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Abstract. The paper first gives a new introduction to Palamodov's theory of the projec
tive limit functor avoiding categorical and abstract homological concepts. Then Retakh's 
condition for projl X = 0 for a spectrum X of (LB)-spaces is discussed. Conditions are 
derived which are accessible for evaluation. In §3 these conditions are connected to cer
tain topological properties of the projective limit and finally the case of sequence spaces is 
presented, where we have a complete characterization in terms of the defining matrices. 

Introduction. 

The present paper, based on the author's lectures during the conference and on [13), first 
gives a brief introduction into the theory of the projective limit functor as developed by 
Palamodov in (9) and (10). We do not use tools of abstract homological algebra and category 
theory, however define directly and explicitly Prol and ProjI and obtain in a very natural 
way Palamodov's exact sequence of six spaces ([9, p. 542D. Then we turn to projective 
limits of regular (LB)-spaces. We present Retakh's result ([11, Theorem 3)) and derive 
from it conditions (Pi) and (Pi), which are estimates in terms of the dual norms of a given 
setting and can be used (see [1), [2), [3)) for the solution of solvability problems in analysis. 

The §3 essentially gives a survey on results of [13) which connect the conditions for 
Prol X = 0 to topological properties of the projective limit as barrelledness, reflexivity, 
etc .. In §4 we present a result of (13), which extends results of [7), and gives in the case 
of sequence spaces a necessary and sufficient condition for projl X = 0 and for a lot of 
topological properties of the projective limit and its dual, which in this case are equivalent. 
This in particular contains results of Grothendieck on topological properties of (F)- and 
(DF)-spaces ([4, II, §4)). 

Finally we discuss how far all this depends on the given spectrum and what exactly has 
to be shown in the typical application (as ego [1 D. 
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1. Projective spectra of linear spaces 

In the following projective or injective spectrum will always mean countable projective or 
injective spectrum of linear spaces. 

A projective spectrum is a sequence X = (Xn' £~+1) oflinear spaces Xn and linear maps 
£:+1 : X n+1 -> X n. We put £;: = idxm and £::" = £~+1 0 ... 0 £;:-1 for all m, n < m. 

If X = (Xn' £:+1) and Y = (Yn , £~+1) are projective spectra, then a map I) : X -> Y is 

a sequence IPk(n) : X ken) -> Yn of linear maps, where k( n) ::; k( n + I} and IPk(n) 0 £~~:~1) = 
£~+1 0 IPkt.~I) for all n. We put IP::" = IPk(n) 0 £~n) for all k(n) ::; m and obtain linear maps 
Xm -> Yn satisfying IP::" 0 £X} = £~ 0 IP~f whenever all maps are defined. 

Two maps I) = (IPk(n») and ~ = (CPl(n») are called equivalent (I) fV~) if for every 
n there is m( n) ~ max( k( n), l( n» such that IP::'(n) = CP::'(n) for all n. This defines an 
equivalence relation. 

For two maps I) : X -> Y,1Jt : Y -+ Z the composition 1Jt 0 I) : X -> Z is defined by 

("'nn) 0 IP~(mn»t, where CI> = (IPk(n)t, 1Jt = ("'nn)t Composition respects equivalence. 
A map CI> : X -> Y is called an equivalence map if there is a map 1)-1 : Y ..... X such that 
1)-1 0 1) fV idx , CI> 01)-1 fV idy . X and Yare called equivalent if there is an equivalence 
map X -> Y (resp. Y -> X). 

Example. Let 1= (£k(n)t, then I fV id. Therefore (Xk(n),t~~:~I)t fV X. I) fV ~ if and 

only if there exists I such that I) 0 I = ~ 0 1. 

ProJl X = {(xn}n E 1] Xn : £~+1 Xn+1 = Xn for all n} 
Projl X (1] Xn) jB(X} 

where 

B(X) = {(an}n E II Xn : there exists (bn)n E II X n, 
n n 

such that an = t~+l bn+1 - bn for all n}. 

