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1 Introduction 

The classical Phragm6n Lindel6f Theorem shows that subharmonic functions 
u(z) on the complex plane with a given asymptotic linear rate of  growth, 
u(z) < I z] + o(Iz[), and a uniform bound at real points, u(z) < 0 for z x 
real, must also satisfy a uniform linear growth estimate, u(z) < IImz[. In re- 
cent years, it has been shown that the validity of  some estimates in a similar 
spirit for plurisubharmonic (psh) functions on an algebraic variety V C ~"  
characterizes whether or not the (system o f )  constant coefficient partial differ- 
ential operator associated to V has a given property. H6rmander initiated the 
study of  such conditions in [10], where he showed that the constant coefficient 
partial differential equation P ( D ) f  ~! associated to a polynomial P has a real 
analytic solution f for every real analytic function g on IR" if and only if a 
certain estimate of  Phragm6n-Lindel6f type is satisfied by all the psh func- 
tions on V(P)  = {z C ~'~ : P(z)  = 0}. In [14] it is shown that the existence 
of  a continuous linear right inverse for P(D),  as a linear transformation of  
C~( IR '~) to itself, is characterized by the validity of  a Phragm6n Lindel6f- 
type estimate for psh functions on V(P), and this was extended to the case 
of  systems of  equations by Palamodov [18] and to ultradifferentiable functions 
in [15]. Other Phragm6n Lindel6f conditions that characterize the surjectivity 
of  P(D) on spaces of  ultradifferentiable functions are given in [6]. In many 
examples, use of  the Phragm6n-Lindcl6f condition is the easiest, and possibly 
the only, way to verify that given examples of  partial differential operators 
have the property in question. 

In this paper, we focus on one aspect of  the Phragm6n-Lindel6f conditions, 
the existence of  a uniform bound on the linear rate of  growth of  the psh func- 
tion. For this purpose, we define in Section 2 a condition called RPL, the radial 
Phragm6n-Lindel6f condition (Definition 2.2). This condition requires that psh 



516 R. Meise et al. 

functions u on V satisfying u(z) < Izl +o(Iz[) and u(z) < p[ lmz  I also satisfy 
a bound u(z) < AIz I + B v. The essential feature here is that the constant A 
depends only on the variety V, and is independent of  u and p. The role of  the 
constant Bp, which depends on p but is independent o f  u, is to account for the 
nonhomogeneity of  the variety. When V is homogeneous, one can always take 
the constant B to be 0. Our main result, Theorem 5.1, shows that an algebraic 
variety of  (pure) dimension k satisfies the condition RPL if and only if the 
homogeneous algebraic variety Vh tangent to V at infinity satisfies the di- 
mension condition (Definition 2.6); i.e. for every irreducible component W 
of Vh, the real algebraic variety W N Ill" also has (real) dimension k. The 
result is applied in [16], to characterize the homogeneous varieties which sat- 
isfy the Phragm6n-Lindel6f condition studied there. For varieties of  the form 
V = {P(z) = 0} where P is a homogeneous polynomial on II~", this latter 
Phragm6n-Lindel6f condition is equivalent to the existence of  a continuous 
linear right inverse for the associated constant coefficient partial differential op- 
erator P(D). Also, Theorem 5.1 is used to prove a perturbation result for this 
condition. 

Thus, while the main application of  most Phragm6n-Lindel6f conditions 
has been to characterize properties o f  constant coefficient partial differential 
operators, the main application of  the RPL condition is to characterize an im- 
portant intermediate step in the study of  such principles. We do not know a 
property of  the partial differential operator P(D)  that is equivalent to the variety 
V = {P(z) - 0} satisfying the condition RPL. 

The precise definitions of  what we mean by a psh function on V, the condi- 
tion RPL, and the dimension condition are given in Section 2. In Section 3 we 
treat the case o f  homogeneous varieties where the relation between the estimate 
we are studying and the dimension of  the real points in Vh is explained by a 
theorem of S i b o n ~ W o n g  [19], as extended by Siciak [20]. Section 4 contains 
some technical results about continuity properties of  extremal psh functions. 
The main result in this section, Theorem 4.4, gives a natural semicontinu- 
ity property o f  extremal functions as a function of  the variety. This result, 
whose proof depends on an "extension with bounds" lemma for psh functions, 
Lemma 4.6, is then used in Section 5 to show that the condition RPL carries 
over from V to its tangent cone Vh. The same method and the essential results 
of Section 4 are applied in [16], Section 4 [o prove the analogous result for 
a different Phragm6n-Lindel6f condition. We also give in Section 5 a different 
version of  the Sibony-Wong estimate which allows an exceptional set. This is 
a key point in proving the main result, Theorem 5.1. 

2 Definitions and preliminaries 

In this section, we introduce the notation and terminology that will be used 
throughout the paper. There are several possible definitions of  what is meant by 
a psh function on a variety in I1~", see e.g. Fornaess and Narasimhan [8]. For 
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our purposes it is convenient to have the largest possible class, the so-called 
weakly psh functions. 

Definition 2.1 Let V be an analytic variety in an open subset D o f  I~ ~. A 
.function u : V -+ [ -co ,  oc[ is called psh on V i f  it is" locally bounded above 
and psh at the regular points V~g c V. The values o f  u at the singular points 
Vsing C U are not important in our considerations. However, it is convenient 
in the sequel to assume that 

u ( z ) =  l imsup u({) for a l l z ~  V~ing. 
c Vreg, ~ z  

By PSH(V) we denote the set o f  all psh functions on V. 

The type of estimate studied here is the following, which we call the radial 
Phragm6n-Lindel6f condition. 

Definition 2.2 An algebraic variety V in C ~ satisfies the condition R P L  if  
and only i f  there exists A > 0 such that fo r  each p > 1, a constant B t, exists 
such that each u ~ PSH (V) sat&fying (1) and (2) also satisfies (3), where: 

(1) u(z) < I z] + o(Izl) , z c v 

(2) u(z) < p[ lmzl ,  z E V 

(3) u(z) <= A[z[ + Bp , z E V. 

The main theorem of the paper, given in Section 5, characterizes when pure 
dimensional algebraic varieties satisfy the condition RPL 

It is aIso useful to study a local version of the RPL condition. 

Definition 2.3 Let V be an analytic variety in a neighborhood o f  a point 
E V N IR n. We say that V satisfies the condition RPLioc at ~ i f  and only 

i f  there are constants e,l > e2 > e3 > 0 and A > 0 such that each u c 
PSH(V • { [ z -  ~-I < el}) satisfying (1) and (2) also sati,ffies (3), where: 

(I) u(z)< l, : c  v n { t z - ~ 1  < ~1} 

(2) u(z) < O, z ~  V n l g " n  {Iz-  41 _-< ~:2} 
(3) u(z) < A l z - ~ l ,  z c  v n { l z - ~ j  <~3}. 

The last definition can perhaps be better expressed in terms of relative 
extremal psh functions (Klimek [12], Chapter 4, Section 5). 

Definition 2.4 Let  V be an analytic variety in a pseudoconvex domain D C ~E n 
and let K be a compact subset o f  D. By the extremal function of K relative 
to D and V, we mean the .function 

UK(z) = U(z;K, D, V), z E V ;  

that is the upper envelope o f  all the functions u(z) that are psh and bounded 
above by 1 on V and that satisfy u(z) < 0 whenever z C K N V. The 
upper-semicontinuous regularizat ion U~ ( z ) = lira sup~__+z ' ~ C Vreg UK( ~ ) is psh on 
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V and equal to Ux(z) outside a pIuripolar subset of V (see e.g.[12], 
Theorem 4.7.6). 

