R" condition 
2.1 (4) holds. Then P ( D )  admits a right inverse on D[w,(n)  and on &(,.,)(R). 

Proof .  For E > 0 let 0 < 6 0 ( ~ )  < E denote the number which exists by condi- 
tion 2.1 (4). Using this condition recursively, choose a sequence ( E ~ : ) ~ : E L N  in 30, m[ 
which decreases strictly to zero and satisfies ~1 < h diam R and E ~ + I  < 6 0 ( ~ k )  for all 
k E IN. Then define i l k  = 0 for k = -2 , -1 ,0  and R k  := R,, for k E IN. In order 
to be able to apply Lemma 2.2 we are going to define continuous linear operators 
Ak : D' (0, R,) -t D[w)(R,Rk-2) for k E No, which satisfy condition 2.2 (*). To do 
this, we distinguish two cases. 

Case 1: k= 0, 1, 2. In this case choose $J E D(w)(Rd) with @In, = 1 and E E D'(Rn) 
with P ( D ) E  = 6 and define 

( w )  

AO : DiU)(fi) 4 D[,)(n), A o ( f )  := E*(1Clf). 
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I'urthermore, let Ak := A ~ l p ; ~ , ( n , n ~ )  for k = 1,2.  Then it is easy to see that 

Case 2: k E IN, k 2 3. In this case choose a number t which satisfies 
umdition 2.2 (*) holds for k = 0, 1 ,2  by the choice of $. 

(2.3) 0 < t < min (dist ( R k - 2 ,  R" \ fL1), dist ( R k + l ,  Rn \ Rk+2))  . 

Since n , + 1  \ Rk is compact, we can choose m E IN and <j E a k + l  \ f l k  SO that for 
/It(<) := {z E Rn : 1z - <I < t }  = t + Bt(0) we have 

m - 
a k + 1  \ ~k c U B t ( t j ) .  

j = 1  

m 
Next define 

~ k ( f )  := C E E ,  * ( V j f )  1 f E ~{~)(a) * 

j = 1  

Obviously, A k  is a continuous linear map from DlU,(fl) into Dlu,(Rn). To show 

Ak(DI,,(fl)) C DD;,)(Rn,flk)l note that for f E D;,)(fl,Rk) we get from (2.1) and 
'2.2) the inclusion 
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horn (2.1) and (2.3) it follows that 

SUPPT~,  * ( ~ ~ 3 . f )  C (%+3 \ f lk+2)  - + &(tJ) C Rk+3 \ f l k + l -  

Hence (2.5) and (2.4) imply 

P(D)Ak(f)ln,+, = fin*+, for all f E ' D ; , ) ( ~ , R k ) .  

Consequently, Lemma 2.2 shows that P(D) admits a continuous linear right inverw 

It is easy to see that  the arguments above also apply to  &(")(R, Rk). Because of this 
0 

Combining Lemma 2.1 with Lemma 2.4 we see that the existence of a right inverso 
for P ( D )  on &((,,(R) is necessary for the existence of a right inverse for P ( D )  011 
'D{w,(R). To prove the converse, we introduce the following notation. 

on q,)(n). 

we get from Remark 2.3 that P ( D )  also admits a right inverse on E(w)(R). 

Notation. For an open set R C Rn,X > 0 and E > 0 let 

E,(R) := {f E ~ ~ ( 0 )  : ~ l f l l K , x  < 00 for all 

&,(R,R,) := {f E &,(n) : f l Q ,  = 0 
and 

K cc R} 

Lemma 2.5. Let R be an open set an R" and let P be a complex polynomial in 
n variables. I f P ( D )  : &(,)(R) -+ C?(~)(R)  admits a right inverse then the following 
condition holds: 

For each E > 0 there as 0 < 6 < E so that for each 0 < q < 6 
(*I there exists 1 E IN so that for each f E &A(R, 06) there ezists 

g E qw)(%J4) so that W D ) 9  = fln,, in q")(Qr)).  

Proof .  Let R denote a right inverse for P ( D ) .  Since R is continuous, we get 

for each K CC R and each m E N there exist Q CC R , j E IN, 
C > 0 SO that  IIR(f)llK,m L CIlfl l~,j  for all f E E ( w ) ( R ) .  

(2*8) 

To derive (*) from this, let E > 0 be given. Then (2.8) implies the existence of 
Q CC R, j E IN and C > 0 so that 

(2.9) l l R ( f ) l l ~ ~ ~ ,  1 L C I l f l l~, j for d l  f E E ( w ) ( n ) .  

Choose 0 < 6 < E so that a c Rg. Next fix 0 < 
L cc R,m E IN, m > j and M > 0 so that 

< 6 and use (2.8) to find 

(2.10) IIWf)lI~v, 1 F M l l f l l L , m  for d l  f E E ( w ) ( f l ) .  

Now note that there exist 1 E IN and D > 0 so that 

(2.11) exp (- mcp' (:)) 5 Dexp (- hp* (7)) P + l  for all p E No. 
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'I'liis is a consequence of the following facts. On the (DFN)-space A, of all entire 
hictions h which for some A, B > 0 satisfy the estimate lh(z)I 5 A exp ( B w ( z ) )  for 
ril l  t E C, the operator MI defined by M ( h )  : z H z h ( z )  is linear and continuous. 
I+irthermore, an entire function h belongs to A,,, if and only if its Taylor coefficients hj, 
J E INo, satisfy for some rn E IN and D > 0 the estimate lhjl 5 Dexp (-mcp' (6)) 
for all j E INo. Now (2.11) follows from the observation that A4 on this sequence space 
i f i  the forward shift operator. 

Next fix f E €:(fl,fla) and choose 1c, E D(,)(n) so that $ z 1 in a neighbourhood 
of L. Then fix p E 'D(,)(B1(0)) with Jp (z )dz  = 1, let pt : x H + p ( f )  for t > 0 and 
define ft := lc , ( f*pt) .  For sufficiently small t > 0 the function ft is in €(,)(a, Q), since 

0 
i l s  t -+ 0. Hence (2.10) implies that g := limt+o R ( f t )  exists in C(fl,). From (2.9) we 
conclude that gin, = 0. Next observe that for each cp E D(,)(fl,,) we have 

is in E:(fl, 06). Moreover, adirect estimate, using (2.10) shows that ~ ~ f t - f l ~ ~ , m  

which completes the proof. 0 

Lemma 2.6. For each open set R c R" and each P E C (z1, ... , z,] condition 2.5 (*) 
implies condition 2.1 (4). 