There is a natural exact sequence 

0-> ProjO X t....;. II Xn ~ II Xn .!. Projl X -> 0 
n n 
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For ~ : X ..... y, ~ = (C;?k(n)t we define 

"~x = (C;?k(n)Xk(n)t 

(
k(n+1)-I n ) 

~1l"x = E C;?mXm 

m=k(n) n 

These are linear maps from II Xn to II Yn, satisfying ~"o 0' = 0' 0 1l"~. This means we have 
n n 

the following commutative diagram: 

0 ..... ProjOX ..... llXn ~ llXn ..... ProjIX ..... O 
n n 

~o 1 "<I> 1 1 ~" 1 ~I 
0 ..... ProjOy ---> llYn ~ llyn ..... ProjI y ..... 0 

n n 

where ~o and ~I are the maps induced by ""<I> and <I> " . We used the following definition: 

Definition. (1) For x = (xn)n E ProjO X we set 

~ox = (C;?k(n)Xk(n)t 

(2) For a = (an)n + B(X) E Prol X we set 

<I>Ia = (k(nf-
I C;?~am) + B(Y). 

m=k(n) n 

We have the following: 

1.1 Proposition. Let <I>, ;t; : X ---> y, \lI : y ---> Z be maps, I: X ---> X as above. Then 
(1) (i[f 0 <I»O = i[f0 0 <I>0, (\lI 0 <I»t = \lit 0 <I>t 

(2) 1° = idprojo x' II = idProjl X 

(9) if~ ",;t; then ~o = ;t;o, <I>I = ;t;I. 
The PROOF of (1) is obvious. (2) requires some calculation. (3) is an immediate 

consequence of (1) and (2) since <I> '" ;t; means the existence of I and 1 such that ~oI = ;t;ol. 

1.2 Corollary. If X '" Y and <I> : X ..... Y is an equivalence map then 

~o : ProjO X ---> ProjO y, <I>I : ProjI X ---> Prol Y 

are isomorphisms. 

Definition. X .! Y .!. Z is called exact in Y if 

(1) \lIo~"'O 
(2) for every n, N ~ k( n) there are Jl, m ~ max( n, I(Jl» such that im C;?'N ::> L~ ker tfJ::.. 
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It is not difficult to see that this is invariant under equivalence. More precise: 

Remark. If 
x -+Y -+Z 
1'" 1 '" 1 '" 
X-+Y-+Z 

is a diagram, commutative up to equivalence, and one row is exact, then also the other. 

The definition of exactness of X -+ Y -+ Z means that by just taking subsequences 
we can find equivalent spectra such that (using the same notation after the change) ~ == 
(c,o:)n' 11 = (1/I;:-)n and 

t n ker·I,n+l C im",n C ker·I,n n+l 'l'n+l Tn 'l'n 

for all n. 

1.3 Proposition. (J) If 0 -+ X -+ Y -+ Z is exact, then 

o -+ ProjO X -+ ProjO Y -+ ProJ-o Z 

is exact. 
(2) If X -+ Y -+ Z -+ 0 is exact, then 

Projl X -+ prol Y -+ Projl Z -+ 0 

is exact. 

4> \II Let 0 -+ X -+ Y -+ Z -+ 0 be a short exact sequence of spectra. Then by go-
ing to equivalent spectra by taking subsequences we first may assume the standardization 
described before Proposition 1.3. From there it is again easy to see, that the spectra 
(ker1/l;:-,t~+I)n' (im1/l;:-, t~+I)n are equivalent to X (resp. Z). Hence we obtained spectra 
X, y, Z and maps ~, ~ such that 

0-+ X 4> -+ 
(ST) "'l~x 

0-+ X ;Z; 
-+ 

commutes up to equivalence and the lower sequence is of the form 

o -+ Xn <-+ Yn -+ Zn -+ 0 , 

where this sequence is exact, for all n. 
A short exact sequence of spectra with these properties is called exact sequence in 

standard form. If we have the diagramm (ST) then 0 -+ X -+ Y -+ Z -+ 0 is called a 
standard representation of 0 -+ X -+ Y -+ Z -+ O. 

