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Abstract. We present a systematic study of the properties of unitary endo-
morphism, that is, of endomorphisms of spaces Λ∞(α) which are unitary in
ℓ2. We describe their role in the investigation of complemented subspaces of
spaces Λ∞(α), in particular, of the open problem whether all these comple-
mented subspaces have bases.

In the present paper we consider, not necessarily nuclear, power series spaces of
infinite type Λ∞(α) over ℓ2. We study endomorphisms and, in the last section,
automorphisms of these spaces which are unitary in ℓ2. They are a special form
of ‘local imbeddings’ which have been introduced by Aytuna-Krone-Terzioğlu [1]
in their study of the basis problem for complemented subspaces of nuclear power
series spaces. Their fundamental result was based on the fact that they could
show that these maps are invertible on a enough big complemented subspace.
We extend their construction to the nonnuclear case and to a bigger class of
power series spaces, and produce partial inverses on complemented subspaces of
the range of the unitary endomorphism. This leads to the proof of the existence
of complemented subspaces Λ∞(β), where β can be explicitly given, in Fréchet-
Hilbert spaces of class (DN) and (Ω). These always can be represented as range
of a projection in some space Λ∞(α) (see [12, Theorem 5] or Theorem 6.5 below).
That the range of a projection in a nuclear power series space Λ∞(α) always
has a infinite dimensional complemented subspace with basis has been shown in
Schrubba [9].

A special case are the unstable spaces, introduced by Dragilev [2] for general
Köthe spaces and studied for nuclear power series spaces in Dragilev-Kondakov
[3], Dubinsky-Vogt [4], [5], Kondakov [7], Wagner [13] and for Fréchet-Hilbert
power series spaces in [12]. For these spaces any unitary endomorphism of Λ∞(α)
is invertible and this results in the existence of bases in related spaces.

In a second part we consider unitary automorphisms T of Λ∞(α) with T 2 = id.
These occur as T = P − Q, Q = I − P , in the study of projections in Λ∞(α)
which always can be assumed to be orthogonal in ℓ2 (see Theorem 7.2). We
show that for any space E with dominating norm ∥ ∥, which is isomorphic to
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Λ∞(α), there is an isomorphism U : E → Λ∞(α) such that |Ux|0 = ∥x∥. In
consequence of this we show that a space Λ∞(α) has the property that all of its
complemented subspaces have a basis if, and only if, every unitary automorphism
of Λ∞(α) can be diagonalized by means of a unitary automorphism. This leads to
a reformulation of the problem posed by Mityagin, whether ever complemented
subspace of s has a basis, in terms of a problem on Hilbert space operators.

The paper uses the notation and many results of [12]. For further unexplained
notation, in particular, concerning topological linear invariants (DN) and (Ω)
(or D1 and Ω1 in Zaharjuta’s notation) we refer to [8]. For the definition of a
dominating norm see [8, p. 359].

1. Power series spaces

Let α be a sequence 0 < α0 ≤ α1 ≤ · · · ↗ +∞. We set

Λ∞(α) :=
{
x = (x0, x1, . . . ) : |x|2t =

∑
j

|xj|2e2tαj <∞ for all t ∈ R
}
.

Equipped with the norms | · |t, t ∈ R, this is a Fréchet-Hilbert space.

We denote by

Λα
t =

{
x = (x0, x1, . . . ) : |x|2t =

∑
j

|xj|2e2tαj <∞}

the local Banach spaces which are, of course, Hilbert spaces. By ιtT : Λα
T ↪→ Λα

t ,
for T > t, we denote the identical imbedding.

⟨·, ·⟩t denotes the scalar product of | · |t. By definition Λα
0 = ℓ2 and | · |0 = | · |

where the latter is the norm of ℓ2, analogous notation for the scalar products.

Another definition could be the following: Let H be a separable Hilbert space, A
the inverse of a compact, positive self-adjoint operator and Λ∞(A) =

∩
tD(etA) =∩

tR(e
−tA). Then Λ∞(A) = Λ∞(α) where α is the eigenvalue sequence of A.

If Λ∞(α) is given we use this notation with H = ℓ2 and A the diagonal operator
defined by the sequence α.

The group z 7→ ezA operates continuously on Λ∞(α), we have |x|t = |ezAx| for
x ∈ Λ∞(α) and z = t+ is. ξ 7→ eiξA defines unitary group on every Λα

t .

Λ∞(α) is called stable if Λ∞(α) ⊕ Λ∞(α) ∼= Λ∞(α) and this is equivalent to
supα2n/αn < +∞, it is called shift-stable if supαn+1/αn < +∞. For further
stability conditions see Section 3.

Λ∞(α) is called tame if, up to equivalence, α has the following form: there are
strictly increasing sequences n(k) in N0 with n(0) = 0 and βk > 0 such that

(1) αn = βk for n(k) ≤ n < n(k + 1)
(2) limk βk/βk+1 = 0.
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If α has this form (without equivalence) then Λ∞(α) is called blockwise unstable.
Tame spaces are characterized by the fact that all maps A ∈ L(Λ∞(α)) are
linearly tame, that is, have continuity estimates of the form |Ax|k ≤ Ck|x|ak+b,
k ∈ N0 (see [4, Proposition 1], [5, Theorem 1.3] or [12, Theorem 8]).

