UNITARY ENDOMORPHISMS OF POWER SERIES SPACES
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Dedicated to Professor Mikhail Mikhaylovich Dragilev on the occasion of his 90th birthday

ABSTRACT. We present a systematic study of the properties of unitary endo-
morphism, that is, of endomorphisms of spaces Ao («) which are unitary in
l5. We describe their role in the investigation of complemented subspaces of
spaces A (), in particular, of the open problem whether all these comple-
mented subspaces have bases.

In the present paper we consider, not necessarily nuclear, power series spaces of
infinite type Ay () over f. We study endomorphisms and, in the last section,
automorphisms of these spaces which are unitary in /5. They are a special form
of ‘local imbeddings” which have been introduced by Aytuna-Krone-Terzioglu [1]
in their study of the basis problem for complemented subspaces of nuclear power
series spaces. Their fundamental result was based on the fact that they could
show that these maps are invertible on a enough big complemented subspace.
We extend their construction to the nonnuclear case and to a bigger class of
power series spaces, and produce partial inverses on complemented subspaces of
the range of the unitary endomorphism. This leads to the proof of the existence
of complemented subspaces Ao (), where 8 can be explicitly given, in Fréchet-
Hilbert spaces of class (DN) and (€2). These always can be represented as range
of a projection in some space Ay () (see [12, Theorem 5] or Theorem 6.5 below).
That the range of a projection in a nuclear power series space Ay («) always
has a infinite dimensional complemented subspace with basis has been shown in
Schrubba [9].

A special case are the unstable spaces, introduced by Dragilev [2] for general
Kothe spaces and studied for nuclear power series spaces in Dragilev-Kondakov
3], Dubinsky-Vogt [4], [5], Kondakov [7], Wagner [13] and for Fréchet-Hilbert
power series spaces in [12]. For these spaces any unitary endomorphism of A ()
is invertible and this results in the existence of bases in related spaces.

In a second part we consider unitary automorphisms T of A, («) with 7% = id.
These occur as T'= P — @, Q@ = I — P, in the study of projections in Ay (a)
which always can be assumed to be orthogonal in ¢y (see Theorem 7.2). We
show that for any space E with dominating norm || ||, which is isomorphic to
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As(a), there is an isomorphism U : E — Ay (a) such that |Uz|p = ||z]. In
consequence of this we show that a space A, () has the property that all of its
complemented subspaces have a basis if, and only if, every unitary automorphism
of A () can be diagonalized by means of a unitary automorphism. This leads to
a reformulation of the problem posed by Mityagin, whether ever complemented
subspace of s has a basis, in terms of a problem on Hilbert space operators.

The paper uses the notation and many results of [12]. For further unexplained
notation, in particular, concerning topological linear invariants (DN) and (12)
(or Dy and €2y in Zaharjuta’s notation) we refer to [8]. For the definition of a
dominating norm see [8, p. 359].

1. POWER SERIES SPACES

Let a be a sequence 0 < ag < g < --- 7 +00. We set
A() == {x = (20, 71,...) : |2} = Z |z;|%e*% < oo for all t € R}.
J

Equipped with the norms |- |;, t € R, this is a Fréchet-Hilbert space.
We denote by

AS = {:g = (w0, z1,...) ¢ 22 =Y | P < o0}
J

the local Banach spaces which are, of course, Hilbert spaces. By t4 : A — AP,
for T' > t, we denote the identical imbedding.

(+,-)+ denotes the scalar product of |- |;. By definition A§ = ¢, and |- |o = | - |
where the latter is the norm of /5, analogous notation for the scalar products.

Another definition could be the following: Let H be a separable Hilbert space, A
the inverse of a compact, positive self-adjoint operator and A (A4) = (), D(e*) =
N, R(e™™). Then A (A) = Ax() where « is the eigenvalue sequence of A.

If A(a) is given we use this notation with H = ¢, and A the diagonal operator
defined by the sequence a.

The group z + e*4 operates continuously on A, («), we have |x|; = |e*Ax]| for
7 € A(a) and z =t +is. £ — €% defines unitary group on every A¢.

As(@) is called stable if Ay (o) @ Aso() = As(a) and this is equivalent to
sup ag, /o, < 400, it is called shift-stable if sup a,11/a, < 400. For further
stability conditions see Section 3.