Clearly, if we take D = {[z - 41 < el} and K = V N IR" n {[z - ~[ < s2}, 
then V satisfies RPLloc at 4 if and only if 

U?~(z) < A I z - 4 1 ,  z~Vn{l~-41__<~3}. 

The definition of  the condition RPL can also be phrased in terms of  the ex- 
tremal psh function on V that is the upper envelope of  all the psh functions 
on V satisfying conditions (1) and (2) of  that definition. 

In studying the conditions RPL, RPLloc, the component structure of  the 
variety is not important, as H6rmander has already pointed out in [10]. 

Proposition 2.5 (i) An algebraic variety V satisfies the condition RPL if and 
only if  each irreducible component of  V satisfies RPL. 

(ii) An analytic variety V in a neighborhood of ~ E ~ satisfies RPLloc 
at ~ if and only if  each local irreducible component of V sati,~fies RPLIoc 
a t  4. 

Proof Let V1 . . . . .  Vk be the irreducible components of  V C II~ n. If  RPL holds 
for Vj, 1 < j < k, then it clearly holds for V. Conversely, if V satisfies RPL 
and if Vm is given, then we can find a psh function v on C n which is - o c  on 
Vj for j + m ,  satisfies VlVm @--O C, and v(z) <= log(1 + [z]) as [z[ ~ vc (see e.g. 
[12], Chapter 5, or [3]). Now let u be psh on Vm and satisfy the estimates (1) 
and (2) of  the definition of  the RPL condition. The function u,: = u + e,v can 
be extended to a psh function on V by defining it as - o c  on V \ Vm. Then 
the function 

1 
w~, - 1 + 2~ (us: + 2s ~ log [ sin zi/z i]) 

I <--i<--n 

satisfies the estimates (1) and (2) of  the RPL condition. Hence, RPL for V 
implies that w~: is bounded by AIz ] + B t, on V and consequently on Vm. Then 
letting s, -~ 0, we see that u has the same bound on V~. The proof for the 
condition RPLloc goes exactly the same way. 

It seems clear that for a variety to satisfy the condition RPL, it must have 
lots of  "nearly real" points. One measure of  this is the dimension of  the set of 
real points in the variety. 

Definition 2.6 Let V be an analytic variety in a neighborhood of a point 
4 E V N IR ~. We say that V satisfies the dimension condition at ~ t~ for 
every local irreducible component W of V at ~, the dimension of  W n IR ~ as 
a real analytic variety at ~ is equal to the dimension of V at 4 as a complex 
analytic variety. I f  V is a pure dimensional global variety in ~n then we say 
that V satisfies the dimension condition if, for every irreducible component 
W of V, the dimension of W N IR n, as a real analytic variety, is equal to 
the dimension of V as a complex variety. Finally, a global variety V c C ~ 
satisfies the strong dimension condition if  and only i f  V NIR"+ 0 and, for each 
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E V N 1R ~, V sat is fes  the dimension condition at 4, when V is considered 
as a local variety in a neighborhood o f  3. 

For the definition of  real analytic sets and their dimensions we refer to 
Narasimhan [17]. 

The dimension condition and strong dimension condition are different re- 
quirements. For example, the algebraic variety z22 = (zl - 1)(zl + 1)2 has 
complex dimension 1. At the point ~ = (1, 0) it also has dimension 1 as a real 
algebraic variety but the point ( - 1 ,  0) is isolated in the set of  real points in the 
variety. Hence, this variety satisfies the dimension condition but not the strong 
dimension condition. An example of  a homogeneous variety with this property 
is given by making this example homogeneous, z2z3 = (zl - z 3 ) ( z l  + z3) 2. 

The dimension condition measures if the set of  real points in the variety 
V is pluripolar. Recall that a set E is pluripolar in V if and only if there 
is a plurisubharmonic function on V that is - e ~  on E but is not identically 
-~,~ on V. If  W is any irreducible component of  V, there are psh functions 
on V that are identically - o c  on any other irreducible component of  V but 
not identically - ~ c  on W. Thus, a subset E of V is not pluripolar in V if 
and only if E N W is not pluripolar in W for each irreducible component W 
of V. 

Proposition 2.7 (i) A pure dimensional variety V in ~ satisfies the dimension 
condition i f  and only i f  V N IR ~ is" not pluripolar in V. 

(ii) A local analytic varieO' V in a neighborhood o f  a point ~ ~ V N IR" 
satisfes the dimension condition at ~ (['and only i f  V NIR ~ N {Iz -- 31 < e} is 
not pluripolar in V fo r  each e > O. 

Proof  By the above remark, it is no loss of  generality to suppose that V is 
irreducible. I f  V N IR n has dimension less than the dimension of  V, then in a 
neighborhood of  each point of  V N IR n there are finitely many analytic functions 
f l  . . . . .  f q  that vanish identically on V N IR ~ but do not vanish all on V \ lR ~ 
in this neighborhood. That is, the set V n IR" is the set where the psh function 
u = log ~ Ifjl  is - ~ .  Thus, the set V N IR ~ is locally pluripolar in V and, 
consequently, is globally pluripolar in the Stein space V by a theorem of  B. 
Josefson (as extended to Stein spaces by E. Bedford [1]). Consequently, if  V 
fails the dimension condition, then V N IR" is pluripolar in V. Conversely, if 
VNIR n has dimension k = dim V then there are regular points ~ E VNIR n such 
that V N IR" is a real analytic manifold of  real dimension k in a neighborhood 
of  3. Therefore, any psh function u on V that is - ~  on VNIR ~ must be -cxD 
on a neighborhood of  ~ in V. Hence, u must be identically -~x~ on the regular 
points o f  V, since these form a connected complex manifold. That is, u --- -cx~ 
on V, so V n IR" is not pluripolar in V. This completes the proof of  (i). The 
proof o f  (ii) is similar. 

Lemma 2.8 Let  V be an analytic variety in a neighborhood o f  ~ E V n lR n 
which satisfies RPLloc at 4. Then V satisfies the dimension condition at 3. 
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Proof  Let K : V n IR" N {Izl :< �9 The extremal function UK satisfies 
UK(Z) < A ] z -  ~l for z C V near {, since V satisfies RPLIoc at ~. Therefore, K 
is not pluripolar in V, so V satisfies the dimension condition by the previous 
proposition. 

We conclude this section with a lemma that will be needed several times 
in the paper. 

Lemma 2.9 There exists a psh function H on {Izl < 1} C C" that is contin- 
uous on the closed ball {]z] =< 1} and has the following properties: 

(1) H ( z )  < [ I m z  / f o r  lzl < 1 
1 (2) H(z)  < I Imzl -  c f o r  Izl-- 1 and c : 

(3) H(x )  < 0 .for x C 1R",lxl < 1 

(4) H ( i y )  >: 0 f o r  y C IR",lYl --< 1 

(5) H ( z )  = O(Izl 2) as z -~ o .  

