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Abstract

We consider multipliers on the space of real analytic functions of several variables A (Ω),
Ω ⊂ Rd open, i.e., linear continuous operators for which all monomials are eigenvectors. If

zero belongs to Ω these operators are just multipliers on the sequences of Taylor coe�cients

at zero. In particular, Euler di�erential operators of arbitrary order are multipliers. We rep-

resent all multipliers via a kind of multiplicative convolution with analytic functionals and

characterize the corresponding sequences of eigenvalues as moments of suitable analytic func-

tionals. Moreover, we represent multipliers via suitable holomorphic functions with Laurent

coe�cients equal to the eigenvalues of the operator. We identify in some standard cases what

topology should be put on the suitable space of analytic functionals in order that the above

mentioned isomorphism becomes a topological one when the space of multipliers inherits

the topology of uniform convergence on bounded sets from the space of all endomorphisms

on A (Ω). We also characterize in the same cases when the discovered topology coincides

with the classical topology of bounded convergence on the space of analytic functionals. We

provide several examples of multipliers and show surjectivity results for multipliers on A (Ω)
if Ω ⊂ Rd

+.

1 Introduction

By a (Hadamard type) multiplier on the space of real analytic functions A (Ω) we mean each
linear continuous map M : A (Ω) → A (Ω) for which the monomials xα := xα1

1 · · · · · xαn
n are

eigenvectors with a corresponding multiple sequence of eigenvalues (mα)α∈Nd . Here Ω is an open
nonempty subset of Rd. It can be easily seen that if zero O := (0, . . . , 0) belongs to Ω then the
map just multiplies the sequence of Taylor coe�cients (fα)α∈Nd at zero of the function f by the
multiplier sequence (mα)α∈Nd . Nevertheless multipliers are not simply diagonal operators since
the monomials never form a basis of A (Ω) for any open set Ω ⊂ Rd, see [13]. There are several
natural examples of such operators, among them variable coe�cient linear partial di�erential
operators of Euler type (for more examples, see Section 9). Let us observe that the class of
multipliers M(Ω) forms a closed commutative subalgebra of the algebra of all linear continuous
operators on A (Ω) equipped with the topology of uniform convergence on bounded subsets (=
the strong topology).

In the holomorphic case our multipliers are called Hadamard multipliers since the holomorphic
function whose Taylor coe�cients sequence is just the coe�cientwise product of the Taylor
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coe�cient sequences of two other holomorphic functions f and g is called the Hadamard product
f ⋆ g. Moreover, such product is related to the Hadamard multiplication theorem [3, Ch. 1.4].

In the present paper we consider three main problems.
First, we �nd a representation of all multipliers on the space A (Ω) for arbitrary open

nonempty sets Ω ⊂ Rd via analytic functionals T ∈ A (V (Ω))′, i.e., those analytic function-
als T ∈ A (Rd)′ with

suppT ⊂ V (Ω) := {x ∈ Rd | xΩ ⊂ Ω},

here multiplication is meant coordinatewise, see Theorem 2.2. An analogous result was proved
for the one variable case (i.e., Ω ⊂ R) in [8] but the several variable case is essentially di�erent.

In the one variable case it was proved in [8] that

B : A (V (Ω))′ → M(Ω), B(T )(g)(y) := ⟨g(y·), T ⟩

is surjective observing that every M ∈ M(Ω) corresponds to a functional T ∈ A (R)′ with

suppT ⊂ Ṽ (Ω) := {x ∈ R | x(Ω ∩ R∗) ⊂ Ω},

where from now on R∗ := R \ {0}. In the one variable case this is enough since Ṽ (Ω) = V (Ω)
but in the several variable case the latter is no longer true, see Remark 2.5 (b). Moreover, in
the one-variable proof it was used extensively the so-called Köthe-Grothendieck duality which
represents an analytic functional as a holomorphic function on the complement of its support.
This is not available for the several variable case in general and that is why in the present proof
of the representation theorem (i.e. bijectivity of B) we substitute this by a new elementary
approach which allows to avoid any representation of the analytic functional. Since the dilation
set V (Ω) plays here and in further considerations a fundamental role, we collect in Section 4
topological and geometrical properties of the dilation sets.

The second problem considered here is to characterize sequences corresponding to multipliers
inM(Ω), Ω ⊂ Rd an arbitrary open nonempty set. Please note that since polynomials are dense in
A (Ω) the multiplier sequence uniquely determines the multiplier. In fact, the result mentioned in
the previous paragraph gives a required description. Namely a sequence (mα)α∈Nd is a multiplier
sequence if and only if it is a moment sequence of some analytic functional T ∈ A (V (Ω))′ (see
Theorem 2.2). In the one variable case we found also a characterization as coe�cient sequences
of Laurent series representations at zero of holomorphic functions on the complement of V (Ω)
(see [8, Theorem 2.8]) using Köthe-Grothendieck representation of functionals. An analogous
representation via Taylor coe�cients was also given there. In the several variable case this does
not work. Nevertheless in Section 3 (Theorem 3.5 and 3.8) we provide another representation of
multipliers in M(Ω) with a multiplier sequence (mα)α in terms of holomorphic functions with
Laurent or Taylor coe�cients (mα)α.

The third problem is the question which topology on A (V (Ω))′ is induced by B fromM(Ω) ⊂
Lb(A (Ω)), i.e., for which topology t on A (V (Ω))′ the map

B : (A (V (Ω))′, t) → M(Ω)

is a topological isomorphism, where M(Ω) is always equipped with the topology of uniform
convergence on bounded sets inherited from the space of all linear continuous operators Lb(A (Ω))
on A (Ω). This problem is considered in Section 7. In [8] considering the one variable case we
propose a somehow naive conjecture that

(1) B : A (V (Ω))′b → M(Ω)

2



is always a topological isomorphism where b means the natural topology of uniform convergence
on bounded sets. Here we prove that this conjecture is false in general (even in the one dimen-
sional case!), see Theorem 8.7 and the remarks below. In fact, we show that a more promising
candidate is a weaker topology: the so-called k-topology on A (V (Ω))′, i.e.,

A (V (Ω))′k := projKbΩ A (VK(Ω))′b

where K runs through all compact subsets of Ω and VK(Ω) := {x ∈ Rd | xK ⊂ Ω}. We prove
(Theorem 7.2) that

(2) B : A (V (Ω))′k → M(Ω)

is always continuous. In the natural cases like if either Ω is a convex set or Ω ⊂ Rd
∗ or dimΩ = 1

then B as above in (2) is even a topological isomorphism (Theorem 7.14) but the conjecture
that this is always the case remains open. The detailed information on the topology of A (V (Ω))
as well as on useful topologies on A (V (Ω))′ are collected in Sec. 5. Instead of the Köthe-
Grothendieck duality so useful in the one-dimensional case we have to use here the so-called
Tillmann-Grothendieck duality, i.e., a representation of analytic functionals via suitable chosen
harmonic functions (or, more precisely, classes of such functions). Again for readers convenience
we collect information on the Tillmann-Grothendieck duality in Sec. 6. A surprising consequence
of the above theory (Proposition 8.11) means that M(Rd) is complemented in Lb(A (Rd))!

In general, the b-topology, the k-topology and the topology induced by B from M(Ω) are
very close to each other: they have the same bounded sets and convergent sequences (Theorem
7.11). In Sec. 8 we show when these topologies are identical, i.e., when B in (1) is a topological
isomorphism. If either dimΩ = 1 or Ω ⊂ Rd

∗ or Ω is convex it holds if and only if ∂V (Ω)∩ V (Ω)
is compact and in the latter two cases if and only if V (Ω) is either compact or open (Theorems
8.7, 8.9). Sec. 8 is completed by several examples and simple results explaining when this is the
case.

In Section 9, we collect examples of multipliers on spaces of analytic functions of several
variables (Euler di�erential operators, integral multiplier operators, dilation operators and su-
perposition multipliers) together with their basic properties and explain the role they play in the
theory (see, for example, Proposition 9.1 or Theorem 9.3).

Finally, in Section 10, we consider the case Ω ⊂ Rd
+ where one can translate the problems on

multipliers to problems on classical convolution operators. After explaining this translation we
get some results on surjectivity of �nite order Euler partial di�erential operators following the
results of Hörmander and Langenbruch on partial di�erential operators.

The one variable case of multipliers on spaces of real analytic functions was studied in [8]
(and further analyzed in [9], [10]). In [22], [23], Euler di�erential operators (which are special
cases of multipliers) were considered also on A (Ω). Korobeinik considered this type of variable
coe�cients linear di�erential operators in [25], [26]. The topic of Taylor coe�cient multipliers is
in fact very classical, already Hadamard considered such operators in [19, page 158 �.]. There is
an extensive literature on Hadamard type multipliers acting on spaces of holomorphic functions
on open complex sets: see, for instance, [4], [5], [17], a series of papers of Müller and Pohlen
[32], [33], [34] as well as a series of papers of Render (where the algebraic structure of M(Ω) is
studied) see for example the survey paper [37].

The third named author [41] (comp. also [42]) considered the analogon of multipliers on the
space of smooth functions and some of the ideas explained there are clearly inspiring for us.

Let us recall that the space of real analytic functions A (Ω) on an open set Ω ⊂ Rd (or
an arbitrary set Ω!) is endowed with its natural topology indU H(U), i.e., the locally convex
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inductive limit topology, where U ⊂ Cd runs through all neighborhoods of Ω in Cd. With this
topology it is clear that for any set S ⊂ Rd the space A (S) contains continuously A (Rd) and,
the latter is dense in the former space. This allows to identify any linear continuous functional
T ∈ A (S) with a unique element of A (Rd)′. Moreover, by the very de�nition of the inductive
topology any T ∈ A (S)′ has to be continuous on any H(U), U an open neighborhood of S in Cd.
Thus suppT ⊂ U ∩Rd for any U as above, so suppT ⊂ S. Hence if T ∈ A (S)′ then T ∈ A (Rd)′

and suppT ⊂ S and the converse holds as well. By A (S)′b we denote the dual equipped with
the strong topology, i.e., the topology τb of uniform convergence on bounded subsets of A (S).

For more details and de�nitions related to analytic functionals see [38], for more information
on the space of real analytic functions see the survey [6] or [30].

In the present paper we always use the coordinatewise multiplication:

xy := (x1y1, . . . , xdyd), if x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ Rd.

We de�ne R∗ := R \ {0}. Clearly, if y ∈ Rd
∗ we may de�ne

1

y
Ω =

{(
x1
y1

, . . . ,
xd
yd

)
: (x1, . . . , xd) ∈ Ω

}
.

By O, 1 ∈ Rd we denote O := (0, . . . , 0) and 1 := (1, . . . , 1). For a vector x = (x1, . . . , xd) ∈ Rd

we set |x| :=
(
x21 + · · ·+ xdd

)1/2
and d(x, y) := |x− y|. Moreover, Bε(x) = {y | d(x, y) < ε}. We

will use multiindices α = (α1, . . . , αd) ∈ Nd and set |α| = α1 + · · · + αd, α! = α1! . . . αd!. We
denote D := {1, . . . , d}. The space of holomorphic functions H(U) is always equipped with the
compact open topology.

For non-explained notions from Functional Analysis and Harmonic Function Theory see [31]
and [1], respectively.

The authors are grateful to the referee for valuable suggestions concerning the presentation
of their results.

2 The Representation Theorem

First, we introduce the so-called dilation sets (see [8, Sec. 2 and 3]). Let Ω ⊂ Rd be an open set.
Then we de�ne the dilation set as follows:

V (Ω) := {x : xΩ ⊂ Ω} =
∩
y∈Ω

{x : xy ∈ Ω}.

It is very useful to have the following notation Sη = {x | xη ∈ S} hence V (Ω) =
∩

η∈ΩΩη.
Clearly, for non-empty Ω holds 1 ∈ V (Ω) so V (Ω) is non-empty.

Let us formulate the following observation.

Proposition 2.1 For η ∈ Rd we set Iη := {j ≤ d | ηj = 0}. Then

Sη =

{
y = (y1, . . . , yd) | ∀ j ̸∈ Iη : yj =

xj
ηj

where x = (x1, . . . , xd) ∈ S and xj = 0 ∀ j ∈ Iη

}
.

Hence Sη is a product of a subset A ⊂ RI′η , I ′η = {1, . . . , d} \ Iη, and of the space RIη such that
A is open (closed, compact, resp.) whenever S is open (closed, compact, resp). In particular, for
open (closed) S also Sη is open (closed).
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More on dilation sets will be explained in Section 4.
The following is the fundamental representation theorem for multipliers via analytic function-

als. Notice that multipliers are a kind of convolution over Rd with coordinatewise multiplication.

The Representation Theorem 2.2 Let Ω ⊂ Rd be an open set. The map

B : A (V (Ω))′b → M(Ω) ⊂ Lb(A (Ω)),

B(T )(g)(y) := ⟨g(y·) , T ⟩, T ∈ A (V (Ω))′, g ∈ A (Ω),

is a bijective linear map and the multiplier sequence of B(T ) is equal to the sequence of moments
of the analytic functional T , i.e. to (⟨xα, T ⟩)α∈Nd.

Moreover, if M is a multiplier on A (Ω) then for any y ∈ Ω ∩ Rd
∗, the analytic functional

T ∈ A (Rd)′ de�ned as

(3) T = δy ◦M ◦M1/y : A ((1/y)Ω) → C,

(where My(g)(ξ) := g(yξ) and δy denotes the point evaluation at y) does not depend on y, its
support is contained in V (Ω) and M = B(T ).

In Section 7 we will show that B : A (V (Ω))′b → M(Ω) ⊂ Lb(A (Ω)) is always continuous
and in Section 8 we will discuss the problem when this map is a topological isomorphism.

The proof of the representation theorem will be contained in the following two lemmas.

Lemma 2.3 Let Ω ⊂ Rd be an open set. For any T ∈ A (V (Ω))′ and f ∈ A (Ω) we set:

MT f(x) := ⟨f(x·), T ⟩.

Then MT ∈ M(Ω) and the multiplier sequence (mα)α∈Nd is equal to the sequence of moments of
T , i.e., mα = ⟨yα, Ty⟩.

Proof: Fix an open subset Ω′ ⊂ Ω which is relatively compact in Ω and choose the open set

U := {x | xΩ′ ⊂ Ω}.

For any f ∈ A (Ω) the function (x, y) 7→ f(xy) is real analytic on Ω′ ×U . It is well known that
then the map x 7→ f(x·) is real analytic from Ω′ to A (U). Therefore for any T ∈ A (V (Ω))′ ⊂
A (U)′ the map

x 7→ ⟨f(x·), T ⟩

is real analytic on Ω′. Since Ω′ b Ω was chosen arbitrarily we have proved that MT f ∈ A (Ω) .
It is easy to observe that

MTx
α = ⟨yα, Ty⟩xα.