Ao (@) is called tame if, up to equivalence, o has the following form: there are
strictly increasing sequences n(k) in Ny with n(0) = 0 and 8, > 0 such that

(1) a, = B for n(k) <n < n(k+1)

(2) limy, B/ Br41 = 0.
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If o has this form (without equivalence) then A, (o) is called blockwise unstable.
Tame spaces are characterized by the fact that all maps A € L(Ax(«a)) are
linearly tame, that is, have continuity estimates of the form |Az|, < Ck|z|aktp,
k € Ny (see [4, Proposition 1], [5, Theorem 1.3] or [12, Theorem 8§]).

For the following result, which is a generalization of a result in Dragilev-Kondakov
3], see [5, Lemma 2.1] or [12, Lemma 25].

Lemma 1.1. If « is blockwise unstable, A € L(Ax()) and |Az|y < Clz|o, then
for each € > 0 the set A'U. is relatively compact in Ay (), where

U. ={z € Ao(a) : |z| <1}

2. UNITARY ENDOMORPHISMS

Let A () be a power series space.

Definition 1. A unitary endomorphism of Aoo(a) is a unitary map in Ly which
maps Ao (@) into Aoo(av).

Lemma 2.1. If T is a unitary endomorpism of As () then T € L(Ax(a))

Proor. This follows from the closed graph theorem. O

Of course a unitary endomorphism 7' is injective and invertible in ¢5. This does
not imply that T is invertible on A (), that is, T7'(Ax(a)) C Aso(). If A ()
is shift stable we have the following well-known example:

Example 1. We choose a sequence kg = 0 < k; < ko < ... of integers and define
T by setting Tey,,, = ex;41 for j € Ny, Teg = ey and Tep = €1 otherwise. Here
er denote the canonical unit vectors in f5. Then T obviously is unitary and for
z € Aoo(a) we have T = xoeq + D 77 Thyy  €hj41 + >k Trery1 and therefore

[e.9]
/
I Talf = Jwo[e®0 + ) |an,, [P + ) fanPe® o+ < [Ty
=0 p

where a1 < day and Z' denotes the sum over the remaining terms. Therefore
T € L(Ax()).

—ou, —au, . | o, —
On the other hand we have |Te *i+1ey,. . |, = e 1T %41 and e st1e,. || =
kit kjt1

1 for all j. If the sequence k; is chosen such that lim; . oy, 41 Jag.., = 0, the
map 7' is not invertible in Ay ().

J+1

Notice that the matrix of T" is upper triangular plus one subdiagonal.
The situation is different for tame power series spaces.

Theorem 2.2. If A («) is tame then every unitary endomorphism T is invertible

in Ao().
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PROOF. We may assume A, («) to be blockwise unstable. Then we have in a
natural way

Aso(a) = {f = (wo,71,...) € H€2 alf _Z i

<+oof0rallt€]R}

where m(k) = n(k+1)—n(k) and f5(m(k)) is the m(k)-dimensional Hilbert space
with norm | |.

Then T" can be written as a matrix of block-maps, T" = (T}, ;)x,; where
Tky € Lta(m(3), La(m (k).

By Ty we denote the block-diagonal map given by the 7; ;. Then, by Lemma 1.1,
Ty := T — Tp defines a compact map A§ = o — A (a). Therefore (or because
| 75,11 < 1forall j) we have Ty € L(Aoo(a))NL(¢2). Since T} is a compact operator
in ¢, the operator Tj is a Fredholm operator in £5. This implies that N (T ;) # {0}
for all 7 ¢ J where J C Nj is finite. Since T, has closed range in /5 there must
exist a constant C' > 0 such that [T} ;x| > |z| for all j & J and z € l3(m(j)).
We define a block diagonal operator Sy by S;; = TJ_J1 for j ¢ Jand S;; =0
otherwise. Then Sy € L(Ax()) N L(fs) and TySoxr = SoTor = = — 3 _ e ; Tj€;-
So Ty is a Fredholm operator in L(A.(«)) and therefore also T = Ty + T7.
T is injective therefore it is an isomorphism onto a finite codimensional closed
subspace of Ay (). Since Ay () is unstable this means that R(T) = Ay (). We
have shown that T is an isomorphism. O

This does not mean that any A («) which is not shift-stable fulfills the assertion
of Theorem 2.2. For that we modify Example 1.