For the following result, which is a generalization of a result in Dragilev-Kondakov
[3], see [5, Lemma 2.1] or [12, Lemma 25].

Lemma 1.1. If α is blockwise unstable, A ∈ L(Λ∞(α)) and |Ax|0 ≤ C|x|0, then
for each ε > 0 the set A1Uε is relatively compact in Λ∞(α), where

Uε = {x ∈ Λ∞(α) : |x|ε ≤ 1}.

2. Unitary endomorphisms

Let Λ∞(α) be a power series space.

Definition 1. A unitary endomorphism of Λ∞(α) is a unitary map in ℓ2 which
maps Λ∞(α) into Λ∞(α).

Lemma 2.1. If T is a unitary endomorpism of Λ∞(α) then T ∈ L(Λ∞(α))

Proof. This follows from the closed graph theorem. 2

Of course a unitary endomorphism T is injective and invertible in ℓ2. This does
not imply that T is invertible on Λ∞(α), that is, T−1(Λ∞(α)) ⊂ Λ∞(α). If Λ∞(α)
is shift stable we have the following well-known example:

Example 1. We choose a sequence k0 = 0 < k1 < k2 < . . . of integers and define
T by setting Tekj+1

= ekj+1 for j ∈ N0, Te0 = e0 and Tek = ek+1 otherwise. Here
ek denote the canonical unit vectors in ℓ2. Then T obviously is unitary and for
x ∈ Λ∞(α) we have Tx = x0e0 +

∑∞
j=0 xkj+1

ekj+1 +
∑′

k xkek+1 and therefore

|Tx|2t = |x0|2e2tα0 +
∞∑
j=0

|xkj+1
|2e2tαkj+1 +

∑
k

′
|xk|2e2tαk+1 ≤ |Tx|dt

where αk+1 ≤ dαk and
∑′ denotes the sum over the remaining terms. Therefore

T ∈ L(Λ∞(α)).

On the other hand we have |Te−αkj+1ekj+1
|t = e−αkj+1

+tαkj+1 and |e−αkj+1ekj+1
|1 =

1 for all j. If the sequence kj is chosen such that limj→∞ αkj+1/αkj+1
= 0, the

map T is not invertible in Λ∞(α).

Notice that the matrix of T is upper triangular plus one subdiagonal.

The situation is different for tame power series spaces.

Theorem 2.2. If Λ∞(α) is tame then every unitary endomorphism T is invertible
in Λ∞(α).
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Proof. We may assume Λ∞(α) to be blockwise unstable. Then we have in a
natural way

Λ∞(α) ∼=
{
x = (x0, x1, . . .) ∈

∏
k

ℓ2(m(k)) : |x|2t =
∑
k

|xk|2e2tβk

<+∞ for all t ∈ R
}

where m(k) = n(k+1)−n(k) and ℓ2(m(k)) is the m(k)-dimensional Hilbert space
with norm | |.

Then T can be written as a matrix of block-maps, T = (Tk,j)k,j where

Tk,j ∈ L(ℓ2(m(j), ℓ2(m(k)).

By T0 we denote the block-diagonal map given by the Tj,j. Then, by Lemma 1.1,
T1 := T − T0 defines a compact map Λα

0 = ℓ2 → Λ∞(α). Therefore (or because
∥Tj,j∥ ≤ 1 for all j) we have T0 ∈ L(Λ∞(α))∩L(ℓ2). Since T1 is a compact operator
in ℓ2 the operator T0 is a Fredholm operator in ℓ2. This implies that N(Tj,j) ̸= {0}
for all j ̸∈ J where J ⊂ N0 is finite. Since T0 has closed range in ℓ2 there must
exist a constant C > 0 such that |Tj,jx| ≥ 1

C
|x| for all j ̸∈ J and x ∈ ℓ2(m(j)).

We define a block diagonal operator S0 by Sj,j := T−1
j,j for j ̸∈ J and Sj,j = 0

otherwise. Then S0 ∈ L(Λ∞(α)) ∩ L(ℓ2) and T0S0x = S0T0x = x −
∑

j∈J xjej.

So T0 is a Fredholm operator in L(Λ∞(α)) and therefore also T = T0 + T1.
T is injective therefore it is an isomorphism onto a finite codimensional closed
subspace of Λ∞(α). Since Λ∞(α) is unstable this means that R(T ) = Λ∞(α). We
have shown that T is an isomorphism. 2

This does not mean that any Λ∞(α) which is not shift-stable fulfills the assertion
of Theorem 2.2. For that we modify Example 1.

Example 2. We set αk = 2k+j2 for j2 < k ≤ (j + 1)2. We define T by
Te(j+1)2 = ej2+1 for j ∈ N0, Te0 = e0 and Tek = ek+1 otherwise. Then
lim supαk+1/αk = +∞, that is, Λ∞(α) is not shift-stable. The proof that T
is a unitary endomorphism which is not invertible works like in Example 1.

One can, of course, generalize our concept. A unitary map in ℓ2 which maps
Λ∞(α) into Λ∞(β) we call a unitary map from Λ∞(α) to Λ∞(β). By use of the
closed range theorem we see that such a map is in L(Λ∞(α),Λ∞(β)) and we have:

Lemma 2.3. If there is a unitary map from Λ∞(α) to Λ∞(β) then Λ∞(α) ⊂
Λ∞(β).