Proo f  It is easy to check that H(z)  : �89 2 - I R e z l  2) has all the given 
properties. (We thank the referee for suggesting this function to replace a more 
complicated one used previously.) 

3 Homogeneous varieties 

In this section we study the condition RPL on homogeneous algebraic varieties 
in ~n; that is, on varieties V satisfying z E V if and only if ~z C V for all 
complex scalars ~. For such varieties, we will show that the condition RPL 
holds if and only if the variety satisfies the dimension condition. This result is 
closely related to the Sibony-Wong estimate [19], as improved by Siciak [20], 
which implies that a psh function u on r  satisfying the inequality u(z) < Izl 
on a nonpluripolar set of  complex lines in r must in fact satisfy an estimate 
u(z) < Alz] for all z E r The constant A depends only on the set of  lines 
and is independent o f  the function u. In fact, when V = C ", our result is a 
special case o f  the Sibony-Wong estimate.. However, we need the result on 
homogeneous algebraic varieties. 

Lemma 3.1 Let V be a homogeneous algebraic variety in ~n, and E a set o f  
complex lines in V which is not pluripolar in V. Then there exists a constant 
A > O, depending on E and V, such that i f  u is psh on V and satisfies 
u(z) < [z I for  all z in a complex line belonging to E, then u(z) < AIz ] for  
all z C V. 

We will postpone the proof of  this lemma until the remark following 
Lemma 5.5 in Section 5, where a version of  it is given that allows u to be 
psh outside a small exceptional set. However, using the lemma we can prove 
the main result of  this section. 
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Theorem 3.2 Let V be a pure dimensional homogeneous algebraic variety in 
•n. Then the followinq are equivalent: 

(i) V sati,sJies the condition RPL,  
(ii) There exists a constant A > 1 such that every psh Junction u on V that 

satisfies (1) and (2) also satisfies (3), where 
(1) u(z) <= Iz l+o(Iz l ) ,  z ~  v 
(2) u(z) < 0, z C  V ~ I R  n 
(3) u(z) < AIzl, z E V. 

(iii) V sati.sfies RPLloc at O. 
(iv) V sati,~fies the dimension condition at O. 
(v) V satisfies the dimension condition. 

(vi) There exists a constant A > 1 such that every psh function u on V 
satisfy#19 u(z) < Izl for  all z C V o f  the fi)rm z = ~x, where x c V n IR ~, 

E~ ,  also satisfies u(z) < AIz ] for all z c V. 

Proof  ( i ) ~  (ii): Let u be a psh function on V satisfying (1) and (2) of  (ii). 
Let H be the psh function of  Lemma 2.9 and c the constant appearing in that 
lemma. For R > 0 large, define for z E V, ]z I < R, 

v ( z ) = v ( z , R ) ~ - C m a x { u ( z ) -  1 2R ~z, 2 , I m z , }  = ~ + T F / ( ~ )  , ~ 

When ]z] = R and R is sufficiently large, the first term in the maximum does 
not exceed 

R + o ( R ) + ( 2 R / c ) ( l I m z / R  [ c) <= ( 2 / c ) [ I m z l ,  

so if we extend the definition of  v(z, R) to all of  V by making it equal to 
I Imz  I at points of  V outside the ball {Iz] < R}, then v is psh on V. Note that 
v satisfies the inequality (1) of  the condition RPL, since it is equal to ] lmz  I 
outside a compact subset o f  V. We also claim that v satisfies the estimate 
(2) of  that condition for some constant p. This is obvious tbr Izl > R. In 
the compact set V N {Izl < R}, we have that the first term in the maximum 
defining v is negative on a neighborhood of  the set o f  points where ]lmz[ = 0, 
since H(z)  < I lmzl and u is uppersemicontinuous. Therefore, we can choose 
p sufficiently large, depending on R and u, such that v(z) <= Pl Imzl holds 
on all o f  V. Since V is a homogeneous variety, for any r > 0 the function 
v(rz)/r is also psh on V and satisfies (1) and (2) o f  the condition RPL with 
the same constant p. Therefore, we conclude that v(rz)/r <= Alz I + Bp for 
all z E V. Multiply this equation by r and replace rz by z to obtain that 
v(z) < AIz I + rBp holds for all z E V. Letting r ~ 0, we get v(z, R) < AIz I. 
Finally, let R --, ec, and use the fact that H(z)  = O(Iz] 2) as z --~ 0, to see that 
(e/2)u(z) < lim SUPR~o~V(Z, R) < A[z[ holds for all z E V. 

(ii) => (iii): Let e,1 > 2e: > 0 and let u be psh on VN{lz[ < el} with u ( z )<  1 
and u(z) < 0 for z E V N IR" n {Iz[ < e,2}. Fix a point z '  E V N {lzl < e2} 
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and then define a psh function on V by setting 

v ( z ) = c e 2 m a x { u ( z ) + l H ( Z - R e z ' )  , I m z ] )  
C /3 2 C~; 2 

on V N { [ z -  Rez']  < ~z} and setting v(z) = I lmz] at points of  V outside 
this ball. Exactly as in the proof  of  (i) ~ (ii), we have that v is psh on V. 
The function v also clearly satisfies (1) and (2) of  (ii), so we conclude that 
it also satisfies (3). Applying this estimate at the point z' and using the fact 

A Z t that H(iy)  > O, we conclude that u(z') < ~lz ' l ,  Since is an arbitrary point 

of  V N {tz] < e2}, we have therefore proved that V satisfies RPLIoc at 0 (with 

~3 ~ ~2 ) .  

(iii) =r (iv): I f  V fails to satisfy the dimension condition at 0, then by Propo- 
sition 2.7, part (ii), the set K = V N I R  n n { I z l  < e} is pluripolar in V for 
some e > 0. Therefore, the extremal function of  K relative to V N {Izl < ~,1) 
satisfies U~(z) _= 1 (see e.g. Klimek [12], Chapter 4). In particular, it cannot 
satisfy Ux(z) < Alzl in any neighborhood of  0, so as was already noted in 
Section 2, V cannot satisfy RPLioc at 0. This is a contradiction, so V must 
satisfy the dimension condition at 0. 

(iv) =~ (v): This is obvious, since the dimension of  a variety is the maximum 
over all points in the variety of  the dimension of  the variety at the point. 

(v )=>(v i ) :  This is a direct consequence of  Lemma 3.1. For, by Proposition 
2.7, the set E of  all complex lines l(x) = {~x : ~ C C} where x E V N IR n 
is not a pluripolar set of  lines in V if and only if V satisfies the dimension 
condition. Therefore, the hypothesis on u in (vi) shows that the hypothesis of  
Lemma 3.1 is satisfied. The constant A in (vi) is the one associated to the set 
E of  real lines in V. 

(vi) ~ (i): We will show that (vi) implies (ii), which clearly implies (i). Let u 
be psh on V and satisfy the estimates (1) and (2) of  (ii), and let x + 0  be a point 
of  VNIR ~. Then we obtain from the ordinary Phragm6n-Lindel6f theorem in the 
complex plane, applied to the function ( ~-* u(~x), that u(~x) < I Im ~x I < ](x]; 
that is, u(z) <. Iz] for all z = (x with ~ E.I/~ and x E V n IR n. By (vi), we 
therefore conclude that u satisfies the estimate (3) of  (ii). 