Example 2. We set a, = 287° for j2 < k < (j + 1)2 We define T by
Tegi1y = ejpqq for j € Ny, Teg = ey and Tep = epy1 otherwise. Then
limsup ag1/ax = +o0o, that is, A (a) is not shift-stable. The proof that T
is a unitary endomorphism which is not invertible works like in Example 1.

One can, of course, generalize our concept. A unitary map in f5 which maps
As(@) into Ay(B) we call a unitary map from A (@) to Ax(8). By use of the
closed range theorem we see that such a map is in L(Aw (), Ax(8)) and we have:

Lemma 2.3. If there is a unitary map from Ax(a) to Ao(B) then Ao(a) C
Aso(B).

PrROOF. Let T be the unitary map in the assumption. Since 7' is continuous
there are ¢ > 0 and ¢ > 0 such that T(cU®) C U’ where in both spaces U} =
{z € Ax(*) : |z|; < t}. Therefore

e = 6,(U}, Up) > 6,(T(eUY), Us) = € 6,(U, Up) = € e~
This implies 3, <t oy, + log(1/e) which implies the result. O
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If Aw() C Ao(B) then the identical imbedding is a unitary map from A («) to
Ace(B).

We conclude this section with a simple remark.

Remark 1. Let T' be a unitary endomorphism in L(Ax(cv)) then R(T) has a
basts.

PROOF. Let x =T¢ € R(T). Then we have

x=TE¢ = ié}ﬂ’en = i({, en)Te, = i(w, Te,)Te,.
n=0 n=0 n=0

That means, for x € R(T') the expansion with respect to the orthonormal basis
(T'en)nen, converges in Ay (). 0

While for shift stable power series spaces a unitary endomorphism needs not to
be invertible on A (), for a certain class of shift stable power series spaces it
has an inverse at least on certain infinite dimensional subspaces.

3. A CLASS OF POWER SERIES SPACES

Definition 2. A power series space Ao () is called partially stable if o fulfills
the following condition

(1) ACVYn3Im : apim < Cay,.

In the definition C' > 1 can be chosen arbitrarily. We have:
Lemma 3.1. For every p > 1 the following is equivalent to the definition:

(2) Ynadm : apim < Py,

PROOF. Obviously the negation of (1) is the following
(3) VC InVm : apim > Cay,.

And again it is obvious that for every p > 1 the following is equivalent to condition
(3)
(4) InVm : apim > pa,

which shows the claim. O

We assume without restriction of generality that g > 1. For given p > 1 we
set My, = {j : p* < a; < p**1} and we can write every A, («) isomorphically
equivalent in the form
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oo

Asla) = {Een ¢ I =30 ( 2 16 )e™" < oo forall t € B
k=0  jeM;
= {@k)keNO € Hﬁg(n(k:)) s z|? = Z |xk|2€2tpk < oo forallt e R}
k=0 k=0

where we have put n(k) = #My. Here | | denotes the norm in ¢5(-). We call this
the standard p-block representation.

Lemma 3.2. A («) is partially stable, if and only if, the sequence n(k) is un-
bounded.

PROOF. If the sequence n(k) is unbounded then A, («) ist partially stable by
Lemma 3.1. If A, («) is partially stable then we choose m such that ag,ym < pag,.
We find k such that m € M. Then «a,,.2, € My U My,,. Therefore either
n(k) = #Mg >norn(k+1) = #Myy > n. O

Therefore A (a) is not partially stable if, and only if, there is n € N such that
n(k) < n for all k. We set 3; = pn. Then

Ao (B) = {(xk)keNo e[ () « o} = anf?e®™ < 0o for all ¢ € R}.
k=0 k=0
n(k) < n for all k is equivalent to Ay () being a block-subspace of A (). This
means that there is a subsequence (k;);en, and C' > 0 such that
1 i/m i/n
P e <Ophin
for all 7 € Ny. We have shown:

Lemma 3.3. A (a) is not partially stable if, and only if, there is ¢ > 1, C > 0
and a subsequence (kj);en, such that

1
(5) G ¢ <a; <C¢

for all j € Ny.

1/j

In particular, estimate (5) implies that lim inf; a;

reverse implication does not hold.

> 1. It is easily seen that the

So we have:
Corollary 3.4. If liminf; ozjl-/j = 1 then Ao(«) is partially stable.

Example 3. Every stable space A, () is partially stable. If a; = /) and
lim; f(j)/j = 0 then Ay () is partially stable.