Proof. Let T be the unitary map in the assumption. Since T is continuous
there are t > 0 and ε > 0 such that T (εUα

t ) ⊂ Uβ
1 where in both spaces U∗

t =
{x ∈ Λ∞(∗) : |x|t ≤ t}. Therefore

e−βn = δn(U
β
1 , U0) ≥ δn(T (εU

α
t ), U0) = ε δn(U

α
t , U0) = ε e−tαn .

This implies βn ≤ t αn + log(1/ε) which implies the result. 2
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If Λ∞(α) ⊂ Λ∞(β) then the identical imbedding is a unitary map from Λ∞(α) to
Λ∞(β).

We conclude this section with a simple remark.

Remark 1. Let T be a unitary endomorphism in L(Λ∞(α)) then R(T ) has a
basis.

Proof. Let x = Tξ ∈ R(T ). Then we have

x = Tξ =
∞∑
n=0

ξnTen =
∞∑
n=0

⟨ξ, en⟩Ten =
∞∑
n=0

⟨x, Ten⟩Ten.

That means, for x ∈ R(T ) the expansion with respect to the orthonormal basis
(Ten)n∈N0 converges in Λ∞(α). 2

While for shift stable power series spaces a unitary endomorphism needs not to
be invertible on Λ∞(α), for a certain class of shift stable power series spaces it
has an inverse at least on certain infinite dimensional subspaces.

3. A class of power series spaces

Definition 2. A power series space Λ∞(α) is called partially stable if α fulfills
the following condition

(1) ∃C ∀n ∃m : αn+m ≤ Cαm.

In the definition C > 1 can be chosen arbitrarily. We have:

Lemma 3.1. For every p > 1 the following is equivalent to the definition:

(2) ∀n ∃m : αn+m ≤ pαm.

Proof. Obviously the negation of (1) is the following

(3) ∀C ∃n ∀m : αn+m > Cαm.

And again it is obvious that for every p > 1 the following is equivalent to condition
(3)

(4) ∃n ∀m : αn+m ≥ pαm

which shows the claim. 2

We assume without restriction of generality that α0 ≥ 1. For given p > 1 we
set Mk = {j : pk ≤ αj < pk+1} and we can write every Λ∞(α) isomorphically
equivalent in the form
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Λ∞(α) =
{
(ξj)j∈N0 : |ξ|2t =

∞∑
k=0

( ∑
j∈Mk

|ξj|2
)
e2tp

k

<∞ for all t ∈ R
}

∼=
{
(xk)k∈N0 ∈

∞∏
k=0

ℓ2(n(k)) : |x|2t =
∞∑
k=0

|xk|2e2tp
k

<∞ for all t ∈ R
}

where we have put n(k) = #Mk. Here | | denotes the norm in ℓ2(·). We call this
the standard p-block representation.

Lemma 3.2. Λ∞(α) is partially stable, if and only if, the sequence n(k) is un-
bounded.

Proof. If the sequence n(k) is unbounded then Λ∞(α) ist partially stable by
Lemma 3.1. If Λ∞(α) is partially stable then we choosem such that α2n+m ≤ pαm.
We find k such that m ∈ Mk. Then αm+2n ∈ Mk ∪ Mk+1. Therefore either
n(k) = #Mk ≥ n or n(k + 1) = #Mk+1 ≥ n. 2

Therefore Λ∞(α) is not partially stable if, and only if, there is n ∈ N such that

n(k) ≤ n for all k. We set βj = p
j
n . Then

Λ∞(β) ∼=
{
(xk)k∈N0 ∈

∞∏
k=0

ℓ2(n) : |x|2t =
∞∑
k=0

|xk|2e2tp
k

<∞ for all t ∈ R
}
.

n(k) ≤ n for all k is equivalent to Λ∞(α) being a block-subspace of Λ∞(β). This
means that there is a subsequence (kj)j∈N0 and C > 0 such that

1

C
pkj/n ≤ αj ≤ C pkj/n.

for all j ∈ N0. We have shown:

Lemma 3.3. Λ∞(α) is not partially stable if, and only if, there is q > 1, C > 0
and a subsequence (kj)j∈N0 such that

(5)
1

C
qkj ≤ αj ≤ C qkj

for all j ∈ N0.

In particular, estimate (5) implies that lim infj α
1/j
j > 1. It is easily seen that the

reverse implication does not hold.

So we have:

Corollary 3.4. If lim infj α
1/j
j = 1 then Λ∞(α) is partially stable.

Example 3. Every stable space Λ∞(α) is partially stable. If αj = ef(j) and
limj f(j)/j = 0 then Λ∞(α) is partially stable.

Definition 3. Λ∞(α) is called strongly shift-stable if it has an infinite codimen-
sional complemented subspace which is isomorphic to Λ∞(α).
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Lemma 3.5. Λ∞(α) is strongly shift-stable if, and only if, there exists p > 0 such
that for every n ∈ N there is m(n) ∈ N with αm+n < pαm for all m ≥ m(n).