Proof .  For a given number E > 0 choose 0 < 60 < E according to 2.5 (*) and note that 
the conclusion of 2.5 (*) then holds for all 0 < 6 < 60. Next fix 0 < < 4 < 9 < 6 < 60 
and ( E a, \ fl6 and choose 1 E IN according to 2.5(*) with E ,  60 and C. Then the 
proof of BRAUN, MEISE and TAYLOR (61, 4.4, implies the existence of m E IN so 
that for each f E l;f"(fl) and each cp E E(,)(R) we have tpf E €L(Q). Further, by 
BRAUN [3], Thm.8, there exists an elliptic ultradifferential operator Q(D) acting on 
&(w) so that the equation Q(D)Ft = 6, has a solution in EL+"'(R"). Now choose 
'pc E D(,) (0, \na0) so that pt E 1 in a neighbourhood of (. Then fc := cpcF( belongs 
to €L(fl, 06,) and satisfies 

Q(D)f( = b( -t h( , where hc E €(u)(fl, %o> 1 

since Q ( D )  is elliptic. Hence we can apply condition 2.5(*) with 9 replaced by C to 
get g t ,  Hc E D;,)(fl,,R,) satisfying 

P(D)gt  = fcln, and P(D)Ht = htln,. 

Next choose 1c, E D,,,(n,) with $Ino = 1 and let 
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and since P(Q)  commutes with Q ( D )  

P(D)Gtln, = (P(D)Q(D)gt - P(D)Ht)ln, = (Q(D)ft - kiln, = 4ln, . 
This implies 

P(D)Gt = St + Tt , where Supp Tt c Rc \ R, . 
It is easy to check that 

4 : cp (Gt,cp(* -0) 9 cp E q,)(IRn) 
satisfies the conditions (i) and (ii) in 2.1 (4). 0 

To derive further conditions that are equivalent to the existence of a right inverse 
for P ( D )  on &(w)(R), we introduce the following notation. 

Notation. For an open set R in IR", E > 0, and m E IN let 

B E ,  m := { p E ~ ~ u ~ ( ~ )  : s ~ P P  p c ~ c ,  Ip(f)l< Ilfllc,m for all f E &(,)(o)} 
Obviously, is a relatively compact subset of &{w,(R). Moreover, for each com- 

pact set M C &(,,(R) there exist m E IN and E > 0 with M C mB,,,. 

Remark 2.7. RRcall that for P E C [ z l ,  ... ,zn] and an open set R C IR" the 
P-convexity of R (see HORMANDER (101, Def. 3.5.1) is equivalent to  the surjectivity 
of P(D) on &(Q). Variations of the proof of this result show that R is P-convex if 
and only if P (D)  : &(u)(R) 4 &(w)(R) is surjective (see e.g. BJORCK (21, 3.3.2 and 
3.3.4). 

Using the preceding remark, a smoothing argument, and the notation introduced 
above, the proofs of [17J, 2.4 and 2.5 can be modified easily to prove also the following 
two lemmas. 

Lemma 2.8. Let R be an open set in IR" and let P be a complex polynomial in 
n variables. If P(D)  : &(,,(R) + &(w)(R) admits a right inverse then the following 
condition (*) holds: 

For each E > 0 there exists 0 < 6 < E so that for each 0 < q < 6 and 
each m E IN there exists k E IN and C > 0 so that for each p E &{,)(Clc) 
with ( p  + im P ( D ) t )  n Bq,m # 8 there en'sts X E &{,)(06) so that 
p + P(D)tA E CBa,k. 

(*I 

Lemma 2.9. Let R be an open set an IR" and let P be a complex polynomial in n. 

For each E > 0 there ezists 0 < 6 < E so that for each 0 < q < 6 
there exist m, k E IN and C > 0 so that for each p E & i u l ( R E )  with 

( p  + im P(D)*)  
p + P(D)'x  E CB6,k 

variables. If (*) is  satisfied 

(*I 

then R is P -convex and condition 2.5 (*) holds. 

Bq, # 8 there exists X E &{,)(R6) so that 
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Theorem 2.10. For an open set R in IR" and for a complex polynomial P in n 

1.  P(D) : DD;w,(R) --t DD;w,(R) admits a right inverse; 

2. P(D) : E(w,(R)  -+ &((,)(fl) admits a right inverse; 
3. One of the conditions 2.1 (2), 2.1 (3), 2.1 (4), 2.5 (*), 2.8 (*) or 2.9 (*) holds. 

Proof .  Because of 2.1, 2.4, 2.5 and 2.6 the following implications hold: 

variables the following assertions are equivalent 

(1) 3 2.1 (2) 3 2.1 (3) + 2.1 (4) 3 (2) * 2.5(*) + 2.1 (4) + (1) .  

Because of 2.8, 2.9, 2.6 and 2.4 we also have 

(2) + 2.8(*) j 2.9(*) + 2.5(*) =$- 2.1 (4) + (2 ) .  0 

Remark 2.11. Theorem 2.10 extends [17], Thm. 2.7 from E(R) and D'(R) to 
E(,)(R) and D;,,(R). In (171 all the equivalent properties for an open set R were 
called P-convexlty with bounds. Since now also the weight function w matters, we 
introduce the following definition. 

Definition 2.12. Let w be a weight function, Cl an open set in R" and P a 
complex polynomial in n variables. R is called P-convex with (w)  - bounds if one of 
the equivalent conditions in Theorem 2.10 holds. 

Because of Theorem 2.10, the arguments of the proof of (171, Cor. 2.10, also prove 
the following corollary. 

Corollary 2.13. Let P be a complex polynomial in n variables and let (fli),€r be 
a family of open sets in R" f o r  which R := n,€rRi # 0 is open. If Ri is P -convex 
with (w )  -bounds for each i E I then R is P -convex with ( w )  - bounds. 

Corollary 2.14. Let R be an open set in R", let P E C! [ z l , .  . . , z,] and let w 
be a weight function. I f  R is P - convex with ( w )  -bounds, then R is P -convex with 
( K )  - bounds for each weight function K. satisfying w = O(6). 

Proof .  By Theorem 2.10 condition 2.1(4) holds for R and w. Since w = O ( K )  implies 
DD;w,(IRn) C DD;n,(IRn) and since supports do not change under this inclusion by [6], 
3.9, we see that condition 2.1 (4) holds for R and K .  By Theorem 2.10 this completes 
the proof. 0 

To indicate that there are quite a number of polynomials P for which no open set 
is P - convex with ( w )  -bounds, we recall the following definition. 

Definition 2.15. A polynomial P in n variables is called (w )  -hypoelliptic 
if the operator P(D) admits a fundamental solution E E DD;w,(Rn) that satisfies 
EImn\{o) E E(u)(R" \ (01). 
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It is easy to check (see BJORCK [2), Thm. 4.1.1) that for each (w)-hypoelliptic, 
polynomial P and each open set R in R" we have N(R) = N(R) C &(,)(R). Henw 
N(R) is a nuclear F'rBchet space. From this and 2.1 (3) we get by the proof of [17], 
Cor. 2.11, the following result: 

Corollary 2.16. For n 2 2 let P be an (w) -hypoelliptic polynomial in n variables. 
Then each open set R in R" is not P - wnvex with ( w )  -bounds. 

3. Right inverses for DiW) (R) and E{ul (0) 

In this section we characterize when a partial differential operator P(D) admits a 
right inverse on D:,}(R) and €{,}(R), R an open subset of R". Since the topology 
of &{,}.(R) is more complicated than the one of &(,](R), we first describe it in a way 
which is suitable for our purposes. 