Definition 3. A («) is called strongly shift-stable if it has an infinite codimen-
sional complemented subspace which is isomorphic to As ().
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Lemma 3.5. A («) is strongly shift-stable if, and only if, there exists p > 0 such
that for every n € N there is m(n) € N with ayiyy < p iy, for all m > m(n).

Proor. If F is infinite dimensional, F' & A (a) = Ax(@) and A (B) is the
associated power series space of F' then obviously Ax(a) = Ax(B) ® Aso(a) as
sets and therefore as Fréchet spaces . This implies that there is p > 0 and a
subsequence (k(n))nen, such that k(n) — n is nondecreasing and unbounded and
Q(n) < Py, for all n. If, on the other hand such a subsequence exists then Ay ()
is obviously strongly shift-stable.

It is easily seen that the existence of such a sequence (k(n))nen, is equivalent to
our condition on a. O

From this we see that A («) is strongly shift-stable if, and only if, the sequence
n(k) from the standard p-block representation is nondecreasing and unbounded.
From this we see the following:

Example 4. Every strongly shift-stable space A, («) is partially stable.

However there are also examples of partially stable spaces which are far from
being stable or even shift stable. In fact, they are strongly unstable.

If A(«) is blockwise unstable, then we have in a natural way

Ao(a) = {x = (w0, 71,...) € H£2 alf _Z k[

<+oofora11teR}

where m(k) = n(k + 1) — n(k) and fo(m(k)) is the m(k)-dimensional Hilbert
space. From this we see immediately:

Proposition 3.6. If A («) is blockwise unstable and {m(k) : k € Ny} is un-
bounded, then Ay () is partially stable.

The definition of partial stability we can also rewrite in the form: There is a
nondecreasing unbounded sequence of integers (m(n)),en, such that

Aptm(n)

(6) lim sup < 0.

(m(n))nen, Will denote from now on always such a sequence.

4. PARTIAL INVERSES

We reformulate [12, Lemma 13] in a way suitable for our purposes.

Lemma 4.1. If A € L({3) and ay,; =0 for oy, > B; then A € L(Ax(B), A()).



8 DIETMAR VOGT

The method for the construction of S in the following Lemma goes back to Ay-
tuna, Krone and Terzioglu [1]. We modify the construction for the nonnuclear
case, as given in [12]. The difference here is, that we replace stability by the much
weaker condition of partial stability.

Theorem 4.2. Let A («) be partially stable and T' a unitary endomorphism of
Ao (@) Let (m(n))nen, be a nondecreasing unbounded sequence of integers fulfilling
(6). Then there is S € L(Ax()), such that P =T oS is a projection in Ay (),
orthogonal in ly, and R(P) = Ay (B) where B, = ).

PrOOF. Lete; =(0,...,0,1,0,...) € A(a) and f; = Te;. We choose induc-
tively vectors g, € Ao (a) with following properties:

(1) gn € Span{f07 KR fn-i—m(n)}
(2) gndLgo, ..., gn1 in £,

(3) gnleo, ..., emm)—1 in £y
(4)

This is possible since dimspan{ fo,..., fotmm} = n+ m(n) + 1. Due to (1) we

have
n+m(n) n+m(n

(n)
gn ‘= Z Mk:,nfk =T HEn€
k=0 k=0

We set

n+m(n)
hn: Z Hin€k
k=0

and obtain an orthonormal system (h,)nen,. We set ug,, = 0 for k > n +m(n).

We define

[e.9]

Sz = Z(m,gn>hn.

n=0

This means S = T~ 'oP where P is the orthogonal projection onto span{go, g1, . . . }.
We have to show that S defines a map in L(A(«)).

We do that in two steps. First we define a map ¢ € L({3) by

o0

W(x) = Z(m,en>hn.
n=0
The matrix elements are 1y ; = (Yej,ex) = (hj,ex). Therefore ¢ ; = 0 for

k > j+ m(j). By Lemma 4.1 we obtain that ¢y € L(Ax(7),Ax(a)) where
Tn = Antm(n)-

Now we define a map ¢ € L({3) by
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The matrix elements are ¢y, = (pe;,ex) = (€, gr). This means that ¢, ; =
(pej,ep) = 0 if m(k) > j. Therefore, by Lemma 4.1, ¢ € L(A(a),Ax(f))
where 3, = ().