Proof. If F is infinite dimensional, F ⊕ Λ∞(α) = Λ∞(α) and Λ∞(β) is the
associated power series space of F then obviously Λ∞(α) = Λ∞(β) ⊕ Λ∞(α) as
sets and therefore as Fréchet spaces . This implies that there is p > 0 and a
subsequence (k(n))n∈N0 such that k(n)− n is nondecreasing and unbounded and
αk(n) < pαn for all n. If, on the other hand such a subsequence exists then Λ∞(α)
is obviously strongly shift-stable.

It is easily seen that the existence of such a sequence (k(n))n∈N0 is equivalent to
our condition on α. 2

From this we see that Λ∞(α) is strongly shift-stable if, and only if, the sequence
n(k) from the standard p-block representation is nondecreasing and unbounded.
From this we see the following:

Example 4. Every strongly shift-stable space Λ∞(α) is partially stable.

However there are also examples of partially stable spaces which are far from
being stable or even shift stable. In fact, they are strongly unstable.

If Λ∞(α) is blockwise unstable, then we have in a natural way

Λ∞(α) ∼=
{
x = (x0, x1, . . .) ∈

∏
k

ℓ2(m(k)) : |x|2t =
∑
k

|xk|2e2tβk

<+∞ for all t ∈ R
}

where m(k) = n(k + 1) − n(k) and ℓ2(m(k)) is the m(k)-dimensional Hilbert
space. From this we see immediately:

Proposition 3.6. If Λ∞(α) is blockwise unstable and {m(k) : k ∈ N0} is un-
bounded, then Λ∞(α) is partially stable.

The definition of partial stability we can also rewrite in the form: There is a
nondecreasing unbounded sequence of integers (m(n))n∈N0 such that

(6) lim sup
n→∞

αn+m(n)

αm(n)

<∞.

(m(n))n∈N0 will denote from now on always such a sequence.

4. Partial inverses

We reformulate [12, Lemma 13] in a way suitable for our purposes.

Lemma 4.1. If A ∈ L(ℓ2) and ak,j = 0 for αk > βj then A ∈ L(Λ∞(β),Λ∞(α)).
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The method for the construction of S in the following Lemma goes back to Ay-
tuna, Krone and Terzioğlu [1]. We modify the construction for the nonnuclear
case, as given in [12]. The difference here is, that we replace stability by the much
weaker condition of partial stability.

Theorem 4.2. Let Λ∞(α) be partially stable and T a unitary endomorphism of
Λ∞(α) Let (m(n))n∈N0 be a nondecreasing unbounded sequence of integers fulfilling
(6). Then there is S ∈ L(Λ∞(α)), such that P = T ◦ S is a projection in Λ∞(α),
orthogonal in ℓ2, and R(P ) ∼= Λ∞(β) where βn = αm(n).

Proof. Let ej = (0, . . . , 0, 1, 0, . . .) ∈ Λ∞(α) and fj = Tej. We choose induc-
tively vectors gn ∈ Λ∞(α) with following properties:

(1) gn ∈ span{f0, . . . , fn+m(n)}
(2) gn⊥g0, . . . , gn−1 in ℓ2
(3) gn⊥e0, . . . , em(n)−1 in ℓ2
(4) |gn|0 = 1.

This is possible since dim span{f0, . . . , fn+m(n)} = n +m(n) + 1. Due to (1) we
have

gn :=

n+m(n)∑
k=0

µk,nfk = T

n+m(n)∑
k=0

µk,nek

 .

We set

hn =

n+m(n)∑
k=0

µk,nek

and obtain an orthonormal system (hn)n∈N0 . We set µk,n = 0 for k > n+m(n).

We define

Sx :=
∞∑
n=0

⟨x, gn⟩hn.

This means S = T−1◦P where P is the orthogonal projection onto span{g0, g1, . . .}.
We have to show that S defines a map in L(Λ∞(α)).

We do that in two steps. First we define a map ψ ∈ L(ℓ2) by

ψ(x) =
∞∑
n=0

⟨x, en⟩hn.

The matrix elements are ψk,j = ⟨ψej, ek⟩ = ⟨hj, ek⟩. Therefore ψk,j = 0 for
k > j + m(j). By Lemma 4.1 we obtain that ψ ∈ L(Λ∞(γ),Λ∞(α)) where
γn = αn+m(n).

Now we define a map φ ∈ L(ℓ2) by

φ(x) =
∞∑
n=0

⟨x, gn⟩en.
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The matrix elements are φk,j = ⟨φej, ek⟩ = ⟨ej, gk⟩. This means that φk,j =
⟨φej, ek⟩ = 0 if m(k) > j. Therefore, by Lemma 4.1, φ ∈ L(Λ∞(α),Λ∞(β))
where βn = αm(n).

By assumption we have Λ∞(β) = Λ∞(γ).

Since obviously S = ψ◦φ we have shown that S ∈ L(Λ∞(α)). Therefore P = T ◦S
is a continuous projection in Λ∞(α). We show that R(P ) ∼= Λ∞(γ).