Example. It seems reasonable that the estimate u(z) < AIz I of  (3) of  the 
condition RPLtoc or of  (ii) o f  Theorem 3.2 might be improved to one of  the 
form 

(1) u(z) ~ AI Imzl~tzl ~-~: 

for some constant e > 0. However, this is not the case, as is shown by the 
homogeneous variety V = {z = (zl, z2,z3 )]z2z23 = - ( z l  - z2 )Z(zl + z2)} (which 
satisfies the dimension condition but not the strong dimension condition). This 
can be seen as follows. Let ~ = (1, 1, 0 ) / v ~  E V N IR 3 and for small r > 0, 
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let Ur = {]z - r{I < r/2}. For small ,5 > O, define a psh function in V N/Jr  
by 

{ 4  r H ( 2 ( Z r r ~ )  ) ,I l m z , }  . u ( z ) = u ( z , r , a ) = m a x  + 61og ]z l - - z21+  2 

where H, c are the function and constant of  Lemma 2.9. Then u is psh on VNU,. 
and - o c  = u(z) < 0 at all real points of  V inside this ball, since zl = z2 at 
all such points. At points in the boundary o f  Ur, we have that the first term in 
the maximum does not exceed cr/4 + ( r / 2 ) ( 2 1 1 m z l / r -  c) <= I Imzl from the 
estimate (2) of  Lemma 2.9. Therefore, we can extend u to a psh function on 
all o f  V by defining it to be equal to [Imz] outside this ball. For small r, 6, 
this function clearly satisfies u < 1 and u _-< 0 on V N IR n. On the other hand, 
lima-~ou(z, r, `5) = cr/4 + (r/2)H(2(z - r~)/r) > cr/8 at nonreal points of  Ur 
near r~. Since there are such points with ]Imz[ arbitrarily small, no estimate 
of  the form (1) can hold. 

It seems likely that such an estimate may hold if V satisfies the strong 
dimension condition. 

4 Local extremal functions 

We pointed out in Section 2 that the definition of  the property RPLloc could be 
phrased in terms of  local extremal functions UK on a variety. In this section 
two continuity properties of  these local extremal functions are given, one in 
terms of  K and the other in V. These properties will be used in the next 
section to show that if the condition RPL holds on V then it also holds on 
the homogeneous variety that is tangent to V at infinity. The results are given 
in a slightly more general form than is needed here, since other applications, 
such as the one in [16] require the stronger version, For this reason, we give 
the following generalization of  the local extremal function defined in Section 
2. Similar extremal functions have been studied previously by several authors; 
e.g. Siciak [21], Zeriahi [23]. 

Definition 4.1 Let D be a domain in IF", h a psh function on D, E a subset of  
D, and V an analytic variety in D. The extremal psh function of E relative 
to h, V, and D is" the function UE(Z) = UE(Z; h, V, D) defined on V by 

sup{u(z) : uis  psh on V, u(z) < h(z), z E V; u(z) < O, z E E} . 

When some or all of  the parameters h, V, D are fixed, we will often drop them 
from the notation. As usual, we will let U~ denote the uppersemicontinuous 
regularization of UE through regular points of V. 

Recall that a pseudoconvex domain D c 112 n is called hyperconvex if it 
has a bounded continuous psh exhaustion function. That is, if there exists a 
negative continuous psh function p on D such that p(z) ~ 0 as z -+ c~D and 
{z E D : p(z) < - 6 }  is a compact subset of  D for each 6 > 0. 
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Proposition 4.2 Let D be a hyperconvex domain in ~", h a continuous psh 
function on D, V an analytic variety in D, and K~ a sequence of  compact 
subsets o f  D. 

I f  K1 D 1(2 D . . .  with K = NiKj, then 

lira UKj(Z; h ,  V,  D )  = sup UKj(Z; h, V, D) = UK(Z; h, V, D) .  

I f  K~ C K2 C . . .  with E = UjKj, then 

lim * �9 . = U;j(z, h, V, D) U~(z; h, V, D ) .  J ~  Uxj(Z, h, V, D) = infj * �9 * 

Proof This proposition is well-known. The proof of  the first assertion is the 
same as that of  Proposition 4.5.10 of  [12]. The second assertion is a con- 
sequence of  the following three general facts about extremal functions: ( i )  

UK~ = 0 at all points of  Kj; (ii) U~j = UKj except on a pluripolar set ([2], 

Theorem 7.1); (iii) the countable union of  pluripolar sets is pluripolar. We 
omit the details. 

We also need to discuss the limits of  the extremal functions under conver- 
gent sequences of  varieties Vj C D. There are several ways this can be done; 
for example, convergence in the Hausdorff metric on sets or as currents on D. 
However, for our purposes it seems the simplest and most convenient way is 
in terms of  the following definition. 

Definition 4.3 Let D be a domain in ~ and let V and V/, j C IN, be subsets 
o f  D. We say that (Vj)jcN converges to V i f  the following two conditions 
are sati,sfied: 

(1) Each zo C V is" the limit o f  a sequence (z/)i~N satisfying z~ c Vj for all 
j e N .  

(2) Each sequence (zk)k~N satisfying zk ~ Vjk Jbr all k ~ IN and some sub- 
sequence (jk )kc~ of  IN, which is convergent in D has its limit in V. 

Theorem 4.4 Let D be a hyperconvex domain in ~ .  Let K be a compact 
subset o f  D, h a continuous psh function on D and V j a  sequence o f  pure 
k-dimensional analytic varieties that converge to an analytic variety V in D, 
in the sense o f  Definition 4.3. Then 

Ux(z;h, V,D) < liminf UK(Zj;h, V/, D) 

Jbr every sequence o f  points zj C Vj such that Z~ -~ z E Vreg �9 

For the proof, we need several lemmas. 

Lemma 4.5 Let D be a hyperconvex domain in ~", V an analytic variety in 
D, (5' an open neighborhood o f  V in D, and ~: > O. Then there exists a psl~ 
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./unction 0 on D such that 

( i)  v = {z ~ DIO(~)  = - o ~ }  

( i i )  O ( z )  < ~:, z C D 

( i i i )  O(z) > O, z C D \ C .  

Proof This is very much like Theorem 7.2 of  [3]. Since V is an analytic variety 
in a pseudoconvex domain, there is a psh function L/, on D such that V = 
{z C D 17'(z) = oc}. This function will be modified to obtain the function 0 
of  the lemma. The lemma holds with V replaced by any complete pluripolar 
set in D. 