For an exact sequence 0 -+ X ~ Y .!.. Z -+ 0 in standard form we have 

~Ox == (c,o~xn),. 

~la == (c,o~an)n + B(Y) 
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and likewise for iIi. 
In this case we define for Z = (zn)n E ProJl 2 

where Vn E Yn is chosen such that 'IjJ~Yn = Zn. Note that, because of 

we have ':+1 Yn+1 - Yn E Xn for all n. {j* is a well defined linear map from ProJ-o 2 to 
ProjI X. 

1.4 Lemma. If 
o -> Xl -> yl -> 21 -> 0 

lClix lCliy lCliz 
o -> X2 -> y2 -> 22 -> 0 

is a commutative (up to equivalence) diagram with exact rows in standard form then 

ProjO 21 ~ Projl Xl 

1 Cli~ 1 Clil-
ProjO 22 ~ Projl X2 

commutes. 

From this and Proposition 1.1 (3) we conclude that the following definition is unique. 

Definition. For any exact sequence we define {j* : ProjO 2 -> Projl X by {j* = Clil- -1 0 {j* 0 

Cli~, where we used a standard representation and (ST). 

We obtain and admit without proof (Palamodov [9, p. 542]). 

1.5 Theorem. For every exact sequence 

of spectra the sequence 

:0 <1>0 \110 0° <1>1 \111 o -> Pro] X -> Pro]-o y -> ProjO 2 -> Prol X -> Prol y -> Prol 2 -> 0 

is exact. All maps in this exact sequence depend only on the equivalence class of Cli and iIi. 
Moreover this exact sequence depends functorially on the exact sequence of spectra. 

The last sentence means the following: If 

o -> Xl -> yl -> 21 -> 0 
1 Cli X 1 Cliy 1 Cli z 

o -> X2 -> y2 -> 22 -> 0 
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is a commutative (up to equivalence) diagram with exact rows, then 

0-+ ProjO Xl -+ ProjO yl -+ ProP Zl ~ Projl Xl -+ Projl yl -+ Projl Zl -+ 0 

! ! ! ! ! ! 
o -+ ProJo() X2 -+ ProjO y2 -+ ProJo() Z2 ~ Projl X2 -+ Projl y2 -+ Projl Z2 -+ 0 

is a commutative diagram with exact rows. 

2. Projective spectra of LB-spaces 

In this section we assume X = (Xn' t~+1) to be a spectrum of (LB)-spaces, i.e. every 
Xn has the form Xn == UXn,k. where Xn,k is a Banach space with a norm II IIn,k and 

k 
Xn carries the locally convex inductive limit topology of the Xn,k. t~+1 is assumed to be 
continuous. 

Hence we may assume without loss of generality that Xn,k C X n,k+1 and 

II x Iln.k~1\ x I\n.k+1 

II t~+1x I\n,k$1\ x Iln+l.k 
for all n, k and x E Xn.k (resp. x E X n.k+l ). We put Bn.k == {x E Xn,k :1\ x I\n,k$ I} 
and assume that the Bn.k, k = 1,2, .,. are a fundamental system of bounded sets in X n. 
By X ( resp. Y, Z) we denote always Prop X (resp. Prop y, ProjO Z) equipped with the 
projective topology and by t n : X -+ Xn the canonical map. 

In this case a necessary and sufficient condition for Prop X = 0 has been given by V.S. 
Retakh [11, Theorem 3]. 