The map T ◦ψ ∈ L(Λ∞(γ), R(P )) is injective and, because of (T ◦ψ)◦φ = T ◦S =
P , also surjective, hence it is an isomorphism. 2

5. Examples

To consider a concrete non stable case we assume that αn = ef(n) where f :
R+ −→ R+ is continuously differentiable, increasing and strictly concave for
large t. We assume moreover that limt→∞ f ′(t) = 0 and we put h(t) = 1/f ′(t).

Lemma 5.1. In this case the space Λ∞(α) is strongly shift-stable.

Proof. We verify the criterion in Lemma 3.5 with p = e. For every n we
have to find m(n) such that f(m + n) − f(m) ≤ 1 for m ≥ m(n). Since to
f(m+ n)− f(m) ≤ f ′(m)n and f ′(m) → 0 this is possible. 2

So Λ∞(α) is also partially stable and we have:

Proposition 5.2. m(n) in Lemma 4.2 may be chosen as h−1(cn) where c > 0.
This means P is a projection onto a subspace isomorphic to Λ∞(β) with βn =

ef(h
−1(cn)).

Proof. We fix C > 1 and choose m(n) so that f(n+m(n))− f(m(n)) ≤ C for
large n. With the choices we have made this follows from the argument in the
proof of Lemma 5.1. 2

Example 5. If αn = en
1
s with s > 1 then we may choose βn = en

1
s−1

.

Example 6. If αn = e(log(n+1))s with s > 1 then we may choose

βn = e(log(n+1)+(s−1) log log(n+1))s .

Proof. With f(t) = (log(t+ 1))s we have

f ′(t) = s
(log(t+ 1))s−1

t+ 1
.

With m(n) = (n+ 1)(log(n+ 1))s−1 we obtain

nf ′(m(n) = sn
(log(n+ 1) + (s− 1) log log(n+ 1))s−1

(n+ 1)(log(n+ 1))s−1 + 1
.

Since limn→∞ nf ′(m(n)) = s the sequence m(n) may be used in Lemma 4.2. This
implies the result. 2
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6. Complemented subspaces

Unitary endomorphisms of power series spaces occur in various contexts. One of
the most important is described in this section. The following notation goes back
to Terzioğlu [10].

Definition 4. Let E be a Fréchet-Hilbert-Schwartz space with properties (DN)and
(Ω). Let ∥ · ∥0 be a Hilbertian dominating norm, ∥ · ∥1 chosen for ∥ · ∥0 according
to (Ω) and

αn = − log δn(U1, U0)

where Uj = {x ∈ E : ∥x∥j ≤ 1}. Then Λ∞(α) is called the associated power
series space of s.

We will use the following fundamental Lemma (see [12, Corollary 5]):

Lemma 6.1. Let E be a Fréchet-Hilbert-Schwartz space with properties (DN)and
(Ω) and Λ∞(α) its associated power series space. Then there exist maps ψ ∈
L(Λ∞(α), E) and φ ∈ L(E,Λ∞(α)) such that ψ extends to a unitary map ψ0 :
ℓ2 → E0 and φ extends to a unitary map φ0 : E0 → ℓ2.

In this case the combination T := φ ◦ψ obviously extends to a unitary endomor-
phism of Λ∞(α).

Theorem 6.2. If E is a Fréchet-Hilbert-Schwartz space with properties (DN) and
(Ω) and its associated power series space Λ∞(α) is partially stable, then E has a
complemented subspace isomorphic to Λ∞(β), β like in Theorem 4.2.

Proof. From Lemma 6.1 we get φ ∈ L(E,Λ∞(α)), ψ ∈ L(Λ∞(α), E) such
that T := φ ◦ψ extends to a unitary map in L(ℓ2). Then by Theorem 4.2 we get
S ∈ L(Λ∞(α)), such that P = T ◦S is a projection in Λ∞(α) with R(P ) ∼= Λ∞(β).

We set π := ψ ◦S ◦P ◦φ ∈ L(E) and obtain a projection. P ◦φ ∈ L(R(π), R(P ))
is an isomorphism, since ψ ◦ S|R(P ) is its inverse. 2

Example 7. If E is a Fréchet-Hilbert-Schwartz space with properties (DN) and
(Ω) and its associated power is one of the spaces Λ∞(α) as considered in Section
5 the E has a complemented subspace isomorphic to Λ∞(β) chosen as in Section
5.

The most important example, of course, is that of a space E with stable associated
power series space. In this case we can choose m(n) = n, that is Λ∞(β) = Λ∞(α)
and we have:

Lemma 6.3. If E is a Fréchet-Hilbert-Schwartz space with properties (DN) and
(Ω) and its associated power series space Λ∞(α) is stable then E has a comple-
mented subspace isomorphic to Λ∞(α).
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And we obtain the following fundamental theorem which was proved for the
nuclear case in Aytuna-Krone-Terzioğlu [1], and for general Fréchet-Hilbert spaces
in [12].

Theorem 6.4. If E is a Fréchet-Hilbert-Schwartz space with properties (DN) and
(Ω) and its associated power series space Λ∞(α) is stable then E ∼= Λ∞(α).

An easy corollary of this theorem is the following theorem, which follows also
from [12, Theorem 5] which is based on a different line of arguments.

Theorem 6.5. If E is a Fréchet-Hilbert-Schwartz space with properties (DN)
and (Ω) then there is a power series space Λ∞(β) such that E is a complemented
subspace of Λ∞(β).