By assumption we have Ao (8) = Ax (7).

Since obviously S = 1oy we have shown that S € L(Ax(«)). Therefore P = ToS
is a continuous projection in A (a). We show that R(P) = Ay (7).

The map Tot) € L(As(7), R(P)) is injective and, because of (Totp)op =ToS =
P, also surjective, hence it is an isomorphism. O

5. EXAMPLES

To consider a concrete non stable case we assume that o, = e/ where f :
R, — R, is continuously differentiable, increasing and strictly concave for
large t. We assume moreover that lim, . f'(tf) = 0 and we put h(t) = 1/f'(¢).

Lemma 5.1. In this case the space Ao () is strongly shift-stable.

Proor. We verify the criterion in Lemma 3.5 with p = e. For every n we
have to find m(n) such that f(m +n) — f(m) < 1 for m > m(n). Since to
fm+n)— f(m) < f'(m)n and f'(m) — 0 this is possible. O

So Ao () is also partially stable and we have:

Proposition 5.2. m(n) in Lemma 4.2 may be chosen as h™(cn) where ¢ > 0.

This means P is a projection onto a subspace isomorphic to Aoo(B) with B, =
f(h=(en))
e .

Proor. We fix C' > 1 and choose m(n) so that f(n+m(n))— f(m(n)) < C for
large n. With the choices we have made this follows from the argument in the
proof of Lemma 5.1. O
5 with s > 1 then we may choose 3, = """

Example 5. If o, = €"

Example 6. If a,, = e(°8("*1)° with s > 1 then we may choose
671 _ 6(log(n—i—l)—‘,—(s—l) loglog(n—i—l))s.

Proor. With f(t) = (log(t + 1))°® we have
iy _ . (og(t+1))*
Fit)=s t+1 '
With m(n) = (n + 1)(log(n + 1))*~! we obtain
nf’(m(n) — sn (log(n + 1) + (S - 1) IOg log(n + 1))8_1
(n+1)(log(n+ 1))t +1 '

Since lim,, o nf'(Mm(n)) = s the sequence m(n) may be used in Lemma 4.2. This
implies the result. O
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6. COMPLEMENTED SUBSPACES

Unitary endomorphisms of power series spaces occur in various contexts. One of
the most important is described in this section. The following notation goes back
to Terzioglu [10].

Definition 4. Let E be a Fréchet-Hilbert-Schwartz space with properties (DN)and
(). Let || - |lo be a Hilbertian dominating norm, ||-||1 chosen for || - ||o according
to (2) and

Ay = — 10g 5n(U1, U())
where U; = {x € E : ||z||; < 1}. Then Ax(a) is called the associated power
series space of s.

We will use the following fundamental Lemma (see [12, Corollary 5]):

Lemma 6.1. Let E be a Fréchet-Hilbert-Schwartz space with properties (DN)and
(Q) and Ay () its associated power series space. Then there exist maps ¢ €
L(Ax(), E) and ¢ € L(E, A()) such that ¢ extends to a unitary map vy :
ly — FEy and ¢ extends to a unitary map @q : Eg — (5.

In this case the combination 7" := (o obviously extends to a unitary endomor-
phism of A ().

Theorem 6.2. [f E is a Fréchet-Hilbert-Schwartz space with properties (DN) and
(Q) and its associated power series space Noo() is partially stable, then E has a
complemented subspace isomorphic to Ao (B), B like in Theorem 4.2.

PrROOF. From Lemma 6.1 we get ¢ € L(E,Ax(a)), ¥ € L(Ax(a), E) such
that T := @ o4 extends to a unitary map in L(¢;). Then by Theorem 4.2 we get
S € L(Ax()), such that P = T'oS is a projection in A () with R(P) = A (B).

We set m:=1oSoPoyp € L(E) and obtain a projection. Poy € L(R(w), R(P))
is an isomorphism, since 1 o S|g(p) is its inverse. O

Example 7. If E is a Fréchet-Hilbert-Schwartz space with properties (DN) and
(2) and its associated power is one of the spaces Ay () as considered in Section
5 the E has a complemented subspace isomorphic to Ao () chosen as in Section
5.