2.1 Theorem (Retakh). Projl X = 0 if and only if the following holds: For every p, the 
space XI' contains a bounded Banach ball BI' such that 
(1) t~+1 BI'+1 C BI' for all p, 
(2) for every p, there is k ~ It such that t~(Xk) C tl' X + B,... 

Remark. Then for every c > 0 we have even 

We want to put this into a form that makes it ready for evaluation in concrete cases 
and for closer investigation in general. 

2.2 Lemma. In Theorem 2.1 condition (2) can be replaced by 

(2)' for every p, there is k ~ Jt stich that for every J( ~ k and c > 0 
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PROOF. Since (2)~(2)' is clear we have to prove the converse. Given (1), (2)' we obtain 
a sequence k(m), k(O) = fl such that for every m we have 

k(m) X k(m) X 2-mB 
Lk(m+1) k(m+l) C Lk(m+2) k(m+2) + k(m)' 

We proceed inductively starting with x = Xl E Xk(l)' Let Xk(m+I) be chosen. We find 
Xk(m+2) E X k(m+2) such that 

for 1 ~ v ~ k( m ). 
Then .J~oo Lk(m)Xk(m) =: ~v exists for all v and clearly ~ = (~v)v E ProJ) X. We have 

with k = k(1) 

00 

II Lkx - LV~ Ilv ~ L II Lk(m)Xk(m) - Lk(m+1)Xk(m+1) IIv 
m=l 

~ f II Xk(m) - LZ~;;:~I)Xk(m+l) IIk(m) 
m=l 

~ 1 

where II IIv denotes the Minkowski norm of Bv' This proves the assertion. 

2.3 Lemma. Condition (2)' in Lemma 2.2 implies 

(2)" for every fl there is k ~ II stich that for every J( ~ k and m there are Nand S such 
that 

PROOF. This follows from Grothendieck's factorization theorem [4, Theoreme A, p.16) and 
2.2. 

2.4 Lemma. Condition (2)' in Lemma 2.2 is implied by 

(2)'" for every fl there is k ~ It sllch that for every J( ~ k, TTl and c there are Nand S 
such that 

The proof is obvious. For the interpretation of this condition see [13, Theorem 4.9), 
which is a dual version of [11, Theorem 2J. 

For the following Lemma cf. the Remark after Theorem 2 in [11). We use the following 
notation. 

Definition. X is called a (DFS)-spectrum if for every k and m there exists M such that 
the inclusion Xk.m <--+ Xk.M is compact. 
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2.5 Lemma. If X is a (DFS)-spectrum then (2) implies (2)"'. 

PROOF. Since (2) implies also (2)" we may assume with suitable quantifiers 

(iii) Xk,m ....... Xk,M compact. 

We put 

This is in a natural way a Banach space. Because of (ii), (iii) t~Bk.m is relatively compact 
in E. We consider the sets 

for L ~ N. Because of (i) they are an open covering of the compact set 

~B - '''-Bk II IIk,M Ok k,m - ok ,m • 

This proves the assertion. 

2.6 Proposition. If X is a (DFS)-spectrum then ProjI X = 0 if and only if the following 
holds: For every p, the space X" contains a bounded Banach ball B" such that 

This condition is certainly fulfilled if there is n such that (2) holds with B" = B",n' 
On the other hand (1) and (2) rema.in true if we replace B" by £"B", £" ~ £1'+1 for all 
p,. Therefore we may assume BI' C BI',n(,,) for all p, with suitable n(p,). We obtain the 
following conditions. 

Definition. 
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And we obtained: 

2.7 Theorem. If X is a (DFS)-spectrum, then (Pd '* Projl X = 0 '* (P2 ). 

The advantage of these conditions is that by means of dualization they can be turned 
into inequalities. 

To formulate that we use the following notation Jt : X~ -+ X~ is the transpose of t~ for 
JL $ k. For y E X~ we set 

II y 11~,n= sup {ly(x)1 :11 x IIp,n$ I}. 