Throughout this section w will denote a fixed weight function. Further we let 

S, := {u : u is a weight function satisfying u = o(w)}  . 

Remark 3.1. For each u E S, the following is easy to show: 

For each E > 0 there exists C, > 0 so that 

ap: (:) 5 cp:(x> + C, for all x > 0 .  

This implies that for each open set R C R" and each K CC R 

defines a continuous semi-norm on E{,)(R).  

Notation. For an open set R c R", E > 0, and u E S, define 

BE,u := { P  E Ei,)(R) : SUPPP C R E ,  IAf)l S Ilf 1h.0 for all f E &rw)(n)). 

By the preceding remark, each set is equicontinuous, hence bounded. The 
following lemma shows that even more holds. 

Lemma 3.2. The sets (B,,u),>o,u~s, form a fundamental system of the bounded 
subsets of &{,,(R). 

P r o o f .  Let B be a bounded subset of &{,l(R). Since E{,)(R) is reflexive by 
BRAUN, MEISE and TAYLOR [6], 4.9, B is equicontinuous. Hence there exists a com- 
pact subset K of R so that U P E B  Suppp c k. Choose 0 < t < dist (K, R" \ 0) 
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(3.4) l ~ ( z ) l  = 1 J,. f ( t ) e - + * t )  dt 

rind find m E N and [I, ... y<m E K so that K C Up, Bt(<j). Further choose 
lpj E D{~~(Bi( [ j ) )11  5 j 5 m, SO that c>, pj(z) = 1 for all z E K. Then 

5 M l ~ ~ ~ ~ ~ ~ , ,  e-+b(z )  for all 2 E I R ~ .  

m 

(3.1) p ( f )  = C p(pj  f )  for all f E D{,}(fl) and d l  p E B .  
j=1 

Since B is bounded, we get from BRAUN, MEISE and TAYLOR [6], 4.4, that for 
1 5 j 5 m the sets 

Bj := { V ~ P  : 1.1 E B )  c &;,,(Bt(O)> 
are bounded. Consequently, [6], 4.7, implies that for each k there exists k f k  > 0 so 
that for 1 5 j 5 m, d l  v E Bj, 

(3.2) lC(z)l = 5 Mkexp hj(1mz) + -w(z)  for all z E C", 

where h, denotes the support functional of the convex set Bt([j). From (3.2) we get 
for each k E IN,r > 0 

( k l )  

1 
1<j<n I ~ I = ~  k g ( r )  := max sup log' ( IC(z)I exp ( - hj(1m 2))) 5 - W ( T )  + log k f k  , 

i.e., g = o ( w ) .  By BRAUN, MEISE and TAYLOR [6], 1.7, there exists n E S, so that 
g = o ( n ) .  This implies 

Since the weight function n satisfies log' t = o(o( t ) ) ,  this together with (3.1) implies 
0 that for a suitable number X > 0 we have B C XB,,,. 

Corollary 3.3. FOT each weight function w and each open set R in R" the family 
( 1 1  * l l ~ ,  o ) ~ C C n ,  ,Es, is a fundamental system of continuous semi - norms on &{,I (0). 
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P r 00 f . We have already remarked that for K cc R and u E S, the semi-norm 
11 . IIK,u is continuous on €{u}(R). If q is a given continuous semi-norm on €{u}(R), 
we denote by U the closed unit ball with respect to q. Then U" (the polar of V )  
is an equicontinuous subset of €{ul(R). Hence Lemma 3.2 implies the existence of 
E > 0,n E S, and X 2 1 with U" C XB,,,. Note that for the closed unit ball V,,u of 
the semi-norm 11 . llne,o we have C V c g ,  and hence U" C XV:,. From this wo 
get by the theorem of bipolars 

0 1  

x u = u"" 3 (XvE(Io) = -V, ,u,  

which implies q I X 11 * Iln,, u. 

Lemma 3.4. Let R be an open set in R" and let P be Q complex polynomial in ri 

1. P ( D )  : Diwl(n) --$ Di,}(fl) admits a right inverse; 
2. for  each E > 0 there exists 0 < 6 < E so that for each f E DD;,}(R, 06) there exists 

3. for each E > 0 there exists 0 < 6 < E so that for each p E N(06) there exists 

4. for each E > 0 there exists 0 < 60 < E so that for all 0 < C < u < q < 6 < 60 and 

variables. Then we have (1) + (2) + (3) * (4) for the following assertions: 

g E q,} (0, a) with P(% = f ; 

v E N(R) with ~ ln ,  = pint ; 

each < E a,, \ R6 there exists Et E V\u}(Rn) so that 

( i )  SUPPEt c (R"\R,)-< 
(ii) P(D)Ec = 6 + Tt where SuppTt C (R, \ 0,) - <. 

P r o o f .  (1) + (2): Let R : Di,)(R) -+ Di,}(R) denote a right inverse for P(D) 
and let E > 0 be given. Then the set 

B := { cp E D { w }  (R)  : llvllnc, 1 I 1> 

is bounded in D{,} (ac), hence bounded in D{,j(R). Therefore, 

QB : Di,}(fl) - R, q B ( p )  := SUP Ip((P>I 
cpEB 

is a continuous semi-norm on Di,,(fl). By the continuity of R there exist a bounded 
set C in 'D{u}(R) and M > 0 so that 

q B ( @ )  5 M q C ( p )  for all p E Di~}(f l ) .  

Since D{,}(Q) is a (DFS)-space for each compact set Q in R,  we may assume that 
there exist a compact set L in R and m E IN SO that 

c = {cp E D(u}(L)  : IlVllL, I 1} . 

Choose 0 < 6 < E so that L c R6 and let f E Di,}(fl, 06) be given. Then g := R( f )  
is in DD;u}(R) and satisfies P ( D ) g  = P(D)Rf  = f .  Moreover, g satisfies 

q B ( g )  = q B ( R ( f ) )  5 MqC(f) = 0. 
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Hence we have 
(*I g(cp)  = 0 for all cp E spanB.  

Choose p E D{,)(Bl(O)) with J p ( z )  dx = 1 and define pt : 2 H & p ( 7 )  for t > 0. 
Then it is easy to check that for each y!J E D{,} (0,) we have limt-,oo y!J * pt = $J in 
D{,)(n)  and II, * pt E span B for all sufficiently small t > 0. Hence (*) implies 

g ( 4 )  = F i  g(y!J * p t )  = 0 for each 1c, E D{,}W,). 

Consequently, g belongs to DD;,)(n, O E ) .  
(2) j (3) + (4) : This can be shown as in the proof of [17], Lemma 2.1. 0 

Lemma 3.5.  Let R be an open set in IR" and let P be a complex polynomial in 
n variables. If  P(D) : &{,)(R) + &{,)(R) admits a right inverse then the following 
condition (*) holds: 

For each E > 0 there exists 0 < 6 < E so that for ench 0 < q < 6 and 
each (T E S, there exist K. E S, and C > 0 so that for each 1.1 E &{,)(R,) 
with ( p  + im P(D)*) f l  B,,,c # 8 there m 3 t s  X E &{,)(R6) so that (*I 
p + P(D)tX E c B 6 , ~ .  