Now, it remains to show that MT : A (Ω) → A (Ω) is continuous. We apply de Wilde's
closed graph theorem which holds for A (Ω) ([31, 24.31], comp. [6, Cor. 1.28]). Let us �x x ∈ Ω
then we get that

f 7→ f(x·)

is a continuous linear map A (Ω) → A (Ωx), where Ωx = {y | xy ∈ Ω} ⊂ Rd. Clearly, Ωx is an
open neighborhood of V (Ω), thus T ∈ A (Ωx)

′ and

f 7→ ⟨f(x·), T ⟩ ∈ A (Ω)′.
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This shows that the graph of MT : A (Ω) → A (Ω) is closed. 2

We denote by C(Ω) the space of continuous functions on Ω with the compact open topology.
Let us recall

1

y
Ω =

{(
x1
y1

, . . . ,
xd
yd

)
| (x1, . . . , xd) ∈ Ω

}
if y ∈ Rd

∗.

Let I ⊂ {1, . . . , d} =: D we set

{0}I × RD\I
∗ := {x = (x1, . . . , xd) : xj = 0 for every j ∈ I and xj ̸= 0 for every j ̸∈ I}.

Lemma 2.4 Let Ω ⊂ Rd be an open set. For every continuous linear map M : A (Ω) → C(Ω)
with all monomials as eigenvectors there is T ∈ A (V (Ω))′ such that M = MT as de�ned in
Lemma 2.3. In particular, M ∈ M(Ω).

Proof: For any η ∈ Ω ∩ Rd
∗ we de�ne

Tη ∈ A (Rd)′, Tηf := (Mfη)(η),

where fη(x) := f
(
x
η

)
.

Let us note that

Tηx
α = mα for every α ∈ Nd and η ∈ Ω ∩ Rd

∗.

Since polynomials are dense in A (Ω) (see [6, Th. 1.16, Conclusion (1) p. 10]) the functional Tη

does not depend on η and Tη = T ∈ A (Rd)′ for every η ∈ Ω ∩ Rd
∗. Moreover, if we show that

suppT ⊂ V (Ω) then
Mxα = MTx

α for any α ∈ Nd

and so M = MT : A (Ω) → A (Ω) continuously by Lemma 2.3.
Now, we start to prove suppT ⊂ V (Ω). Since A (Ω) = projKbΩH(K) for every compact

set L b Ω there is a compact set K b Ω such that M : H(K) → C(L) is continuous. Since
M1/η : H(Kη) → H(K), f 7→ fη, is a linear continuous map thus for η ∈ L ∩ Rd

∗ we have

(4) Tη ∈ A (Kη)
′ i.e., suppTη ⊂ Kη.

Take any η ∈ Ω, η ̸= O. Clearly, for some I ⊂ {1, . . . , d} we have η ∈ Ω ∩ ({0}I × RD\I
∗ ).

Without loss of generality we assume that I = {j + 1, . . . , d}. Thus

η = (η1, . . . , ηj , 0, . . . , 0), where η1, . . . , ηj ̸= 0

and for some ε0 > 0 and every 0 < ε < ε0 we have

ηε := (η1, . . . , ηj , ε, . . . , ε) ∈ L ∩ Rd
∗

for a �xed compact set L b Ω. We take K b Ω such that M : H(K) → C(L) is continuous.
If x ̸∈ Kη there is a compact ball B ⊂ Rd \ Kη with the center x since Kη is closed (see

Proposition 2.1). Then ηB∩K = ∅ and for ε > 0 small enough also ηεB∩K = ∅, i.e., B∩Kηε = ∅.
By (4)

suppTηε ∩B ⊂ Kηε ∩B = ∅.

Since x /∈ Kη was chosen arbitrarily we have proved

suppT ⊂ Kη ⊂ Ωη.

If O ∈ Ω this holds also for η = O since then Ωη = Rd, and so suppT ⊂ V (Ω). 2
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Remark 2.5 (a) In fact, we have proved that in the de�nition of the multiplier we can relax some
conditions. Every linear continuous map M : A (Ω) → C(Ω) with monomials as eigenvectors is
automatically a multiplier since it maps A (Ω) continuously into A (Ω).

(b) One of the di�culties in the proof of Theorem 2.2 is to show that the analytic functional
T has a support contained in V (Ω). It is relatively easy to show that suppT ⊂

∩
y∈Ω∩Rd

∗
1
yΩ =:

Ṽ (Ω). Now, in the one dimensional case it holds always that V (Ω) = Ṽ (Ω). In the many variable
case this is true for convex sets (see Proposition 4.3 below) but in general it is true neither for
open V (Ω) (take Ω = Rd \ {O}, then Ṽ (Ω) = Rd \ {O} ̸= Rd

∗ = V (Ω)) nor for compact V (Ω)
(see Example 8.10, also Section 4, Proposition 4.3).

In Theorem 2.2 we have established a linear isomorphism B : A (V (Ω))′ → M(Ω). By this
isomorphism the algebra M(Ω) induces the following multiplication on A (V (Ω))′

(T ⋆ S)f = Tx(Syf(xy)).

This is true, because by de�nition B(T ⋆ S)f = (MT ◦MS)f . Therefore B : (A (V (Ω))′, ⋆) →
M(Ω) is an algebra isomorphism.

So the situation is the following: A (Rd)′ is a commutative algebra and A (V (Ω))′ is a sub-
algebra for any open Ω ⊂ Rd. If mα(T ) and mα(S) are the moment sequences of T and S, then
mα(T ⋆ S) = mα(T )mα(S).

This observation will help us in the following section, where we represent the algebras
M(Ω) ∼= A(V (Ω))′ by algebras of holomorphic functions equipped with Hadamard multiplication
of Laurent, resp. Taylor coe�cients.

3 Representation via Hadamard Multiplication of Holomorphic

Functions

In this section we will �rst represent A (V (Ω))′ ∼= M(Ω) by an algebra of holomorphic functions
with Hadamard multiplication of Laurent coe�cients. This will be done by the Cauchy transform,
so the essential content of the following will be an exact description of the Cauchy transforms of
elements in A (V (Ω))′. Most of it is well known (see e.g. [38]) but we will make it as self-contained
as possible for the convenience of the reader.

For T ∈ A ′(Rd) and z ∈ Cd, zj ̸= 0 for all j we set C (z) =
∏d

j=1
−1
zj
. For any subset B ⊂ Rd

we de�ne
W (B) = {z ∈ Cd : ξj ̸= zj for all ξ ∈ B and j = 1, . . . , d}.

For z ∈ W (suppT ) we de�ne CT (z) = Tξ(C (ξ − z)) = (T ∗ C )(z).
If suppT ⊂ {ξ ∈ Rd : |ξ|∞ ≤ R} then (C \ [−R,+R])d ⊂ W (suppT ) and CT extends to a

holomorphic function on (Ĉ \ [−R,+R])d, Ĉ denoting the Riemann sphere.
For minj |zj | > R the function CT (z) is de�ned and holomorphic and it has the expansion

CT (z) =
1

z1 · · · zd

∑
α∈Nd

0

Tξ(ξ
α)

1

zα
=

∑
α∈Nd

0

mα
1

zα+1
.

We obtain the following

Proposition 3.1 T 7→ CT is an algebra isomorphism from the algebra (A ′(Rd), ⋆) to the algebra
of all holomorphic functions on (Ĉ\[−R,+R])d for some R > 0, regular with value 0 in all in�nite
points of Ĉd, equipped with Hadamard multiplication of the coe�cients of the Laurent expansion
around (∞, . . . ,∞).

7



Proof: Only surjectivity has to be shown. Let a function g of this type be given. In each
variable zj we use the polygonal path γj passing through the points r + iε, −r + iε, −r − iε,
r − iε, r + iε and set Sj to be the convex hull of γj . Here r > R, and ε > 0 is chosen so small
that

∏
j≤d Sj is contained in the domain of de�nition of a given function f ∈ A (Rd). We de�ne

(5) T (f) :=
( 1

2πi

)d
∫
γ1

. . .

∫
γd

f(ζ1, . . . , ζd) g(ζ1, . . . , ζd) dζ1 . . . dζd.

Since this can be done for every ε > 0 and is independent of ε we have de�ned T ∈ A ′([−r,+r]d).
Clearly CT = g. 2

To determine the Cauchy transforms of the subalgebras A ′(V (Ω)) of A ′(Rd) we need the
following de�nition:

De�nition 3.2 For any holomorphic function f on (C \R)d we de�ne the closed set σ(f) ⊂ Rd

in the following way: x ∈ Rd is not in σ(f) if there exist neighborhoods Uj ⊂ R of xj and
holomorphic functions fj on (C \R)d ∪ ((C \R)j−1×Uj × (C \R)d−j) such that f = f1+ · · ·+ fd
on (C \ R)d.

Let us remark that σ(T ) is the support of the hyperfunction determined by f (see [38]).

Proposition 3.3 suppT = σ(CT ).

Proof: Let Q :=
∏d

j=1]aj , bj [ and Q ∩ suppT = ∅. By [38, Théorème 121,(4)], there are

Tj ∈ A ′({x ∈ Rd : xj ̸∈]aj , bj [) such that T = T1 + · · · + Td. So we have {x : xj ∈
]aj , bj [} ⊂ W (suppTj) and CT = CT1 + · · · + CTd

where CTj is holomorphic on (C \ R)d ∪
((C \ R)j−1×]aj , bj [×(C \ R)d−j) which shows that Q ∩ σ(CT ) = ∅. Therefore σ(CT ) ⊂ suppT .

It remains to show that suppT ⊂ σ(CT ). Assume x ̸∈ σ(CT ). Then there is a neighborhood
Q of x such that Q∩σ(CT ) = ∅ and we may assume that CT = f1+· · ·+fd, where by Proposition
3.1, fj = CTj , j = 1, . . . , d and T = T1 + · · · + Td. We choose r large enough, arbitrary δ > 0
and replace γj in (5) applied to Tj instead of T with the union of two polygonal paths going
through the points r+ iε, bj − δ+ iε, bj − δ− iε, r− iε, r+ iε and aj + δ+ iε, −r+ iε, −r− iε,
aj + δ − iε, aj + δ + iε resp. which shows that {x : xj ∈]aj , bj [} ∩ suppTj = ∅ for all j. Hence
Q ∩ suppT = ∅. 2

De�nition 3.4 Let X ⊂ Rd be closed under multiplication. Then let HC(X) denote the algebra
of all holomorphic functions f on (Ĉ \ [−R,+R])d for some R > 0, regular with value 0 in
all in�nite points of Ĉd, such that σ(f) ⊂ X, equipped with Hadamard multiplication of the
coe�cients of the Laurent expansion around (∞, . . . ,∞).

We have shown:

Theorem 3.5 MT 7→ CT de�nes an algebra isomorphism M(Ω) → HC(V (Ω)).

In a next step we want to change the equivalence into one with Hadamard multiplication of
power series. We use the automorphism r : (z1, . . . , zd) → (1/z1, . . . , 1/zd) of Ĉ. We set

Rf(z) :=
1

z1 . . . zd
f
( 1

z1
, . . . ,

1

zd

)
and

H := indU H(((C \ R) ∪ U)d)
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where U runs through all open neighborhoods of zero in C. Then R is a linear isomorphism
from HC(Rd) onto H . If f ∈ HC and f(z) =

∑
α∈Nd

0
mαz

−α−1 its Laurent expansion around

(∞, . . . ,∞) then Rf(z) =
∑

α∈Nd
0
mαz

α is the Taylor expansion of Rf around (0, . . . , 0).
In particular H is an algebra with respect to Hadamard multiplications, which means the

following: if f, g ∈ H and f(z) =
∑

α bαz
α, g(z) =

∑
α cαz

α are their Taylor expansions, then
there is a unique f ⋆ g ∈ H , such that (f ⋆ g)(z) =

∑
α bαcαz

α is its Taylor expansion. For
T ∈ A (Rd)′ we set CT = R(CT ) then we obtain by obvious calculations

CT (z) = Tξ

(∏
j

1

1− ξjzj

)
.

We have shown:

Proposition 3.6 T 7→ CT de�nes an algebra isomorphism from (A (Rd)′, ⋆) onto (H , ⋆).

Since r is an automorphism of Ĉd which maps Rd to Rd we have σ(R(f)) = r(σ(f)) and
therefore

suppT = σ(CT ) = r(σ(CT )).

This leads to the de�nition:

De�nition 3.7 Let X ⊂ Rd be closed under multiplication. Then we de�ne

H (X) = {f ∈ H : r(σf) ⊂ X}.

Finally obtain:

Theorem 3.8 The map MT 7→ CT is an algebra isomorphism from M(Ω) to H (V (Ω)) equipped
with Hadamard multiplication. If 0 ∈ Ω and Ω is connected, then MT ∈ M(Ω) acts on A (Ω) by
Hadamard multiplication with CT .

Proof: Only the last part has to be shown. It is enough to show it for monomials which is
obvious by the de�nition. 2

4 Dilation Sets

We have seen in the preceding sections that understanding the dilation set V (Ω) and its topo-
logical properties is of central importance for the theory of Hadamard type operators. In the
present section we summarize some basic properties of dilation sets (for the one variable case
comp. [8, Proposition 2.1]). Note that trivially 1 ∈ V (Ω) always.

Proposition 4.1 Let Ω ⊂ Rd be an open set.

• If Ω ⊂ Rd is bounded (convex) then V (Ω) is bounded (convex).

• If V (Ω) is bounded then V (Ω) ⊂ [−1, 1]d.

• If Ω is convex, bounded and symmetric with respect to all hyperplanes of the coordinate
system then V (Ω) = [−1, 1]d.

9



Proof: The boundedness statement is obvious. To prove the convexity statement we de�ne the
linear map hy : Rd → Rd by hy(x) = yx. The set h−1

y (Ω) is convex. Hence V (Ω) =
∩

y∈Ω h−1
y (Ω)

is also convex. The second statement follows from the obvious fact that V (Ω) · V (Ω) ⊂ V (Ω).
In the last case symmetry means that every vector of the form x = (±1,±1, . . . ,±1) belongs

to V (Ω). Hence [−1, 1]d = conv{(±1,±1, . . . ,±1)} ⊂ conv(V (Ω)) = V (Ω) ⊂ [−1, 1]d. 2

The above proposition implies immediately that if Ω is an open ball of a �nite dimensional
space ℓp for 1 ≤ p ≤ ∞ then V (Ω) is the closed unit ball of the �nite dimensional space ℓ∞.

The following instructive examples are veri�ed by direct calculation.

Example 4.2 (Menagerie of dilation sets).