This is an extended real valued "norm". We have 

II y 1I~,n $ II y 1I~,n+1 

II y 1I:,n ~ II J~+1y 1I:+1,n 
for all JL, n and y E X~. 

Definition. 

(Pi) 3n VJL 3k VJ(, m 3N, S Vy E X~ : II lty lIk,m$ S (II J{f y IIkN + II y 1I;,n) 

(Pi) VJL 3n, k VJ(, m 3N, S Vy E X~ : II J~y IIZ,m$ S (II l~< y IIkN + II y 1I;,n) 

By means of classical duality theory, in particular the bipolar theorem, (Pi) and (Pi) 
are equivalent to (PI) and (P2 ) respectively. Therefore we obtain: 

2.8 Theorem. If X is a (DFS)-space, then (Pi) '* Projl X = 0 '* (P;). 

Remark. It should be noticed that the condition for Prol X = 0 in Proposition 2.6 can 
always be turned into (PI). One just has to change the fundamental systems (Bp,k) in each 
XI' by setting B",o = B", etc. This, however, is not very helpful if the Xn,k have a concrete 
meaning as in most examples. 

3. Topological properties of projective limits of (LB)-spaces 

We keep the notations and assumptions of §2. We assume additionally, that 

U Bk,m = X k for all k. 
m 

Then for every bounded set B C Xk there is m such that B C Bk,m. We achieve that e.g. 
by replacing Bk,m by mBk,m. 

We set Brm = (tk)-l Bk,m. Then the sets 

B = nBk:m(k) ' 
k 
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where (m( k»l. runs through all sequences of integers, are a basis of bounded sets in X. This 
means every bounded set in X is contained in such a set. Clearly these sets are Banach 
balls. 

Remark. X has a basis of bounded sets consisting of Banach balls. 

The uniform boundedness principle implies that in X' every weak*- bounded set is 
bounded in the strong topology. 

We call the spectrum X reduced if Xl. = Ll.X for all k. From Theorem 2.1 (Retakh's 
theorem) follows easily: 

Remark. If Projl X = 0 then X is equivalent to a reduced spectrum. 

For a reduced spectrum X we identify XL with XZ := J" XL C x'. Then XZ C XZ+1 for 
all k and we obtain an imbedding spectrum of Frechet spaces. By X* we denote the dual 
space X' equipped with the inductive topology. Xl, denotes X' equipped with the strong 
topology. id : X* --+ Xl, is continuous. 

Remark. Let X be reduced. For an absolutely convex bounded set B C X' the following 
are equivalent: 

(1) B is equicontinuous 

(2) B is relatively weak*-compact 

(3) B is contained in a bounded Banach ball 

(4) B is contained in some XZ and bounded there. 

PROOF. (1) => (2) => (3) is clea.r, (3) => (4) follows from Grothendieck's factorization 
theorem, (4) => (1) since Xl. is barrelled. 

In particular X is a Mackey space, i.e. carries its Mackey topology. The following 
Lemma is an immediate consequence of the previous Remarks. 

3.1 Lemma. Let X be reduced. The following are equivalent: 

(1) X barrelled 

(2) X quasibarrelled 

(3) XL sequentially complete (quasi-complete) 

(4) X' wea/t'-sequentially complete (quasi-complete) 

(5) Every bounded set B C X' is contained in some XZ and bounded there. 

From [13] we take the following two crucial Lemmas. 



21 

3.2 Lemma. ([13,5.6]) IfProjl X = 0 then X is bornological. 

3.3 Lemma. ([13, 5.9, 5.10]) If X is reduced and does not satisfy (P2J then there is J], and 

a sequence (Yn)n in XI' such that li,;n(2nJI'Yn) = 0 in X· but (~JtYnt does not converge 
to 0 for all k ~ J],. 

Collecting the previous information we obtain the following theorem. 

