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Abstract. Characterizations are given of those linear partial differential operators with constant

coefficients which admit a continuous linear right inverse on £,y(12) (resp. 8(,_,)(9)) and/or ‘Déu)(ﬂ)

(resp. D’(w)(ﬂ)), where (1 is an open set in IR™. The characterizations are in the same spirit as in

the previous results of the authors on the existence of right inverses on C*°(Q2) and/or D'(Q).

0. Introduction

In the early fifties L. SCHWARTZ posed the problem of determining when a linear
differential operator P(D) with constant coefficients admits a (continuous linear) right
inverse on £(2) or D'(Q), N an open subset of IR". This problem was solved by the
present authors in [17) (see also [15], [16]) and for systems over convex open sets by

PALAMODOV [23)].
In the present article we consider the same problem for the non — quasianalytic classes

of Beurling type £,(€), of Roumieu type £(,}({2) and for the corresponding classes
of ultradistributions Dzw)(ﬂ) and D'{ w}(Q), where w is a weight function in the sense

of BRAUN, MEISE and TAYLOR [6]. Extending our results in [17], we characterize by
various conditions when a given operator P(D) admits a right inverse on any of these

classes. In particular, we show that P(D) admits a right inverse on &(,,)(2) (resp.
E{w}(ﬂ)) if and only if it admits a right inverse on D, ,(Q) (resp. ’D'{u}(Q)). A
consequence of our characterization is that P(D) admits a right inverse on 'D’{w}(ﬂ) if
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and only if there exists a weight function « satisfying k = O(w) such that P(D) admits
a right inverse on D] n)(ﬂ). Hence the Roumieu case can be reduced to the Beurling
case. The proof of these results — to a certain extent — can be given by variations of the
arguments that we used in [17]. However, as a new ingredient we need a recent result
of BRAUN [3] on the local structure of ultradistributions, which extends an earlier one
of KOMATSU [13]. Also we make extensive use of the results in [6].

To evaluate our characterization further, two cases are distinguished that are treated
by different methods. For a bounded open set  with C! - boundary, an application of
Holmgren’s uniqueness theorem shows that P(D) has a right inverse on 'Dzw)(ﬂ) only
if P(D) is (w)-hyperbolic with respect to each non - characteristic vector N in the
sense that there exists a fundamental solution Ey € D( w)(IR") for P(D) which satisfies
SuppEn C {z € R" : (z,N) > 0}. Using results on (w)-hyperbolic operators from
[21], we show that an operator P(D) admits a right inverse on ’Dzw)(ﬂ) for some
bounded open set 2 with C' —boundary if and only if P(D) admits a right inverse on
wa)(G) for each convex open set G.

For convex open sets ) an application of Fourier analysis gives that an operator P(D)
admits a right inverse on 'Dzu)(Q) if and only if the zero variety of P in C" satisfies
a condition PL(S), (w)) of Phragmén - Lindelof type, which is related to a similar but
different condition which HORMANDER [11] introduced to characterize when P(D)
acts surjectively on all real - analytic functions on 2. For a comprehensive study of
the condition PL($2, (w)) we refer to our article [20].

The paper is organized as follows: In the preliminary Section 1 we introduce ultra-
differentiable functions and ultradistributions. The existence of a right inverse for
P(D) in the Beurling case is characterized in Section 2. The same is done for the
Roumieu case in Section 3. The connection between right inverses and w - hyperbolicity
is investigated in Section 4 and in Section 5 we discuss the characterization of the ex-
istence of right inverses in terms of Phragmén — Lindel6f conditions.

The main results of the present paper were announced in our survey article [19].

1. Preliminaries

In this preliminary section we introduce the non —quasianalytic classes, the spaces
of ultradistributions and most of the notation that will be used in the sequel.

Definition 1.1. A continuous increasing function w : {0,00[ — [0, 00| is called a
weight function if it satisfies the following conditions:

(c) there exists K > 1 with w(2t) < K(1 + w(t)) for all t > 0,
= w(t)

(ﬂ)/l 7 dt < oo,

(7) log t = o(w(t)) as t — oo,

(6) p:t — w(e) is convex.

For a weight function w we define @ : C™ — [0, 00[ by &(2) = w(]|) and again call
this function w, by abuse of notation.
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The Young conjugate ¢* : [0, 00[— IR of ¢ is defined by

@*(y) : = sup{zy —p(z) : z > 0}.

Remark 1.2. (a) Each weight function w satisfies lim;_, # = 0 by the remark
following 1.3 of {14].

(b) For each weight function w there exists a weight function o satisfying o(t) = w(t)
for all large t > 0 and ¢|[0,1] = 0. This implies w,(y) = . (y) for all large y,
¢ ([0,00[) C [0,00[ and ¢}* = ¢,. From this it follows that all subsequent definitions
do not change if w is replaced by o. On the other hand they also do not change if w
is replaced by w + ¢, ¢ some positive number. Therefore we can and will assume that

w(0) > 1.

Definition 1.3. Let w be a weight function.
(a) For a compact set X C IR” and A > 0 let

£l )= {1 € C2(K) s s = sup sup (1 @exp (= 2" (121)) < o).
z€K a€N} A

(b) For an open set £} C IR" define

Ew)(R) = proj proj Eu(K,m)
— Kcct — meN

{1 €C®(Q) : |Iflik,m < oo for each K CC £ and each m € IN},

i

and

E1w)(Q) = proj ind Eu (K, i)
— Kcca T meN m

= {fe C>(9) : for each K CC Q there is m € IN with ||f||K.-,1n- <oo}.

The elements of &(,,)(f2) (resp. E(wy (Q)) are called w—ultradifferentiable functions of

Beurling (resp. Roumieu) type on 2. We write £,(€2), where * can be either (w) or
{w} at all occuring places.
(c) For a compact set K in IR" we let

D.(K) = {f € &(R™): Supp(f) C K},

endowed with the induced topology. For an open set & C R"™ and a fundamental
sequence (K;);ew of compact subsets of {) we let

D,(Q) := ind D,(K;).
J—O

The dual D.(R2) of D,(1) is endowed with its strong topology. The elements of
Dzw)(ﬂ) (resp. ’Diw}(ﬂ)) are called w— ultradistributions of Beurling (resp. Roumieu)

type on 2.
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(d) For an open set 2 C IR™, an open subset U of Q2 and X (), being one of the
spaces introduced in (b) or (c), we let

XQU) == {feX(): fly=0}.

Remark 1.4. Definitions 1.1 and 1.3 are taken from BRAUN, MEISE and TAYLOK
[6]. They are variations of the classical ones, introduced by BEURLING [1] (see also
PETzSCHE and VOGT [24]). Though [6] is based on BEURLING’s ideas, we shall mainly
refer to it, since it is well adapted to our applications. If w is a subadditive function
on [0, oo| satisfying 1.1 (8) — (6), then the classes £,y and D, coincide with those of
BEURLING (1]. In [6] it is shown that for each weight function w the spaces D(,)((?)
and Dy,}(€) are non - trivial.

The classical case £,) = C* is formally not a subcase of what we present here,
since w := log* is not a weight function in the sense of Definition 1.1. However, it can
be regarded as such if one interpretes ¢* appropriately or if one uses an equivalent
definition of £,)(Q) (see BRAUN, MEISE and TAYLOR (6], 4.5).

Example 1.5. The following functions w : [0, cof— [0, 00 are examples of weight
functions:

lLwit)=t*,0<a<1,

2. w(t) = (log (1+t))8, B>1,

3. w(t)=t(log (e +1t) P B>1.

Note that for w(t) = t°, the classes £, resp. £y, coincide with the Gevrey classes
I'(4) resp. T4} for d := 1/a.

Polynomials and partial differential operators. By €|z, ..., z,] we denote
the ring of all complex polynomials in n variables, which are also regarded as functions
on C". For P € Cz1, ... ,2n], P(2) = 3 j41<m 8a2®, With zlal-m |aa| # 0 we call

P, : 2+ E ay2®

the principal part of P. Note that P,, is a homogeneous polynomial of degree m.
For P as above and an open set {2 in IR™ we define the linear partial differential
operator

P(D) : DL(Q) — DL(Q), PD)f = Y aai lofl.

laj<m

Then P(D) is a continuous endomorphism of D, () and its restriction to £,(Q) is a
continuous endomorphism of £,(12).