P r o o f . Choose a right inverse R for P ( D )  and note that 

To show that this implies the P-convexity of R, we fix a compact set K in R and 
choose E > 0 so that K c 0,. Then fix u E S, and use the continuity of R' to find 
0 < 6 < E ,  K. E S, and a > 0 so that Rt(B , , , )  C d 6 , ~ .  Since Rt is linear, this 
implies 

Fix cp E D(R) with Supp P(-D)cp C K .  Then it is easy to check that 

Rt(sPanBc,o) C s~anB6 ,K.  

P(-D)cp E span BE,o, which implies cp = Rt 0 P(-D)cp E ~ p a n B d , ~ ,  

and hence Supp cp C 06. Thus R is P -convex. 
Next note that 

A := ( R o P ( D ) ) ~  = P(D)*oR* 

is a projection on &;,)(n) with i m r  = imP(D) t .  Hence Q := i d p , ( n )  - A is a 
projection on &{,, (0) and satisfies 

(3.6) 

Let E > 0 be given. Note that &{,)(fl)/&{,}(fl,0,) is a (DFN)-space since it is 

equal to D{,j(R)/D{,)(S2, !Ic). Moreover, (&{,}(Q)/&+}(fl, 0,))' can be canonically 
identified with &{,)(R,Rc)L. Obviously, the set A = (6, : z E fl,} is weakly total in 

ker Q = imn  = im P(D)*  = imp(-D) . 
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&{,)(R, Q,)', hence total in &{,}(R,R,)'. Since A is relatively compact in &{,}(a)', 
the set Q ( A )  is relatively compact in E;,,(R). By 3.2 there exist 0 < 60 < E ,  8 E S, 
and (Y > 0 with Q(A) C ( Y B ~ ~ , O  C &{,](n,n6,)'. Since &{,)(R,R60)L is closed in 
&{,l(R), this implies 

(3-7) Q(&{u}(o, nt)') C & { w } ( R ,  0 6 0 ) ~  . 

Fix 0 < 6 < 60 and let 0 < q < 6 and u E S, be given. Since Q is continuous, we get 
from Lemma 3.2 the existence of 0 < 6 < q,  K E S, and C1 > 0 so that 

(3.8) Q(Bq,o) C ClBc,n. 

Fix p E Ei,l(R,) and assume that for some v E & { , } ( S 2 )  we have p +  P ( D ) t v  E B,,,o. 
Then (1) implies 

Q ( p + P ( D I t v )  = Qp+Q(P(D)*v)  = QP 

and hence Qp E ClBc,,, because of (3.7). Moreover, Suppp C R, and (3.6) imply 
Qp E E(S2, R a o ) l .  This gives 

(3.9) SuPPQP C 0 6 0  C 

Choose + E D{,}(R6) so that pc' E 1 in a neighbourhood of nbo. Then we get from 
the inclusion (3.8) 

IQp(f)l = lQ~(d-~f) l  5 Ci llpc'flln6,K for all f E E{,}(R). 

Note that by the proof of BRAUN, MEISE and TAYLOR [6], 4.4, there exist L 2 1 and 
CZ, depending only on K ,  so that 

llpc'flln&K I c2 ll+lln6,LK llflln6,LK for all f E L { w } P )  
Hence there exists C > 0 depending only on 60, 6, K ,  C1, CZ so that Qp E C B ~ , L , .  
Define X := - R t ( p )  and note that 

P + P ( D ) ~ X  = p -  P ( D ) t R t ( p )  = p - ~ ( p )  = Qp E C B ~ , L , .  

From this and (3.8) we get 

(3.10) SuppP(-D)X = SUPpP(D)'X = SUpp(Qp - p )  C R6. 

Note that we have already shown that R is P - convex. Therefore a standard smoothing 
argument together with (3.9) and HORMANDER [lo], Thm. 3.5.2, imply Supp X C 06. 

0 Since LK is in S,, this completes the proof. 

Lemma 3.6. Let R be an open set in IR" and let P be a complex polynomial in n 
variables. If (*) is satisfied 

For each E > 0 there exists 0 < 6 < E so that for each 0 < q < 6 there 
ezist u, K E S, and C > 0 so that for each p E &{,}(R,) with 
( p  + im P ( D ) t )  n Bq,o # 0 there exists A E &~,}(na) so that 
p + P(D)tX E C&,, 

(*) 
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/,lien the following assertions hold 
1. R is P -convex. 
2. For each E > 0 there ezista 0 < 6 < E so that for each 0 < q < 6 there exists B E S, 

so that for each f E &(o)(R, 06) there e;Cists g E Diw,(Rv, 0,) so that P(D)g  = fin, 
holds in Di,}(R,,). 

P r o o f .  (1): To show that R is P-convex, let K be a given compact subset of 
0. Then there exists E > 0 with K c RE. Choose 0 < 6 < E according to (*), 
fix 0 < q < 6 and choose U , K  E S, and C > 0 according to (*). Fix cp E D(R) 
with SuppP(-D)cp C K and let p := -P(-D)cp = -P(D)'cp E &{,,(R). Then 
p + P(D)'cp = 0 E Bv,u which implies that for each s E ] O , l ]  we have 

1 
- S (P  + P ( D h )  E Bv,u ' 

Hence (*) implies the existence of A, E E:,)(Rb) so that 

1 
P(D)' (- Cp A8) = ; p + P(D)'.& E CB6,n. 

Now note that by Remark 2.7, P(D) : &(n)(Rn) -I E((,)(Rn) is surjective. Hence 
P(D)t  : &{n,(R") + &in,(R") is an injective topological homomorphism. bga rd ing  
&,& as an equicontinuous subset of &;,)(R"), we can therefore find a bounded open 
set G in R" and 1 E IN, D > 0 so that 

This implies 
1 

- - cp + A, E B G , I ~  for all s E ]0,1] , 
3 

and consequently cp = lim,,o sA, in &;,,(R") C t{,,(R"). Since suppx,  C 0 6  for 
each 8 E ]0,1], this proves Suppcp C n6. 

(2): For a given number E > 0 choose 0 < 6 < E according to (*), fix 0 < q < 6 
and choose c, K E S, and C 2 1 according to (*). Without restriction we may assume 
CT = o ( K ) .  Then note that R is P-convex by (1). Therefore, P ( D )  : E( (R) + E(n)(R) 
is surjective, hence P(-D) = P(D)' : &tK)(f l )  -+ &[K,(R) is an injective topological 
homomorphism. Hence there exist 1 E IN, L 2 1 and 0 < 

n). 