3.4 Theorem. Let X be reduced. Then (1) => (2) => (3) => (4) => (5) => (6), where: 

(1) projl X = 0 

(2) X bornological 

(3) X{, complete 

(4) X barrelled 

(5) X· regular 

(6) Condition (P2J. 

Here the inductive limit X' is called regular if every bounded set is contained in some 
Xi; and bounded there. 

If all Xk are reflexive then X" = X, hence X· = Xb' (because the topology of X· is 
admissible). If X is a (DFS)-spectrum, then every Xk is reflexive and X· = X{, is a Schwartz 
space. According to a theorem of L. Schwartz ([12, p.43]) completeness of X' = X{, implies 
that (X{,)~ is bomological (=ultrabomological in our case). Since completeness of X{, also 
implies that X is barrelled (see Lemma 3.1 ) we have X bomological. 

Remark. If X is a (DFS)-spectrum then X· = X{, and X is bomological if and only if 
X* = X{, is complete. 

3.5 Theorem. Let X be a reduced (DFS)-spectrum. Then X' = X{, and (1) => (2) {:::::} 
(3) => (4) {:::::} (4)' {:::::} (5) {:::::} (5)' => (6) where 

(1) Projl X = 0 

(2) X bornological 

(3) X* complete 

m X barrelled 

(5) X* regular 

(6) Condition (P2J. 

(4)' X reflexive 

(5)' X' reflexive 
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PROOF. According to the previous Remarks and Theorem 3.4 we have only to show (4) 
{::=::> (4)' and (5) {::=::> (5)'. 

In X every bounded set is relatively compact, hence X is semireflexive, so (4) implies 
(4)'. The converse is clear. If X* is reflexive every bounded set in xt is relatively weak
compact, hence relatively weak*- compact. So (5)' => (5). If X* is regular then (X*)~ = X, 
since all Xk are reflexive. This proves (5) => (5)'. 

4. The case of sequence spaces 

Let (a)"k m) 'k e--' be an infinite matrix with t, J. ,m ...... 

aj;k,m > 0 

aj;k,m ;:: aj;k,m+l 

aj;k,m ~ aj;k+l,m 

for all j, k, m. For fixed 1 ~ p < +00 we define 

and for p = +00 

Xk,m = {x = (Xb X2'''') :11 x 1I~,m= 'L IXjll'a~;k,m < oo}, 
j 

with the norm II X IIk,m= SUPj IXjlaj;k,m. 

We put Xk = UXk,m, equipped with the inductive topology. Then XkH C Xk and we 
m 

consider this as a projective spectrum X with the inclusions as connecting maps. As always 
in this paper X = Prot X equipped with the projective topology. 

Dually we define for 1 < p ~ +00 

X;,m = {y = (YI,Y2,· .. ):1I Y 1I~,'!n= 'LIYjlqa;;%,m < +oo} 
j 

where 1 + 1 = 1 and for p = 1 
I' q 

We put X; = n X; m with the projective topology, i.e. X; is the Kothe space with the 
m ' 

matrix (aj;k,m)j,meN' Then X; C X;+I and we consider this as an inductive spectrum X* 
with the inclusions as connecting ma.ps. We set X· = U X; equipped with the inductive 

k 
topology. 

Obviously X; m = X k m' X; = X k by canonical identification. The topologies are the 
strong topologies' (see [6,' p. 406 ffj). Also X* = X' by the same identification, and the 
topology is the strong topology for 1 < p < +00, due to reflexivity (see §3). 

For p = 1 this needs not to be the case. Let aj;k,m = aj,k for all j, k, m, where (aj,k)j,k 

is the matrix of a non-distinguished Kothe space (see Kothe [6, p. 438]). Notice that in 
this case Projl X = 0, however X* # x{,. 
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For 1 ~ p < +00 the Bk,m are closed in Xk, hence the Bk,m are a fundamental system 
of bounded sets in Xk (see [6, p. 406 fJ). For p = +00 this needs not to be the case (see [6, 
p. 437 fJ). 