1. If Ω = {x ∈ R2 : d(x, (1, 10)) < 2} then V (Ω) = {1}.

2. If Ω = {x ∈ R2 : 1 < x1 < 2} then V (Ω) = {x ∈ R2 : x1 = 1}.

3. If Ω = {x ∈ R2 : (1/2)x1 < x2 < 3x1, 0 < x1} then V (Ω) = {(t, t) ∈ R2 : 0 < t < ∞}.

4. If Ω = {x ∈ R2 : d(x, (0, 3)) < 2} then V (Ω) = {x ∈ R2 : −1 ≤ x1 ≤ 1, x2 = 1}.

5. If Ω = {x ∈ R2 : −x1 < x2 < −x1 + (1/2)} then V (Ω) = {x ∈ R2 : 0 < x1 = x2 ≤ 1}.

6. If Ω = {x ∈ R2 : 0 < x2 < 2x1} then V (Ω) = {x ∈ R2 : 0 < x2 ≤ x1}.

Many very sophisticated examples of V (Ω) are provided in Section 8 where the geometry of V (Ω)
is related to continuity and openness of the representation map B de�ned in the Representation
Theorem 2.2. All these examples show a variety of forms of the possible sets V (Ω). Is there any
pattern behind these strange examples? We will collect some answers to that question.

Let us recall that Ṽ (Ω) :=
∩

y∈Ω∩Rd
∗

1
yΩ. Let x ∈ Ṽ (Ω). We set Lx := {y : yj =

0 whenever xj = 0}. Since x(Ω ∩ Rd
∗) ⊂ Ω ∩ Lx we have xΩ ⊂ Ω ∩ Lx. Moreover xΩ is open

in Lx, Therefore xΩ ⊂ interiorLx(Ω ∩ Lx). An open subset U of a topological space is called
regular open if interiorU = U . Examples are convex open subsets of a locally convex space. We
have shown that if Ω ∩ Lx is regular open for every x ∈ Ṽ (Ω) then V (Ω) = Ṽ (Ω).

Proposition 4.3 If Ω is a non-empty open convex set then V (Ω) = Ṽ (Ω).

Proof: For any linear subspace L of Rd the set Ω ∩ L is convex and open in L, hence regular
open in L. 2

Let I ⊂ {1, . . . , d} := D then VI(Ω) := V (Ω) ∩ ({0}I × RD\I). We show that V (Ω) ∩ Rd
∗ is

always closed in Rd
∗. In particular, if V (Ω) ⊂ Rd

∗ then it must be closed.

Proposition 4.4 For every non-empty open set Ω ⊂ Rd and every set I ⊂ {1, . . . , d} we have

VI(Ω) · V (Ω) ⊂ VI(Ω) and 1 = (1, . . . , 1) ∈ V (Ω). Moreover, V (Ω) ∩ ({0}I × RD\I
∗ ) is closed in

{0}I × RD\I
∗ . If Ω is convex then VI(Ω) is convex as well.

Proof: The �rst statement is obvious.
For the second claim, let (xn) ⊂ V (Ω) ∩ ({0}I × RD\I

∗ ) be a sequence convergent to x ∈
{0}I × RD\I

∗ , x = (x̃1, . . . , x̃d), xn = (xn1, . . . , xnd). For any y = (y1, . . . , yd) ∈ Ω we de�ne
yn := (yn1, . . . , ynd),

ynj :=

{
yj for j ∈ I;

yj · x̃j

xnj
for j ̸∈ I.
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Clearly, yn → y, hence for n su�ciently big yn ∈ Ω. On the other hand, since xn ∈ V (Ω),
ynxn ∈ Ω but xnyn = xy. We have proved that xy ∈ Ω for any y ∈ Ω hence x ∈ V (Ω).

The third statement follows from Proposition 4.1. 2

There is another case when V (Ω) is closed.

Proposition 4.5 If Ω is open, convex and O ∈ Ω then V (Ω) is closed.

Proof: We denote V (A,B) := {x ∈ Rd : xA ⊂ B}. We need two elementary facts:
1. If γ ∈ R+ (more general γ ∈ Rd

∗) and A,B ⊂ Rd then V (γA, γB) = V (A,B).
2. If ω ⊂ Rd is open, convex, O ∈ ω and 0 < γ < 1 then γω ⊂ ω.

For 0 < s < 1 and R > 0 we set Ks,R = sΩ ∩BR where BR = {x ∈ Rd : |x| ≤ R}. Then for
0 < τ < t < 1 we obtain

(6) V (Ks,R,Ω) = V (Kts,tR, tΩ) ⊃ V (Kts,tR, τΩ) ⊃ V (Kts,tR, τΩ) = V (K t
τ
s, t

τ
sR,Ω).

Since V (Ω) =
∩

0<s<1,R>0 V (Ks,R,Ω) and the middle term in (6) is closed we see that V (Ω) is
closed. 2

The set V (Ω) is open only in very special cases. We de�ne VK := {x | xK ⊂ Ω}.

Proposition 4.6 For open Ω ⊂ Rd the following are equivalent:

(1) V (Ω) is open.

(2) Rd
+ ⊂ V (Ω).

(3) There is 0 ≤ k ≤ d and a subset J of {+1,−1}d−k such that, after a permutation of
variables,

(7) V (Ω) = Rk ×
∪
e∈G

e · Rd−k
+ ,

where G is a subgroup of {−1,+1}d−k.

(4) There is a �nite set K ⊂ Ω such that VK(Ω) = V (Ω).

Proof: (1) ⇒ (2): Assume there is a ∈ Rd
+, a ̸∈ V (Ω). Then the interval [1, a] meets ∂V (Ω) in

a point in Rd
+ ⊂ Rd

∗, which by Proposition 4.4 must belong to V (Ω); a contradiction with (1).
(1)∧(2) ⇒ (3): We set σ = {j : ∃ a ∈ V (Ω), aj = 0}. We may assume σ = {1, . . . , k}.

Since V (Ω) is multiplicatively closed (in particular, square closed) and Rd
+ ⊂ V (Ω) we obtain

(0, . . . , 0, 1, . . . , 1) ∈ V (Ω) with k zeros. Since V (Ω) is open there is ε > 0 such that [−ε,+ε]k ×
{1d−k} ∈ V (Ω). We use again that Rd

+ operates on V (Ω) and obtain Rk × {Rd−k
+ } ∈ V (Ω).

Let now a = (a′, a′′) ∈ V (Ω) where a′ = (a1, . . . , ak), a
′′ = (ak+1, . . . , ad). Then, by the same

openness argument as before, we may assume that aj ̸= 0 for j = 1, . . . , k. Since Rk ×{Rd−k
+ } ∈

V (Ω) operates on V (Ω) we obtain Rk × e ·Rd−k
+ ⊂ V (Ω) where ej = sign aj for j = k + 1, . . . , d.

If G = {e ∈ {−1,+1}d−k : (1k, e) ∈ V (Ω)} then G is a group and, with this group we get
the representation (7).

(3) ⇒ (1): Obvious.
(2) ⇒ (4): We set K = Ω ∩ {−1, 0,+1}d. Since Rd

+ ⊂ V (Ω) every x ∈ Ω can be written as
x = ex+ where e ∈ K and x+ ∈ Rd

+. That is, Ω = K · Rd
+. Since Rd

+ operates on VK(Ω) we see
that VK(Ω) = V (Ω).

(4) ⇒ (1). This is again obvious since VK(Ω) is open. 2
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Corollary 4.7 Let Ω ⊂ Rd be open, then V (Ω) = Ω if, and only if Ω has the form (7).

Now, we explain what happens when V (Ω) has empty interior.

Proposition 4.8 Let Ω be an open convex non-empty subset of Rd. Then V (Ω) has empty
interior if and only if one of the following two conditions holds:

(i) there is j such that for every x = (x1, . . . , xd) ∈ V (Ω) holds xj = 1;

(ii) there are j, k, j ̸= k, such that for every x = (x1, . . . , xd) ∈ V (Ω) holds xj = xk.

Proof: It is enough to prove necessity only. Assume that V (Ω) has empty interior. Since it is
a convex set (see Prop.4.1) it is contained in a hyperplane given by a1x1 + · · · + adxd = b with
suitable aj not all zero and b.

If V (Ω) ⊂
∪

j<k({x : xj = xk} ∪ {x : xj = −xk}) then it is contained in one of the
hyperplanes. Since 1 ∈ V (Ω) it must be of the form {x : xj = xk}

Otherwise there is x ∈ V (Ω) such that all |xj | are di�erent. We may assume |x1| < · · · < |xd|.
Then, since V (Ω) ·V (Ω) ⊂ V (Ω), we have a1x

n
1 + · · ·+adx

n
d = b for all n ∈ N0. Dividing through

xnd and letting n → +∞ we obtain ad = 0. Repeating this we end up with a1x1 = b, a1 ̸= 0.
Since 1 ∈ V (Ω) we get a1 = b and x1 = 1 for all x ∈ V (Ω). 2

Proposition 4.9 Let Ω ⊂ Rd be an arbitrary open set containing O. Then V (Ω) is bounded if
and only if Ω contains no axis.

Proof: If Ω contains an axis then V (Ω) contains the same axis.
If V (Ω) is unbounded there is a coordinate j such that {xj : x = (x1, . . . , xj , . . . , xd) ∈

V (Ω)} is unbounded. Since O ∈ Ω so there is ε > 0 such that for any |xj | < ε the vector
x̂j := (0, . . . , 0, xj , 0, . . . , 0) belongs to Ω. Multiplying the elements of V (Ω) and x̂j we will get
all elements of the j-th axis. So Ω contains this axis. 2

Clearly there are plenty of unbounded convex open sets Ω ∋ O with compact V (Ω).

Proposition 4.10 Let Ω ⊂ Rd be an open nonempty set. Then V (Ω) ⊂ Rd
∗ and compact i�

(8) V (Ω) ⊂ {±1}d.

Proof: V (Ω) ⊂ [−1, 1]d by Proposition 4.1. For x = (x1, . . . , xd) ∈ V (Ω) the sequence yn :=
xn ∈ V (Ω) by Proposition 4.4 and it has a subsequence converging to y ∈ V (Ω) since V (Ω) is
closed (Proposition 4.4. Then y /∈ Rd

∗ if |xj | < 1 for some j, a contradiction. 2

The condition (8) holds for instance, if each of the intersections Ωj of Ω with the jth coordinate
axis is non-void and satis�es Ωj ⊂] − C2,−C1[∪ ]C1, C2[ for some 0 < C1 < C2 < ∞ or if Ω is
bounded and Ω ⊂ Rd

∗.
Later on a special role will be played by those Ω where V (Ω) has a countable basis of open

neighborhoods. The following observation is well known but for the convenience of the reader
we provide a proof.

Proposition 4.11 An arbitrary set S ⊂ Rd has a countable basis of open neighborhoods if and
only if ∂S ∩ S is compact (for instance, empty).

Proof: Let S ⊂ Rd be a set with ∂S ∩ S compact. Then we write S = IntS ∪ (∂S ∩ S).
The second summand has a countable neighborhood basis (Vn)n∈N so (Un)n∈N is a countable
neighborhood basis for S where Un = Vn ∪ IntS.
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On the other hand, assume that ∂S∩S is not compact but S has a countable open neighbor-
hood basis (Un)n∈N. Then there is a sequence (xn)n∈N in ∂S∩S such that either xn → x ∈ ∂S\S
or (xn)n∈N has no accumulation point. Let us take yn ∈ Un \ S such that d(xn, yn) −→

n→∞
0 and

the interval [xn, yn] is contained in Un. Now, the open set

U := Rd \ ({yn | n ∈ N} ∪ {x}) (if xn → x) or U := Rd \ {yn | n ∈ N} (otherwise)

does not contain any Un but it is a neighborhood of S; a contradiction. 2

In the one dimensional case there is an easy characterization of Ω with V (Ω) having a count-
able basis of open neighborhoods.

Proposition 4.12 Let Ω ⊂ R be an open nonempty set. Then ∂V (Ω) ∩ V (Ω) is compact if and
only if one of the following conditions holds:

• 0 ∈ V (Ω) (i.e., 0 ∈ Ω);

• V (Ω) ⊂ {1,−1};

• V (Ω) has a nonempty interior.

Proof: Necessity: If V (Ω) has an empty interior, O /∈ V (Ω) and V (Ω) contains an element
x ̸= O with |x| ̸= 1 then ∂V (Ω)∩V (Ω) contains xn for every n ∈ N. Then clearly ∂V (Ω)∩V (Ω)
is not compact.

Su�ciency: If O ∈ V (Ω) then V (Ω) is closed by Prop. 4.4. So it is either bounded (then
compact) or Ω = R and ∂V (Ω) = ∅ (see [8, Prop. 2.1 (c)]). If V (Ω) ⊂ {1,−1} then V (Ω) is
compact. If V (Ω) has a nonempty interior then using semigroup property it is easily seen that
its boundary is �nite. 2

For d > 1 we know much less.

Proposition 4.13 Let d > 1. If ∂V (Ω)∩V (Ω) is compact and not empty, then V (Ω) is bounded.

Proof: Since V (Ω) is square closed it su�ces to show that V (Ω) ∩ (R+ ∪ {0})d is bounded. If
V (Ω)∩Rd

+ is bounded but V (Ω)∩ (R+ ∪ {0})d is unbounded then ∂V (Ω)∩ V (Ω) is unbounded.
So it su�ces to show that V (Ω) ∩ Rd

+ is bounded.
First, observe that V (Ω) ∩ Rd

+ and Rd
+ \ V (Ω) cannot be both unbounded. Indeed, let

(xn)n∈N ⊂ V (Ω)∩Rd
+ and (yn)n∈N ⊂ Rd

+ \ V (Ω) be unbounded sequences. Then on the interval
[xn, yn] there is a point zn ∈ ∂V (Ω) ∩ Rd

+. Clearly, the sequence (zn)n∈N is unbounded. Since
V (Ω) ∩ Rd

+ is closed in Rd
+ (Proposition 4.4), we get (zn)n∈N ⊂ ∂V (Ω) ∩ V (Ω); a contradiction.

Secondly, observe that for d > 1 if V (Ω)∩Rd
+ is unbounded then V (Ω) ⊃ Rd

+, hence V (Ω) is
open by Proposition 4.6. Indeed, by the previous observation Rd

+ \ V (Ω) is bounded. Take any
point (x1, . . . , xd) ∈ Rd

+. De�ne

aε := (ε, . . . , ε, xd/ε), bε := (x1/ε, . . . , xd−1/ε, ε),

where ε > 0. For ε > 0 small enough we have aε, bε ∈ V (Ω) ∩ Rd
+ and therefore aε · bε =

(x1, . . . , xd) ∈ V (Ω). 2

It is easy to see that Proposition 4.13 does not hold for d = 1 (take Ω = R \ ([0, 1/2] ∪ {1})
and hence V (Ω) = {1} ∪ [2,∞[, compare [8, Proposition 2.1]). We cannot improve Proposition
4.13 to show that V (Ω) must be compact, see Example 8.5 below.