Definition 1.6. For P as above and an open set  in R" we let

N@) = {feD,(): P(D)f =0} and N() := M) NE(D).
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Right inverses. For locally convex spaces E and F we let
L(E,F) := {A: E — F: Ais continuous and linear } .

A map A € L(E,F) is said to admit a right inverse, if there exists R € L(F,E) so
that Ae R = idp.

2. Right inverses on D;,,(f2) and £)(?)

For a given weight function w and for an open set §? in IR™ we characterize in this
section the partial differential operators P(D) that admit a continuous linear right

inverse on ’D(w)(ﬂ)(resp. on E(w)(ﬂ)). In particular, we show that P(D) has a right
inverse on Dzw)(ﬂ) if and only if P(D) has a right inverse on £,)(?). Up to Lemma
2.6 this could be done as in Section 2 of [17]. However, we prefer a somewhat different
line of argument. The results of the present section will be evaluated further in the

subsequent sections.
Throughout this section, w denotes a given weight function. For an open set § in

IR™ and € > 0 let

Q = {x €N:|z| < % and dist (z,0 ) > 5} ,
where | - | denotes the Euclidean norm on IR".

Lemma 2.1. Let Q be an open set in R™ and let P be a complex polynomial in n
variables. Then we have (1) = (2) = (3) = (4) for the following assertions:

1. P(D): Dzw)(ﬂ) — Dfu)(Q) admits a right inverse;
2. for each € > 0 there exists 0 < 6 < € so that for each f € Dfu)(Q’QIF) there exists
9 € Di,,(Q,42) with P(D)g = f;
3. for each € > 0 there ezists 0 < § < € so that for each p € N(Q;) there erists
v € N() with v|g, = pla,;
4. for each € > 0 there ezists 0 < 8o < € so that for all0 < (<0 <9< § < b and
each £ € Q, \ Q25 there ezists E; € Déw)(IR") so0 that
(i) Supp B¢ C (R™\ Q) - &,
(i) P(D)E¢ = 6 + T¢ where SuppT; C (¢ \ §y) — €.

Proof. Mutatis mutandis this can be shown as in Lemma 2.1 of [17]. O

Lemma 2.2. Let P be a complezx polynomial in n variables, Q an open set in R"
and (Q)kev an ezhaustion of Q0 by relatively compact subsets. Let Qp := Q_; :=
Q_, := @ and assume that for each k € INg there exists a continuous linear map
Ay :D(w)(ﬂ,ﬂk) — D(w)(ﬂ,ﬂk—ﬂ which satisfies

(%) P(D)Ak(f)lﬂk-n = f|ﬂk+! for all fe€ Déw)(ﬂ, Qk)'
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Then P(D) admits a right inverse on D, (Q).

Proof. By the following induction argument we define a sequence (Rg)xem, in
L(’Dzw)(ﬂ)) which satisfies

(2.1) P(D)R(flaws: = flaw, for all f €D, (Q), keNo.

If we let Ry := Ao then (*) and Qo = @ imply that (2.1) holds for k = 0. Assume
that Ry is already defined so that (2.1) is satisfied. Then note that because of (2.1)
we have

f = P(D)Ri(f) € Dpyy(2, Q1) for all | € Dl (D).

Therefore we can define

(22)  Ren(f) = A (f - PD)Re() + Ri(f), [ €D, (Q).
Obviously, R4 is in L('Dzw)(ﬂ)). Moreover, (*) implies

P(D)Re+1(f)lavy, = (f = P(D)Re(H))laws: + P(D)Bie(Hlawy. = flaw.

Hence condition (2.1) is satisfied by Ry41.
To see that R converges to some R € L(’D( w)(Q)), note that from (2.2) and

Ak ('wa)(ﬂ,ﬂkﬂ)) C Dy, 2—1) we get
Rk+l(f)|ﬂk—1 = Rk(f)'ﬂk—x for all keIN.

Finally note that (1) implies P(D)R = id‘D;u)(Q). 0

Remark 2.3. It is easily seen that Lemma 2.2 remains true if the symbol D( ) is
replaced everywhere by one of the symbols &), D{u) or &gy

Lemma 2.4. Assume that for P € C|[z1, ..., 2,] and an open set @ C R" condition
2.1(4) holds. Then P(D) admits a right inverse on ’Déw)(ﬂ) and on £(,,)(9).

Proof. For ¢ > 0 let 0 < 8p(¢) < ¢ denote the number which exists by condi-
tion 2.1(4). Using this condition recursively, choose a sequence (ex)rem in ]0, oo
which decreases strictly to zero and satisfies £, < %diam Q and £441 < o(ex) for all
k € IN. Then define O = @ for k = —2,—1,0 and Q; := Q,, for k € IN. In order
to be able to apply Lemma 2.2 we are going to define continuous linear operators
A : (w)(Q Q) — D(u)(ﬂ Q—2) for k € INg, which satisfy condition 2.2 (*). To do
this, we distinguish two cases.

Case 1: k=0, 1, 2. In this case choose ¥ € D(,,)(f4) with ¢|o, =1 and E € D'(R")
with P(D)E = § and define

Ao i D) — Diy(@), Aolf) = Ex(¥f).
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Furthermore, let Ay = A°|Diw)("v“k) for k = 1,2. Then it is easy to see that
condition 2.2 (%) holds for k = 0,1, 2 by the choice of 9.
Case 2: k € IN, k > 3. In this case choose a number ¢t which satisfies

(23) 0 <t < min (diSt (Qk_z,]R,n \Qk_l),dist (Qk+1,an \ Qlc+2)) .
Since (k41 \ Q% is compact, we can choose m € IN and &; € Q41 \ Q% so that for

Bi(¢):={z e R": |z — | < t} = £ + B,(0) we have

Qe \ % C | Bil&y)-

j=1

Next use condition 2.1 (4) with € = €5_1, 6 = £ < 8o(Ek-1), 7 = €k+1, 0 = Ek42 and
( = k43 to find E¢, € D, (IR") so that for 1 < j < m,

(2.4) Supp E¢; C (R™\ Qk-1) - &5,

(2.5) P(D)‘E{J = d+ T{J where SuppT(j C (Vi3 \ Qt2) — &

Further choose functions ¢; € D,)(Bi({;)), 1 < j < m, so that Z;’;l pi(z) =1 for
all z € Q41 \ Q. This implies

(2.6) (wa)

Next define

= flnk+1 for each f € Dzw)(n’ﬂk) .

Q41

m

Ax(f) Z «(p;f), fE€D,)R).

Obviously, Ax is a continuous linear map from Dy, () into ’Dzw)(lR"). To show
Ag (’DZW)(Q)) C D’w)(lR",Qk), note that for f € 'Dzw)(Q,Qk) we get from (2.1) and

'2.2) the inclusion
m
Supp (Ak(f U (R™\ Qk-1) = & + By(§;) C R™\ Qs

lence Ay : D(W)(Q,Qk) — ’Dzw)(ﬂ,ﬂk_g) is well—defined. To show that Ay satisfies
.2 (*) note that (2.3) implies

P(D)Ax(f) = Z (6+T¢;) * (i f)

W,
"
—

.7)

Ma

o;if + Z T, * ( for all f € D,,(9).
1 =1

.
n
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From (2.1) and (2.3) it follows that
SuppT¢; * (95 f) C (Qets \ Qit2) — & + Be(&5) C Qi \ Dy -
Hence (2.5) and (2.4) imply
P(D)Ax(f)law, = flaw,, for all f e Dy, (Q,2).

Consequently, Lemma 2.2 shows that P(D) admits a continuous linear right inverse

on D; (D)
It is easy to see that the arguments above also apply to £(,)(€, ). Because of this
we get from Remark 2.3 that P(D) also admits a right inverse on &£.,)(€). O

Combining Lemma 2.1 with Lemma 2.4 we see that the existence of a right inversc
for P(D) on £,,)(f?) is necessary for the existence of a right inverse for P(D) on
’Dzw)(ﬂ). To prove the converse, we introduce the following notation.

Notation. For an open set § C R, > 0 and € > 0 let
EXNQ) = {f€C™(Q): ||fllk.x <o forall K CC Q}

and
EX(0,9,) = {f€EXN): fla, =0} .

Lemma 2.5. Let ) be an open set in R™ and let P be a complex polynomial in
n variables. If P(D) : £)()) = &£(,)() admits a right inverse then the following
condition holds:

For each € > 0 there is 0 < 6 < € so that for each0 < np < é
(%) there erists | € IN so that for each f € £ (Q,Qs) there ezists
g€ D(w)(ﬂ,,,ﬂc) so that P(D)g = f|qa, in 'D(w)(ﬂ,,).