Proof. Let Λ∞(α) be the associated power series space of E. Let Λ∞(γ) be
another power series space, then we denote by β the increasing reordering of
α0, γ0, α1, γ1, . . . . Now it is easy to find γ, such that β is stable. Since obviously
Λ∞(β) is the associated power series space of E⊕Λ∞(γ), we obtain E⊕Λ∞(γ) ∼=
Λ∞(β). Hence E is isomorphic to a complemented subspace of Λ∞(β). 2

The following Theorem was shown in a somewhat different way in [12, Theorem
7], for the nuclear case see Wagner [13, Theorem 5] and Kondakov [7].

Theorem 6.6. If E is a Fréchet-Hilbert-Schwartz space with properties (DN) and
(Ω) and its associated power series space Λ∞(α) is tame then E ∼= Λ∞(α).

Proof. This is an immediate consequence of Lemma 6.1 and Theorem 2.2. 2

7. Projections

Another important setting where unitary endomorphisms, even isomorphisms,
appear is described in the following. Let Λ∞(α) be a power series space and P a
continuous projection in Λ∞(α).

We will use the following Lemma which is shown in [12, Lemma 9]. In the nuclear
case it follows from Kondakov [6].

Lemma 7.1. If ∥ ∥ is a Hilbert norm on Λ∞(α) and | |0 ≤ ∥ ∥ ≤ C| |τ , C > 1.
Then there is an automorphism U of Λ∞(α) such that |Ux|0 = ∥x∥ and

|x|t ≤ |Ux|t ≤ C |x|t+τ

for all x ∈ Λ∞(α), t ≥ 0.

Theorem 7.2. If P is a continuous projection in Λ∞(α) then there is an auto-
morphism U of Λ∞(α) such that UPU−1 is an orthogonal projection in ℓ2.
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Proof. We set ∥x∥2 = |Px|20 + |Qx|20 where Q = I − P . Then ∥ ∥ fulfills
the assumption of Lemma 7.1. Hence there is an automorphism U of Λ∞(α)

such that |Ux|0 = ∥x∥ for all x ∈ Λ∞(α). We set P̃ = UPU−1, then P̃ is a

continuous projection in Λ∞(α) and we obtain |P̃ x|0 = ∥PU−1x∥ = |PU−1x|0 ≤
∥U−1x∥ = |x|0 and ⟨P̃ x, Q̃y⟩0 = (PU−1x,QU−1y) = 0 where ⟨· , ·⟩t denotes the

scalar product belonging to | |t, (· , ·) that belonging to ∥ ∥ and Q̃ = I − P̃ . 2

From now on we assume that our projection P is orthogonal with respect to ⟨·, ·⟩0
which is the scalar product of ℓ2 and we set

T := P −Q.

Then T is a unitary isomorphism of Λ∞(α). It is self-adjoint in ℓ2 and T 2 = I.

We will need the following interpolation lemma which we quote in a slightly more
precise form from [8, 29.17].

Lemma 7.3. Let seminorms ∥ ∥0 ≤ ∥ ∥1 ≤ ∥ ∥2 be given on the vector spaces G
and H, such that for suitable numbers 0 < τ < θ < 1 and C > 0 the following
hold:

(1) ∥ ∥∗1 ≤ C ∥ ∥∗0
1−θ∥ ∥∗2

θ on (G, ∥ ∥0)′.
(2) ∥ ∥1 ≤ C ∥ ∥1−τ

0 ∥ ∥τ2 on H.

Then for every linear map A : G → H satisfying ∥Ax∥j ≤ Cj∥x∥j for all x ∈ G
and j = 0, 2 the following also holds:

∥Ax∥1 ≤ DCC1−τ
0 Cτ

2 ∥x∥1 for all x ∈ G

where D = D(τ/θ) = 4
(
1− 2−(1− τ

θ
)
)−1

.

In particular, the constant D can be chosen uniformly for given 0 < γ < 1 and
τ/θ ≤ γ.

And we will need the following fact:

Lemma 7.4. Let ∥ ∥ be a norm on Λ∞(α) with |x|20 ≤ ∥x∥ |x|1 then

|x|k ≤ ∥x∥
K−k
1+K |x|

1+k
1+K

K

for all x ∈ Λ∞(α) and 1 ≤ k < K.

Proof. We use that

|x|1 ≤ |x|
t−1
t

0 |x|
1
t
t

for all t > 0 and x ∈ Λ∞(α) hence

|x|1
|x|0

≤
(
|x|t
|x|0

) 1
t

.
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This implies

|x|0
∥x∥

≤ |x|1
|x|0

≤
(
|x|t
|x|0

) 1
t

.

So we have

(7) |x|0 ≤ ∥x∥
t

1+t |x|
1

1+t

t

and we obtain using this for t = K

|x|k ≤ |x|
K−k
K

0 |x|
k
K
K ≤ ∥x∥

K
1+K

K−k
K |x|

1
1+K

K−k
K

K |x|
k
K
K = ∥x∥

K−k
1+K |x|

1+k
1+K

K

for all x ∈ Λ∞(α) and 1 ≤ k < K. 2

Lemma 7.5. If ∥ ∥ is a Hilbert norm on Λ∞(α) with ∥x∥ ≤ C |x|0 and |x|20 ≤
∥x∥ |x|1 for all x ∈ Λ∞(α). Then there is an automorphism U of Λ∞(α) such
that |Ux|0 = ∥x∥ and

|Ux|t ≤ C |x|t
for all x ∈ Λ∞(α), t ≥ 0.