The most important example, of course, is that of a space E with stable associated
power series space. In this case we can choose m(n) = n, that is A (5) = Ao ()
and we have:

Lemma 6.3. If E is a Fréchet-Hilbert-Schwartz space with properties (DN) and
(Q) and its associated power series space Ao () is stable then E has a comple-
mented subspace isomorphic to Aoo(av).
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And we obtain the following fundamental theorem which was proved for the
nuclear case in Aytuna-Krone-Terzioglu [1], and for general Fréchet-Hilbert spaces
in [12].

Theorem 6.4. If E is a Fréchet-Hilbert-Schwartz space with properties (DN) and
(Q) and its associated power series space Ao («) is stable then E = A ().

An easy corollary of this theorem is the following theorem, which follows also
from [12, Theorem 5] which is based on a different line of arguments.

Theorem 6.5. If E is a Fréchet-Hilbert-Schwartz space with properties (DN)
and (2) then there is a power series space Ao (B) such that E is a complemented
subspace of Aoo(B).

PROOF. Let Ay () be the associated power series space of E. Let A (y) be
another power series space, then we denote by [ the increasing reordering of
@0, Y0, 1,71, - - - - Now it is easy to find v, such that § is stable. Since obviously
A () is the associated power series space of E @ Ay (), we obtain E@ Ay (y) =
A (). Hence E is isomorphic to a complemented subspace of A (). O

The following Theorem was shown in a somewhat different way in [12, Theorem
7], for the nuclear case see Wagner [13, Theorem 5] and Kondakov [7].

Theorem 6.6. If E is a Fréchet-Hilbert-Schwartz space with properties (DN) and
(Q) and its associated power series space Ao () is tame then E = A ().

PrRoOOF. This is an immediate consequence of Lemma 6.1 and Theorem 2.2. O

7. PROJECTIONS

Another important setting where unitary endomorphisms, even isomorphisms,
appear is described in the following. Let A, («) be a power series space and P a
continuous projection in A (a).

We will use the following Lemma which is shown in [12, Lemma 9]. In the nuclear
case it follows from Kondakov [6].

Lemma 7.1. If || || is a Hilbert norm on Aso(a) and | [o < || || < C| |-, C > 1.
Then there is an automorphism U of Ay () such that |Ux|y = ||z|| and

[zl < |Uz|e < Clafesr
for all x € Ao(a), t > 0.

Theorem 7.2. If P is a continuous projection in Ay () then there is an auto-
morphism U of Ay () such that UPU™! is an orthogonal projection in (5.
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PrROOF. We set ||z]|* = |Pz|2 + |Qz|2 where Q@ = I — P. Then | || fulfills
the assumption of Lemma 7.1. Hence there is an automorphism U of A ()

such that |Uz|y = ||z|| for all z € A(a). We set P = UPU™!, then P is a
continuous projection in A () and we obtain |Pz|y = ||[PUz|| = |[PU 'z, <
|Uz|| = |z|o and (Pz,Qy)o = (PUz,QU~'y) = 0 where (-,-), denotes the
scalar product belonging to | |, (-, -) that belonging to || || and Q =1 — P. O

From now on we assume that our projection P is orthogonal with respect to (-, -)o
which is the scalar product of ¢ and we set

T:=P—Q.
Then T is a unitary isomorphism of A, (a). It is self-adjoint in ¢y and T2 = 1.

We will need the following interpolation lemma which we quote in a slightly more
precise form from [8, 29.17].

Lemma 7.3. Let seminorms || |lo < || |1 < || ||2 be given on the vector spaces G
and H, such that for suitable numbers 0 < 7 < 6 < 1 and C > 0 the following
hold:

(1) ']
2) [l
Then for every linear map A : G — H satisfying |Azx||; < Cjllz||; for all x € G
and j = 0,2 the following also holds:

|Az|l; < DCCy"Cy||x||y for all z € G

1-0 0
Cll oIl 15" on (G, 1| Hlo)"-

P <
1< Cl I3 on &

-1
where D = D(7/0) = 4(1 - 2_(1_%)> .

In particular, the constant D can be chosen uniformly for given 0 < v < 1 and
T/0 < 7.
And we will need the following fact:
Lemma 7.4. Let || || be a norm on Ayo(a) with |x|3 < ||x| |z|; then
Atk
2l < ]| 7 fe

forallz € Ao(a) and 1 <k < K.