< q so that 

p(-D)-1(B7/,n) c LB(,IK * 

For each v E Eiw,(R) with P ( - D ) v  E Bv,K we therefore have 

v E P(- D)- ' (P(-  D)v) E LBc,!, . 
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Since R is P-convex, a smoothing argument together with HORMANDER [lo], Thm. 
3.5.2, and Lemma 3.4.3, implies Suppv C 0,. Hence we get 

Fix f E €(,)(a, n6) and let 

X := span { (P(  -~)q,](w n B,,& 1 q, ) (Qd} c * 

Note that for v E &;,l(R) satisfying P ( - D ) v  E B,,&, we have v E L g  because of 
(3.11). Hence (v , f )  is defined. Now define F : X -I Q: by 

0 if Supp (P(-D)v + p )  c R 6 ,  

(v, f )  otherwise, 
F : P ( - D ) v + p  

for P(- 0). E span (P(-  D)E{,l(R) n B,,,) and p E E{Kl (Rc) .  

P(- D)v2 E spanB,,, we have 
To show that F is well-defined, aasume that for p1, p2 E E(,](R,) and P(- D ) v l ,  

P( - D ) V l  + p1 = P( - D)v2 + p2 . 

Then we get 

Since R is P-convex by (l) ,  this and a smoothing argument imply 

Supp (vl - v2) c R, hence (v1 - 4, f) = 0 .  

SUPP (P( -  D ) ( Y  - v2)) = SUPP (p2 - p1) c 0,. 

Obviously, F is 1 -homogeneous. The additivity of F follows easily from the obser- 
vation that for P(- D ) v  + p E X with Supp (P(- 0). + p )  C 0 6  and Suppp C R, 
the P-convexity of 

Next, denote by Eo the normed space which is generated by the bounded, absolutely 
convex set Bq,u C &iu1(R). We claim that F ~ x ~ E ~  is continuous. To show this, fix 
P(- D ) v  + p E X n 

implies suppv C 0 6  and hence (v, f )  = 0. 

Then (*) implies the existence of X E &{,](n6) with 

where M depends only on C,K and 0. By (3.11), this shows 

(3.14) v - x  E M L B  
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Moreover, (3.13) and P(- 0). E spanB,,, imply P(-D)X E spanB,,, and hence 
/'( - D)X + p E X. Therefore we get from (3.12) and the definition of F that 

F ( P ( -  0). + p )  = F ( P ( -  D)X + p )  + F ( P ( -  D ) ( v  - A)) 

F ( P ( -  D ) ( v  - A)) = (v - A , f )  = 

ruid hence by (3.14) 
IW(- D ) v  + col L ML IlflICdK * 

Siiice P(- D ) v  + p was an arbitrary element of X n 13q,ul this shows that F 1 y . n ~ ~  
is bounded on the unit ball of X n Eo, hence it is continuous. Therefore, the theo- 
ivm of Hahn-Banach implies the existence of F E EA satisfying F 1 y . n ~ ~  = F. Let 
(1) : D{,}(fl,) 4 €{,)(fl,) denote the canonical injection, defined by 

- 
It is easily seen that 9 maps D{ul(fl,) continuously into Eo. Therefore, g := F o 9  = 

is P-convex and since f vanishes on fl6, the definition <bt(F) is in Diwl(fl,). Since 
o f  and F gives for each cp E Dtu} ( f lV)  

( P ( D ) g ,  'p) = (9 ,  P(-D)cp) = mP(- D)cp) = F ( P ( -  D)@(cp)) 
r 

Hence, g is in Diw}(flq,flE) and satisfies P(D)g  = fin,. 0 

Lemma 3.7. For each open set R c lR" and each P E C [ z l ,  ... , tn] condition 3.6 (2) 
implies condition 3.4 (4). 

Proof .  For a given number E > 0 choose 0 < 60 < E according to  3.6(2) and note 
that the conclusion of 3.6 (2) then holds for all 0 < 6 < 60. Next fix 0 < < c < q < 
6 < 60 and < E n, \ R6 and choose 0 E S, according to 3.6 (2) with q replaced by 
(. By BRAUN, MEISE and TAYLOR [6], 1.7, we can choose K E S, so that 8 = o ( K ) .  

Furthermore, note that by the proof of IS], 4.4, there exists m E IN so that for each 
f E €,"+'(fl) and each cp E €((,)(fl> we have cpf E €i(R).  Then, by BRAUN [3], Thm. 
8, we can choose an elliptic ultradifferential operator Q(D) on €(,) so that the equation 
Q(D)Fc = 6c has a solution in €,"+'(R"). Choose cp( E D(,) (0, \ah0) so that cpc E 1 
in a neighbourhood of <. Then fc := cpcFc belongs to &i(R,f160) and satisfies 
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since Q ( D )  is elliptic. Now note that EL(nIn6,) is contained in E(@)(f&06,)  bc- 
cause of 8 = o ( K ) .  Hence we get from 3.6 (2) with 7 replaced by the existence ol  
ge, He E D;,} (R,, 0,) satisfying 

P(D)gc = fcln, and P(D)He = hCIR( . 

Gc := lcl(Q(D)gc - HC) 

Next, choose ?I, E D(,}(R,) with @Ino f 1. Since Q(D) acts continuously on Di,,(Q), 

is in Diwl(Rn) and satisfies 

SuppGc c Rc\R, C R" 

Since P(D) commutes with Q(D), we get 

P ( w + l n ,  = ( ~ ( ~ ) Q ( D ) g c  - P(D)HOIn, = (Q(D) fc  - he)ln, = &In, I 

which implies 

P(D)Gc = 6, + Tc where SuppTc C (R,\R,). 

Now it is easy to check that 

satisfies the conditions (i) and (ii) in 3.4 (4). 0 

Because of &mark 2.3, the arguments in the proof of Lemma 2.4 also give the 
following lemma. 

Lemma 3.8. Assume that for P E Q: [ z l ,  ... , zn] and an open set R c IR" condition 
3.4 (4) holds. Then P ( D )  admits a right inverse on Di,>(R) and on E{,)(R). 

Theorem 3.9. For an open set R in R" and for a complez polynomial P in n 

1. P ( D )  : D;,}(R) * Diw1(R) admits a right inverse; 

2. P(D) : Liu} (0)  -t E{,} (R)  admits a right inverse;. 

3. One of the conditions 3.4 (2), 3.4 (3), 3.4 (4), 3.5 (*), 3.6 (*) or 3.6 (2) holds. 

Proof .  Because of 3.4, 3.8 and 3.5 - 3.7 the following implications hold: 

variables the following assertions are equivalent: 

(1) 3.4 (2) 3 3.4 (3) 3 3.4 (4) + (2) + 3.5(*) =$ 3.6(*) 3 3.6 (2) * 3.4 (4) + (1 ) .  

0 

Definition 3.10. Let w be a weight function, R an open set in IR" and P a 
complex polynomial in n variables. fl is called P-convex with { w }  -bounds if one of 
the equivalent conditions in Theorem 3.9 holds. 
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As in Section 2 we get the following corollary: 

Corollary 3.11. Let P be a polynomial in n variables and let (R;),€I be a family 
oj open sets in R" for which R := n,€IR, # 0 i s  open. If R; is P - w n v e x  with 
{ w )  - bounds for each a E I then R i s  P - wnvex with { w }  -bounds. 