Proposition 4.14 Let Ω ⊂ Rd, d > 1, be an open nonempty set and either Ω ⊂ Rd
∗ or Ω is

convex. Then the set ∂V (Ω) ∩ V (Ω) is compact if and only if V (Ω) is either compact or open.
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Proof: We need to prove necessity only.
From Proposition 4.13 we know that V (Ω) is either open or bounded.
If it is bounded and Ω ⊂ Rd

∗, also V (Ω) ⊂ Rd
∗ and, by Proposition 4.4, ∂V (Ω) ∩ Rd

∗ ⊂ V (Ω).

Thus for any I ⊂ {1, . . . , d} the boundary of V (Ω) ∩ ({0}I × RD\I
∗ ) in {0}I × RD\I

∗ belongs to
the closure of ∂V (Ω) ∩ V (Ω) but does not belong to V (Ω), hence it is empty. Thus the set
V (Ω) ∩ (Rd \ Rd

∗) is either empty or unbounded. The second case is impossible because V (Ω) is
bounded. Summarizing, ∂V (Ω) ⊂ V (Ω) so V (Ω) is compact.

It remains to show that V (Ω) is closed, if it is convex and bounded. By Proposition 4.1,
V (Ω) is contained in the closed unit ball of the d-dimensional space ℓ∞.

Let x ∈ ∂V (Ω) \V (Ω). By Proposition 4.4, x ∈ {0}I ×RD\I for some set I ⊂ {1, . . . , d} = D

but there is a sequence (xn)n∈N ⊂ (V (Ω)∩ ({0}J ×RD\J
∗ )) \ {0}I ×RD\I for some J  I tending

to x. Choose an axis Y indexed by an element of I \ J .
Now, we take a line ℓn parallel to {0}I × RD\I going through xn and crossing Y at some

point vn. Except the point vn the whole ℓn is contained in {0}J × RD\J
∗ . Thus there is a

point wn ∈ ℓn ∩ ∂V (Ω) ∩ ({0}J × RD\J
∗ ) (and thus by Proposition 4.4, wn ∈ V (Ω)) such that

xn ∈ [wn, vn]. Choosing a subsequence of (xn)n∈N without loss of generality we may assume that
wn → w ∈ {0}I × RD\I . Since ∂V (Ω) ∩ V (Ω) is closed, w ∈ V (Ω).

Again without loss of generality we may assume that either for every n ∈ N the interval
[wn, vn) is contained in V (Ω) or for every n ∈ N there exists ṽn ∈ (xn, vn) such that ṽn ∈ ∂V (Ω).

In the �rst case, we take a line pn parallel to Y , perpendicular to {0}I ×RD\I going through
a point zn ∈ [xn, vn), d(zn, vn) < 1/n. Then there is a point un ∈ pn ∩ ∂V (Ω). Again by
Proposition 4.4, un ∈ ∂V (Ω) ∩ V (Ω) and their accumulation point u ∈ ∂V (Ω) ∩ V (Ω) ∩ Y .
Clearly,

O = u · w ∈ V (Ω) · V (Ω) ⊂ V (Ω)

and therefore O ∈ Ω. By Proposition 4.5, V (Ω) is closed.
In the second case, by Proposition 4.4, ṽn ∈ ∂V (Ω) ∩ V (Ω). The sequence (ṽn)n∈N has an

accumulation point ṽ ∈ ({0}I ×RD\I)∩ ∂V (Ω)∩ V (Ω), since ∂V (Ω)∩V (Ω) is closed. It is clear
that x ∈ [w, ṽ], so by convexity of V (Ω) holds x ∈ V (Ω). 2

5 Topologies on A (V (Ω))′

Before we start our further investigation we need more detailed information about the natural
topology on A (V (Ω)) and three useful topologies on A (V (Ω))′, namely τb, τk and τk∗ . The
motivation comes from the fact that we will show in Section 7 that

B : (A (V (Ω))′, τk) → Lb(A (Ω)) and B−1 : Lb(A (Ω)) → (A (V (Ω))′, τk∗)

are continuous and there are reasons to conjecture that Lb(A (Ω)) induces via B the topology
τk on A (V (Ω)′) (see Theorem 7.14, Example 7.10 and cf. [41]).

Let S be an arbitrary subset of Rd. Then there are two natural ways to de�ne topologies on
A (S):

AI(S) = indU H(U) or AP (S) = projK A (K),

where U runs through the neighborhoods of S in Cd and H(U) is the space of holomorphic
functions on U , and K runs through the compact subsets of S. Here A (K) denotes the space
of germs of holomorphic functions around the compact set K with the natural inductive limit
topology for the family H(U), where U runs over all neighborhood of K in Cd (see [31, Example
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24.37 (2)]). These topologies coincide (see [30, Théorème 1.2.a)]; for the precise result cf. proof
p. 69) and de�ne, what we consider to be the natural topology on A (S).

A (S) is nuclear (as a projective limit of nuclear spaces A (K), see [31, Cor. 28.8, Example
28.9 (4)]), and, by the �rst version, ultrabornological (see [31, Th. 24.16, Remark 24.15 (c)]),
by the second version, complete as A (K) are complete. Moreover, by [31, 23.23, 24.14, 24.16],
A (S) is also barreled. A set B ⊂ A (S) is bounded if there is an open neighborhood U of S such
that B is bounded in H(U), see [30, Th. 1.2, Proposition 1.2], comp. [6, Fact 1.21, Th. 1.27].

Therefore topologically

(9) A (S)′b = projU H(U)′b,

here b-topology (denoted by τb) means the strong topology, i.e., the topology of uniform conver-
gence on bounded sets in A (S). This implies immediately that topologically

A (S)′b = projW⊃S A (W )′b

where W runs through all open neighborhoods of S in Rd. Since A (S) is ultrabornological
A (S)′b is complete [31, 24.11]. Since A (S) is a complete Schwartz space its strong dual is
ultrabornological by [31, 24.23]. Please note that H(U) is Montel [31, Section 24] so by [31,
24.25] H(U)′b is also Montel so all bounded sets in A (S)′b are relatively compact.

As linear space we have A (S)′b = indKbS A (K)′b and the topology of this inductive limit
is �ner than τb on A (S). If S has a fundamental sequence of compact subset (i.e., it is hemi-
compact), in particular if S is locally closed or open then indKbS A (K)′b is an (LF)-space,
hence webbed, and, by de Wilde's Theorem (see [31, 24.30]), we have A (S)′b = indKbS A (K)′b
topologically and A (S)′b is an (LFN)-space, i.e., a countable inductive limit of nuclear Fréchet
spaces.

In particular, we have shown:

Proposition 5.1 For every nonempty open set Ω ⊂ Rd the space A (V (Ω))′b is an ultrabornolog-
ical complete space with A (V (Ω))′b = projW⊃V (Ω) A (W )′b, where W ⊂ Rd runs through all open
neighborhoods of V (Ω).

To de�ne τk and τk∗ we need some auxiliary de�nitions. Let Ω ⊂ Rd be a non-void open set.
For a compact set K ⊂ Ω let us de�ne

VK(Ω) := {ξ | ξK ⊂ Ω}.

Notice that VK(Ω) is open since for ξ ∈ VK(Ω)

(ξ +Bγ(0))K ⊂ ξK +Bγ(0)K ⊂ ξK +Bε(0) ⊂ Ω

if ε > 0 and then γ > 0 are chosen suitably. Clearly, VK(Ω) contains V (Ω) and∩
KbΩ

VK(Ω) = {ξ | ξΩ ⊂ Ω} = V (Ω).

The two last �natural� topologies on A (V (Ω))′ we call k-topology and k∗-topology, denoted
by τk and τk∗ respectively, and they are by de�nition:

A (V (Ω))′k := projKbΩ A (VK(Ω))′b, A (V (Ω))′k∗ := projKbΩ∩Rd
∗
A (VK(Ω))′b,

where K runs through all compact subsets of Ω and of Ω ∩ Rd
∗ respectively. Please note that τk

and τk∗ depend not only on V (Ω) but also on Ω itself. These topologies are analogous to the
t-topology introduced in [41].
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Proposition 5.2 For every open nonempty set Ω ⊂ Rd the spaces A (V (Ω))′k and A (V (Ω))′k∗
are complete countable projective limits of LFN-spaces (i.e., countable locally convex inductive
limits of nuclear Fréchet spaces). In particular, A (V (Ω))′k and A (V (Ω))′k∗ are webbed.

Clearly, τk∗ ≤ τk ≤ τb.
We will need the following simple remark. For K b Ω we denote by V 0

K(Ω) the union of all
connected components of VK(Ω) which have a nonempty intersection with V (Ω), and we have

A (V (Ω))′k := projKbΩ A (V 0
K(Ω))′b, A (V (Ω))′k∗ := projKbΩ∩Rd

∗
A (V 0

K(Ω))′b.

We can now compare the topologies τb, τk and τk∗ . We recall the fact, which is due to the
Cartan-Grauert Theorem in the version of [14, Lemma 1.1.(b)], that for any open U ⊂ Rd there
is a real analytic function on U which cannot be extended beyond U .

Proposition 5.3 Let Ω ⊂ Rd be on open nonempty set.

(a) τb = τk on A (V (Ω))′ if and only if the sets V 0
K(Ω), K ⊂ Ω compact, form a basis of

neighborhoods for V (Ω).

(b) τb = τk∗ on A (V (Ω))′ if and only if the sets V 0
K(Ω), K ⊂ Ω ∩ Rd

∗ compact, form a
neighborhood basis for V (Ω).

(c) τk = τk∗ on A (V (Ω))′ if and only if for every compact L ⊂ Ω there is a compact K ⊂ Ω∩Rd
∗

such that V 0
K(Ω) ⊂ VL(Ω).

Proof: (a): Since one implication is trivial, it remains to show that from equality of the
topologies follows: if U is an open neighborhood of V (Ω) then there is K b Ω such that V 0

K ⊂ U .
We choose a function f ∈ A (U) which cannot be extended beyond U . yf : T 7→ T (f)

is a linear form on A (V (Ω))′b = A (V (Ω))′k. Therefore there exists K b Ω such that yf ∈
(A (V 0

K(Ω))′b)
′ which means that there is g ∈ A (V 0

K(Ω)) such that yf (T ) = T (g) for all T ∈
A (V 0

K(Ω))′. Applying this to T = δ
(α)
x for all x ∈ V (Ω) and α ∈ Nd

0 we obtain that f = g in a
neighborhood of V (Ω). If V 0

K(Ω) ̸⊂ U there must be x ∈ ∂U ∩ V 0
K(Ω), that means g extends f

into a neighborhood of x, which contradicts the choice of f .
(b) and (c): The proof is analogous. 2

Notice that the sets V 0
K(Ω) can be very di�erent from the sets VK(Ω) and, with the latter,

Proposition 5.3 would be false, as the following example shows.

Example 5.4 Let Ω := R2
+ \ {1}. Then V (Ω) = {1} and τb = τk by Proposition 5.3 while all

VK(Ω) are unbounded.

Proof: Let Kn := {(x, y) : 1/n ≤ x, y ≤ n} \ {(x, y) : n/(n + 1) < x, y < (n + 1)/n} then
VKn(Ω) = {(x, y) : n/(n + 1) < x, y < (n + 1)/n} ∪ (R2 \ {(x, y) : 1/n ≤ x, y ≤ n)} hence
V 0
Kn

(Ω) = {(x, y) : n/(n+ 1) < x, y < (n+ 1)/n}. 2

6 Elements of Harmonic Function Theory

For a deeper study of topological features of the Representation Theorem 2.2 in Section 7 we
will need the following elements of the harmonic function theory. For a compact set K ⊂ Rn let
C∆(K) (and C∆,0(Rn \K), respectively) denote the family of all harmonic germs near K (and
the harmonic functions on Rn \ K vanishing at ∞, respectively). It is well known that every
continuous linear functional T on C∆(K) corresponds to a harmonic function fT ∈ C∆,0(Rn \K)
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via the so-called Tillmann-Grothendieck duality (TG duality, see [39, Satz 6] and also [2]; a
general version for zero solutions of hypoelliptic partial di�erential operators is contained in
[27]). To be precise, let

G(ξ) :=
−1

cn(n− 2)
|ξ|2−n, ξ ̸= 0,

be the canonical elementary solution for the Laplacian in n variables (for n ≥ 3, see e.g. [1, p.
193], cn is the area of the unit sphere). The function fT corresponding to T is then de�ned by

(10) fT (ξ) := ⟨G(ξ − · ), T ⟩ , ξ ∈ Rn \K.

The correspondence of fT and T is given by the TG duality (see [2, (4)])

(11) T (h) = (fT , h) := ⟨∆(φh), fT ⟩ :=
∫

∆(φh)(ξ)fT (ξ) dξ, h ∈ C∆(K),

where φ ∈ C∞
0 (U) is chosen such that φ = 1 near K if h ∈ C∆(U) � the class of all harmonic

functions on U and U is an open neighborhood of K. By Green's formula, we also get (compare
[39, (48)])

(12) (fT , h) =

∫
∂A

fT (ξ)
∂

∂ν
h(ξ)− h(ξ)

∂

∂ν
fT (ξ) dσ(ξ), h ∈ C∆(K),

where A is a compact set with smooth boundary such thatK ⊂ interiorA ⊂ A ⊂ U if h ∈ C∆(U)
and σ is the Lebesgue-surface measure.

We will apply the duality (11) to represent analytic functionals supported in a compact set
K ⊂ Rd as harmonic functions on Rd+1\K. For this we write the points in Rd+1 as (x, t) ∈ Rd×R.
For K ⊂ Rd compact let C̃∆(K) denote the class of all harmonic germs (in (d+1) variables) near
K which are even with respect to the variable t. Notice that A (K) is topologically isomorphic
to C̃∆(K) via the mapping S : A (K) → C̃∆(K), where S(g) is the harmonic function near K
with Cauchy data (existing also by the Cauchy-Kovalevska theorem)

S(g)(x, 0) = g(x), ∂tS(g)(x, 0) = 0.

An explicit formula for S(g) is provided by

(13) S(g)(x, t) :=
∞∑
k=0

(−∆x)
kg(x)

t2k

(2k)!
.

It is easily seen that

(14) S : H(Cd) → C̃∆(Rd+1) is continuous.

Even more holds true (see [7, Prop. 2.3]), �x an open set V ⊂ Rd, then for every Ṽ an open
neighborhood of V in Rd+1 there is U an open neighborhood of V in Cd and for every U1 an
open neighborhood of V in Cd there is Ṽ1 an open neighborhood of V in Rd+1 such that

(15) S : H(U1) → C̃∆(Ṽ1) and S−1 : C̃∆(Ṽ ) → H(U) are continuous.