Let p be a continuous psh function on D that is an exhaustion function 
for D and vanishes on ~D. Let (6j)icN be a sequence o f  positive numbers 
that decreases to zero so fast that ~ 6 j / j  < ~:/2 and (1 + logj )6 j_ l  < ~/4. 
Exhaust D by the compact sets K i = {z C Dip(z) < - • j }  and set Mj = 
sup{~(z)lz C Kj}. It is no loss of  generality to suppose that Mi > 0. Choose 
numbers s;i > 0 so small that 

~v(mi + 1 ) < oc 
/=1 

8 
0 > ~ ; / (~ ( z )  M j )  > - - -  z c K~\C!;' = = 2 i+2' " 

Define for z E Ki,01(z) = max{~:/(T(z) M/), ( l l j ) (p (z )  + 6j)}. On the 
boundary of  Ki, we have r 0 = (1/j)(p + 6i), so 0/ can be extended 
to a psh function on all of  D by setting it equal to (1/j)(p + 6/) in D \ K  i. 
Then let 

j = |  

Since 0/ < 0 on Ki, the partial sums of  the infinite series are eventually 
decreasing on each compact set. if  z C V, then Oj(z) = (1/ j )(p(z)  + 6j), so 
r  = - o c  because ~ ( 1 / j )  + a c  and ~'~ 6j/j < +oc.  For any z C D, there 
is a unique integer k = k(z) such that z ~ Kk\Kk 1 (where K0 = 13). Then 

k-I  
O(z) = ~ (1/ j)(p(z)  + 6i) + ~ max{~!/(~(z) - Mi), (1/ j)(p(z)  + 6j)} . 

j- i .i=k 

From this we see that 0(z)  > - o c  for z r V, so 0 is psh on D and (i) of  
the lemma holds. It is also clear from this equation that 0(z)  < ~ 6i/J < el2. 
And, when z r ((, we have (with 60 :=  0) 

O(z) >= p(z)_ + ~ Q(~P(z) - M/) > - ( 1  + logk)6~_l - e/4 > - e / 2  
./=1 J i k 

by the choice of  the ~j, 81. Thus, the function 0 + r./2 has all the properties 
asserted in the lemma. 

Using this lemma, the following "extension with bounds" result can be 

proved for psh functions. 
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Lemma 4.6 Let D be a hyperconvex domain, h a continuous psh /'unction on 
D and V an analytic variety in D. I f  e > 0 and U is any psh Junction on 
D such that U <= h on V, then there is apsh func t ion  U1 on D such that 
U1 = U on V and Ul <= h + e for all z E D. 

Proof  Let C = {z C DIU(z) < h(z)+e/4}.  From the lemma just proved, there 
is a psh function ~ on D that is - o c  on V, nonnegative on D\C, and bounded 
above by e/4 on D. If  we define U1 as equal to max{U, (h + e/4) + (~ + ~:/4)} 
on C, then U1 is equal to h + ~ + e/2 near caC n D. Hence, we can extend Ui 
to a psh function on all of  D by setting it equal to h + ~9 + e/2 on D\C. We 
clearly have U1 = U on V C C  since ~ = - o c  on V. Also, U~ < h+~ . s ince  

< e/2. 

Lemma 4.7 Let ( Vj )/e• be a sequence o f  pure k-dimensional analytic varieties 
in an open set D C ~ that converge to an analytic variety V in the sense of  
Definition 4.3. I f  K is a compact subset o f  D and C is an open neighborhood 
o f  K N V in D, then K n V~ C ~ for sufficiently large j. 

Proof Assume that K N Vj is not contained in C for infinitely many j E N. 
By passing to a subsequence we can then assume that there exists a sequence 
(zj)jcN converging to z0 E D and satisfying zj E (KNVj ) \6  for all j E N. Since 
(Vj)j~N converges to V, and since K is compact, we conclude z0 E KN V C 6', 
so it must be the case that z i E 6, for all large j E N,  contradicting our choice 
of  z;. 

Lemma 4.8 Let D be a hyperconvex domain in C", h a continuous psh fimction 
on D, and U a psh function on D such that U < h - 6  on D for some 6 > O. 
Then there is a sequence o f  continuous psh functions Uj on D such that 
U1 > U2 >= . . . - - ,  U on D and Ul < h on D. 

Proof  Let g(z) = Z(Iz[) be a smoothing kernel; i.e. an infinitely differentiable, 
nonnegative function with support in {Izl < 1} and integral equal to 1. With 
Z,:(z) = e.-2nZ(z/e ) the usual approximation of  the a-function, the functions 
U~. = U �9 Z,: are psh and smooth on the set D,: o f  points in D whose distance 
to the boundary of  D is greater than e., and U,: x U as e. ~,~ 0. Let p be a 
continuous psh defining function for D with p = 0 on 0D. Let Kj = {z E 
DIp(z ) < -6 /2 j } .  Since K~ is a compact subset of  D and h is continuous, it 
follows from Dini's theorem that there is a number e = ~/ > 0 so small that 
D~ D Kj and U,: < h - 36/4 for z E Kj. Then for z C K~ n e a r  ~Kj, we have 
U,: < h - 3 3 / 4  < h +jp.  Consequently, the function Uj defined on D by setting 
Uj = h + jp  on D \ K  / and Uj = max{U~:,h + jp}  on Kj is psh and continuous 
on D. We clearly have Uj < h on D. Moreover, since for e = ~:/+1 < ~i we 
have U~: < h - 3~i/4 < h + j p  on Kj+I\K/, the sequence Uj is decreasing in 
j .  This completes the proof. 

We can now give the proof of  Theorem 4.4. 
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Proof Let z0 be a regular point o f  the pure k-dimensional variety V and 
q > 0. Let u b e  a p s h  function on Vwi th  u < 0 o n K N V ,  u < h on V, and 
u(zo) > Ux(zo;h, V , D ) -  ~l. Since h,D are fixed throughout the argument, we 
will drop the h and D from the notation and write the extremal functions as 
Ux(z; V). By Lemma 4.5, there exists a negative psh function v on D that is 
equal to - o c  exactly on the singular set of  V. The function u+ qv is therefore 
psh at all the regular points of  V and tends to - v c  on the singular set of  V. 
Therefore, by a Theorem of  Fornaess and Narasimhan [8], it has an extension 
to a psh function on all of  D (for the case of  the theorem needed here, there 
is a simpler proof). By Lemma 4.6, there is a psh function U~ on D such that 
U ~ = u + r / v o n  Vand  U~ < h + q o n a l l o f D .  S inceu  < 0 o n K N V ,  wehave  
that U~ < 0 on K N V. By Lemma 4.8, there exists a larger continuous psh 
function on D, again denoted U~, such that U, I < h + 2q and U~ < t? on an 
open set Cc containing KN V. By Lemma 4.7, the sets KN Vj are contained in (( 
for sufficiently large j. Therefore, the functions U~ - 2q are competitors in the 
supremum defining the extremal functions UK(z; ~.) for large j. Consequently, 
if Z/ ~ Vj converges to z0 E V then because U, is continuous 

lim inf UK(zj; Vi) >= lim inf U,(z/) - 2~1 > U~(zo) - 2q 

> u(zo) + ~lv(zo) - 2tl > Ux(zo; V) + qV(Zo) - 3~1. 

Since q > 0 is arbitrary and v(z0) > - v c ,  the assertion of  the Theorem 
follows. 

5 Nonhomogeneous varieties 

In this section, we show that the dimension condition holds for the variety 
tangent to V at infinity if and only if V satisfies the condition RPL. If  V is 
an algebraic variety, recall that V~, the homogeneous variety tangent to V at 
infinity is defined to be the set of  all points of  the form ~z where ~ E 112 
and there exist points Zi C V such that Izj[ ~ DO and z = l i m j ~ z j / l z j ] .  
Equivalently, if J ( V )  is the ideal of  all polynomials that vanish on V, then 
Vh is the variety of  common zeros of  the highest degree homogeneous terms 
of  these polynomials. We refer to the books of  Chirka [7] or Whitney [22] for 
more details about tangent varieties. 

Theorem 5.1 Let V be a pure dimensional algebraic variety in II~ n. Then the 
.following are equivalent: 

(i) V satisfies the condition RPL. 
(ii) Vh satisfies the condition RPL.  