To avoid these difficulties we assume for p = 1,00 

a)"km 
Vk, m 3M : li~ -'-'- = 0 . 

) a;;k,M 

--Xk 
Hence we are in the (DFS)-case , so X* = X{, (see §3) and Bk,m C CBk,M, so the Bk,m 
are a fundamental system of bounded sets in Xk. 

Using the ideas of [7] we obtain (see [13, Lemma 6.1]): 

4.1 Lemma. Under the assumptions of this section Projl X = 0 and (P2J coincide with: 

(P)Vp,3n,kVm,K3N,SVj: a'?k ~Smax(a·'K1N,a+-)· 
" ,m J, t J,Il-,fi 

By use of 3.4 and 3.5 this yields (see [13, Theorem 6.]). 

4.2 Theorem. Under the assumptions of this section X* = X{, and the following are 
equivalent: 

(1) Prol X = 0 

(2) X bornological 

(3) X* complete 

(4) X barrelled 

(5) X* regular 

(6) Condition (P). 

(4)' X reflexive 

(5)' X* reflexive 

Remark. We mention that another condition is equivalent to (1), ... ,(6) (see [13, Theorem 
6.4]): 

(7) X* = {y = (Yt. Y2, .. ') : Ej IXjY;1 < +00 for all x E X} ("Kothe dual"). 

This Theorem generalizes results of Grothendieck [4, II, §4] and Krone-Vogt [7]. The 
following special case generalizes results of Vogt-Wagner [14], [15], Hebbecker [5], Nyberg 
[8]. For the case (ii), p = 0 and r = +00 see Braun-Meise-Vogt [1]. 

We assume that a = (aj);, {3 = ({3j)j are nonnegative numerical sequences, aj + {3j ~ 
+00, and r, p E IR U {+oo}. For rk /" r, Pk /" P we consider the matrix 

It is easy to see that X depends, up to equivalence, only on a, {3, r, p. 
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4.3 Theorem. (P) is satisfied if and only if (i) or (ii), where 

(i) P = +00 

(ii) IN = J1UJ2 such that ~nf !!i > 0 and ~im !!i = O. 
)EJ1 {:Jj )EJ2 (:Jj 

PROOF. After taking logarithms and dividing by Pj condition (P) takes the form 

VI'3n,kVm,J(3N,SVj : Pm-rk;~ ~ ~ +max(pN-rK;~,p .. -rl';~) 
or, taking into account that OJ + Pj - 00, with different k, nand N (using I; - (rk+1 -
rk)i1 ~ e for OJ + Pj large) 

VI' 3n, k Vm, J( 3N such that for all but finitely many j 

0- ( 0- 0-) Pm - rk P; ~ max PN - rK P; ,P .. - rl' P; . 
The inequality we can write as 

0- 0-
Pm - P .. ~ (rk - rl') P; or PN - Pm ~ (rK - rk) P; . 

If P = +00 and m > n, J( > k > I' we choose N such that 

PN - P .. > rK - rk 
Pm - P .. - rk - rl' 

and obtain for j with Pm - P .. > (rk - rl')i1 

If P < +00 and (ii) holds, then for given I' we choose k = I' + lia.tld n so large that 

0-
P- P .. ~ (rk - rl') P; for allj E J1 • 

If N > m the second possibility will be satisfied for all j E J2 up to finitely many. 
Now assume P < +00 and (P). For I' = 1 we choose k and n. We put 

0-
h=-{j: p-p .. ~(rk-rl)p;} 

and J2 = IN \ J1. For every m the inequality 

0-
P - Pm ~ (rk+t - rk) P; 

holds for all j E J2 up to finitely many. This implies the assertion. 