Proof. Let R denote a right inverse for P(D). Since R is continuous, we get

for each K cC Q and each m € IN there exist Q CC 1, je€ N,

2.8
@8 550 8o that |R(llk.m < Clifllg.; for all f € (@)

To derive (%) from this, let ¢ > 0 be given. Then (2.8) implies the existence of
Qcc,jeNand C > 0so that

(2.9) IR(Hlla..r < Cllfllg,; for all f € Ew)(Q).

Choose 0 < 6 < € so that @ C ;. Next fix 0 < 7 < 6 and use (2.8) to find
LccQmeIN, m>jand M > 0 so that

(2.10) IBR(Mla,1 £ Mlflle,m for all f € Euy(Q).

Now note that there exist ] € IN and D > 0 so that

(2.11) exp (-— my* (%)) < Dexp (—lcp‘ (27—1)> for all pe N,.
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This is a consequence of the following facts. On the (DFN)-space A, of all entire
functions h which for some A, B > 0 satisfy the estimate |h(z)| < Aexp (Bw(z)) for
ull z € C, the operator M, defined by M(h) : z — zh(z) is linear and continuous.
Iirthermore, an entire function h belongs to A, if and only if its Taylor coefficients h;,
j € Ny, satisfy for some m € IN and D > 0 the estimate |h;| < Dexp (—me* (L))
for all 5 € INg. Now (2.11) follows from the observation that M on this sequence space
is the forward shift operator.

Next fix f € £,(0,95) and choose ¥ € Dy,)(f2) so that = 1 in a neighbourhood
of L. Then fix p € D(,)(B1(0)) with [ p(z)dz =1, let p, : z — Lp(Z) for t > 0 and
define f; := 9¥(f *p,). For sufficiently small ¢ > 0 the function f, is in £(,)(2, Q), since
/isin £,(9, Q). Moreover, a direct estimate, using (2.10) shows that || f;— fllz,m — O
ns t — 0. Hence (2.10) implies that g := lim,_,q R(f;) exists in C(f},). From (2.9) we
conclude that gla, = 0. Next observe that for each ¢ € D(,)(€,) we have

(P(D)g,¢) = {9, P(~D)g) = / gP(-D)pd) = lim / R(f,)P(~D)pd
N 0
= 1im [fedr = (),
which completes the proof. ]

Lemma 2.6. For each open set @ C IR" and each P € C|z, ..., z5] condition 2.5 (x)
implies condition 2.1 (4).

Proof. For a given number € > 0 choose 0 < §y < ¢ according to 2.5 (x) and note that
the conclusion of 2.5 (*) then holdsfor all0 < 6 < §p. Next fix 0 < (<o <n <6 < &
and ¢ € {2, \ Q5 and choose I € IN according to 2.5 () with €, 6 and . Then the
proof of BRAUN, MEISE and TAYLOR [6], 4.4, implies the existence of m € IN so
that for each f € £5t™(Q) and each ¢ € £(,)() we have pf € (). Further, by
BRAUN [3], Thm.8, there exists an elliptic ultradifferential operator Q(D) acting on
£(w) 80 that the equation Q(D)F¢ = é¢ has a solution in ELH™(R™). Now choose
¢ € D(w) (0 \Qs,) 80 that @¢ = 1 in a neighbourhood of £. Then f¢ := p¢ F¢ belongs
to £ (Q,€4,) and satisfies

Q(D)f( = (55 + hg , where hf € g(w)(ﬂ,ﬂgo),

since Q(D) is elliptic. Hence we can apply condition 2.5 (x) with 7 replaced by ¢ to
get g¢, He € 'Dzw)(ﬂ(,ﬂs) satisfying

P(D)ge = f§|Q< and P(D)H( = h(ln(.
Next choose ¥ € D(,,)(2¢) with ¥|g, =1 and let
G¢ = Y(Q(D)ge — He) € ’Dzw)(]R").

Then we have
SuppGe C R\, C R\ Q,,
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and since P(Q) commutes with Q(D)
P(D)G¢la, = (P(D)Q(D)g¢ — P(D)He)la, = (Q(D)fe — he)la, = écla, -
This implies
P(D)G¢ = 6 +T¢, where SuppT¢ C Q\ Q.
It is easy to check that
Ee : ¢ — (Geyp(- - €)), ¢ €D, (R")
satisfies the conditions (i) and (ii) in 2.1 (4). a

To derive further conditions that are equivalent to the existence of a right inversc
for P(D) on &,)(€?), we introduce the following notation.

Notation. For an open set (1 in R", £ > 0, and m € IN let
Beom 1= {1 €&)() :Suppp C 0, ()] < Iflleym for all f € Eup( D)}

Obviously, B, is a relatively compact subset of 8(’“,)(9). Moreover, for each com-
pact set M C E(’w)(ﬂ) there exist m € IN and € > 0 with M C m B, n.

Remark 2.7. Recall that for P € C|z,...,2,] and an open set & C IR" the
P - convexity of ) (see HORMANDER {10}, Def. 3.5.1) is equivalent to the surjectivity
of P(D) on £(). Variations of the proof of this result show that € is P - convex if
and only if P(D) : £,)(2) — &w.)(R) is surjective (see e.g. BIORCK [2], 3.3.2 and
3.3.4).

Using the preceding remark, a smoothing argument, and the notation introduced
above, the proofs of [17], 2.4 and 2.5 can be modified easily to prove also the following
two lemmas.

Lemma 2.8. Let  be an open set in R™ and let P be a complez polynomial in
n variables. If P(D) : £u)(Q) — £)(Q) admits a right inverse then the following
condition (*) holds:

For each € > 0 there erists 0 < § < € so0 that for each 0 <7 < § and
each m € IN there ezists k € N and C > 0 so that for each p € £, ()

(+) with (u + im P(D)*) By, m # @ there exists A € £(,,(€25) so that
p+ P(D)Y) € CBg,y.

Lemma 2.9. Let Q) be an open set in R™ and let P be a complez polynomial in n
variables. If () is satisfied

For each ¢ > 0 there exists 0 < § < ¢ so that for each 0 < 5 < ¢
there erist m, k € IN and C > 0 so that for each p € 8(’“,)(05) with

(+) (i +im P(D)!) () By, m # 0 there evists A € £, () so that
p+ P(D)‘)\ € CBs, i
then Q is P - convez and condition 2.5 (x) holds.
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Theorem 2.10. For an open set  in R™ and for a complez polynomial P in n
variables the following assertions are equivalent:

1. P(D): DEW)(Q) — 'D(w)(ﬂ) admits a right tnverse;

2. P(D) : £u,)(Q) = £u)(2) admits a right inverse;

3. One of the conditions 2.1(2), 2.1(3), 2.1(4), 2.5(x), 2.8 (%) or 2.9 (*) holds.

Proof. Because of 2.1, 2.4, 2.5 and 2.6 the following implications hold: -
1) = 21(2) =21(3) > 21(4) = (2) = 25(x) = 21(4) = (1).
Because of 2.8, 2.9, 2.6 and 2.4 we also have

(2) = 2.8(x) = 29(x) = 25(x) = 21(4) = (2). O

Remark 2.11. Theorem 2.10 extends [17], Thm. 2.7 from £(92) and D'(Q) to
Ew)(f)) and ’Dzw)(ﬂ). In [17] all the equivalent properties for an open set () were
called P -convexity with bounds. Since now also the weight function w matters, we
introduce the following definition.

Definition 2.12. Let w be a weight function,  an open set in R" and P a
complex polynomial in n variables. 1 is called P-convex with (w)-bounds if one of
the equivalent conditions in Theorem 2.10 holds.

Because of Theorem 2.10, the arguments of the proof of [17], Cor. 2.10, also prove
the following corollary.

Corollary 2.13. Let P be a compler polynomial in n variables and let (Q;)ier be
a family of open sets in R"™ for which Q := NerQ; # @ is open. If ; is P - convez
with (w) —bounds for each i € I then Q is P - convez with (w) - bounds.

Corollary 2.14. Let Q be an open set in R", let P € C|z1,...,2z,] and let w
be a weight function. If Q is P - convez with (w) - bounds, then Q is P - convez with
(k) - bounds for each weight function x satisfying w = O(x).