We also need the following Cauchy type estimate: there is C > 0 such that for any δ > 0
and any β ∈ Nd+1 the following holds if f is harmonic near Bδ(0) ⊂ Rd+1

(16) |∂βf(0)| ≤ β!(C/δ)|β| sup
ξ∈Bδ(0)

|f(ξ)|
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(see [15, Theorem 2.2.7]). From (16) we obtain the following precise estimate for the derivatives
of G: there is C > 0 such that

(17) sup
(x,t)̸=0,α∈Nd+1

|∂αG(x, t)||(x, t)||α|+d−1

C |α|α!
< ∞.

Indeed, this estimate follows for |(x, t)| = 1 from (16) (with δ := 1/2), and for general (x, t) ̸= 0
by the homogeneity of ∆ (consider Gτ (ξ) := G(τξ) for τ > 0).

For K ⊂ Rd let C̃∆,0(Rd+1 \K) denote the class of harmonic functions on Rd+1 \K which
are even with respect to the variable t and vanish at ∞. The TG duality (11) then shows that
A (K)′b is topologically isomorphic to C̃∆,0(Rd+1 \K) via

(18) T (g) = (fT , S(g)) = ⟨∆(φS(g)), fT ⟩, T ∈ A (K)′, g ∈ A (K),

where

(19) fT (x, t) = ⟨G(x − · , t), T ⟩ , (x, t) ∈ Rd+1 \K,

by (10). Notice that fT ∈ C̃∆,0(Rd+1 \K).

7 Topological Representation

We will study the topological aspects of the Representation Theorem 2.2, in particular, for which
topologies on A (V (Ω))′ the map B : A (V (Ω))′ → M(Ω) ⊂ Lb(A (Ω)) is continuous and, more
sophisticated, which topology is induced on A (V (Ω))′ via B from Lb(A (Ω)). More precisely,
we ask what is the relation of the topology induced from M(Ω) via B on A (V (Ω))′ (we denote
this topology here as τm) with respect to topologies τb, τk and τk∗ (see Section 5). We prove that
τm is between τk and τk∗ (see Theorems 7.5 and 7.2), then we show that τm, τb and τk have the
same families of bounded sets and convergent sequences (Theorem 7.11). Finally we describe
cases when τk = τm = τk∗ (Theorem 7.14).

Now, we analyze continuity of the map B. We assume without restriction of generality that
1 ∈ Ω. Please note that dilation by a factor a ∈ Rd

∗ is a homeomorphism of Ω which does not
change V (Ω). We set for compact K ⊂ Ω

M(Ω,K) = {M ∈ Lb(A (Ω),A (K)) : M admits all monomials as 'eigenvectors'},
MC(Ω,K) = {M ∈ Lb(A (Ω), C(K)) : M admits all monomials as 'eigenvectors'}.

Here C(K) carries the sup-norm topology. Obviously M(Ω,K) ⊂ MC(Ω,K) with continuous
embedding.

We assume from now on that 1 ∈ K, then VK(Ω) ⊂ Ω, and we assume that K ∩Rd
∗ is dense

in K.

Proposition 7.1 M(Ω,K) = MC(Ω,K) as sets and their equicontinuous sets coincide. The
map T 7→ MT (as in the Representation Theorem 2.2) de�nes a continuous isomorphism from
A (VK(Ω))′b onto M(Ω,K). Its inverse map is M 7→ TM where TMf = (Mf)(1). Both maps
send equicontinuous sets to equicontinuous sets.

As a direct consequence of Proposition 7.1 we obtain:

Theorem 7.2 For every open Ω ⊂ Rd the map B : A (V (Ω))′k → M(Ω) is continuous.
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Proof: It follows from Proposition 7.1 by going to the projective limit over Kn where Kn = ωn

and ω1 ⊂⊂ ω2 ⊂⊂ . . . is an open exhaustion of Ω since A (V (Ω))′k = projn A (VKn(Ω))
′
b and

M(Ω) = projnM(Ω,Kn). 2

Proof of Proposition 7.1: First we show that T 7→ MT maps equicontinuous sets into
equicontinuous sets. We �x a compact set L ⊂ VK(Ω). By the result of the third named author
[40], a standard seminorm on A (L) is given by

(20) ∥f∥L,δ := sup
α∈Nd

0,y∈L

|f (α)(y)|
α!

δ
|α|
|α|,

where δ = (δk)k, δk > 0 and δk → 0, which, without restriction of generality, may be assumed
to be decreasing. We assume |Tf | ≤ ∥f∥L,δ̃ for a suitable �xed sequence δ̃.

We �x δ and set r = sup{|x|+ |y|+ δ0 : x ∈ K, y ∈ L}. We obtain for M = MT

∥Mf∥K,δ = sup
α∈Nd

0,x∈K

∣∣∣∣∣Ty

(yαf (α)(xy)

α!

)
δ
|α|
|α|

∣∣∣∣∣ ≤ sup
α∈Nd

0,x∈K
sup

β∈Nd
0,y∈L

|∂β
y yαf (α)(xy)|

α!β!
δ
|α|
|α| δ̃

|β|
|β|.

We estimate the derivatives in the last term:∣∣∣∣ 1

α!β!
∂β
y (y

αf (α)(xy))

∣∣∣∣ =

∣∣∣∣∣∣ 1

α!β!

∑
0≤γ≤min(α,β)

(
β

γ

)
α!

(α− γ)!
yα−γxβ−γf (α+β−γ)(xy)

∣∣∣∣∣∣
≤ 2|β| sup

0≤γ≤min(α,β)
r|α+β−2γ|

(
α+ β − γ

β

)
|f (α+β−γ)(xy)|
(α+ β − γ)!

≤ sup
0≤γ≤min(α,β)

(4r)|α+β−γ| |f (α+β−γ)(xy)|
(α+ β − γ)!

r−|γ|.

We may assume δ ≥ δ̃ and δ decreasing. We put

c̃M = sup
n+m=M

δn/Mn δ̃m/M
m .

Then c̃M is a strictly positive null-sequence. We denote by (cM )M its decreasing majorant. Then
we have for α, β ∈ Nd

0 and 0 ≤ γ ≤ min(α, β) the estimate

r−|γ|δ
|α|
|α| δ̃

|β|
|β| ≤ δ

−|γ|
|α−γ|δ

|α|
|α−γ|δ̃

|β|
|β| ≤ c

|α+β−γ|
|α+β−γ|.

Since KL b Ω we obtain:
∥Mf∥K,δ ≤ ∥f∥KL,4rc.

We have shown that T 7→ MT maps equicontinuous subsets of A (VK(Ω))′b into equicontin-
uous, hence bounded, subsets of M(Ω,K). Since A (VK(Ω))′b is barreled every bounded set is
equicontinuous [31, 23.27]. So T 7→ MT maps bounded sets into bounded sets. Since A (VK(Ω))′b
is bornological the map T 7→ MT is continuous from A (VK(Ω))′b to M(Ω,K).

To show the reverse direction, we assume that M ⊂ MC(Ω,K) is equicontinuous, that is,
we �nd a compact set L ⊂ Ω and a null-sequence δ such that

sup
η∈K

|(Mf)(η)| ≤ ∥f∥L,δ = sup
α, x∈L

|f (α)(x)|
α!

δ
|α|
|α|

for all M ∈ M and f ∈ A (Ω), in particular, for all f ∈ A (Rd).
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Given f ∈ A (Rd), this applies to all fη, fη(x) = f
(
x
η

)
, η ∈ K ∩ Rd

∗, and we obtain for all

these η

(21) |Tf | = |(Mf)(1)| = |(Mfη)(η)| ≤ ∥fη∥L,δ = ∥f∥Lη ,δ(η),

where

Lη =
1

η
· L, δ(η)m :=

δm

minj=1,...,d |η(j)|
, η = (η(1), . . . , η(d)).

We conclude, using the assumption that K ∩ Rd
∗ is dense in K, that

suppTM ⊂
∩

η∈K∩Rd
∗

Lη = {y ∈ Rd : yK ⊂ L} b VK(Ω)

and, since all Lη are compact, we can �nd η1, . . . , ηm ∈ K ∩ Rd
∗ such that

(22) suppTM ⊂ L̂ :=

m∩
j=1

Lηj b VK(Ω).

This holds for all M ∈ M. From (21) it follows that {TM | M ∈ M} are equicontinuous in
A (Lη)

′. By (22) and using the approach in [38, Th. I11] one gets easily that {TM | M ∈ M}
are equicontinuous in A (L̂)′, i.e., there is a null-sequence γ such that

|TMf | ≤ ∥f∥L̂,γ

for all M ∈ M and f ∈ A (Ω).
Finally, we have continuous maps A (VK(Ω))′b → M(Ω,K) ↪→ MC(Ω,K) and the composi-

tion is surjective. Therefore M(Ω,K) = MC(Ω,K) as sets. 2

Remark 7.3 (a) Let us recall that A (Ω)′b and A (L)′b, L b Ω, are nuclear, thus (see [24, Ch.
21]) we have topological isomorphisms:

Lb(A (Ω), C(K)) ∼= A (Ω)′b⊗̂C(K), Lb(A (L), C(K)) ∼= A (L)′b⊗̂C(K).

Algebraically Lb(A (Ω), C(K)) = indLbΩ Lb(A (L), C(K)) and, by [18, I �1no. 3, Cor. p. 47],
the topologies coincide as well. Hence Lb(A (Ω), C(K)) is an LF-space.

(b) Also the spaces A (VK(Ω))′b are (LF)-spaces and the step spaces are A (L)′b, L compact in
VK(Ω). B : A (VK(Ω))′b → Lb(A (Ω), C(K)) is a continuous, injective map, its range M(Ω,K)
is closed in Lb(A (Ω), C(K)). It is a correspondence between the bounded (= equicontinuous)
sets in A (VK(Ω))′b and M(Ω,K). For every compact L ⊂ Ω there is a compact L̂ ⊂ VK(Ω) such

that B−1(L(A (L), C(K))) ⊂ A ′(L̂). To show the last assertion we use the proof of Proposition
7.1 with δ and γ being constant or Grothendieck's Factorization Theorem.

The question whether B : A (VK(Ω))′b → M(Ω,K) is a topological isomorphism is, by
Remark 7.3, a classical problem of well-locatedness (see e.g. [16]), i.e., the question if closed
subspace M(Ω,K) in Lb(A (Ω), C(K)) is a topological inductive limit of B(A (L)′b), L b VK(Ω)
(or, equivalently, of M(Ω,K) ∩ Lb(A (L), C(K)), L b Ω). For a stronger assumption on K,
however, we can show it.

Proposition 7.4 If K ⊂ Ω ∩ Rd
∗, then B : A (VK(Ω))′b → MC(Ω,K), B(T ) = MT (see

Theorem 2.2) is a linear topological isomorphism. In particular, M(Ω,K) = MC(Ω,K) as
topological linear spaces.
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As a direct consequence we get:

Theorem 7.5 The map B−1 : M(Ω) → A (V (Ω))′k∗ is a continuous map, i.e., the topology τk∗
on A (V (Ω))′ is weaker than the topology on A (V (Ω))′ induced by B from M(Ω) ⊂ Lb(A (Ω)).

Proof: It follows from Proposition 7.4 that

B : A (V (Ω))′k∗ = projKbΩ∩Rd
∗
A (VK(Ω))′b → projKbΩ∩Rd

∗
M(Ω,K)

is a topological isomorphism. The locally convex topology projKbΩ∩Rd
∗
M(Ω,K) is weaker than

the original topology on M(Ω) = projKbΩM(Ω,K). 2

The proof of Proposition 7.4 is based on the harmonic representation of analytic functionals
(see Section 6) combined with some ideas and results from [40] which are introduced now:

Lemma 7.6 (See [40]) Let (X, ∥ ∥) be a Banach space and let F := indk→∞ Fk where

Fk := {(xα)α∈Nn
0
∈ XNn

0 | ∥x∥k := sup
α

∥xα∥k−|α| < ∞}.

Then a fundamental system of seminorms on F is given by

|x|δ := sup
α

∥xα∥δ|α||α| ,

where δ = (δj)j∈N is any strictly positive sequence tending to 0.

Notice that a fundamental system of bounded sets in F is given by the closed unit balls Bk

in Fk. Indeed, a fundamental system is provided by the closures Bk (in F , see [31, 25.16]) which
coincide with Bk since the identity mapping id : F → XNn

0 is continuous (and so the closure in
F is contained in the coordinatewise closure).

Let us introduce the following space:

C̃∆,c(Ṽ ) := ind
KbṼ

C̃∆,0(Rd+1 \K).

In [40] the Lemma 7.6 was used to determine a canonical fundamental system on the space A (K)
for compact K. A variant of this proof gives the following basic result:

Theorem 7.7 Let Ṽ ⊂ Rd+1 be open such that t → 0 if Ṽ ∋ (x, t) → ∞. Then a fundamental
system of seminorms on C̃∆,c(Ṽ ) is given by

|f |δ := sup
ξ∈∂Ṽ ,α∈Nd+1

0

|f (α)(ξ)|
α!

δ
|α|
|α|

where δ = (δj)j∈N is any positive sequence tending to zero.

Proof: We de�ne F as in Lemma 7.6 using X := C0(∂Ṽ ) := {f ∈ C(∂Ṽ ) | lim
Ṽ ∋ξ→∞ f(ξ) = 0}

endowed with the sup-norm. Let A(f) := ( 1
α!f

(α)
∣∣
∂Ṽ

)α∈Nd+1
0

. Then A : C̃∆,c(Ṽ ) → F is de�ned

and continuous by Lemma 7.6. We will prove that A is an injective topological homomorphism
using Baernstein's Lemma [31, 26.26]. By Lemma 7.6 this will show the theorem.

Notice that C̃∆,c(Ṽ ) is a (DFS)-space (in particular Montel). F is a (DF)-space by [31, 25.16].

By the remark after Lemma 7.6 we have to show that A−1(Bk) is bounded in C̃∆,c(Ṽ ). Clearly,

the functions in A−1(Bk) are uniformly bounded on Uε := ∂Ṽ +Bε(0) for some ε > 0 by Taylor
expansion. K := Ṽ \ Uε is a compact set contained in Ṽ since for any ε > 0 there is γ > 0
such that |t| < ε if (x, t) ∈ Ṽ and |x| ≥ γ by the assumption on Ṽ . Hence A−1(Bk) is bounded
in C̃∆,c(Ṽ ) since it is well known that for compact K ⊂ Ṽ the topology of C̃∆,0(Rd+1 \ K) is

induced by C̃∆(Ṽ \K). 2
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Remark 7.8 Let us observe that V = VK(Ω) is open and has the following property

(23) ∀ x ∈ ∂V ∃ yx ∈ K xyx ̸∈ Ω.

Proof of Proposition 7.4: The claim clearly holds for Ω = Rd since then B−1(M) = δ1◦M
by the Representation Theorem 2.2. Let Ω ̸= Rd.