(iii) Vh satisfies the dimension condition. 

For the proof of  Theorem 5.1, we need some lemmas. 
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Lemma 5.2 Suppose V is an algebraic variety in C ~. Let Vj = {z/j " z C V}. 
Then the sequence of  algebraic varieties Vj. converges to Vh in C ~, in the 
sense o f  Definition 4.3. 

Proof It is easy to verify the second part of  Definition 4.3. The first part is less 
clear, but we omit the proof since it is well-known. It can be easily proved 
using the good coordinates for V and Vh introduced later in this section. A 
result stronger than the lemma is given in [22], Chapter 7, Section 3, which 
is a local version of  the lemma. An analogous proof can also be used for the 
global case considered here. 

Lemma 5.3 Suppose V is an algebraic variety that satis:fies the condition 
RPL, that D = {z E (U" : Iz[ < 2}, and that Vj = {z C D : j z  E V}. For 

> O, let 
K~: = {[z[ ~ 1 : ]Imz I _-< dzl or Iz] __< r,}. 

Then the local extremal function UK~:(z; ~ )  = UK~:(Z; 1, Vj) of  K,: relative 
to Vi, D, and the psh Junction 1 on D satisfies the estimate 

Be 1 
(2) UKAz; Vj) ~ A]zI § --?, z C Vj, qz] ~ ~ , 

j 

where A is independent of  j and ~ and B~: is independent of  j. 

Proof Let u be psh on Vj, satisfy u < 1 on Vi, and u < 0 on K~:. Let H be the 
psh function and c the constant from Lemma 2.9. Fix zo C Vj with ]z0] < 1/4, 
and let r = r ( j )  = j / 2 .  Define a psh function U on V N { I z -  Rejz01 < r} by 

U ( z ) = e m a x { r u ( z / j ) + r H ( z - R e j z ~  . 

On the set o f z  C V with I z - R e j z 0 ]  = r, we have from u < 1 and the 
estimate (2) for H from Lemma 2.9 that the first term in the maximum does 
not exceed r + ( r / c ) ( [ Imz l / r -  c) < (1/c)[Imz l, so U can be extended to a 
psh function on all of  V by defining it to be equal to I Im z I outside o f  this 
ball. The function U clearly satisfies the egtimate (1) of  the condition RPL, 
U(z) <= [z[ + o([z[). The estimate (2) o f  the condition is obvious outside the 
ball {tz - Rejz0[ < r} with p = 1. Inside this ball, U(z) < ]Imz[ if z / j  E K,: 
since H(z)  < [Imz I. Otherwise, z/j~:K~:, so 

U(z) < ~ + ] I m z ]  < ~ + l I m z l  < 1 +  I lmz],  

so (2) o f  the condition RPL holds for U with p = 1+c(2e2) - l .  Since V satisfies 
RPL, we conclude that U(z) < AIz ] +B~ holds for all z E V. Let z = j z 0  
and use the fact that H(iy )  > 0 to see that u(zo) < (A/c)(Jlzol/r) + B~/cr. 
Consequently, equation (2) holds with constant A equal to 2A/c, where A is 
the constant from the condition RPL. This completes the proof of  the lemma. 
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Proof  o f  Theorem 5.1 (i) ~ (ii) This part is a consequence of  the convergence 
theorems in Section 4. Let D denote the ball {Iz[ < 2} c G~ and let K = 
IR'~N {Iz] < 1}. By Theorem 3.2 it is enough to prove that Vh satisfies RPLIoc 
at 0; that is, the extremal function UK(Z) = UK(Z; l, V,D) satisfies 

1 
(3) UK(z) <= Alzl for z E V~, tzl < ~ .  

Define K,: = {Izl _--< l : ]Imz[ < rlz / or Iz[ _-< ~} so that K = N~>0K,:. By 
Proposition 4.2, it suffices to prove that (3) holds with K replaced by K~, where 
the constant A is independent of  ~: > 0. 

To prove this, let Vj denote the variety in C" given by ~ = {z/j : z E V}. 
By Lemma 5.2, we have that Vy VI D ~ V~, V)D, in the sense of  Definition 
4.3. We also have the estimate (2) from Lemma 5.3. Letting j ---, oc in this 
inequality and applying the convergence theorem, Theorem 4.4, then shows 
that (3) holds with K replaced by K~., as asserted. 

Proof  o f  Theorem 5.1 (ii) =v (iii) This is a part of  Theorem 3.2. 
To prove the remaining implication of  the theorem, we shall use some 

special coordinates that are good for the study of  V and Vh. The assumption 
that V is an algebraic variety of  pure dimension k in C " is continued. Then the 
variety V~ also has dimension k. Therefore, after a suitable (real linear) change 
of  variables we can choose coordinates z = (s,w) on C~,s ~ (lY ~ k,w C ~k so 
that the projection map ~ �9 (s, w) ~ w is a proper map of  V and Vh onto ~k. 
Then there are positive integers m,m ~ with m > m ~ such that 

V = {(~/(w),w)" 1 < j G m} 
(4) 

Vh = {(fli(w),w)" 1 =< j =< m'} 

where the ~j and fij are locally multiple-valued analytic functions. Moreover 
we can assume that the coordinates are such that there exists C > 0 such that 

I j(w)l _-< C(1 + [wl) 
(5) 

I/~,.(w)l < Clwl 

for all w e C k. (See, for example, [7], Theorem 2, p. 77). As Iwl - .  the 
varieties V and Vh are closer together than Iz]l-~:; that is, constants e > 0, C > 1 
exist, depending only on V and the choice of  coordinates, such that for each 
w ~ (12 k we have 

max { rain Iflj(w) - :q(w)]} < C(I  + [wl) I-': 
l < = j < m  t l<~l<_m 

(6) 
max { min f l / ( w ) -  et(w)l } < C(I  + ]w]) ~-':. 

l < l < m - I  <=j < m  t 

Also, there is a homogeneous polynomial D(w) of degree d on Gk such that 
the branched cover = �9 Vh --+ G k is an analytic cover over {w C IF k �9 D ( w ) # O }  
and such that each fiber over w C Gk has exactly m' distinct points. Since Vh 
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is a homogeneous variety, it therefore follows that when D(w)+O,  the distinct 
points [3j(~w) - [3t(~w) = ~([Jj(w) - ~l (w))  are further apart than a small 
constant times ]~w]. In particular, for each r/ > 0 there exists R, > 0 such 
that for each w C ~ with ]w I = 1 and ID(w)l > ~1 there exist positive integers 
/~j, 1 _<_ j < m' so that for all R > R~ and each 1 < j < m ~ there are exactly 
/4i of  the ~l(w) satisfying 

(7) ] R f l j ( w ) -  :tt(Rw)l <= C(I + Rlwl) l ~: . 

Lemma 5.4 There exists tl > 0 small enough, such that, given any wo ~ tF ~, 
there exist 2 E C k with 121 ~ 1 and a number r, 0 < r < max{Iw0], 1}, such 
that the analytic disk 

A = A(wo, 2. r) = (wo + ~2~ ~ ~ tr, L(I < ~} 

has its boundary OA contained in the set ]D(w)l > rllw[ a. 

Proo f  This is a well known consequence of  a minimum modulus theorem for 
polynomials (e.g. [4], Lemma 3.4.1), and the homogeneity of  ID(w)l. 