Proof. By Theorem 2.10 condition 2.1(4) holds for  and w. Since w = O(k) implies
’Déw)(]R”) - D(K)(IR") and since supports do not change under this inclusion by [6),
3.9, we see that condition 2.1 (4) holds for 2 and x. By Theorem 2.10 this completes
the proof. O

To indicate that there are quite a number of polynomials P for which no open set
is P-convex with (w)-bounds, we recall the following definition.

Definition 2.15. A polynomial P in n variables is called (w) - hypoelliptic
if the operator P(D) admits a fundamental solution E € D ,(IR") that satisfies

Elgr~\{0} € £w)(R"\ {0}).
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It is easy to check (see BJORCK [2], Thm. 4.1.1) that for each (w)-hypoelliptic
polynomial P and each open set Q in R™ we have N (Q) = N(Q) C &)(€?). Hence
N(Q) is a nuclear Fréchet space. From this and 2.1(3) we get by the proof of [17],
Cor. 2.11, the following result:

Corollary 2.16. For n > 2 let P be an (w) — hypoelliptic polynomial in n variables.
Then each open set Q@ in R™ is not P ~ convez with (w) - bounds.

3. Right inverses for D}, () and £(.)(?)

In this section we characterize when a partial differential operator P(D) admits a
right inverse on D’{w}(ﬂ) and £(,1(€), Q an open subset of R™. Since the topology

of £,}(R) is more complicated than the one of £(,)({2), we first describe it in a way
which is suitable for our purposes.
Throughout this section w will denote a fixed weight function. Further we let

S, = {0 : 0 is a weight function satisfying o = o(w)} .

Remark 3.1. For each o € S, the following is easy to show:
For each € > 0 there exists C, > 0 so that

epL, (%) < pa(z)+Ce for all =z > 0.

This implies that for each open set @ C IR and each K CC Q

Ifllk,o = sup sup |F(¥(z)|exp (- ¢i(lal)), f€Epy(D)
z€K a€Np '

defines a continuous semi—norm on £,}(f2).

Notation. For an open set  C IR", ¢ > 0, and o € S, define
Beio = {1 € ()@ : Suppp C R, W] < [Iflla o forall f € £y()}.

By the preceding remark, each set B, , is equicontinuous, hence bounded. The
following lemma shows that even more holds.

Lemma 3.2. The sets (B¢, ¢)e>0,0es. form a fundamental system of the bounded
subsets of Eiw}(ﬂ).

Proof. Let B be a bounded subset of Siw}(ﬂ). Since £(,)(R) is reflexive by
BRAUN, MEISE and TAYLOR [6], 4.9, B is equicontinuous. Hence there exists a com-

pact subset K of Q) so that |J,pSuppp C K. Choose 0 < t < %dist (K,R*\ Q)
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and find m € IN and &,...,&m € K so that K C UL, Bi(¢;). Further choose
¢y € Dywy(Bu(§5)),1 < 5 <m, so that 3570, p;(z) =1 for all z € K. Then

m

(3.1) u(f) = > wpif) for all fe€Dy)(R) and all pe B.

=1

Since B is bounded, we get from BRAUN, MEISE and TAYLOR [6], 4.4, that for
1 < j < m the sets '
B; i={p;u: u € B) C Ely(Bul&)
are bounded. Consequently, [6], 4.7, implies that for each k there exists My > 0 so
that for 1 < j <m, all v € By,

3.2) |9(2)| = |(vz, e %==)| < Myexp (hj(Imz)+ i—w(z)) forall zeC",

where h; denotes the support functional of the convex set By(¢;). From (3.2) we get
for each k € N, > 0
1

g(r) = e |51|1p logt (|7(z)| exp ( — hj(Im 2)}} < <+ w(r) +log My,
SIS z|=r

bad

i.e., ¢ = o(w). By BRAUN, MEISE and TAYLOR [6], 1.7, there exists 0 € S, so that
g = o(o). This implies

For each § > 0 there exists Cs > 0 8o that for 1 < j < m and each v € B;

(33) [P(2)] € Csexp (hj(Imz) + é0(z)) forall z € C™.

Now choose ¢ > 0 so that U;.';l By(&;) C Q. and note that by [6], 3.3, there exist
L >0and M > 0 so that for each f € Dy,)(f2) we have

(34) |f(z)| = l - f(t)e = dt‘ < Mflla,..e"t?® for all z e R™

Next choose § = 5 in (3.3). Then we get from (3.3) and (3.4) that for each v € B,
1 <j <m, and each f € D,y (),

vl = | (5) [ ot-n) e e

() MOy sl [exo (5 - 1) o@)) o

Since the weight function o satisfies log* t = o(c(t)), this together with (3.1) implies
that for a suitable number A > 0 we have B C AB; ,. 0

IA

Corollary 3.3. For each weight function w and each open set 0 in R" the family
(I - %, 0)kccn,oes. is 6 fundamental system of continuous semi —norms on £,3(2).
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Proof. We have already remarked that for K CC  and ¢ € S, the semi—norm
|l - |k, o is continuous on £,3(2). If ¢ is a given continuous semi-norm on &,,3(Q),
we denote by U the closed unit ball with respect to ¢. Then U° (the polar of U)
is an equicontinuous subset of Siw}(ﬂ). Hence Lemma 3.2 implies the existence of

€>0,0 €5, and A > 1 with U° C AB,,. Note that for the closed unit ball V, , of
the semi—norm || - |la,,» we have B, , C V., and hence U° C A\V.,. From this we
get by the theorem of bipolars

U=U">(0,) = ;vm,

which implies ¢ < A - |la,,o-

Lemma 3.4. Let Q be an open set in R" and let P be a complex polynomial in n
variables. Then we have (1) = (2) = (3) = (4) for the following assertions:

1. P(D): D}, () — Di,() admils a right inverse;

2. for each € > 0 there exists 0 < § < € so that for each f € ’D’{w}(Q,Qg) there erists
g € Dlyy (2,0, with P(D)g = f;

3. for each € > O there exists 0 < 6§ < € so that for each p € N(Q5) there ezists
v € N(Q) with v|q, = pla, ;

4. for each € > 0 there exists 0 < §p < € so that for all0 < ( <0 <9< 6 < & and
each £ € Q, \ Q5 there exists E¢ € D{,y(IR") so that

(i) Supp B¢ C (R" \ Q) - ¢
(i) P(D)E¢ = 6 + T¢ where SuppT; C (% \ Q) - €.

Proof. (1) = (2): Let R: D} _,(0)) — D ,(N) denote a right inverse for P(D)
) {w} {w}
and let € > 0 be given. Then the set

B = {p€Dyu(%) : llella,1 <1}
is bounded in Dy, (9,), hence bounded in Dy,}(€2). Therefore,
gs : Dy, () — R, gp(p) = sup |u(p)|
pEB
is a continuous semi—norm on D’{ w}(Q). By the continuity of R there exist a bounded
set C in Dy,,}(N2) and M > 0 so that
ge(Rp) < Mgc(p) forall pe€ Di,,().

Since Dy,,}(Q) is a (DFS) -space for each compact set Q in {1, we may assume that
there exist a compact set L in {2 and m € IN so that

¢ = {peDy(L): liells, 3 <1} -

Choose 0 < § < € so that L C Q5 and let f € D’{w}(ﬂ,ﬂa) be given. Then g := R(f)
is in D’{w}(ﬂ) and satisfies P(D)g = P(D)Rf = f. Moreover, g satisfies

g8(9) = gs(R(f)) < Mqc(f) = 0.
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Hence we have
(%) glp) = 0 for all ¢ € spanB.
Choose p € Dy,}(B;(0)) with [ p(z)dz = 1 and define p; : z - & p(%) fort > 0.

Then it is easy to check that for each ¥ € Dy,}(f) we have limy oo ¥ ¥ py = 9 in
D(.}(2) and ¢ * p; € span B for all sufficiently small £ > 0. Hence (*) implies

9(¥) = lim g(xp) = 0 for each 9 € Dyy(K).

Consequently, g belongs to D’{w}(ﬂ, Q).
(2) = (3) = (4) : This can be shown as in the proof of [17], Lemma 2.1. a

Lemma 3.5. Let Q be an open set in R™ and let P be a complez polynomial in
n variables. If P(D) : £(,)()) — &(,)() admits a right inverse then the following
condition (*) holds:

For each € > 0 there exists 0 < § < € so that for each 0 < < § and
each o € S, there exist k € S, and C > 0 so that for each pu € Eiw}(ﬂc)

(+) with (4 + im P(D)!) N By, o # 0 there eists A € £},,(Qs) so that
4+ P(D)') € CBj.x.