PrROOF. We use that

for all ¢ > 0 and € A(a) hence
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1
|z o < |z |1 < (|~T|t>t
Iz = Talo = o
So we have
1
(7) 2l < ||| 75 ||

and we obtain using this for t = K

This implies

W% - K_k ﬁiﬁ
2li < Jalo® [zl < [l 5% 2| |zl = Nl |2
forall z € A(a) and 1 < k < K. O
Lemma 7.5. If || || is a Hilbert norm on Ay () with ||z|| < Clz|y and |z]3 <

llz|| |x|1 for all x € As(a). Then there is an automorphism U of Ay () such
that |Ux|y = ||z| and

Uzl < C'|l;
for all x € Ao(a), t > 0.

PRrROOF. We denote by H, the Hilbert space generated by || || and by (, ) its
scalar product. For every K > 7 we consider the canonical map % : A% < Hy.
It is compact, let s, be the singular numbers. We set

1
Bn = ——log s,.

K
Then the Schmidt representation takes the form
(8) e = Z e KBz, en) K f

n=0
where (e,)n, (fn)n are orthonormal bases in A% and Hy, respectively. If we set
={z : |z|, <1}, V ={z : ||z| <1} then $U, C V leads to
0n(Uk,V) < C6,(Uxk,Up)
Le.
9) e Kb < e Kan,

We put

ux® = ((2, fn) )nen, -
Then we have

lugzlo = [lz]| < C'lzlo
and, by use of (9),

N

1| |
— UK =
c!TETIE

Ql+~

(Zem”l(cﬁ,fn)F)
n=0
> (@, 1) ) = lelx

n=0

VAN
VRS
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By use of [12, Lemma 9] we obtain
lugzl < Clzf,
forall0 <t < K.

Now we have to show lower estimates for the norms |ugz|y.

By estimate (7) we have
2lo < llal| T fe| 7

For the following calculation see Terzioglu [10] (cf. [11]).

We set By, = Uy, B = V° (the respective polar sets) and 7 = We obtain

)

1+K

Bo C 0;1(7"

where C, = inf,so(s™ + s71).

For d > 0,(B,Bk) we find an at most n-dimensional subspace F' such that
B C d B + F and we obtain

1
BO C C;I(TTCZ + 1—_>BK + F.
r T
Since this holds for all » > 0 we get

1
671(307 BK) S 07__1 inf(TTd +

r>0 rl=7

) — dl—’T

and we have shown that
571(307 BK) S 571(B7 BK)I_

and therefore that
e—Kan S 6_(1_7—)](/8".

This yields, using that % =1+ K,

2|k = (Z KB (z, £)] ) (Ze = TO‘”

Due to equation (8) we have f, € A% and, by definition, ug f, = e,. Therefore
A%y Cug(A%) and ug' : A%, — A% is continuous with norm < 1.

1
(; fn)] ) = uka|rir.

We want to use Lemma 7.3. We have
ali < lals FT Jalie, 75
and, by Lemma 7.4,
el < o] 58 fal .
Since 1+k <7v:= % < 1 we have with a universal constant C
lz|p < C'lugx|s,

for all k € N with 3k < K + 1.
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For every k € Ntheset {ux : K > k} is an equicontinuous subset of L(A{). Since
Ay — AY is compact for ¢ > s the set is relatively compact in L(Af,,,Af_,)
for every k € N. Therefore we may, by use of a diagonal procedure, find a
subsequence ug,, , such that (ug, ), converges in L(Af,,,A;_;) for every k € N.

Moreover, we have that for every k € N the set {ug' : K+ 1 > 3k} is an
equicontinuous subset of L(A$,,A%). By the same argument as before we may
choose the subsequence so that also (uy! ), converges in L(Ag, ,, AY_,) for all
k € N, and we set for x € Ao (a):

Uz = lim ug,z, Vo= lim ug z
n—o0 n—o0

and certainly U,V € L(Ax(«)). Of course, we first take the limits in the local
Banach spaces separately and then see that those results define elements Ux €
As(@), Vo € Ax(a), respectively.

It can easily be seen that UV = VU = id, hence U is an automorphism. We have
|Uzlo = lim fug, zlo = |||

and we have for any ¢ > 0
|Uzx|, = lirrln lug, x|y < Clxl;.

This proves the result. O

Remark 2. By [12, Lemma 11| we see that the matrix of U is blockwise upper
triangular where the blocks are given by the sets of indices on whic « is constant.
If, in particular, « is strictly increasing, then the matrix of U is upper triangular.