The basic estimate for the proof of  the last part of  the theorem is given in 
the next lemma. It is like Lemma 3.1, except that an exceptional set is allowed 
and a stronger upper bound is required. The idea is that psh functions must 
have the same rate of  growth in all but a small exceptional set of  directions. 
The proof  is similar to that of  Theorems 1.41 and 1.44 in Chapter 1 of  [9]. 
See also Section 11 of  [20], which contains the proof  of  Lemma 3.1 due to 
Siciak. After the proof, we will also point out how the same argument proves 
Lemma 3.1, the Sibony-Wong estimate. A different proof  can be given using 
Kiselman's  theorem on envelopes of  psh functions [11]. 

Lemma 5.5 Let  v : Vh --* [0, cxD[ be usc. Assume that for  some ~1o > 0 and 

p > ~1o lid the followin 9 conditions are satisfied: 

(i) v is psh on the set 

G : =  {z = (s, w) c Vh : ID(w)l > Iw/Pl~}. 

(ii) v(z) < lzt for  all z in a set E o f  complex lines in Vh passing through 
the origin such that the union o f  all these lines is not a (locally) pluripolar 
set in Vh. 
(iii) V(z) < p]z I f o r  all z E Vh and some p > 1. 

Then there exists a constant A > 1, depending only on Vh, qo and the set E 
o f  complex lines in (ii) but independent o f  p and v, such that 

v(z) <=AIz ] f o r  al l  z = ( s , w )  E Vh with ID(w)l >= rlolwl d. 

Proo f  In proving the lemma, it is no loss of  generality to assume that v(~z) ~- 
v(l(]z ) for all complex numbers (, that t --* v(tz) is nondecreasing for t > 0, 
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and that v(z) > Izl; otherwise, replace v by maxl~l~lTj{v(rz), /zl}. Then for 
m > v(O) = 0 and z C Vh, define the auxiliary functions 

r(z) = r(z,m) = sup{t > O" v(tz) < m} 

1 
~b(z) = ~(z, m) -- logr(z, 

m ~ '  

The function z ~ O(z) has the following properties: 

(a) ~ is use and O(~z) = O(z) + logl~[; 
(b) O(z) = log ]z I + log L z C I, l a complex line in E; oi ' 

m < r(z ) l z l ,  z ~ r~; (c) ~; = 

(d) O(z) < log Iz[ + log p = .5' z ~: Vh; 
(e) if  z0 = (so, wo) is a point of  G, then z ~ O(z,m) is psh on a neighborhood 

of  z0. 

These properties are all direct consequences of  the definitions of  r(z) and 
~p(z). For example, it is easy to check that ~ is usc, since v is usc, and 
that it has the homogeneity property of  (a). The estimates of  (b) and (c) are 
direct consequences of  the estimates of  hypotheses (ii) and (iii) o f  the lemma, 
together with the lower bound v(z) >= ]z]. Part (d) is just a reformulation 
of  (c). To see that (e) holds, let ([~j(w),w) be the branch of  Vt7 satisfying 
zo = ([4/(wo),wo) and consider the function 

q~(w,~) :=  v ( ( ( [3 i (w) ,w) ) ,  Iw w01 < ~, ~ c • .  

For 6 sufficiently small, q) is psh on { ( w , ~ ) ' l w - w 0 ]  < 3 ,~+0} .  Since q) is 
locally bounded from above, it has a psh extension to {(w,~)" I w -  w01 < c5, 

c II;} by H6nnander [10], 4.4. Hence, an application of Thm. I. 28 in Gruman 
and Lelong [9] shows that O(([Ji(w), w) ,m) = - l o g  6(w,m) is plurisubharmonic 
in a neighborhood of  w0. Obviously, this implies (e). 

Next, let E* denote the set of  points z ~ Vh which satisfy Iz] < 1 and 
which belong to some complex line in E. Then E* is not a pluripolar subset 
of  V~. Let L(z) denote the extremal psh function of  minimal growth for the 
set E*, 

L ( z ) = s u p { u ( z ) ' u p s h o n  Vh,u < OonE*,  u(z) <~ l o g ( l + l z l ) + O ( l ) } ,  

and let L* be the usc regularization of  L. By a theorem of  Zeriahi [23] Thin. 
4.2, extending a result of  Siciak for the case when V~ = ~,1, the function L* 
is also a psh function of  minimal growth on V~; that is, there exists a constant 
7 > 0 such that 

L*(z) < log + ] z ] + 7 ,  z C  Vh 

where log + ]z] = max{log ]z I, 0}. There is one technical point to note in the 
application of  Zeriahi 's theorem. He uses a different definition of  psh function 
on V than the one in Definition 2.1. However, using the fact that there is a 
psh function v on II;" of  logarithmic growth that is equal to - o c  exactly on 
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the singular subset of  Vh, it is easy to check that the extremal function L* is 
independent of  the class of  psh functions used in its definition. 

Finally, define 

U(z) = U(z,m) - - m a x  t~(z,m)+ ~ og tD(w)l, log Izh + ~log-m ' 

For z = (s ,w) ~ G we get from (d) and Iwl < Izl, 

�89162 + h l o g  ID(w)l < �89 [log Izl + log ,e + ~ log IO(w)]] 

< �89 [log Izl + log ~ + log ~ ]  = loglz I + : log ~ .  

Therefore, the first term in the maximum defining U is dominated by the 
second one whenever ID(w)t < (twl/p) d. Hence, we obtain from (e) that U 
is psh on Vh. Moreover, we get from (d) that U is bounded by log Izl + O(1 ) 
on Vh. Since we may assume that lD(w)l < Iwl a holds for all w E (U k, we get 
from (b): 

~9(z) + log ID(w)l < log Izl + ~ log --m for all z E . 

11o 1 Hence U - 7 gm is a competitor in the definition of  the extremal function L. 
Consequently, we have 

1 1 1 1 
U(z) < L ( z ) + = l o g - -  __< l o g + l z l + 7 + = l o g - -  for a l l z C  Vh. 

Z m Z m 

Evaluating this at fzl = 1 we get 

1 1 
- dlOglD(w)l, z ~ Vh, Izl = ~(z)  < 27 + log m 1. 

Now, from (5) there is a constant Co > 0 such that Iwl >= 1~Co whenever 
z = (s,w) C Vh with ]z] = 1. Therefore, the last inequality can be rewritten as 

(p(z) < 27 + log 1 + log Co + 
1 Iwl d 

= m ~ log tD(w)- ~ . 

The homogeneity property (a) then implies 

~ ( z ) = t p  z < logtzl _• 1 Iwl d 
+ 27 + log + ~ log iD(w)---~, z = ( s ,w)  E Vh. 

Exponentiate the last inequality, write ff in terms of r(z),  and multiply by 
mr(z) to obtain 

Iwl ) forallz=(s,w) c vh rn < CoeZ';(r(z)lz[) iD(w)tl/a 
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Next fix z = (s, w) E Vh with v(z) > 0 = v(0) and fix 0 < e < v(z) arbitrarily. 
I f  we let m := v(z) - ~, the previous estimate gives 

v ( z ) -  ~: <= Coe2:'pz] ID(w) l  lid . 