Proof. Choose a right inverse R for P(D) and note that
R'e P(-D) = R'oP(D)! = (P(D)°R)" = idg:u)(n) .

To show that this implies the P - convexity of {1, we fix a compact set K in { and
choose € > 0 so that K C §,. Then fix 0 € S,, and use the continuity of R* to find
0<6<e keS8, and a > 0so that RY(B,,,) C aBs, .. Since R! is linear, this
implies

R'(span B, ,) C span B, .

Fix ¢ € D(Q1) with Supp P(~D)y C K. Then it is easy to check that
P(-D)p € span B, ,, which implies ¢ = R'e P(-D)y € span B, ,

and hence Supp ¢ C §25. Thus ( is P -convex.
Next note that
:= (Ro P(D))! = P(D)'cR!

m
is a projection on £{,,(Q) with im7 = im P(D)t. Hence Q := idg; (@) — 7 is a
projection on £ 2 u)(Q) and satisfies

(3.6) ker Q = im7 = im P(D)' = im P(-D).

Let ¢ > 0 be given. Note that £(,,)(2)/€)(,€) is a (DFN)-space since it is
!

equal to Dy,}(Q)/Dy} (9, Q). Moreover, (E{w}(ﬂ)/é'{w}(ﬂ, 95)) can be canonically

identified with £(,}(€2,Q)*. Obviously, the set & = {6, : z € .} is weakly total in
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£(w) (2, 9)*, hence total in £, (2, Q). Since A is relatively compact in £¢,,3(9),
the set Q(A) is relatively compact in SEW}(Q). By 3.2 there exist 0 < §p < €,60 € S,
and a > 0 with Q(A) C aBsy,s C 1) (0,95,)*. Since £4,3(2,Qs,)* is closed in
Eiu}(ﬂ)’ this implies

(3.7) Q(g{w}(n;nc)l) c ‘g{w}(nvn%).L

Fix 0 < § < 6y and let 0 < 1 < é and o € S, be given. Since @ is continuous, we get
from Lemma. 3.2 the existence of 0 < { < 5, k € S,, and C; > 0 so that

(3.8) Q(Bp,o) C C1B¢,x .
Fix p € 52w}(9€) and assume that for some v € Eiw}(ﬂ) we have p + P(D)'v € B, ,.
Then (1) implies

Q(u+P(D)'v) = Qu+Q(P(D)'v) = Qu

and hence Qu € C1 B¢, «, because of (3.7). Moreover, Suppu C €2, and (3.6) imply
Qu € £(9,94,)*. This gives

(8.9) SuppQu C Qs, C Q5.

Choose ¢ € Dy,}(ls) so that ¢ = 1 in a neighbourhood of Qs,- Then we get from
the inclusion (3.8)

IQu(f)l = 1Qu(¥f)l < Crllvflla, for all fe &) (Q).

Note that by the proof of BRAUN, MEISE and TAYLOR [6], 4.4, there exist L > 1 and
C., depending only on k, so that

W fllasx < Call¥lla,, Le Iflis, e for all f € £y ().

Hence there exists C > 0 depending only on 6o, 6, %, Ch, Cg so that Qu € CBy, .
Define A := — R'(u) and note that

p+ P(D)'A = p—P(D)'Rp) = p~n(p) = Qu € CBs, Lx.
From this and (3.8) we get
(3.10) Supp P(-D)A = Supp P(D)'A = Supp(Qu—4) C Q.

Note that we have already shown that Q is P - convex. Therefore a standard smoothing
argument together with (3.9) and HORMANDER (10}, Thm. 3.5.2, imply Supp A C Q5.
Since Lk is in S, this completes the proof. u]

Lemma 3.6. Let Q be an open set in R™ and let P be a complex polynomial in n
variables. If (») is satisfied

For each € > 0 there exists 0 < § < € so that for each 0 < < § there
erist o,k € S, and C > 0 so that for each p € Eiw}(ﬂc) with

(*) (4 +im P(D)") \ By, # O there ezists A € £1,,(25) so that
4+ P(D)') € CBs,
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then the following assertions hold:

1. Q1 is P —convez.

2. For eache > 0 there exists 0 < & < € so that for each 0 < 1 < § there exisis 0 € S,
so that for each f € £(4)(Q,85) there exists g € D'{w}(Q,,,QE) so that P(D)g = f|a,
holds in D} ().

Proof. (1): To show that Q is P—convex, let K be a given compact subset of
). Then there exists ¢ > 0 with K C €,. Choose 0 < § < ¢ according to (*),
fix 0 < n < & and choose g,k € S, and C > 0 according to (*). Fix ¢ € D(Q)
with Supp P(-D)p C K and let p := ~P(=D)p = — P(D)'¢ € £,,(). Then
u+ P(D)'¢ = 0 € B, , which implies that for each s €]0, 1] we have

(n+ P(D)'¢) € By,o.

5 |

Hence (%) implies the existence of A, € 8@)((26) s0 that
t 1 1 i
P(D) —;tp+/\, = ;u+P(D) As € CBg (.

Now note that by Remark 2.7, P(D) : £,)(R") — £)(IR") is surjective. Hence
P(D)!: S(N)(IR") - E(’K)(IR") is an injective topological homomorphism. Regarding
Bjs, « as an equicontinuous subset of E(’N)(]R"), we can therefore find a bounded open
gset Gin R™ and | € IN, D > 0 so that

(P(D)) ™ (CBs,x) C Ba,u
= {u € £,4(R™) : Suppw C G, ()| < D [Ifllg, ix for all f € s(n)(m")} .
This implies
—190+/\, € Bg,ic for all s €]0,1],
and consequently ¢ = lim,_0 8}, in E(K)(IR") C E{w}(]R") Since Supp A; C §2s for

each s €]0, 1), this proves Supp ¢ C Q.

(2): For a given number € > 0 choose 0 < § < € according to (%), fix 0 <7 < §
and choose g, € S, and C > 1 according to (*). Without restriction we may assume
o = o(k). Then note that () is P - convex by (1). Therefore, P(D) : £,,(2) = &(x)(2)
is surjective, hence P(— D) = P(D)! : Eén)(ﬂ) — £,(9) is an injective topological
homomorphism. Hence there exist I € IN, L > 1 and 0 < { < 7 so that

P(-D)"Y(By,x) C LB, ix -
For each v € £],,(Q?) with P(-D)v € By, « we therefore have

v € P(- D)"Y (P(-~ D)v) € LB¢,x .
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Since Q2 is P-convex, a smoothing argument together with HORMANDER [10], Thm.
3.5.2, and Lemma 3.4.3, implies Supp v C 2,. Hence we get

1 ~
(311) 7 P(=D)(Byx) € B i= Beun {m€Epy@ : Supppuc 0y}
Fix f € g(n)(ﬂ,ﬂg) and let
X := span {(P( ~D)E{,1(2)) N By.x, ggn)(nz)} C £, ().

Note that for v € Eiw}(ﬂ) satisfying P(— D)v € By, ., we have v € LB because of
(3.11). Hence (v, f) is defined. Now define F: X — C by

0 if Supp(P(—-D)v+pu)C Qs,

F : P(-D
(=D tu = { (v, f) otherwise,

for P(~ D)v € span (P(— D)€}, () N B,,,,c) and p € £[,,()-
To show that F is well - defined, assume that for p;,us € S(’K)(Qe) and P(— D)y,
P(— D)v, € span B, . we have

P(~Dwy +p = P(-D)vs +piz.

Then we get
Supp (P(= D)(v»1 — 1)) = Supp(p2 — p1) C Q.

Since 2 is P~convex by (1), this and a smoothing argument imply
Supp(v1 —1p) C 2, hence (1 —1e,f) = 0.

Obviously, F is 1 -homogeneous. The additivity of F' follows easily from the obser-
vation that for P(— D)v + u € X with Supp (P(— D)v + p) C Qs and Supppu C Q.
the P -convexity of {}5 implies Suppv C §)s and hence (v, f) = 0.

Next, denote by Ey the normed space which is generated by the bounded, absolutely
convex set By , C Xiw}(ﬂ). We claim that F|xng, is continuous. To show this, fix

P(-D)v+ p € XN By, ,. Then (x) implies the existence of A € gfw}(ﬂé) with
(3.12) p+ P(D)'X € CB;s, .