By Proposition 7.1, it su�ces to show that B−1 : MC(Ω,K) → A (V )′b is continuous for
V = VK(Ω). Clearly, by (9) and (15),

A (V )′b = proj
Ṽ
C̃∆(Ṽ )′b,

where the limits run over the neighborhoods Ṽ of V in Rd+1, Ṽ ∩ Rd = V . By the TG duality
it is therefore su�cient to prove the continuity of

B−1 : MC(Ω,K) → C̃∆,c(Ṽ ) ≃ C̃∆(Ṽ )′b

where Ṽ is as above. Choose a continuous function t : V →]0,∞[ such that t(x) → 0 if x → ∂V
or x → ∞ and put

Ṽ := {(x, t) ∈ Rd+1 | x ∈ V, |t| < t(x)}.

The set Ṽ satis�es the assumption of Theorem 7.7. Since V ̸= Rd we may assume that ∂V ̸= ∅.
Set t(x) := 0 if x ∈ ∂V . For x ∈ V choose x̂ ∈ ∂V such that |x − x̂| = dist(x, ∂V ) (especially,
x = x̂ if x ∈ ∂V ) and set yx := yx̂ ∈ K chosen for x̂ by (23).

Let MT := B(T ) for T ∈ A (V )′ ⊂ C̃∆(Ṽ )′ and let fT ∈ C̃∆,c(Ṽ ) be the representation of T
by the TG duality. Let δ = (δj)j∈N be a strictly positive sequence tending to 0. By the de�nition

of Ṽ we have
∂Ṽ = {(x,±t(x)) | x ∈ V }.

Notice that fT is even in t. By Theorem 7.7 we thus have to estimate

(24)

|fT |δ = sup
x∈V ,α∈Nd+1

0

|f (α)
T (x, t(x))|

α!
δ
|α|
|α| = sup

x∈V ,α∈Nd+1
0

|⟨ξT,G(α)(x− yx(ξ/yx), t(x))⟩|
α!

δ
|α|
|α|

= sup
x∈V ,α∈Nd+1

0

|MT (hx,α)(yx)| ≤ sup
y∈K,h∈B

|MT (h)(y)|

where

B :=

{
hx,α(ξ) :=

G(α)(x− ξ/yx, t(x))

α!
δ
|α|
|α| | x ∈ V , α ∈ Nd+1

0

}
.

Since K ⊂ Ω is compact by (23), the right hand side of (24) is a continuous seminorm on
Lb(A (Ω), C(K)) if we show that B is bounded in A (Ω). To prove this, let J ⊂ Ω be compact.
Notice that

(25) CJ := inf
x∈V ,ξ∈J

|(x− ξ/yx, t(x))| > 0.

If not, then there are sequences xn ∈ V and ξn ∈ J such that |(xn − ξn/yxn , t(xn))| → 0. Since
K ⊂ Rd

∗ and J are compact we may assume that yxn → y ∈ K ⊂ Rd
∗ and ξn → ξ ∈ J , hence

(26) xnyxn − ξn = yxn(xn − ξn/yxn) → 0.

If the sequence (xn)n is unbounded then xnk
yxnk

→ ∞ for a subsequence since yxn → y ∈ Rd
∗.

This is a contradiction to (26). Hence (xn)n is bounded and we can assume that xn → x0 ∈ ∂V
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since t(xn) → 0 and the function t is continuous on V and strictly positive on V . Hence we get
by (26) that

Ω ⊃ J ∋ ξ = lim
n

ξn = lim
n

xnyxn = lim
n
(x̂nyxn + (xn − x̂n)yxn) = lim

n
x̂nyxn /∈ Ω

since |xn − x̂n| = dist(xn, ∂V ) → 0 and (yxn)n is convergent, a contradiction.
For any γ > 0 we may choose Cγ such that δjj ≤ Cγγ

j for any j since δj → 0. Also notice

that η := min(1, inf{|yj | | y ∈ K, j ≤ d}) > 0 since K ⊂ Rd
∗ is compact. Using (25) and (17) we

thus get

sup
x∈V ,α∈Nd+1

0

sup
ξ∈J,β∈Nd

0

∣∣∣∂β
ξ h(x,α)(ξ)

∣∣∣ γ|β|
β!

≤ sup
x∈V ,α∈Nd+1

0 ,ξ∈J,β∈Nd
0

∣∣∣∣(∂α∂β
xG)

(
x− ξ

yx
, t(x)

)∣∣∣∣ γ|β|δ
|α|
|α|

|yβx |β!α!

≤ C0Cγ sup
x∈V ,α∈Nd+1

0 ,ξ∈J,β∈Nd
0

|(x− ξ/yx, t(x))|−|β|−|α|−d+1
(2Cγ

η

)|β|+|α|

≤ C0CγC
1−d
J sup

j∈N0

(2Cγ

CJη

)j
≤ C0CγC

1−d
J

if γ < CJη/(2C). The theorem is proved because we have proved that B is bounded in every
A (J), J compact subset of Ω, so it is bounded in A (Ω) = projJbΩ A (J). 2

From Proposition 5.3 and Theorem 7.2 and the fact that the topology τk is weaker than the
topology τb we obtain:

Corollary 7.9 B : A (V (Ω))′b → Lb(A (Ω)) is continuous. If it is open onto its image, then
τb = τk on A (V (Ω))′ and, in consequence, V (Ω) has a countable neighborhood basis.

This shows that, in general, the b-topology is not the �natural� topology, induced via B on
A (V (Ω))′.

Example 7.10 Let Ω = {(x, y) ∈ R2 : x > 0, 1 < y < 2} then V (Ω) = {(x, 1) ∈ R2 : x > 0}.
Since Ω ⊂ Rd

∗ thus, by de�nition, τk = τk∗ . By Theorems 7.2 and 7.5, the topology induced on
A (V (Ω))′ via B is the topology τk. Hence τb ̸= τk on A (V (Ω))′ since V (Ω) does not admit a
countable neighborhood basis (see Proposition 5.3). However A (V (Ω))′b is an (LF)-space since
V (Ω) is locally closed (see remarks before Proposition 5.1). Then, due to de Wilde's Theorem,
A (V (Ω))′k cannot be bornological (see Theorem 7.11 below).

Next we show that all topologies under consideration (except may be τk∗) have the same
bounded sets.

Theorem 7.11 A set B ⊂ A (V (Ω))′b is bounded if and only if {MT := B(T ) | T ∈ B} is
bounded in Lb(A (Ω)). In particular:

(a) a sequence (Tn)n∈N ⊂ A (V (Ω))′b is convergent if and only if (B(Tn))n∈N ⊂ M(Ω) is
convergent;

(b) the topologies τb and τk on A (V (Ω))′ have the same bounded sets and the same convergent
sequences.

Hence B : A (V (Ω))′b → M(Ω) is a topological isomorphism if and only if M(Ω) equipped with
the topology inherited from Lb(A (Ω)) is (ultra)bornological.
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Let us note that if V (Ω) is compact then B : A (V (Ω))′b → M(Ω) is a topological isomorphism
if and only if M(Ω) is metrizable (since metrizable spaces are bornological [31, 24.13]).
Proof: As we explained in the introduction to the Section 5 in A (V (Ω))′b all bounded sets
are relatively compact. Hence by Corollary 7.9 we only have to show the "if" part of the �rst
statement.

If M ⊂ M(Ω) is bounded and ω ⊂⊂ Ω open and K = ω, then M is bounded in M(Ω,K) and
therefore equicontinuous (since A (Ω) is barreled, as explained in Section 5 and by [31, 23.27]).
By Proposition 7.1, the set T := {T ∈ A (VK(Ω))′ : MT ∈ M} is equicontinuous.

The proof of [38, Th. I.11] can be easily adapted to show that for any equicontinuous set B
of analytic functionals on A (U), U ⊂ Rd open, there is a minimal compact set L such that B is
also equicontinuous in A (L)′. If we choose L as above for T then L ⊂ VK(Ω) for every K b Ω.
Hence L ⊂

∩
VK(Ω) = V (Ω) and this shows the claim. 2

If Ṽ (Ω) = V (Ω) (see Section 2) we have V (Ω) =
∩

KbΩ∩Rd
∗
VK(Ω) and therefore τk∗ ≤ τk

and the topology τk∗ is a complete locally convex topology on A (V (Ω))′. By M(Ω,Ω′) ⊂
Lb(A (Ω),A (Ω′)) we denote as previously the subspace of all maps admitting all monomials as
`eigenvectors'. From Proposition 7.4 we obtain:

Proposition 7.12 If Ṽ (Ω) = V (Ω) then M(Ω) = M(Ω,Ω ∩ Rd
∗) and the map B : A (V (Ω))′k∗

→ M(Ω,Ω ∩ Rd
∗) is a topological linear isomorphism.

The property of τb = τk and τk = τk∗ are completely independent as we will see later, see
Example 8.10 and Theorems 7.14 and 8.9.

The property τb = τk∗ on A (V (Ω))′ should be compared with the notion of nice set introduced
in [8] for open sets Ω ⊂ R. There we assumed that VK(Ω) ⊂ V for some �nite set K ⊂ Ω ∩ Rd

∗.
Clearly, if Ω is a nice set then τb = τk∗ on A (V (Ω))′. In fact, the class of sets with τb = τk∗ is
strictly larger already in the case of one variable: all examples of not nice sets given in [8] satisfy
τb = τk∗ (see [8, Examples 2.5 and 3.2] and Example 7.13 below).

The following example shows that in the description of τb = τk∗ we cannot put �nite sets
instead of compact ones.

Example 7.13 Let Ω := Rd
+ \ {1} for a ∈ Rd

+. Then V (Ω) = {1} and τb = τk∗ on A (V (Ω))′

but Ω is not nice for d = 1 and the K's in the de�nition of the topology τk∗ cannot be chosen
�nite for d ≥ 2.

Proof: We have τb = τk∗ by the argument in Example 5.4. i) Let d = 1. Then Ω is not nice by
[8, Examples 3.2]. ii) Let d ≥ 2 (see Example 5.4). If K is �nite then the complement (in Rd

+)
of the VK(Ω) �nite. 2

On the basis of the information collected up to now we can identify the topology induced by
M(Ω) on A (V (Ω))′ via B for many important cases.

Theorem 7.14 Let Ω ⊂ Rd be an open nonempty set. In the following cases B : A (V (Ω))′k →
M(Ω) is a linear topological isomorphism, that is M(Ω) induces on A (V (Ω))′ via B the topology
τk:

(a) Ω ⊂ Rd
∗;

(b) d = 1;

(c) Ω is convex.

In fact, in these cases τk = τk∗ on A (V (Ω))′.
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Proof: Observe that if τk = τk∗ on A (V (Ω))′ then, by Theorems 7.2 and 7.5, the map

B : A (V (Ω))′k → M(Ω)

is a topological isomorphism.
(a): τk = τk∗ just by de�nition.
In the other cases we use Proposition 5.3 (c).
(b): By [8, Proposition 2.1], if 0 ∈ V (Ω) then either V (Ω) is bounded or V (Ω) = Ω = R. In

the latter case by (c) below τk = τk∗ on A (V (Ω))′. In the former case we can choose K b Ω
such that V := V 0

K(Ω) is bounded so ∂V is compact. Clearly VK(Ω) ⊂ R \ ∂V.
Take J := K \ Bδ(0). Choose δ > 0 so small that ∂V · Bδ(0) ⊂ Ω (this is possible since

∂V is bounded and Ω is an open neighborhood of 0). Now, for any ξ ∈ ∂V holds ξK * Ω but
ξBδ(0) ⊂ Ω. Hence ξJ * Ω and VJ(Ω) ⊂ R \ ∂V , so V 0

J (Ω) ⊂ V. If 0 ̸∈ V (Ω) the set Ω ⊂ Rd
∗ so

we apply (a).
(c): If ξJ ⊂ Ω then ξ conv J ⊂ Ω. Thus VJ(Ω) ⊂ Vconv J(Ω). It is easy to see that for any

compactK ⊂ Ω there is compact L ⊂ Ω∩Rd
∗ such thatK ⊂ convL. Hence VL(Ω) ⊂ VconvL(Ω) ⊂

VK(Ω). 2

Based on this and also on the analogous results in [41] we make the

Conjecture. For every open non-empty set Ω ⊂ Rd the map B : A (V (Ω))′k → M(Ω) is a
topological isomorphism.

8 Topological Representation in Terms of A (V (Ω))′b

In Theorem 7.14 we have solved for many important cases the problem of topological repre-
sentation of M(Ω) via B and shown that the induced topology is the k-topology. It remains
the question under which conditions the induced topology is the b-topology, that is, the map
B : A (V (Ω))′b → M(Ω) is a linear topological isomorphism. For all the cases covered by Theo-
rem 7.14, in particular for all convex sets, we will solve this problem completely.

Since in all theses cases the sets are shown in Theorem 7.14 to satisfy τk = τk∗ on A (V (Ω))′,
our problem means the question, when τb = τk on A (V (Ω))′. This is, as we already have
remarked earlier (see Corollary 7.9), a rather restrictive property.

Proposition 8.1 If τb = τk on A (V (Ω))′ for some Ω ⊂ Rd then V (Ω) has a countable basis of
open neighborhoods or, equivalently, ∂V (Ω) ∩ V (Ω) is compact.

Proof: The �rst part follows from Proposition 5.3 (a), the second part follows from Prop. 4.11.
2

From Proposition 4.6, (4) and Proposition 5.3 (a) we get:

Corollary 8.2 If V (Ω) is open, then τb = τk on A (V (Ω))′.

Assume still that V (Ω) is open. We set K0 = Ω ∩ {−1,+1}d then for any compact K with
K0 ⊂ K ⊂ Ω ∩ Rd

∗ we have VK(Ω) = {x ∈ Rd : x · (Ω ∩ Rd
∗) ⊂ Ω} = Ṽ (Ω) and we have shown:

Remark 8.3 If V (Ω) is open, then τb = τk∗ on A (V (Ω))′ if and only if Ω satis�es Ṽ (Ω) = V (Ω).

Example 8.4 Let Ω = R2\({0}×[0,+∞)). Then V (Ω) = (R+∪R−)×R+ and Ṽ (Ω) = VK0(Ω) =
(R+ ∪ R−)× R. Hence τb = τk ̸= τk∗ . Please note that if Ω1 := V (Ω) then V (Ω1) = V (Ω) and,
by Corollary 8.2 and Theorem 7.14 τb = τk = τk∗ on A (V (Ω1))

′. This means that the topologies
τk∗ really depend on Ω and not only on V (Ω).
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Example 8.5 An example of a set Ω ⊂ R2 with τb = τk = τk∗ on A (V (Ω))′ and ∂V (Ω)∩ V (Ω)
is nonempty compact but V (Ω) is bounded and non-compact.