Since e > 0 can be chosen to be arbitrarily small, this implies 

Coe2", , 
v(z) <= i/d IzL 

qo 

for all z = (s,w) G Vh with ID(w)l > qo]w[ a, which completes the proof. 

Remark. The same argument also proves Lemma 3.1. For, in this case, if 
m > m0 = lim supz~0v(z ), then the function ~(z) is always psh on Vh and 
satisfies q~(z) < log lz I + O(1). Hence, without using the hypothesis (iii), we 
conclude, again from the theorem of Zeriahi cited before, that 

tp(z) < L*(z) + log 1 < log+lzl + 7 + log 1 .  
m m 

Consequently, we have ~(z) < 7 + log~ when ]z I = 1, so by the homogeneity 
property of  @ in (a), 

1 
~(z) < log [z I + 7 + l o g - - .  

m 

Exactly as in the proof of  the lemma, this implies 

v(z) < max{mo, e';Iz[} , z E Vh. 

If  v is replaced by 

v~.(z) = max { l ~ ( V ( Z )  + e log 'zl), O ) 

then the conclusion also applies to v~: which has m0 = 0. Thus, v~:(z) < e;'[z[ 
and, letting ~, ~ 0, we conclude that v(z) < e'/Iz]. 

Returning now to the special coordinates z = (s,w), we can then associate 
to a psh function u on V a function v on Vh which is psh at most points of  
Vh, by 

(8) v([tj(w),w) : max{u(~l(w) ,w):[~t(w)  - /~i(w)l  < C(1 + twl) l-~} 

where C,e are the constants in (6). This function was used by H6rmander [10] 
in his proof that the Phragmdn-Lindel6f condition he studied carries over to 
nearby varieties. 

Lemma 5.6 Let u be a psh function on V and let v be the function on Vh 
.just defined. Then 

(i) I f  u(z) < [z[ + o(Izl), z c v, then v(z) < Izt + o(]zl), z c Vh; 
(ii) I f u ( z )  < plXmz[,z E V, then v(z) <= p([Imz I + C ( 1  + [z[)l-~:), z E Vh; 
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(iii) For each ~/ > 0, there is a constant R = R, > 0 such that v is psh on 
Vh n F(thR),  where F(q ,R)  is' the cone with truncated tip, 

F(q ,R)  = {z = ( s , w ) :  ID(w)l > qlwl~,lzl > R} .  

Proo f  The estimates of  (i)  and (ii) follow directly from the first inequality 
of  (6). Part (ii i)  is a consequence of  (7), since then v([3j(w),w) is locally the 
maximum of  the pj psh functions u(~:(w),w).  

Lemma 5.7 Let  (5 > O. Then there exists a function qo psh on Cn and a 
constant Cl > 0 such that q~(O) -= 0 and 

Proo f  This is well-known, even in a more general form; see e.g. [5]. For 
the case at hand and one variable, one can take the function q~ given by the 
formula 

7~ reiO h(z)  = R e ( - i z )  ~ = r ~ cos(a(0 - ~ ) ) ,  z = 

q)(z) = ~o(x + i f )  = (~IY[ - h(x + i(q + ]Yl)) . 

When a = 1 - e < l,  the function (p(z) - <p(0) satisfies the estimates o f  the 
lemma. It is harmonic off the real axis and easily checked that the jump in the 
normal derivative across the x-axis is positive provided ~/ > 0 is large enough. 
Consequently, it is subharmonic in 112. For n variables, one can take a function 
of  the form (p(zl) + . . .  + q~(zn). 

Proof  o f  Theorem 5.1, (iii) ~ (i) Let u be psh on V and satisfy the estimates 
(1) and (2) of  the condition RPL with p > 1. To prove the existence of  
constants A, depending only on V and Bp, depending only on V and p but not 
on u, such that u satisfies (3) of  RPL, we first fix a number r/l > 0 so that 
the conclusion of  Lemma 5.4 holds for all 0 < i/ ~ ~/1. Next we let E denote 
the set of  all complex lines of  the form 

l (x)=  {~x : ~ c c ,  x~  vh n ~"} .  

E is not a pluripolar set o f  lines, since Vh N IR n is not pluripolar in Vh by 
Proposition 2.7 and the present hypothesis. Consequently, the set E, of  these 
complex lines that also lie inside the set ID(w)l > ~lwl d is also not a pluripolar 
set provided q > 0 is sufficiently small, because the union of  the sets Vh N 
{[D(w)] > ~/[wl d} is equal to Vh, except for a pluripolar subset of Vh. We 
can therefore choose 0 < ~/0 < t/l, depending on Vh so small that E,0 is not 
pluripolar. 

Since it suffices to prove the desired conclusion for all sufficiently large 

p > 0, we can assume that p > P0 = r/o l/d. To do this, consider the function 
v defined on Vh in terms o f  u in (8). Let q~(z) be a psh function on ff;n obtained 
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by choosing C as in (ii) of  Lemma 5.6 and then 6 = 1/Cp in Lemma 5.7. By 
the estimates of  Lemma 5.6, there is a constant C(p)  > 0, depending on p 
but independent o f  u and v, such that the function v2 defined by 

v,(z) = �89 + peso(z )  - c(p)} 

v2(z) : max{v1 (z), 0} 

then satisfies the estimates 

~(~) _-< I~l + o(Iz[), z ~ v~ 
(9) 

v2(z) < p]Imzl, z c Vh. 

If  we choose C(p),  the constant in the definition of  vl, sufficiently large, then 
we can assume that 

v l ( z ) < 0  forlzl  <R~, ~.  

Hence 5.6 (iii) implies that v2 is psh on the set 

v~ n {z = (~., w)  : ID(w)l > Iw/p ld} .  

Since p - d  < q0, this implies that for each z ~ E,10 the function ~ --~ v2(~z) 
is a subharmonic function of  ( c ~ .  Therefore, from the classical Phragm6n- 
Lindel6f principle and the estimates (9), 

v2(z) < Izl, z c l (x)  c E,7o . 

In consequence, Lemma 5.5 implies that there is a constant A depending only 
on Vh and r/0 such that 

v2(z) = A[z], z = (s ,w)  E Vh, [D(w)l > ~lo[wl d . 

From the definition of  v2 in terms of  v and q~, and the lower bound for ~p from 
Lemma 5.7, we deduce 

(10) v ( z ) ~ A l z ] §  z = t s ,  w)  EV~ ,  [ D ( w ) l > ~ o l w l  d 

for a possibly larger constant A and a constant B depending also on p. 
Next we consider the psh function U, defined on C k by 

U(w)  = max{u(~ j (w) ,w)  : 1 < j ~ m} . 

From (5) and (10) we get a constant Cp = Cp(B,A) such that 

U(w) < mCIwl + Cp, w c  Ck, ID(w)l >~01w[ d. 

To derive a similar estimate for U at all points in C k, we apply Lemma 
5.4. It implies that for each w E Ck, iw ] > 1, there is a one-dimensional 
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disk o f  radius not  exceeding lw] and whose  boundary lies in the set where 

ID(w)l _-> rt~ Iwl d >  01wl d, Hence  the m a x i m u m  principle implies  that the 

same est imate holds for all w C ~k ,  i f  we replace A C  by 2AC and Cf, by 

some larger constant  Bp. That is, the est imate (3)  o f  the condit ion RPL holds 
for a l l z E  V. 
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