From this we get

P(-D)(v - X)

(3.13) = (P(- D)+ p) - (P(- D)A+p) € B, o +CBs,x C MB, .,

where M depends only on C, s and o. By (3.11), this shows

(3.14) v—X€ MLB.
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Moreover, (3.13) and P(— D)v € span By, , imply P(— D)X € span B, . and hence
I’(~ D)X+ u € X. Therefore we get from (3.12) and the definition of F’ that

F(P(-=D)v +p) = F(P(- D)\ + p) + F(P(= D)(v - X))
F(P(-D)v—-2X)) = (v—AX,f)

It

and hence by (3.14)
|F(P(-=D)v +p)] < ML||fll¢,ux -

Since P(— D)v + p was an arbitrary element of X N By, ,, this shows that F|xng,
ix bounded on the unit ball of X N Ey, hence it_is continuous. Therefore, the theo-
rem of Hahn - Banach implies the existence of F € Ej satisfying F|xng, = F. Let
¢ : Dy (Qy) — S{K)(Q,,) denote the canonical injection, defined by

B(p) : h o /Q P(@) h(@)dz, © €Dy y), h € Epey().-

It is easily seen that ® maps Dy,}({1,) continuously into Eg. Therefore, g := Fod =

${(F)is in D’(w}(ﬂ,,). Since §15 is P—convex and since f vanishes on {15, the definition

of F and F gives for each ¢ € D,y (82y)

(9, P(-D)p) = F(®(P(-D)y) = F(P(-D)3(p))

@ww=/wmma=mw

”

(P(D)g, )

Further, ¢ € Dy,,3(Q) implies ®(p) € Eiw}(ﬂt) and hence

(9,9) = F(8(¢)) = F(&(y)) = 0.

Hence, g is in D’{w}(ﬂ,,,ﬂc) and satisfies P(D)g = f|an,. o

Lemma 3.7. For each open set @ C R" and each P € C|[zi, ..., z,] condition 3.6 (2)
implies condition 3.4 (4).

Proof. For a given number € > 0 choose 0 < §y < ¢ according to 3.6 (2) and note
that the conclusion of 3.6 (2) then holds for all 0 < § < §p. Next fix 0 < (<o <7<
6 < & and £ € O, \ Qs and choose § € S, according to 3.6 (2) with 7 replaced by
¢. By BRAUN, MEISE and TAYLOR [6], 1.7, we can choose k € S,, so that § = o(«).
Furthermore, note that by the proof of [6], 4.4, there exists m € IN so that for each
f € EP1(Q) and each € £(,)(Q) we have pf € £1(). Then, by BRAUN [3], Thm.
8, we can choose an elliptic ultradifferential operator Q(D) on £, so that the equation
Q(D)F; = é¢ has a solution in EM*1(IR™). Choose p¢ € D« (R \ s, ) 50 that ¢ = 1
in a neighbourhood of £&. Then f¢ := ¢ F¢ belongs to £1(f, Qs,) and satisfies

Q(D)f{ = 5( + hg , where h( € 5(,‘)(9,950) ,
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since Q(D) is elliptic. Now note that £5(£2,9s,) is contained in £()(Q,y,) be-
cause of § = o(x). Hence we get from 3.6 (2) with 7 replaced by ¢ the existence of
9¢, He € D, (Q, Q) satisfying

P(D)ge = felo, and P(D)H; = h¢lq, .

Next, choose ¥ € Dy,,)(¢) with |, = 1. Since Q(D) acts continuously on 'D'{w}(ﬂ),
Ge = Y(Q(D)ge — H)
is in 'D’{w}(]R") and satisfies
SuppGe C Q\Q2e C R™\ Q..
Since P(D) commutes with Q(D), we get
P(D)G¢la, = (P(D)Q(D)ge — P(D)H¢)la, = (Q(D)fe — he)la, = bela. ,
which implies
P(D)G¢ = 6¢ +T, where SuppT; C (2:\9).

Now it is easy to check that

Ef LY (Gfa‘p( _£))’ (,DED{“,}(IR,N)
satisfies the conditions (i} and (ii) in 3.4 (4). O

Because of Remark 2.3, the arguments in the proof of Lemma 2.4 also give the
following lemma.

Lemma 3.8. Assume that for P € C|z,..., 2] and an open set Q@ C R" condition
3.4(4) holds. Then P(D) admits a right inverse on DQ«;)(Q) and on £(,)(N).

Theorem 3.9. For an open set Q in R™ and for a complex polynomial P in n
variables the following assertions are equivalent:

1. P(D) :’D’{w}(ﬂ) — D'{w}(Q) admits a right inverse;
2. P(D): £1,3() = £(,)(Q) admits a right inverse;.
3. One of the conditions 3.4 (2), 3.4(3), 3.4 (4), 3.5(%), 3.6 (%) or 3.6 (2) holds.
Proof. Because of 3.4, 3.8 and 3.5 - 3.7 the following implications hold:
(1)=34(2)=34(3)=>34(4)= (2) = 3.5(x) = 3.6(x) = 3.6(2) = 34(4) = (1).
O
Definition 3.10. Let w be a weight function,  an open set in R" and P a

complex polynomial in n variables. § is called P —convex with {w} —bounds if one of
the equivalent conditions in Theorem 3.9 holds.
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As in Section 2 we get the following corollary:

Corollary 3.11. Let P be a polynomial in n variables and let (£;)icr be a family
of open sets in R™ for which Q = NyesQ # 0 is open. If Q; is P - convexr with
{w} - bounds for each i € I then Q is P - convez with {w} - bounds.

Corollary 3.12. For each open setQ inR" and each P € C [z, ..., 2,] the following
assertions are equivalent: '

1. Q is P - convez with {w} - bounds;

2. § is P ~ convez with (k) —bounds for some x € S,,.

Proof. (1) = (2): By Theorem 3.9 we know that condition 3.4 (4) holds. Now an
inspection of the proof of Lemma 3.8 (or of Lemma 2.4) shows that in the construction
of each map Ay, only finitely many ultradistributions enter. Hence only countably many
Fj € D’(w}(lR"), j € IN, are envolved in the whole construction. By BRAUN, MEISE

and TAYLOR [6], 7.6, there exist weight functions o; € S, so that F; € D; aj)(lll")
for each j € IN. By [6], 1.9, there exists x € S, such that 0; = o(x) for each
j € IN. This implies that the operators A, constructed in the proof of Lemma 3.8
are in fact continuous linear operators from ’D(K) into Dzn)(ﬂ, Qo) which satisfy the
corresponding condition 2.2 (x). Hence Lemma 2.2 implies that (2) holds.

(2) = (1): From (2) and Theorem 2.10 we get that condition 2.1 (4) holds with w
replaced by k. Now k € S, implies sz)(]R") C Diw}(]R"), by BRAUN, MEISE and
TAYLOR [6], 3.9. Therefore condition 3.4 (4) holds for w. By Theorem 3.9 this implies
(D). o

4. Right inverses and w—hyperbolicity

In this section we show that an open set 2 in R™ with C! - boundary is P - convex
with *~bounds only if P satisfies certain hyperbolicity conditions. In particular, we
obtain a characterization of the polynomials P for which the Euclidean unit ball is
P -convex with *—bounds. To introduce the hyperbolicity conditions that are used

we first recall some notation.
Notation. For a vector N € R" \ {0} we let

Hy(N) := {z€eR":(z,N)>0}, H_(N):= Hi(—N).

Recall the definition of w - hyperbolicity from [21].

Definition 4.1. Let P € C|z,...,2,] and let N € IR" be non - characteristic
for P. Then the operator P(D) is called *-hyperbolic with respect to N if there
exists E € D,(R") satisfying P(D)E = é and SuppE C H;(N). P(D) is called
*—hyperbolic, if it is * —hyperbolic with respect to some direction.
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Remark 4.2. (a) If P(D) is *—hyperbolic with respect to N then Holmgren's
uniqueness theorem implies that the fundamental solution E which exists by 4.1 ac-
tually satisfies Supp E C ', where I' is a closed convex cone with vertex at the origin
satisfying "\ {0} C H; (N).

(b) If P(D) is » - hyperbolic with respect to N, then P(D) is also * - hyperbolic with
respect to — N by [21], 2.9 (a) and 2.13(b).

(c) Hw(t) =log(2+t) then (w)—-hyperbolicity coincides with ordinary hyperbolicity
by HORMANDER [10}, Thm. 5.6.1 and Thm. 5.6.2.