Proof: Let us take Ω as the union of the following sets

{(x, y) | −1 < y ≤ −1/2,−1 < x < 1}, {(x, y) | −1/2 < y < 0,−1 < x < φ(y)},
{(x, y) | 0 ≤ y < 1/4,−1 < x}, {(x, y) | 1/4 ≤ y ≤ 3/8, 0 < x},
{(x, y) | 3/8 < y < 1/2,−1 < x}

with the sequence of sets

Ω0 := {(x, y) | 1 < x < 2, 3/4 < y < 1}, Ωn := {(x, y) | 3n+1 < x < 3n+1 + 1, 3/4 < y < 1}

for n = 1, 2, . . . and where φ : (−1/2, 0) → (1,+∞), φ(−1/2) = 1, is a strictly increasing
function tending to in�nity at zero from below. It needs some calculations but one see that

V (Ω) = {(x, y) | 0 < x ≤ 1, 0 ≤ y ≤ 1/2} ∪ {(0, y) | −1/4 ≤ y ≤ 1/4} ∪ {(0, 1/2)} ∪ {(1, 1)}.

Moreover, τb = τk∗ � the tedious calculations based on Proposition 5.3 are left to the reader. 2

The necessary condition in Prop. 8.1 need not be su�cient, we have the following example:

Example 8.6 An open set Ω ⊂ R2 such that V (Ω) is compact but τb ̸= τk on A (V (Ω))′.

Proof: Apply Proposition 5.3 (a). Let us take Ω to be the union of the following sets:

{(x, y) | −1 < y < 1/2,−1 < x, x ̸= 1},
{(x, y) | 1/2 ≤ y ≤ 3/4, 0 < x, x ̸= 1, x ̸= 2},
{(x, y) | 3/4 < y < 1, 0 < x, x ̸= 2}.

Then
V (Ω) = {(0, y) : 0 ≤ y ≤ 1/2} ∪ {(1, 1)}.

Take y slightly bigger than 1/2. Then (x, y) ̸∈ V (Ω) for x close to 0. But the only (x̃, ỹ) ∈ Ω
such that (x̃, ỹ)(x, y) ̸∈ Ω are x̃ = 1

x , or x̃ = 2
x . Hence the set of (x̃, ỹ) cannot be chosen

compact if x → 0. 2

However, it turns out that in the one dimensional case the necessary condition in Proposition
8.1 is indeed su�cient, which leads to an explicit description in terms of V (Ω).

Theorem 8.7 If Ω ⊂ R is a nonempty open set then the following assertions are equivalent:

(a) the map B : A (V (Ω))′b → M(Ω) is a topological isomorphism;

(b) τb = τk∗ (or, equivalently, τb = τk) on A (V (Ω))′;

(c) ∂V (Ω) ∩ V (Ω) is compact;

(d) one of the following conditions holds:

• 0 ∈ V (Ω) (i.e., 0 ∈ Ω);

• V (Ω) ⊂ {1,−1};
• V (Ω) has a non-empty interior.
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The result above improves [8, Th. 2.6]. In fact, by Proposition 4.4 and [8, Proposition 2.1],
if 0 ∈ Ω then the conditions above are always satis�ed. In case 0 ̸∈ Ω, the conditions are not
satis�ed if and only if ∂V (Ω) contains either an unbounded sequence or a zero sequence (for
instance the condition above is not satis�ed for the set Ω = (0,+∞) \ {2n | n ∈ Z} where
V (Ω) = {2n | n ∈ Z}). So the above results disprove the conjecture posed in [8] that (a) in
Theorem 8.7 always holds.

Before we prove the result we need the following useful lemma showing in some cases that
the crucial condition (23) holds locally for K ⊂ Ω ∩ Rd

∗:

Lemma 8.8 Let Ω ⊂ Rd be a non-empty open set. If x0 ∈ Rd
∗ \ Ṽ (Ω) or x0Ω * Ω then there are

a neighborhood U0 of x0 and a compact set K ⊂ Ω ∩ Rd
∗ such that

∀x ∈ U0 ∃yx ∈ K : xyx ̸∈ Ω.

Proof: i) Let x0 ∈ Rd
∗ \ Ṽ (Ω) and choose y0 ∈ Ω ∩ Rd

∗ such that x0y0 /∈ Ω. For |x| ≤ δ
we set y(x) := −xy0/(x + x0). For su�ciently small δ > 0, y(x) is de�ned (since x0 ∈ Rd

∗)
and {y0 + y(x) | |x| ≤ δ} is a compact subset of Ω ∩ Rd

∗. Obviously, (x0 + x)(y0 + y(x)) =
(x0 + x)[y0 − xy0/(x0 + x)] = x0y0 /∈ Ω.

ii) By assumption there is y0 ∈ Ω such that x0y0 /∈ Ω. Then x0(y0+y1) /∈ Ω and (y0+y1) ∈ Ω
for small |y1| and we may choose (y0 + y1) ∈ Rd

∗. Hence x0 /∈ Ṽ (Ω) and (x0 + x)(y0 + y1) /∈ Ω
for small |x|. The Lemma is proved. 2

Proof of Theorem 8.7: (a) and (b) are equivalent by Theorem 7.14, and (b) implies (c)
by Proposition 8.1.

(c) ⇒ (b): If V (Ω) is closed and ∂V (Ω) is compact then for every open neighborhood U of
V (Ω) there is a smaller open neighborhood V of V (Ω) such that 0 ̸∈ ∂V and ∂V is compact. By
Remark 2.5 (b), Ṽ (Ω) = V (Ω) so by Lemma 8.8 we can cover ∂V by a �nite family of open sets
(Ui)

m
i=1 such that there are (Ki)

m
i=1, Ki ⊂ Ω ∩ Rd

∗ with

∀ x ∈ Ui ∃ yx ∈ Ki xyx /∈ Ω.

Then V 0∪m
i=1 Ki

(Ω) ⊂ V and τb = τk∗ by Proposition 5.3 (b).

If V (Ω) is not closed so 0 ∈ ∂V (Ω) \ V (Ω) (see Proposition 4.4) but then 0 ̸∈ Ω. Moreover,
∂V (Ω) splits into the two disjoint compact sets {0} and ∂V (Ω) ∩ V (Ω). For any neighborhood
U of V (Ω) there is a smaller open neighborhood V of V (Ω) such that ∂V is compact and splits
into two disjoint compact sets {0} and A. As in the case V (Ω) closed, by Lemma 8.8, there is a
compact set K ⊂ Ω ∩ Rd

∗ such that VK(Ω) is disjoint with A. Moreover, 0 ·K = {0} and 0 ̸∈ Ω.
Hence 0 ̸∈ VK(Ω). This completes the proof (see Proposition 5.3).

(c)⇔(d): Proposition 4.12. 2

Also in the other cases covered by Theorem 7.14, in particular for convex sets, the necessary
condition in Proposition 8.1 turns out to be su�cient and this leads to an explicit description in
terms of V (Ω).

Theorem 8.9 Let Ω ⊂ Rd, d > 1, be an open nonempty set and either Ω ⊂ Rd
∗ or Ω convex.

Then the following are equivalent:

(a) the map B : A (V (Ω))′b → M(Ω) is a topological isomorphism;

(b) τb = τk∗ (equivalently, τb = τk) on A (V (Ω))′;

(c) the set ∂V (Ω) ∩ V (Ω) is compact;
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(d) the set V (Ω) is either open or compact;

Proof: (a) ⇔ (b): By Theorem 7.14 in both cases τk = τk∗ . So (a) holds if and only if (b)
holds.

(b) ⇒ (c) is Proposition 8.1.
(c) ⇒ (d): Proposition 4.14.
(d) ⇒ (b): If V (Ω) is open then, by Corollary 8.2, τb = τk. If Ω ⊂ Rd

∗ and V (Ω) is compact
then V (Ω) = Ṽ (Ω) ⊂ Rd

∗. So for every neighborhood U of V (Ω) we �nd a neighborhood
V ⊂ U ∩ Rd

∗ of V (Ω). Using Lemma 8.8 we can �nd as in the proof of Theorem 8.7 (c)⇒(b) a
compact set K ⊂ Ω ∩ Rd

∗ = Ω such that V 0
K(Ω) ⊂ V . The result follows by Proposition 5.3 (b).

So here it remains to show that for convex Ω with compact V (Ω) holds τb = τk.
Now, let V (Ω) be compact. By Proposition 4.1, V (Ω) is convex. Let U be an arbitrary

open convex neighborhood of V (Ω) where ∂U is a compact surface in Rd. Let x ∈ ∂U and let
x1 ̸∈ V (Ω) be an internal point of some interval connecting x and some point in V (Ω). By
Proposition 4.3, there is y ∈ Ω∩Rd

∗ such that x1 ̸∈ 1
yΩ. It is easily seen that there is some open

neighborhood of x on ∂U disjoint from 1
yΩ.

We have proved that for any point x ∈ ∂U there is yx ∈ Ω ∩ Rd
∗ such that for some neigh-

borhood Ux of x in ∂U , Ux ∩ 1
yx
Ω = ∅. Since (Ux) is a covering of ∂U , there are �nitely many

x1, . . . , xn so Ux1 ∪ · · · ∪Uxn covers ∂U and then
∩m

j=1
1

yxj
Ω ⊂ U. Hence τb = τk∗ by Proposition

5.3 (b) and Ω is even nice. 2

It was just shown that for convex Ω and compact V (Ω) we have τb = τk∗ on A (V (Ω))′. This
is not true for general Ω. The following example is a variant of [8, Example 3.2]. It shows that
might be τk ̸= τk∗ even for compact V (Ω).

Example 8.10 Swiss cross. For 0 < a < b let Ω := {x ∈ R2 | ∥x∥∞ < b} \
[
([−a, a] ×

{0}) ∪ ({0} × [−a, a])
]
. Then Ṽ (Ω) = {x ∈ R2 | 0 < |x1|, |x2| ≤ 1} while V (Ω) = {±1}2, hence

V (Ω)∩Rd
∗ ̸= Ṽ (Ω)∩Rd

∗ and τb = τk ̸= τk∗ . We do not know where in between of τk and τk∗ there
is the topology induced by B from M(Ω).

Proof: Indeed, if K = {(x, y) ∈ Ω | d((x, y), ∂Ω) > ε} then for small ε > 0 the set VK(Ω) is
a small neighborhood of V (Ω). On the other hand, ∂Bε(1) ∩ Ṽ (Ω) ̸= ∅ for any ε > 0. This
completes the proof, comp. Proposition 5.3. 2

Substituting the interval [−a, a] by [0, a] in the above example we obtain V (Ω) = {1}.
In case V (Ω) = Ω we get even more than topological isomorphism B : A (V (Ω))′b → M(Ω).

Proposition 8.11 Let Ω ⊂ Rd be an open set. If Ω = V (Ω) then M(Ω) is a complemented
subalgebra in Lb(A (Ω)) with the following continuous projection:

P : Lb(A (Ω)) → M(Ω); P(L) := MT where T = δ1 ◦ L.

In particular, B : A (V (Ω))′b → M(Ω) is a topological homomorphism.

Corollary 8.12 A nonempty open set Ω ⊂ Rd
+, d > 1, satis�es τb = τk∗ on A (V (Ω))′ if and

only if either Ω = Rd
+ or V (Ω) = {1}.

Proof: By Theorem 8.9, su�ciency follows. For necessity, observe, again by Theorem 8.9,
that if V (Ω) is not open and for Ω ⊂ Rd

+ we have τb = τk∗ then V (Ω) must be compact. If
η ̸= 1 belongs to V (Ω) then ηn ∈ V (Ω) for all n ∈ N, and this sequence is either unbounded or
converges to some point outside Rd

+, a contradiction. 2

28



In case Ω contains O a description of sets with τb = τk∗ on A (V (Ω))′ is even more straight-
forward. From Propositions 4.5, 4.9 and Theorem 8.9 it follows immediately:

Corollary 8.13 A non-empty open convex set Ω ⊂ Rd, O ∈ Ω, d > 1, satis�es τb = τk∗ on
A (V (Ω))′ if and only if it contains no axis (then V (Ω) is compact) or it is equal to the whole
space Rd (then V (Ω) = Rd).

The criterion of Lemma 8.8 can also be applied for many open sets with C1-boundary with
V (Ω) not necessarily contained in Rd

∗.

9 Special Classes of Multipliers

In this section we present four important classes of multipliers, the Euler operators, the integral
operators, the dilation operators and the superposition multipliers. We de�ne ηα for α ∈ Nd by

ηα(x) = xα.

Euler operators. First, we present the so-called Euler partial di�erential operators (of �nite
or in�nite order). The one variable theory is classical (see [22], [23], [25], [26], [17], for a survey
see Section 4 in [8]) but the authors could not �nd its several variables analogue in the literature.
We present the theory in details in the forthcoming paper [11].

Let θj(f)(x) := xj
∂f
∂xj

(x) for j = 1, . . . , d denote the Euler di�erentials and set θα :=

θα1
1 θα2

2 . . . θαd
d . Then Euler di�erential operators are de�ned by

E(θ)(g)(x) :=
∑
β∈Nd

aβθ
β(g)(x) for g ∈ A (Ω).

It is proved in [11] that E(θ) : A (Ω) → A (Ω) is a multiplier for every open ∅ ̸= Ω ⊂ Rd if the
sequence (aβ)β∈Nd satis�es

(27) ∀ε > 0 : sup
β

|aβ|
β!

ε|β|
< ∞.

The multiplier sequence (mα)α of E(θ) is given by mα = E(α) :=
∑

β∈Nd aβα
β and the

analytic functional T de�ning E(θ) via the Representation Theorem 2.2 is given by

⟨g, T ⟩ =
∑
α∈Nd

aα
∂αg

∂xα
(1),

hence T ∈ A ({1})′b. On the other hand, every multiplier whose corresponding analytic functional
has support concentrated at 1 (or, equivalently, a multiplier which acts on A (Ω) for every open
set Ω ⊂ Rd) is equal to some E(θ) with coe�cients satisfying (27).

If V (Ω) = {1} then the Euler di�erential operators are the only multipliers on A (Ω) . In
many cases they form a big subset of all multipliers:

Proposition 9.1 The Euler di�erential operators of �nite order are dense in the space M(Ω)
of all multipliers on A (Ω) if V (Ω) is connected.
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Proof: By Theorem 2.2 and Corollary 7.9, the map B : A (V (Ω))′b → M(Ω) is a continuous

bijective map which maps lin{δ(α)1 : |α| ≤ m} onto lin{θα : |α| ≤ m}. So it su�ces to show that

the linear span of δ
(α)
1 is dense in A (V (Ω))′b. Since A (V (Ω)) is re�exive, this will follow from

the weak-star density. The latter is seen as follows: Let f ∈ A (V (Ω)) satisfy f (α)(1) = 0 for
every α ∈ Nd

0. Then f ≡ 0 since V (Ω) is connected. 2

Euler di�erentials θj determine multipliers also in another way (see [8, Th.2.13] for d = 1).