Proof. We denote by H0 the Hilbert space generated by ∥ ∥ and by ( , ) its
scalar product. For every K > τ we consider the canonical map ı0K : Λα

K ↪→ H0.
It is compact, let sn be the singular numbers. We set

βn = − 1

K
log sn.

Then the Schmidt representation takes the form

(8) ı0Kx =
∞∑
n=0

e−Kβn⟨x, en⟩Kfn,

where (en)n, (fn)n are orthonormal bases in Λα
K and H0, respectively. If we set

Ut = {x : |x|t ≤ 1}, V = {x : ∥x∥ ≤ 1} then 1
C
U0 ⊂ V leads to

δn(UK , V ) ≤ C δn(UK , U0)

i.e.

(9) e−Kβn ≤ C e−Kαn .

We put
uKx = ((x, fn))n∈No .

Then we have
|uKx|0 = ∥x∥ ≤ C |x|0

and, by use of (9),

1

C
|uKx|K =

1

C

(
∞∑
n=0

e2Kαn|(x, fn)|2
) 1

2

≤

(
∞∑
n=0

e2Kβn|(x, fn)|2
) 1

2

= |x|K .
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By use of [12, Lemma 9] we obtain

|uKx|t ≤ C|x|t
for all 0 ≤ t ≤ K.

Now we have to show lower estimates for the norms |uKx|k.

By estimate (7) we have

|x|0 ≤ ∥x∥
K

1+K |x|
1

1+K

K .

For the following calculation see Terzioğlu [10] (cf. [11]).

We set Bk = U◦
k , B = V ◦ (the respective polar sets) and τ = 1

1+K
. We obtain

B0 ⊂ C−1
τ (rτB +

1

r1−τ
BK)

where Cτ = infs>0(s
τ + sτ−1).

For d > δn(B,BK) we find an at most n-dimensional subspace F such that
B ⊂ dBK + F and we obtain

B0 ⊂ C−1
τ (rτd+

1

r1−τ
)BK + F.

Since this holds for all r > 0 we get

δn(B0, BK) ≤ C−1
τ inf

r>0
(rτd+

1

r1−τ
) = d1−τ

and we have shown that

δn(B0, BK) ≤ δn(B,BK)
1−τ

and therefore that
e−Kαn ≤ e−(1−τ)Kβn .

This yields, using that K
1−τ

= 1 +K,

|x|K =

(∑
n

e2Kβn|(x, fn)|2
) 1

2

≤

(∑
n

e2
K

1−τ
αn|(x, fn)|2

) 1
2

= |uKx|K+1.

Due to equation (8) we have fn ∈ Λα
K and, by definition, uKfn = en. Therefore

Λα
K+1 ⊂ uK(Λ

α
K) and u

−1
K : Λα

K+1 → Λα
K is continuous with norm ≤ 1.

We want to use Lemma 7.3. We have

|x|∗k ≤ |x|∗0
K+1−k
K+1 |x|∗K+1

k
K+1

and, by Lemma 7.4,

|x|k ≤ ∥x∥
K−k
1+K |x|

1+k
1+K

K .

Since 1+k
3k

≤ γ := 2
3
< 1 we have with a universal constant C

|x|k ≤ C |uKx|3k
for all k ∈ N with 3k ≤ K + 1.
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For every k ∈ N the set {uK : K ≥ k} is an equicontinuous subset of L(Λα
k ). Since

Λα
t −→ Λα

s is compact for t > s the set is relatively compact in L(Λα
k+1,Λ

α
k−1)

for every k ∈ N. Therefore we may, by use of a diagonal procedure, find a
subsequence uKn , such that (uKn)n converges in L(Λα

k+1,Λ
α
k−1) for every k ∈ N.

Moreover, we have that for every k ∈ N the set {u−1
K : K + 1 ≥ 3k} is an

equicontinuous subset of L(Λα
3k,Λ

α
k ). By the same argument as before we may

choose the subsequence so that also (u−1
Kn

)n converges in L(Λα
3k+1,Λ

α
k−1) for all

k ∈ N, and we set for x ∈ Λ∞(α):

Ux = lim
n→∞

uKnx, V x = lim
n→∞

u−1
Kn
x.

and certainly U, V ∈ L(Λ∞(α)). Of course, we first take the limits in the local
Banach spaces separately and then see that those results define elements Ux ∈
Λ∞(α), V x ∈ Λ∞(α), respectively.

It can easily be seen that UV = V U = id, hence U is an automorphism. We have

|Ux|0 = lim
n

|uKnx|0 = ∥x∥

and we have for any t > 0

|Ux|t = lim
n

|uKnx|t ≤ C|x|t.

This proves the result. 2

Remark 2. By [12, Lemma 11] we see that the matrix of U is blockwise upper
triangular where the blocks are given by the sets of indices on whic α is constant.
If, in particular, α is strictly increasing, then the matrix of U is upper triangular.