For J C IN, 1 $ p < +00, a and r we set (different notation for *) 

Ar(a,J) = {(Xi)iEJ : II x Ilf= E IXjl"eI'tOt; < +00 for all t < r} 
jEJ 

A;(a, J) = {(Xj)jEJ : II x Ilf= E IXjl"e"tOtj < +00 for some t < r} 
jEJ 

and obtain (see Braun-Meise-Vogt [1]): 
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4.4 Corollary. If p = 0 then (P) is satisfied if and only if IN = J1UJ2 such that 
X = Ar( a, J 1) $ A(j(,8, J2 ). 

Important special cases are those used in Braun-Meise-Vogt [1] (cf. [2]), to solve the 
problem of solvability of convolution equations in Gevrey classes on JR, and the cases of 
matrices 

where a" ~ +00,,8; -+ +00. They occur in connection with the investigation of tensor
products of (F)- and (DF)-spaces and of Ext l (see remarks above). 

Restricting us to the nuclear case, i.e. to sequences a, ,8 with 

. log v 
lIm sup -- < +00 for r = +00 

" a" 

lim log v = 0 for r < +00 
v a v 

and analogous for ,8, we have X ~ L(Ap(,8),Ar(a». The decomposition in Corollary 4.4 
gives a decomposition in a "lower triangular" and "upper triangular" part. One maps a fixed 
neighborhood of zero into a (variable) bounded set, the other some neighborhood of zero 
into a fixed bounded set. All maps are compact, i.e. L(Ap(,8), Ar(a» = LB(Ap(,8),Ar(a» 
(see Nyberg [8]). 

5. Final remarks 

The usual way of application of the previous results is the following. We are given an exact 
sequence 

of spectra of complete (LB)-spaces. X, Y, Z are the projective limits, ip = ~o, 'I/J = Woo We 
have the exact sequence 

O-+X~Y!..Z 

and we want to know whether'I/J is surjective. 
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In many of these applications we have Projl Y = O. In this case we have 

5.1 Theorem. If projl Y = 0, then ¢ is surjective if and only if Projl X = o. 

PROOF. Immediate consequence of Theorem 1.5. 

IT one investigates surjectivity of a map ¢ by this method (see e.g. Braun-Meise-Vogt 
[2]) then Theorem 4.5 suggests the question whether this is a property of X or of the space 
X. This means whether we can replace the investigation of X by that of any other spectrum 
of (LB)-spaces generating X. 

By means of Grothendieck's factorization theorem one proves (cf. [13, Proposition 3.2]) 

5.2 Proposition. If X,Y are projective spectra of complete (LB)-spaces, X, Y the pro
jective limits, cp : X ..... Y continuous linear and X reduced, then there exists 4) : X ..... Y 
such that cp = 4)0. 

An immediate consequence is: 

5.3 Corollary. Any two reduced spectra of complete (LB)-spaces generating X are equiv
alent. 

This answers to some extend the question above. However X occurring as spectrum of 
kernels of iP needs not to be reduced. So the surjectivity of ¢ depends in fact on X. 

Example. Let 1 ::; p ::; +00 and 

Xn =l" 
Yn = l" 
Zn = IKn 

, l~+1 x = (0, xl. X2, ••• ) for all n 
, l~+1 = id for all n 
, l~+l(Xl, ... ,Xn+t}=(Xl, ... ,xn)foralln. 

We put cp~x = (0, ... ,0, Xl. X2, ••• ) writing n zeros at the beginning, ¢::.X = (xt, ... , xn) 
and obtain an exact sequence 

of projective spectra of Banach spaces. 
Since X = {O}, Y = l", Z = w := 1KI'I, the space X has all good properties, but 

¢ : l" ...... w is obviously not surjective. 

IT we combine the results of this section with the 2. Remark of §3, then we obtain for 
the question at the beginning of this section. 

5.4 Theorem. If prol Y = 0, then ¢ is surjective if and only if X is reduced and X 
admits a spectrum i of complete (LB)-s]Jaces with projl i = O. 
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