(d) For a homogeneous polynomial P the operator P(D) is *—hyperbolic with re-
spect to N if and only if P(D) is hyperbolic with respect to N, by [21], 2.9 (b) and
2.13 (b).

The significance of * — hyperbolicity for our considerations depends on the following
lemma. In view of Remark 4.2 it can be proved by an easy modification of the argu-
ments that we applied in the proof of [17], 3.1. For an exposition of the underlying
idea in the special case of an open half space, see [19], 5.1.

Lemma 4.3. Let 2 C R"™ be P - convez with * —bounds and let N € R" be non-
characteristic for the polynomial P € C|zy,...,2,). If there exists zo € 39 so that
08 is continuously differentiable in some neighborhood of o and if N is normal to
09 at zo then P(D) is * — hyperbolic with respect to N.

From Lemma 4.3 in connection with Remark 4.2 ) and (b), we deduce the following
proposition (see also [19], 5.4).

Proposition 4.4. Let P € C|z),...,2,) and assume that N € R is non-
characteristic for P. Then the following conditions are equivalent:

1. Hy(N) and/or H_(N) is P - convez with * - bounds.
2. P(D) is » - hyperbolic with respect to N.

In the case of characteristic half spaces, the following proposition can be derived as
in [22].

Proposition 4.5. Let P € C|z1,... ,zy] be non - constant and let N € R™ \ {0} be
non - characteristic for P. If the following two conditions are satisfied,

1. R™ s P - convez with * —bounds

and
2. P(D) admits a fundamental solution E € D, (IR"™) satisfying Supp E C H_(N),
then H,(N) is P - conver with » — bounds.

To formulate the main result of this section, we will use the following notation: For
an open subset {2 of R™ with (non-empty) C' —boundary, the Gauss map

G:00 — 8™ is defined by G(z) := N,



Mvise/Taylor/Vogt, Continuous Linear Right Inverses 235

wlhere N, denotes the outer unit normal to 02 at z. For P € C [z, ..., 2,] we define
following HORMANDER [12], (10.4.2) -

1/2
ﬁ(ﬁ,t) = ( Z |P(°)(€)|2 t2la|) for (eR", teR.

a€Ng

Theorem 4.6. For each non - constant polynomial P € C|[z1,..., 25| the following
assertions are equivalent:
1. There ezists a bounded open set ! # @ in R™ with C* - boundary which is P -
convez with x — bounds ;
2. There exists an open subset ) # @ of R™ with C*! - boundary and surjective Gauss
map which is P - conver with x —bounds;
3. P(D) is * ~ hyperbolic with respect to each N € R" which is non - characteristic
Jor P
4. Each open convex subset of IR™ is P - convezr with * - bounds;
5. The principal part P, of P is proportional to a product of linear forms with real
coefficients and Q := P — P, has the following property;:
If x = (w) then there ezists C > 0 such that |Q(€)| < CPn(&,w(€)) for all
(e R™.
If x = {w) then there ezist k € S, and C > 0 such that |Q(€)] < CPm(£,k(£))
Jor all € € R™.

Proof. (1) = (2): This is easy to check.

(2) = (3): This is a consequence of Lemma 4.3.

(3) = (4): Let 0 be a given convex open subset of R™. Assume first that * = (w).
Since the non - characteristic vectors of P are dense in S™"~! we can find a sequence
(£2)jemnv of open convex polyhedra such that each €1; has only faces which have non -
characteristic normals. Moreover, we can assume ; C ;. for each j € IN and
1 = Ujen Q- To show that () satisfies the condition 2.5 (%), let £ > 0 be given.
Choose j € IN with I, C ; and 0 < § < ¢ with ; C Q5. Next fix 0 <7 < 6 and
find m € IN with Q, C Q,,. Then fix f € ’Dzw)(ﬂ,ﬂg), choose ¢ € D,)(Um) with
‘Plh',, = 1, and note that ¢f is in E(’w)(lR", 2s). By our choice of 2; we can find € IN
and b,, N, € R" for 1 < v < p s0 that

IR'ﬂ\Qj = U (H+(Nv)+bu)y

v=1

where the N, are non - characteristic for P. Since the sets Qs and Hy (N,) + b,, 1 <
v < p, form an open cover of R", we can use a partition of unity in £)(IR") sub-
ordinate to this cover, to obtain ¢f = >_-_, f., where Supp f, € Hy(N,) + b, for
1 < v < p. Since N, is non-characteristic for P the hypothesis together with Re-
mark 4.2 (a) implies the existence of a fundamental solution E, € D; u)(IR") satisfying
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Supp E, C T',, where I, is a closed convex cone with T', \ {0} ¢ H;(N,). Consc-
quently g, ;= E, * frisin Dzw)(]R") and Suppg, C Hy(N,)+b,. Hence g := 30 _, 4.

is in Dzw)(]R", ;) which is a subset of 'Diw)(]R",QE) and satisfies

B “

P(D)g = Y P(D)g, = Y fo = of.

v=1 v=1

By our choice of ¢, this implies P(D)g|a, = fla,. Hence (1 satisfies condition 2.5 (»).
By Theorem 2.10 this implies (4).

If » = {w} then, by [21], 2.13, there exists a weight function o € S,, such that P(D)
is () —hyperbolic with respect to each non - characteristic direction. Consequently,
1 is P—convex with (¢)—bounds, hence P—convex with {w}-bounds by Corollary
3.12.

(4) = (1): This is obviously true.

(3) = (5): By [21], 2.9(b) and 2.13 (b), P, (D) is hyperbolic with respect to each
non —characteristic direction. Hence DE CRISTOFORIS [8], Thm. 1, implies that P,
is a complex multiple of a product of linear forms with real coeflicients. Moreover,
the perturbation theorem [21], 3.1, together with [21], 2.12, shows that Q satisfies the
conditions stated in (5).

(5) = (3): Obviously, Py, is hyperbolic and hence * — hyperbolic with respect to each
non — characteristic direction. Since Q satisfies the conditions in (5), the perturbation
theorem [21], 3.1 and [21}, 2.12, imply (3). O

Remark 4.7. Note that there are several other conditions equivalent to the condi-
tion on @ in Theorem 4.6 (5). They are explained in Section 3 of our article [21].

From Theorem 4.6 (resp. [21], 2.10) the following examples are easily derived.

Example 4.8. Assume that the weight function w satisfies t'/2 = O(w(t)) as t — .

(a) Each convex open set Q in IR? is P - convex with (w) - bounds for the polynomials
P(z1,23) =22 + az, a € C.

(b) Each convex open set £ in IR® is P - convex with (w) - bounds for the polynomials
P(21,29,23) = 2% — 22 + az3, a € C.

5. Right inverses and Phragmén — Lindel6f conditions

In this section we explain why open convex sets (0 in IR" are P-convex with
*—bounds if and only if the zero variety V(P) of P satisfies a condition of Phragmén
Lindel6f type. To introduce these conditions several definitions are needed.

Definition 5.1. Let V be an analytic variety in C”. A function u : V — [— 00, 00|
is called plurisubharmonic (psh) on V if it is locally bounded from above and psh at
the regular points Vie; of V. The values of u at the singular points Viing of V arc
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not important in our considerations. However, for the formulation of our results it is
convenient in the sequel to assume that

u(z) = (elim supu(¢) for all z € Vying.

Vu(- (—z

By PSH(V') we denote the set of all psh functions on V which satisfy this condition.

Definition 5.2. Let  and K be convex subsets of R", 2 being open and K being
compact. Then we define the support functional hx of K by

hk(z) := sup{(z,y) : y € K}

and we let
K(Q) := {Lc:L is convex and compact} .

Definition 5.3. Let Q) be a convex open subset of R", let P € C|z,..., z,] be
non -constant and let w be a weight function or w(t) = log (2 + t). Also let

V(P) := {zeC": P(-z)=0}.

(a) P or V(P) satisfies the Phragmén —Lindelof condition PL(, (w)) if the following
holds:

For each K € K(2) there exists K' € K(f2) so that for each K" € K(Q) there exists
B > 0 so that each u € PSH(V(P)) satisfying () and (B) also satisfies (v), where

(a) u(z) € hx(Im2) + O(w(z)), z € V(P),

(B) u(z) < hgn(Im2), 2 € V(P),

(7) u(2) £ hg(Im 2) + Bw(z), z € V(P).

If the above condition holds only for all u = log|f|, f an entire function on €™, then
we say that P or V(P) satisfies the condition APL(2, (w)).