Corollary 3.12. For ench open set R in R" and each P E Q: (21, ... , ~ n ]  the following 

1. R is P - convex with { w )  - bounds; 
2. R as P - convex with (K) -bounds for some K E S,. 

P r o o f  . (1) + (2): By Theorem 3.9 we know that condition 3.4 (4) holds. Now an 
inspection of the proof of Lemma 3.8 (or of Lemma 2.4) shows that in the construction 
of each map A k  only finitely many ultradistributions enter. Hence only countably many 
Fj E DO;,,(R"), j E IN, are envolved in the whole construction. By BRAUN, MEISE 
and TAYLOR [6], 7.6, there exist weight functions u, E S, so that F, E DtOj,(Rn) 
for each j IN. By [6), 1.9, there exists K E S, such that a, = O ( K )  for each 
j E IN. This implies that the operators A k ,  constructed in the proof of Lemma 3.8 
are in fact continuous linear operators from DiK, into D[K,(n, n k - 2 )  which satisfy the 
corresponding condition 2.2 (*). Hence Lemma 2.2 implies that (2) holds. 
(2) =+ (1): From (2) and Theorem 2.10 we get that condition 2.1 (4) holds with w 

replaced by K .  Now K E S, implies D{;.,(R") C D~,l(R"), by BRAUN, MEISE and 
TAYLOR IS], 3.9. Therefore condition 3.4 (4) holds for w. By Theorem 3.9 this implies 

assertions are equivalent 

(1). 0 

4. Right inverses and w - hyperbolicity 

In this section we show that an open set R in R" with C' -boundary is P-convex 
with * -bounds only if P satisfies certain hyperbolicity conditions. In particular, we 
obtain a characterization of the polynomials P for which the Euclidean unit ball is 
P-convex with * - bounds. To introduce the hyperbolicity conditions that are used 
we first recall some notation. 

Notat ion.  For a vector N E Rn \ (0) we let 

H + ( N )  := {z E IRn : (z, N )  > 0) , H-(N) := H + ( -  N )  . 

Recall the definition of w - hyperbolicity from (211. 

Definition 4.1. Let P E d: (21,. . . , z,] and let N E IR" be non-characteristic 
for P. Then the operator P ( D )  is called *-hyperbolic with respect to N if there 
exists E E D:(Rn) satisfying P(D)E  = 6 and SuppE c H + ( N ) .  P ( D )  is called 
*-hyperbolic, if it is * -hyperbolic with respect to some direction. 
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Remark 4.2. (a) If P ( D )  is *-hyperbolic with respect to N then Holmgren's 
uniqueness theorem implies that the fundamental solution E which exists by 4.1 ac- 
tually satisfies Supp E c r, where I' is a closed convex cone with vertex at the origin 
satisfying 

(b) If P(D) is * -hyperbolic with respect to N ,  then P ( D )  is also *-hyperbolic with 
respect to  - N by [21], 2.9(a) and 2.13(b). 

(c) If w ( t )  = log (2+t)  then ( w )  - hyperbolicity coincides with ordinary hyperbolicity 
by HORMANDER [lo], Thm. 5.6.1 and Thm. 5.6.2. 

(d) For a homogeneous polynomial P the operator P ( D )  is *-hyperbolic with re 
spect to N if and only if P ( D )  is hyperbolic with respect to N, by [21], 2.9(b) and 
2.13 (b). 

\ (0) c H+ ( N ) .  

The significance of * - hyperbolicity for our considerations depends on the following 
lemma. In view of Remark 4.2 it can be proved by an easy modification of the argu- 
ments that we applied in the proof of [17], 3.1. For an exposition of the underlying 
idea in the special case of an open half space, see [19], 5.1. 

Lemma 4.3. Let fl c R" be P - convex with * -bounds and let N E R" be non - 
characteristic for  the polynomial P E C [ z ~ ,  . . . , 4. If there exists xo E d fl so that 
dfl is continuously diflerentiable in  some neighborhood of xo and if N is nonnal to 
8 fl at xo then P(D) is * -hyperbolic with respect to  N .  

From Lemma 4.3 in connection with Remark 4.2)  and (b), we deduce the following 
proposition (see also (191, 5.4). 

Proposi t ion 4.4. Let P E C [z l , .  . . , z,] and assume that N E R" is  non - 

1. H+ (N) and/or H- ( N )  is P - convex with * - bounds. 
2. P(D) is * -hyperbolic with respect to  N .  

Characteristic for  P .  Then the following conditions are equivalent 

In the case of characteristic half spaces, the following proposition can be derived as 
in (221. 

Proposi t ion 4.5. Let P E C [zl,. . . ,zn] be non -constant and let N E R" \ ( 0 )  be 

I .  IR" is P - convex with * - bounds 
non -characteristic for P .  If the following two conditions are satisfied, 

and 
2. P(D) admits a fundamental solution E E D:(R") satisfying SuppE C H - ( N ) ,  

then H+ ( N )  is P - convex with * - bounds. 

To formulate the main result of this section, we will use the following notation: For 
an open subset R of Rn with (non-empty) C' -boundary, the Gauss map 

G : d R  - Sn-' is defined by G ( x )  := N, , 
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wlicire N ,  denotes the outer unit normal to a R  a t  z. For P E [ZI, ... ,zn] we define 
following HORMANDER [12], (10.4.2) - 

Theorem 4.6. For each non -constant polynomial P E C [ZI, ... , z,] the following 

1.  There exists a bounded open set R # 0 in IR" with C' -boundary which as P -  

2. There exists an open subset R # 0 of R" with C' -boundary and surjective Gauss 

3. P (  D )  i s  * -hyperbolic with respect to each N E R" which is non - characteristic 

4 .  Each open convex subset of R" is P -convex with * -bounds; 
5. The principal part  Pm of P is proportional to a product of linear forms with real 

If * = (w) then there exists C > 0 such that IQ(<)I _< C~m(<,u(())  for all 

If * = {w} then there exist K E S, and C > 0 such that 1Q(<)1 5 CFm(< ,~ (e ) )  

irssertions are equivalent : 

iwnvez with * - bounds ; 

iriap which is P -convex with * -bounds; 

jlJT P ; 

roeficients and Q := P - Pm has the following property;: 

( E IRn. 

lor all < E R". 

P r o o f .  (1) + (2): This is easy to check. 
(2) + (3): This is a consequence of Lemma 4.3. 