Corollary 7.6. If ∥ ∥ is a dominating norm on Λ∞(α) then there is an automor-
phism U of Λ∞(α) such that |Ux|0 = ∥x∥ for all x ∈ Λ∞(α).

Proof. There is t ∈ R and C > 0 such that ∥x∥ ≤ C |x|t for all x ∈ Λ∞(α).
Then we choose s ≥ 0 and C ′ > 0 such that |x|2t ≤ C ′ ∥x∥ |x|t+s for all x ∈ Λ∞(α).

We set |||x||| := C ′ ∥e−tAx∥ and β = sα. Then Λ∞(β) = Λ∞(α), ||| ||| is a
dominating norm in Λ∞(β), |||x||| ≤ C C ′ |x|0 and |x|0 ≤ |||x||| · |x|1 for all

x ∈ Λ∞(β). By Lemma 7.5 there is an automorphism Ũ of Λ∞(β) such that

(10) |Ũx|0 = |||x|||.

We set U = 1
C′ Ũe

tA and insert etAx into equation (10). This gives |Ux|0 = ∥x∥ for
all x ∈ Λ∞(β) = Λ∞(α). Obviously U is an automorphism of Λ∞(α) = Λ∞(β).

2

Corollary 7.7. Let E be a Fréchet-Hilbert space. If ∥ ∥0 is a dominating Hilbert
norm on E and E ∼= Λ∞(α), then the isomorphism can be chosen so that it is
unitary between E0 and Λα

0 = ℓ2.
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Here E0 denotes the local Hilbert space belonging to ∥ ∥0.

Proof. Let T : Λ∞(α) → E be an isomorphism. We set ∥x∥ := ∥Tx∥0 on
Λ∞(α). Then ∥ ∥ is a dominating norm on Λ∞(α) and, by Corollary 7.7, we
obtain an automorphism U of Λ∞(α) such that |Ux|0 = ∥x∥ = ∥Tx∥0 for all

x ∈ Λ∞(α). Then T̃ := T ◦U−1 is an isomorphism Λ∞(α) → E and |x|0 = ∥T̃ x∥0
for all x ∈ Λ∞(α). 2

We return to the study of a projection P in Λ∞(α). We may assume that P is
orthogonal in ℓ2. We set E = P (Λ∞(α)) and F = Q(Λ∞(α)). If E and F have
bases then there exist β and γ such that E ∼= Λ∞(β) and F ∼= Λ∞(γ). On E
and F we consider the subspace topology inherited from Λ∞(α), then | |0 is a
dominating norm on both spaces. By use of Corollary 7.7 we may assume that
we have isomorphisms V1 : Λ∞(β) → E and V2 : Λ∞(γ) → F which are unitary
with respect to the zero norms.

If we choose an increasing reordering of β0, γ0, β1, γ1, . . . the we obtain, up to
equivalence, α. In this way Λ∞(α) = Λ∞(β) ⊕ Λ∞(γ) with diagonal projections
Pβ and Pγ onto the respective subspaces. We set S = Pβ −Pγ. This is a diagonal
map with only 1 and −1 as entries.

We consider the map
V : x 7→ V1 ◦ Pβx+ V2 ◦ Pγx.

It is a unitary automorphism of Λ∞(α) which sends Λ∞(β) to E and Λ∞(γ) to
F . So we have V −1 ◦ T ◦ V = S, where T = P −Q.

Setting U := V −1 we have shown (1) ⇒ (2) of the following theorem. The other
implication is obvious.

Theorem 7.8. The following are equivalent:

(1) Every complemented subspace of Λ∞(α) has a basis.
(2) For every unitary automorphism T of Λ∞(α) with T 2 = id there is a

unitary automorphism of Λ∞(α) such that UTU−1 is diagonal.

This is special relevance for Λ∞(α) = s, because all nuclear spaces with (DN)
and (Ω), that is, all complemented subspaces of any nuclear power series space
are isomorphic to a complemented subspace of s.

Theorem 7.9. The following assertions are equivalent:

(1) Every complemented subspace of s has a basis.
(2) For every unitary automorphism T of s with T 2 = id there is a unitary

automorphism of s such that UTU−1 is diagonal.

From Theorem 7.9 we can derive the following equivalence of problems. We call
it “Theorem” because it states the equivalence of two unknown conjectures.

“Theorem” 7.10. The following assertions are equivalent:
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(1) Every complemented subspace of a space Λ∞(α) has a basis.
(2) For every unitary automorphism T of any space Λ∞(α) with T 2 = id there

is a unitary automorphism of Λ∞(α) such that UTU−1 is diagonal.

We should remark that (2) in Theorem 7.9 describes the following problem for
operators in ℓ2. Let A be a positive self-adjoint operator in ℓ2 with compact
inverse, GA := {e−tA, t ≥ 0} the one parameter semigroup generated by −A
and R(A∞) =

∩
t≥0R(e

−tA) the asymptotic range space. By U(A∞) we denote
the group of all unitary operators on ℓ2 such U and U∗ leave R(A∞) invariant.
Problem: Does for every T ∈ U(A∞) exist U ∈ U(A∞) such that UTU∗ commutes
with GA?
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