(b) P or V(P) satisfies the Phragmén - Lindel6f condition PL(2, {w}) if the following
holds:

For each K € K(f) there exists K’ € K(f) so that for each K~ € K() there exists
o € S, so that each v € PSH(V (P)) satisfying () and (f) also satisfies (), where

(a) u(z) < hg(Imz) +o(w(z)), z€ V(P),

(B) u(2) < hg+(Imz), 2 € V(P),

(7) u(z) € hg/(Imz2) +0(2), z€ V(P).

If the above holds only for all u = log|f]|, f an entire function on C", then we say
that P or V(P) satisfies the condition APL(f, {w}).

(c) P or V(P) satisfies the Phragmén - Lindel6f condition HPL(2) if the following
holds for the principal part P, of P:

For each K € K(f) there exists K’ € K(€2) and § > 0 so that each v € PSH(V(Py,))
satisfying (a) and (8) also satisfies (), where

(a) u(z) < hx(Im2) + 62|, z € V(Py),
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(B) u(z) <0, z€V(P,)NR",
(7) u(z) < hg{(Im z), z € V(Pp).

Remark 5.4. HORMANDER [11) showed that P satisfies HPL(§2) if and only if P(D)
is surjective on the space A(f2) of all real - analytic functions on a convex open set €1 in
IR". He was the first to prove that conditions of Phragmén — Lindeldf type for algebraic
varieties are important in studying certain properties of linear partial differential op-
erators with constant coefficients. Also, he introduced the name “Phragmén — Lindel6{
principles” for conditions of this type.

Related but different Phragmén - Lindelof conditions were used by ZAMPIERI [25],
BRAUN, MEISE and VOGT [7] and BRAUN [4] to investigate and characterize when
P(D) is surjective on £} (IR") or £,}(f2),  a convex open subset of R".

The significance of the conditions APL((2, ) and PL(f2, x) for the questions studied
in this article is shown by the following theorem.

Theorem 5.5. Let Q be a convez open subset of R™ and let P € C|zy,... ,zn] be
non - constant. Then the following assertions are equivalent:

1. Q is P - convezr with * - bounds;
2. P satisfies the condition APL(QQ, x);
3. P satisfies the condition PL(Q, ).

Proof. Let us first consider the case * = {w). Then the proof can be given by the
same arguments that we applied in [17], Sect. 4, using Fourier analysis. More precisely,
asin [17), 4.4, one shows that condition 2.8 () implies APL(?, (w)) and as in [17], 4.5,
one proves that APL(, (w)) implies 2.9 (x). Since 2.8 (*) and 2.9 () are equivalent to
(1) by Theorem 2.10, we see that (1) and (2) are equivalent. The equivalence of (2)
and (3) was proved in [18], Thm. 6.2. Note that, based on Theorem 2.10, a detailed
(different) proof of the present theorem for * = (w) is given in [19], Sect. 3.

If * = {w} then, by Corollary 3.12 and the preceding case, (1) is equivalent to the
existence of a weight function « € S, such that P satisfies PL(f,(x)). By [20], 6.2,
this is equivalent to PL(f), {w}). Hence (1) and (3) are equivalent. Obviously (3)
implies (2). To see that (2) implies (1), note that the arguments used in the proof
of the implication (1) = (3) in [20], 6.2, also give that (2) implies the existence of
k € 8, so that V(P) satisfies APL(f), (k)). By the preceding case and Corollary 3.12
this implies (1). ]

For a comprehensive study of the Phragmén - Lindel6{ conditions PL((2, ¥) we refer
to our article [20]. In Theorem 3.3 and Theorem 6.3 of (20] we show that for a homoge-
neous polynomial P the conditions PL({?, *) do not depend on *. This characterization
together with Theorem 5.4 and [17], Thm. 4.5 implies the following result.

Theorem 5.6. Let P € Clz,...,2y,] be non-constant and homogeneous. Then
for each open convez set Q in IR™ the following assertions are equivalent:

1. Q is P - convez with (w) - bounds for some/all weight functions w;
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2. Q) is P - convez with {w} - bounds for some/all weight functions w;

3. 2 is P - convex with bounds.

Remark 5.7. Note that for homogeneous polynomials P and @ = IR" condi-
tion 5.6 (2) was characterized in [17], Thm. 4.7 in terms of a dimension condition for
V(P)NIR™ and of a local Phragmén - Lindeléf condition at points in V(P) N S*~1,
and that a quite different characterization was obtained in BRAUN (4], Thm. 5.2.

To formulate a sufficient condition for IR™ to be P-convex with *—bounds, we
introduce the following definition.

Definition 5.8. Let P € C|zy, ... , z,] be non - constant. The variety V(P) satisfies
the strong dimension condition if V(P)NR" # @ and if for each £ € V(P)NIR" each
local irreducible component W, of V(P) at £ satisfies dimp W NIR" =n — 1.

The next coroliary follows from [20], 3.17.

Corollary 5.9. Let P € C|[21,...,2,] be homogeneous and non-constant. If
(V(P)NnR™) \ {0} C V(P)eg and if V(P) satisfies the strong dimension condition
then IR™ is P - conver with bounds and hence P - conver with * — bounds.

From [20], Thm. 4.1, we get the following theorem.

Theorem 5.10. Let P € C|z,...,2,] be non-constant and denote by Py, its
principal part. If a convez open subset of Q@ of R™ is P - convex with * - bounds then
Q is P, - convezr with bounds.

Corollary 5.11. Let Q be a convez open subset of R™ and let P € C|z1,... ,2,] be
non - constant. If Q is P - convez with * - bounds then V(P) satisfies HPL(Q1), i.e.,
P(D): A(ft) — A(R) is surjective.

Proof. Let P,, denote the principal part of P. By [20], Thm. 4.1, the hypothesis
implies that V (Py,) satisfies PL(€, log (2+t)). Hence V(Py,) satisfies HPL(2) by (17],
Thm. 4.12. By HORMANDER [11] this implies that P(D) is surjective on A(2). O

Theorem 5.10 suggests to treat P as a perturbation of its principle part Py,. While
a general perturbation theorem for the property PL((2, ) is missing, a partial result
in this direction are [20], Thm. 5.6 and Thm. 6.5. From these and Corollary 5.9 we
get the next theorem.

Theorem 5.12. Let P € C|z1,. .. ,2,)] be irreducible and denote by Py, its principal
part. Assume that V(Pn) \ {0} is a manifold. Then the following conditions are
equivalent:

1. R" is P - convex with (w) - bounds (resp. {w} - bounds).

2. V(Py,) satisfies the strong dimension condition and dist (z,V(Pn)) = O (w(z))
(resp. dist (z,V(Pm)) = 0(w(2))), 2 € V, |z| = oo.
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For a further evaluation of Theorem 5.12 we refer to [20], 5.8 and 5.9. As a conse-
quence of these we get the following examples which are recalled from [20], 5.10.

Example 5.13. For n > 3 and m > 2 let P, € C{z1,..., 2] be of the form
Pp(21y...,2q5) = Z a;zf",
=1

where a; € R\ {0} for 1 < j < =n. Then R" is (P, + Q) - convex with bounds for all
Q€ Clz,...,z,) with deg @ < m, whenever either m is odd or m is even and there
are j, k such that sign a; # sign a.

From 5.13 we conclude in particular that IR® is P-convex with bounds for
P(21,29,23) = 2z} + 23 + 23. Since P is homogeneous and not hyperbolic it is not
*—hyperbolic by Remark 4.2 (d).

The next result shows that the situation is different in the case of two variables.

Theorem 5.14. For each non- constant polynomial P € C |z, 2;] the following
assertions are equivalent:

1. P(D) ts * —hyperbolic;

2. R? is P - convez with % - bounds;

3. P(D) is » - hyperbolic with respect to each non - characteristic direction;

4. Each convez open set in IR? is P - convez with * - bounds.

Proof. (1) = (2): This is an easy consequence of the existence of fundamental
solutions E, and E_ in D) (IRz) for P(D) having support in closed cones as described
in Remark 4.2 (a).

(2) = (3): Using Theorem 5.12 and (21], 2.7, this can be shown for * = (w) by the
same arguments that were used to prove the implication (2) = (3) of Theorem 4.11
in [17). The case * = {w} is then reduced to the previous case by Corollary 3.12 and
[21], 2.14.

(3) = (4) = (1): This holds by Theorem 4.6. 0
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