(3) (4): Let R be a given convex open subset of IR". Assume first that * = (w). 
Since the non -characteristic vectors of P are dense in S"-' we can find a sequence 
( R , ) J E ~  of open convex polyhedra such that each Slihas only faces which have non - 
characteristic normals. Moreover, we can assume Rj c R,+I for each j E N and 
R = UjEm 0,. To show that R satisfies the condition 2.5(*), let E > 0 be given. 
Choose j E IN with nc C Rj and 0 < 6 < E with C 0 6 .  Next fix 0 < 7 < 6 and 
find m E IN with nv C R,. Then fix f E D;w)(0,R6),  choose cp E D,,)(Sl,) with 
91- E 1, and note that cpf is in E;w,(IR",Rg). By our choice of R, we can find p E N 
and b,, Nu E R" for 1 5 v 5 p so that 

n, 

where the Nu are non-characteristic for P .  Since the sets Ra and H + ( N , )  + b,, 1 5 
v 5 p, form an open cover of R", we can use a partition of unity in &(w)(Rn) sub- 
ordinate to this cover, to obtain pf = CE=, f u ,  where Supp f, c H+(N,) + b, for 
1 5 u 5 p. Since Nu is non-characteristic for P the hypothesis together with Re- 
mark 4.2 (a) implies the existence of a fundamental solution E, E DD;,,(Rn) satisfying 
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SuppE, C r,, where r, is a closed convex cone with \ (0) c H+(N,). Cons(,. 
quently g, := E,*fu is in D[,,(IRn) and Suppg, c H+(N,)+b, .  Hence g := CC=, (1,. 

is in DD;w,(IRn, R,) which is a subset of D[w,(IRn,R,) and satisfies 

u=l w = l  

By our choice of cp, this implies P(D)gln,, = fin,,. Hence R satisfies condition 2.5 (*). 
By Theorem 2.10 this implies (4). 

If * = {w} then, by [21], 2.13, there exists a weight function u E S, such that P(D) 
is (a) -hyperbolic with respect to each non - characteristic direction. Consequently, 
R is P- convex with (u) - bounds, hence P - convex with { w }  -bounds by Corollary 
3.12. 

(4) =$ (1): This is obviously true. 
(3) + (5): By [21], 2.9(b) and 2.13(b), P,(D) is hyperbolic with respect to each 

non -characteristic direction. Hence DE CRISTOFORIS [8], Thm. 1, implies that P,,, 
is a complex multiple of a product of linear forms with real coefficients. Moreover, 
the perturbation theorem (211, 3.1, together with [21], 2.12, shows that Q satisfies thc 
conditions stated in (5). 

(5) + (3): Obviously, P, is hyperbolic and hence *-hyperbolic with respect to each 
non -characteristic direction. Since Q satisfies the conditions in (5), the perturbation 

0 theorem [21], 3.1 and [21], 2.12, imply (3). 

Remark 4.7. Note that there are several other conditions equivalent to the condi- 
tion on Q in Theorem 4.6 (5). They are explained in Section 3 of our article [21]. 

Rom Theorem 4.6 (resp. [21], 2.10) the following examples are easily derived. 

Example 4.8. Assume that the weight function w satisfies t’I2 = O ( w ( t ) )  as t + 03. 

(a) Each convex open set R in IR2 is P- convex with (w) -bounds for the polynomials 

(b) Each convex open set R in R3 is P -convex with (w) -bounds for the polynomials 
P ( z l , z ~ ) : = z ~ + a z ~ ,  a E  6 .  

~ ( 2 ~ , 2 ~ , 2 3 ) : = 2 ~ - ~ ~ + a 2 3 ,  a~ 6 .  

5 .  Right inverses and PhragmBn - Lindelof conditions 

In this section we explain why open convex sets R in ELn are P-convex with 
* - bounds if and only if the zero variety V ( P )  of P satisfies a condition of PhragmCn 
Lindelof type. To introduce these conditions several definitions are needed. 

Definition 5.1. Let V be an analytic variety in 6”. A function u : V -+ [- w,oo( 
is called plurisubhamonic (psh) on V if it is locally bounded from above and psh at 
the regular points Vreg of V. The  values of u a t  the singular points King of V arc 
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1101, important in our considerations. However, for the formulation of our results it is 
c*onvenient in the sequel to assume that 

u ( z )  = lim supu(C) for all z E King. < € v... . (+ 2 

Ily PSH(V) we denote the set of all psh functions on V which satisfy this condition. 

Definition 5.2. Let R and K be convex subsets of R", R being open and K being 
cwmpact. Then we define the support functional h K  of K by 

itnd we let 
K(s2)  := { L  c R : L is convex and compact) 

Definition 5.3. Let 0 be a convex open subset of R", let P E 6 [zl,. . . , z,] be 
rion-constant and let w be a weight function or w( t )  = log (2 + t ) .  Also let 

V(P)  := ( 2  E 6" : P(-  2) = O}. 

(a) P or V(P)  satisfies the PhragmCn -Lindelof condition PL(R, (w) )  if the following 

For each K E K(R) there exists K' E K(R) so that for each K" E K(R) there exists 
holds: 

B > 0 so that each u E PSH(V(P)) satisfying ( a )  and (p) also satisfies (r), where 
(a)  4 2 )  I hK(Imz) + W ( z ) ) ,  z E V P ) ,  
(B)  4 2 )  5 b ( I m z ) ,  z E V(P) ,  
(7) u ( z )  5 hKI(1mt) + Bw(z ) ,  z E V(P).  
If the above condition holds only for all u = log l f l l  f an entire function on 6 ", then 

(b) P or V(P)  satisfies the PhragmCn-Lindelof condition PL(R, { w } )  if the following 

For each K E K(R) there exists K' E K(R) so that for each K" E K(R) there exists 

we say that P or V(P)  satisfies the condition APL(R, (w)) .  

holds: 

CJ E S, so that each u E PSH(V(P)) satisfying (a )  and (p )  also satisfies (r), where 

( a )  4 2 )  I hK(Imz) + o ( u ( z ) ) ,  2 E V(P),  
( P )  4.) I hK"(Imz), 2 E V(P),  
(7) u(z )  5 h p ( 1 m z )  + a ( z ) ,  z E V(P).  
If the above holds only for all u = log I f l ,  f an entire function on C n ,  then we say 

(c) P or V(P)  satisfies the PhragmCn-Lindelof condition HF'L(R) if the following 

For each K E K(R) there exists K' E K(R) and 6 > 0 so that each u E PSH(V(Pm)) 

that P or V(P)  satisfies the condition APL(R, { w } ) .  

holds for the principal part Pm of P :  

satisfying (a )  and (p)  also satisfies (r), where 
(a) u(.) I hK(Im 2) + 6 1 4  z E V(Pm), 
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Remark 5.4. HORMANDER [ll] showed that P satisfies HPL(R) if and only if P(D)  
is surjective on the space d ( R )  of all real- analytic functions on a convex open set R iib 

Rn. He was the first to prove that conditions of PhragmCn -Lindelof type for algebraic, 
varieties are important in studying certain properties of linear partial differential 01)- 
erators with constant coefficients. Also, he introduced the name “PhragmCn - Lindelijf 
principles” for conditions of this type. 

Related but different PhragmCn -Lindelof conditions were used by ZAMPIERI [25], 
BRAUN, MEISE and VOGT [7] and BRAUN [4] to  investigate and characterize when 
P ( D )  is surjective on &{,)(R”) or €{,l(R), R a convex open subset of R”. 

The significance of the conditions APL(R, *) and PL(R, *) for the questions studied 
in this article is shown by the following theorem. 