Proposition 9.2 Let Ω ⊂ Rd be an open connected non-empty set. A continuous linear operator
T : A (Ω) → A (Ω) is a multiplier if and only if it commutes with all operators θj, j = 1, . . . , d.

Proof: Since θj is a multiplier, it commutes with every multiplier.
Let us assume that T commutes with all θj . Thus

θjT (ηα)(x) = T (θj(ηα))(x) = T (αjηα)(x) = αjT (ηα)(x).

We �x x0 ∈ Ω. In a neighborhood of x0 the solution T (ηα) of this system of di�erential equations
has the form

T (ηα)(x) = Cηα(x)

which then, due to connectedness of Ω and unique analytic continuation holds in all of Ω. We
have proved that T is a multiplier. 2

Integral operators. These are the typical examples of multipliers using measures T in the
Representation Theorem 2.2. We mention only two signi�cant examples:

M{1}(g)(y) =

∫ 1

0
g(ty)dt, mα =

1

|α|+ 1
;

M{2}(g)(y) =

∫
[0,1]d

g(x · y)dx, mα =
d∏

j=1

1

αj + 1
.

This type of multipliers already appear in [19] for d = 1.
Dilation operators. We de�ne dilation operators Ma with dilation factor a ∈ Rd as follows:

Ma(g)(y) := g(a · y), mα = aα := aα1
1 · · · · · aαd

d

These operators acts on A (Ω) if and only if a ∈ V (Ω). Dilation operators play an important
role in the Representation Theorem 2.2, since this theorem somehow shows that every multiplier
is a �combination� of dilation operators with factors belonging to V (Ω). In that sense dilation
operators determine multipliers but there is another reason why dilations determine multipliers:

Theorem 9.3 Let Ω be an open convex non-empty set. The following assertions are equivalent:

(a) V (Ω) has non-empty interior;

(b) A continuous linear operator T : A (Ω) → A (Ω) is a multiplier if and only if it commutes
with all dilations Ma for every a ∈ V (Ω).

Remark 9.4 Let Ω be convex. Then the dilation set V (Ω) has a non-empty interior if Ω is
bounded and 0 ∈ Ω. A description when V (Ω) is open was given in Proposition 4.6.
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The proof of Theorem 9.3 is more complicated than in the one dimensional case [8, Th. 2.15],
we will use Proposition 4.8 which has no non-trivial one-dimensional analogue.
Proof: (a)⇒(b): We may assume that 1 ∈ Ω. Clearly, Ma are multipliers so every multiplier
commutes with every Ma. Assume now that T commutes with all dilations Ma for a ∈ V (Ω).
Then

T (ηα)[a] = (Ma ◦ T )(ηα)[1] = T ((aη)α)[1] = mαa
α,

with mα = (Tηα)[1]. This holds for all a ∈ V (Ω) ⊂ Ω. Since Ω is connected and V (Ω) has
non-void interior, it holds for all a ∈ Ω.

(b)⇒(a): Assume that V (Ω) has empty interior. By Proposition 4.8, one of the following
two cases holds:

1. there exists j ∈ {1, . . . , d} such that V (Ω) ⊂ {a | aj = 1};

2. there exist j, k ∈ {1, . . . , d}, j ̸= k, such that V (Ω) ⊂ {a | aj = ak}.

Case 1. Let φ : R→ R be an analytic function. Then

Tφ(f)(x) := φ(xj)f(x)

is a linear continuous map Tφ : A (Ω) → A (Ω) which is not necessarily a multiplier. On the
other hand,

MaTφ(f)(x) = φ(xj)f(ax) = Tφ(Ma(f))(x).

Case 2. The map

Tj,k(f)(x) = xj
∂

∂xk
f(x)

is a linear continuous map Tj,k : A (Ω) → A (Ω) which is not a multiplier. On the other hand,

MaTj,k(f)(x) = ajxj
∂

∂xk
f(ax) and Tj,k(Maf)(x) = xjak

∂

∂xk
f(ax).

Since aj = ak we have
Tj,kMa = MaTj,k

for any a ∈ V (Ω). 2

As in Proposition 9.1 we can prove that if V (Ω) is connected with non-empty interior then
the multipliers M(Ω) are the closure of the linear span of the dilation operators on A (Ω) .

Superposition multipliers. Take any distribution T ∈ C∞(] − 1, 1[d)′b and a smooth
function f ∈ C∞ (

[−1, 1]d
)
. Then we de�ne a multiplier by

Sf,T (g)(y) :=
∑
α∈Nd

∂αg(0)

α!
yα⟨R0

p(f) ◦ η̃α, T ⟩+
∑
|β|≤p

∂βf(0)

β!
⟨g ◦ (yη̃β), T ⟩

with the multiplier sequence (mα)α∈Nd given by

mα = ⟨f ◦ η̃α, T ⟩ for η̃α(x) := (xα1
1 , . . . , xαd

d ),

where p ∈ N is chosen so big that the series is absolutely convergent and where R0
p means the

Taylor remainder of order p at zero. The proof that such a map is well de�ned (the required
p exists and the formula does not depend on p) is similar as in the one variable case (see [10,
Example 7.11]). The obtained multiplier sequence explains the name superposition multiplier.
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Especially interesting is the case when T is a Dirac distribution δε concentrated at ε =
(ε1, . . . , εd) ⊂ (−1, 1)d. Then the multiplier sequence is of the form

mα = f(εα1
1 , . . . , εαd

d ).

If f does not vanish at (εα1
1 , . . . , εαd

d ) for any α ∈ Nd and at zero this multiplier is invertible:

its inverse is just S1/f̃ ,δε
, where f̃ is a smooth function not vanishing on [−1, 1]d with the same

values as f at all points (εα1
1 , . . . , εαd

d ), α ∈ Nd.

10 Multipliers on A (Rd
+)

Since the Euler di�erential θj is singular for xj = 0 it is to be expected that the behavior of
Euler di�erential operators is quite di�erent depending whether Ω ⊂ Rd

∗ or Ω ̸⊂ Rd
∗. To see this

we start with considering Ω ⊂ Rd open and connected with O ∈ Ω.
Let P (θ) be an Euler di�erential operator, hence mα = P (α). Therefore, for f ∈ A (Ω) with

Taylor expansion f(x) =
∑

α cαx
α we know that P (θ)f(x) =

∑
α cαP (α)xα around 0. This and

the same argument applied to the dual map (P (θ))∗, acting on A (Ω)′ ∼= HC(Ω) (see De�nition
3.4) by Hadamard multiplication, yields for the kernel kerP (θ) and the range im P (θ) of P (θ)
on A (Ω):

Lemma 10.1 Let O ∈ Ω ⊂ Rd. Then

kerP (θ) = {f ∈ A (Ω) : f (α)(O) = 0 whenever P (α) ̸= 0},

im P (θ) ⊂ {f ∈ A (Ω) : f (α)(O) = 0 whenever P (α) = 0}.

If P (α) = 0 has only �nitely many integer solutions then the converse of the latter holds as well.

If n is the (�nite) number of integer solutions of the equation P (α) = 0 then n = dimkerP (θ)
and codim im P (θ) = n.

Example 10.2 (a) If P (x) =
∑

j x
m
j for m ∈ N then kerP (θ) = C{f ≡ 1}.

(b) If P is a hypoelliptic polynomial, then dimkerP (θ) is �nite dimensional.

Speci�cally, for P (x) =
∑

j x
2
j we have kerP (θ) = C{f ≡ 1} if 0 ∈ Ω while for Ω ⊂ Rd

+ then
kerP (θ) = {g(log x1, . . . , log xd) | g is harmonic on log Ω} (see also below).

Building a solution theory for Euler di�erential operators even for Ω = Rd may lead to deep
problems as is seen by the following example:

Example 10.3 Let P (x) := (x1 + 1)m + (x2 + 1)m − (x3 + 1)m with m ≥ 3. Then P (θ) is
injective.

Proof: By Lemma 10.1 this is equivalent to Fermat's Last Theorem. 2

While surjectivity of Euler di�erential operators on arbitrary open subsets of Rd will be
studied in the forthcoming paper [12], we will in this section treat the case of Ω ⊂ Rd

∗ and it is
easily seen that it su�ces to concentrate on open sets Ω ⊂ Rd

+.
We de�ne the analytic di�eomorphisms log : Ω → log Ω and exp : log Ω → Ω by

log(x) = (log x1, . . . , log xd), exp(x) = (expx1, . . . , expxd).
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Then we have for f ∈ A (Ω)

(P (θ)f) ◦ exp = P (∂)(f ◦ exp).

Immediate consequences are

Lemma 10.4 We have for any open Ω ⊂ Rd
+:

kerP (θ) = {g ◦ log : P (∂)g = 0}, im P (θ) = {g ◦ log : g ∈ im P (∂)}.

Corollary 10.5 P (θ) is surjective on A (Ω) if and only if P (∂) is surjective on A (log Ω).

Surjectivity of partial di�erential operators P (D) with constant coe�cients on A (ω) for
convex open ω was characterized by Hörmander [20] by conditions of Phragmén-Lindelöf type
valid for plurisubharmonic functions PSH(Z) on the characteristic variety Z of the polynomial
P (or its principal part Pm, respectively). These results can immediately be applied to Euler
di�erential operator by setting ω = logΩ. Notice that log Ω is convex if and only if Ω is
multiplicatively convex, that is, with x, y ∈ Ω and 0 < t < 1 also xty1−t ∈ Ω. Using [20] we get

Theorem 10.6 (Euler operators of second order) A second order pdo P (θ) is surjective on
A (Rd

+) i� the principal part Pm is either elliptic, or proportional to a real inde�nite quadratic
form or to the product of two real linear forms.

Speci�cally,
∑d

j=1 θ
2
j is not surjective on A (Rd+1

+ ) for d ≥ 2 (see also Piccinini 72, [35], [36]).

Also, the �heat-Euler� operator θ1 −
∑d

j=2 θ
2
j is not surjective on A (Rd

+) for d ≥ 3, while the

�Laplace-Euler� operator
∑d

j=1 θ
2
j and the �wave-Euler� operator θ21 −

∑d
j=2 θ

2
j are surjective on

A (Rd
+) for d ≥ 2.

For general open ω a characterization of surjective partial di�erential operators P (D) :
A (ω) → A (ω) was obtained by Langenbruch [28] using shifted elementary solutions which
are real analytic on relatively compact subsets of ω. Also this result can be directly applied to
Euler di�erential operators by direct transfer. Using [20] and [29] we get:

Corollary 10.7 P (θ) is surjective on A (Rd
+) if it is surjective on A (Ω) for some ∅ ̸= Ω ⊆ Rd

+.

Problem 10.8 Let P (θ) : A (Ω) → A (Ω) be surjective for Ω ⊂ Rd
+. Is Pm(θ) surjective as

well?

More results on the inheritance of surjectivity for arbitrary (not necessarily convex) open sets
ω were proved by Langenbruch [28], [29] giving corresponding results for Euler operators.

Corollary 10.9 (a) If P (θ) is surjective on A (Rd
+) then for any non-empty ∅ ̸= Ω ⊂ Rd

+

there is a smallest Ω̃ ⊃ Ω such that P (θ) is surjective on A (Ω̃).

(b) If P (θ) is surjective on every A (Ωj), Ωj ⊂ Rd
+ then P (θ) is surjective on A

(
(
∩

Ωj)
◦).

The same argument as for Lemma 10.4 can be used for general multipliers on A (Ω) where
Ω ⊆ Rd

+. By Theorem 7.14,
B : A (V (Ω))′k → M(Ω)

is a topological isomorphism. Moreover, as in the one-dimensional case (comp. [8, Th. 6.1,
5.3]), we can represent multipliers as convolution operators and, via Fourier-Laplace transform,
as entire functions of restricted growth (in particular, of order one).
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De�ne the composition operator Cφ(f) = f ◦ φ for a real analytic map φ. The map

E : Lb(A (Ω) ) → Lb(A (log Ω)), E (M) = Cexp ◦M ◦ Clog

is a topological isomorphism onto. Clearly, E maps θj onto ∂j . Therefore:

Theorem 10.10 The following conditions are equivalent for connected open Ω ⊂ Rd
+:

(a) M is a multiplier on A (Ω) .

(b) E (M) is a convolution operator on A (log Ω).

It is not so obvious to get a topological isomorphism of A (log V (Ω))′b with the set of all
convolution operators on A (log Ω) (i.e., operators commuting with all partial derivatives). If
B : A (V (Ω))′b → M(Ω) is a topological isomorphism this is so. By Corollary 8.12, this holds
for d > 1 if and only if either Ω = Rd

+ (i.e., log Ω = Rd) or V (Ω) = {1} (i.e., log V (Ω) = {O}).
It is of great interest to describe the transfer via E of the description of analytic functionals

by means of the Laplace transform (see [21, Section 4.5]). For that we need convexity of log Ω.
If log Ω is convex then log V (Ω) is convex as well. Let us denote the support function of a convex
compact set K by

HK(y) := sup
z∈K

(Re (z1y1 + · · ·+ zdyd)).

Then for any convex compact set K and any convex set Ω we de�ne

Exp(K) := {f ∈ H(Cd) : ∀ ε > 0 : ∥f∥K,ε < ∞}, Exp(Ω) :=
∪
KbΩ

Exp(K),

where ∥f∥K,ε := supz∈C |f(z)| exp(−HK(z)−ε|z|). Finally, we recall the de�nition of the Laplace
transform of an analytic functional µ:

L (µ)(z) = ⟨exp(z ·), µ⟩, z ∈ Cd.

Assume that log V (Ω) is convex, then L : A (log V (Ω))′b → Exp(log V (Ω)) is an algebra isomor-
phism (see [21, Th. 4.5.3]), a topological algebra isomorphism if V (Ω) is open or closed. Here
Exp(log V (Ω)) is an algebra with respect to pointwise multiplication. De�ne

ηz(x) := exp(z1 log x1 + · · ·+ zd log xd) = xz11 · · · · · xzdd .

Summarizing we have (using Corollary 8.12):

Theorem 10.11 Let Ω ⊂ Rd
+, d > 1, be an open set and log V (Ω) be convex. Then the map

M : M(Ω) → Exp(log V (Ω)),

M (M)(z) := L (E (M))(z) = ⟨ηz,B−1(M)⟩ = eigenvalue of M for the eigenvector ηz

is an algebra homomorphism onto such that

M (M)(α) = mα for every α ∈ Nd

and M is a topological isomorphism if and only if Ω is either Ω = Rd
+ or V (Ω) = {1}.

Problem 10.12 Characterize surjective multipliers on A (Ω) for open Ω ⊂ Rd
+.

Of course, this problem is equivalent to the surjectivity problem for convolution operators on
the sets log Ω ⊂ Rd.
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