Corollary 7.6. If || || is a dominating norm on Ay () then there is an automor-
phism U of A () such that |Uz|y = ||z|| for all z € Ax(a).

PROOF. Thereis t € R and C' > 0 such that ||z|| < C'|z|; for all x € A(a).
Then we choose s > 0 and C’ > 0 such that |z|? < C"||z|| |x]¢s for all x € Ay ().

We set |||z]|| :== C'|lez| and 8 = sa. Then A (8) = Ax(a), ||| ||| is a
dominating norm in A (3), [[|z]|| < CC'[z|o and |zfo < [|[z]]| - [z|1 for all
xr € A (B). By Lemma 7.5 there is an automorphism U of A, (f) such that

(10) Uzlo = [[]]]]

We set U = L,U and insert ez into equation (10). This gives |Uzx|y = ||z|| for

all x € Ao (S ) A (). Obviously U is an automorphism of Ay (a) = Ax(f).
(]

Corollary 7.7. Let E be a Fréchet-Hilbert space. If || ||o is a dominating Hilbert
norm on E and E = A, («), then the isomorphism can be chosen so that it is
unitary between Ey and A§ = (5.
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Here Ey denotes the local Hilbert space belonging to || ||o-

PrROOF. Let T : Ax(a) — E be an isomorphism. We set ||z| := ||Tz|lo on
As(@). Then || || is a dominating norm on A, («) and, by Corollary 7.7, we
obtain an automorphism U of A, («) such that |Uz|y = ||z|| = ||Tz]|o for all
T € Ao(). Then T := T oU ! is an isomorphism A (o) — F and |z|o = || Tx||o
for all z € Ao (). O

We return to the study of a projection P in Ay (). We may assume that P is
orthogonal in 5. We set £ = P(A(a)) and F' = Q(Ax()). If E and F have
bases then there exist 8 and v such that E = A (f) and F' = Ao(y). On E
and F we consider the subspace topology inherited from A, (a), then | |y is a
dominating norm on both spaces. By use of Corollary 7.7 we may assume that
we have isomorphisms Vi : Ao(8) — E and V, : A(y) — F which are unitary
with respect to the zero norms.

If we choose an increasing reordering of Sy, o, 81,71,... the we obtain, up to
equivalence, a. In this way Ay () = As(B) @ Ax(y) with diagonal projections
Ps and P, onto the respective subspaces. We set S = Pg — P,. This is a diagonal
map with only 1 and —1 as entries.

We consider the map

Viewr VioPgx+ Voo Pyx.
It is a unitary automorphism of A («) which sends A, (8) to E and A (7) to
F.Sowehave V''oToV =8, where T =P — Q.

Setting U := V! we have shown (1) = (2) of the following theorem. The other
implication is obvious.

Theorem 7.8. The following are equivalent:

(1) Every complemented subspace of Aoo(ar) has a basis.
(2) For every unitary automorphism T of Ay(a) with T? = id there is a
unitary automorphism of A () such that UTU™! is diagonal.

This is special relevance for Ay (a) = s, because all nuclear spaces with (DN)
and (£2), that is, all complemented subspaces of any nuclear power series space
are isomorphic to a complemented subspace of s.

Theorem 7.9. The following assertions are equivalent:

(1) Every complemented subspace of s has a basis.
(2) For every unitary automorphism T of s with T? = id there is a unitary
automorphism of s such that UTU™" is diagonal.

From Theorem 7.9 we can derive the following equivalence of problems. We call
it “Theorem” because it states the equivalence of two unknown conjectures.

“Theorem” 7.10. The following assertions are equivalent:
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(1) Every complemented subspace of a space As(a) has a basis.
(2) For every unitary automorphism T of any space Ao () with T? = id there
is a unitary automorphism of Ao () such that UTU ™" is diagonal.

We should remark that (2) in Theorem 7.9 describes the following problem for
operators in f5. Let A be a positive self-adjoint operator in ¢ with compact
inverse, G4 := {e7'4, t > 0} the one parameter semigroup generated by —A
and R(A®) = ;s R(e™*) the asymptotic range space. By U(A>®) we denote
the group of all unitary operators on £, such U and U* leave R(A>) invariant.
Problem: Does for every T' € U(A™) exist U € U(A>) such that UTU* commutes
with g A?
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