Theorem 5.5 .  Let R be a convex open subset of R” and let P E C [ZI, . . . , z,] 61. 

1. R is P - convex with * - bounds ; 
2. P satisfies the condition APL(R, *) ; 
3. P satisfies the condition PL( R, *). 

Proof .  Let us first consider the case * = (w). Then the proof can be given by thv 
same arguments that we applied in [17], Sect. 4, using Fourier analysis. More precisely, 
as in [17], 4.4, one shows that condition 2.8 (*) implies APL(R, (w) )  and as in [17], 4.5, 
one proves that APL(R, ( w ) )  implies 2.9 (*). Since 2.8 (*) and 2.9 (*) are equivalent to 
(1)  by Theorem 2.10, we see that (1) and (2) are equivalent. The equivalence of (2) 
and (3) was proved in [l8], Thm. 6.2. Note that, based on Theorem 2.10, a detailed 
(different) proof of the present theorem for * = (w)  is given in [19], Sect. 3. 

If * = { w }  then, by Corollary 3.12 and the preceding case, (1) is equivalent to the 
existence of a weight function K E S, such that P satisfies PL(R,(n)). By [20], 6.2, 
this is equivalent to PL(R,{w}). Hence (1) and (3) are equivalent. Obviously (3) 
implies (2). To see that (2) implies (l) ,  note that the arguments used in the proof 
of the implication (1) =+ (3) in [20], 6.2, also give that (2) implies the existence of 
IC E S, so that V ( P )  satisfies APL(R, ( I C ) ) .  By the preceding case and Corollary 3.12 

non - constant. Then the following assertions are equivalent: 

this implies (1). 0 

For a comprehensive study of the PhragmCn -Lindelof conditions PL(R, *) we refei 
to our article [20]. In Theorem 3.3 and Theorem 6.3 of [20] we show that for a homoge- 
neous polynomial P the conditions PL(R, *) do not depend on *. This characterization 
together with Theorem 5.4 and (171, Thm. 4.5 implies the following result. 

Theorem 5.6. Let P E G [ z l , .  . . , z,] be non-constant and homogeneous. Then 
for  each open convex set R in R” the following assertions are equivalent: 

1.  R is P -convex with (w )  - bounds for some/all weight functions w ;  
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2. R i s  P - convex with { w }  -bounds for some/all weight finctions w ;  

:I, R is P -convex with bounds. 

Remark  5.7. Note that for homogeneous polynomials P and R = R" condi- 
l ion  5.6 (2) was characterized in [17], Thm. 4.7 in terms of a dimension condition for 
\ ' ( P )  n IRn and of a local Phragmh-Lindelof condition a t  points in V ( P )  n Sn-l, 
rliid that a quite different characterization was obtained in BRAUN [4], Thm. 5.2. 

To formulate a sufficient condition for R" to be P-convex with *-bounds, we 
iiitroduce the following definition. 

Definition 5.8. Let P E C [ z l , .  . . , zn] be non- constant. The variety V ( P )  satisfies 
I.he strong dimension condition if V ( P )  n R" # 0 and if for each < E V ( P )  n R" each 
local irreducible component WE of V ( P )  at 

The next corollary follows from [20], 3.17. 

satisfies dimR Wt n R" = n - 1. 

Corollary 5.9. Let P E C [ z l , .  . . , z,] be homogeneous and non-constant. If 
( V ( P )  n R") \ (0) C V(P),,, and if V ( P )  satisfies the strong dimension condition 
then R" is P -convex with bounds and hence P - convex with * -bounds. 

From [20], Thm. 4.1,  we get the following theorem. 

Theorem 5.10. Let P E C [zl,. . . , tn] be non-constant and denote by  P, its 
principal part. If a convex open subset of R of R" is P -convex with * -bounds then 
R i s  P, -convex with bounds. 

Corollary 5.11. Let R be a convex open subset of R" and let P E Q: [zl,. . . , z,] be 
non -constant. If R is P -convex with * -bounds then V ( P )  satisfies HPL(R), i. e., 
P(D) : d ( R )  + d ( R )  i s  surjective. 

Proof .  Let P, denote the principal part of P. By [20], Thm. 4.1, the hypothesis 
implies that V(P,,,) satisfies PL(R,log (2+t)) .  Hence V(P,) satisfies HPL(R) by [17], 
Thm. 4.12. By HORMANDER [ll] this implies that P ( D )  is surjective on d ( R ) .  0 

Theorem 5.10 suggests to treat P as a perturbation of its principle part P,. While 
a general perturbation theorem for the property PL(R, *) is missing, a partial result 
in this direction are [20], Thm. 5.6 and Thm. 6.5. From these and Corollary 5.9 we 
get the next theorem. 

Theorem 5.12. Let P E C [ZI, . . . , z,] be irreducible and denote by  P, its principal 
Then the following conditions are part .  Assume that V(P,) \ ( 0 )  is a manifold. 

equivalent 
1. R" is  P - conwex vith ( w )  - bounds (resp. { w }  -bounds). 
2. V(P,) satisfies the strong dimension condition and dist ( z ,  V(P,)) = 0 ( ~ ( z ) )  

(ESP. dist (z ,V(Pm))  = o ( w ( z ) ) ) ,  z E V,  121 -+ 00. 
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For a further evaluation of Theorem 5.12 we refer to (201, 5.8 and 5.9. As a conse- 
quence of these we get the following examples which are recalled from [20], 5.10. 

Example 5.13. For n 2 3 and m 2 2 let P, E C (a,.. . , z,] be of the form 
n 

j = 1  

where aj E IR \ (0) for 1 5 j 5 n. Then IR” is (P, + &)-convex with bounds for all 
Q E C [z1 , .. . , z,] with deg Q < m, whenever either m is odd or m is even and there 
are j ,  k such that sign a, # sign ak. 

From 5.13 we conclude in particular that R3 is P-convex with bounds for 
P(z l , z2 ,  2 3 )  = z; + z; + z:. Since P is homogeneous and not hyperbolic it is not 
* -hyperbolic by Remark 4.2 (d). 

The next result shows that the situation is different in the case of two variables. 

Theorem 5.14. For each non - constant polynomial P E Q: [zl , 221 the following 

1. P ( D )  is * -hyperbolic; 
2. R2 i s  P -convex with * - bounds; 
3. P ( D )  is * -hyperbolic with respect to each non-characteristic direction; 
4. Each wnvex open set in IR2 is P -convex with * -bounds. 

Proof .  (1)  + (2): This is an easy consequence of the existence of fundamental 
solutions E+ and E- in ’0: (R2) for P(D) having support in closed cones as described 
in Remark 4.2 (a). 

(2) =+ (3): Using Theorem 5.12 and (211, 2.7, this can be shown for * = ( w )  by the 
same arguments that were used to prove the implication (2) + (3) of Theorem 4.11 
in [17]. The cme * = { w }  is then reduced to the previous crbe by Corollary 3.12 and 
(211, 2.14. 

0 

assertions are equivalent : 

(3) * (4) =+ (1): This holds by Theorem 4.6. 
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