A CHARACTERISTIC PROPERTY OF THE SPACE s

DIETMAR VOGT

Abstract

It is shown that under certain stability conditions a complemented subspace of the space s of rapidly decreasing sequences is isomorphic to s and this condition characterizes s. This result is used to show that for the classical Cantor set X the space $C_{\infty}(X)$ of restrictions to X of C^{∞} -functions on \mathbb{R} is isomorphic to s, so completing the theory developed in [7].

1 Introduction

In the present note we study the space s of rapidly decreasing sequences, that is, the space

$$s = \{x = (x_0, x_1, \dots) : \lim_n x_n n^k = 0 \text{ for all } k \in \mathbb{N}\}.$$

Equipped with the norms $||x||_k = \sup_n |x_n|(n+1)^k$ it is a nuclear Fréchet space. It is isomorphic to many of the Fréchet spaces which occur in analysis, in particular, spaces of C^{∞} -functions.

It is easily seen that instead of the sup-norms we might use the norms

$$|x|_k = \left(\sum_n |x_n|^2 (n+1)^{2k}\right)^{1/2}$$

which makes s a Fréchet-Hilbert space.

More generally, we define for any sequence $\alpha: 0 \le \alpha_0 \le \alpha_1 \le \nearrow +\infty$ the power series space of infinite type

$$\Lambda_{\infty}(\alpha) := \{ x = (x_0, x_1, \dots) : |x|_t^2 = \sum_{n=0}^{\infty} |x_n|^2 e^{2t\alpha_n} < \infty \text{ for all } t > 0 \}.$$

Equipped with the hilbertian norms $|\cdot|_k$, $k \in \mathbb{N}_0$, it is a Fréchet-Hilbert space. It is nuclear if, and only if, $\limsup_n \log n/\alpha_n < \infty$. With this definition $s = \Lambda_{\infty}(\alpha)$ with $\alpha_n = \log(n+1)$.

²⁰¹⁰ Mathematics Subject Classification. 46A45, 46A63, 46E10 Key words and phrases: space s, stability condition, Cantor set

A Fréchet space with the fundamental system of seminorms $\|\cdot\|_0 \leq \|\cdot\|_1 \leq \dots$ has property (DN) if

$$\exists p \, \forall k \, \exists K, \, C > 0 : \|\cdot\|_k^2 \le C \|\cdot\|_p \, \|\cdot\|_K.$$

In this case $\|\cdot\|_p$ is called a dominating norm.

E has property (Ω) if

$$\forall p \,\exists q \,\forall m \,\exists 0 < \theta < 1, C > 0 : \|\cdot\|_q^* \leq C \|\cdot\|_p^{*\theta} \,\|\cdot\|_m^{*1-\theta}.$$

Here we set for any continuous seminorm $\|\cdot\|$ and $y \in E'$ the dual, extended real valued, norm $\|y\|^* = \sup\{|y(x)| : x \in E, \|x\| \le 1\}.$

By Vogt-Wagner [8] a Fréchet space E is isomorphic to a complemented subspace of s if, and only if, it is nuclear and had properties (DN) and (Ω) .

It is a long standing unsolved problem of the structure theory of nuclear Fréchet spaces, going back to Mityagin, whether every complemented subspace of s has a basis. If it has a basis then it is isomorphic to some power series space $\Lambda_{\infty}(\alpha)$. The space $\Lambda_{\infty}(\alpha)$ to which it is isomorphic, if it has a basis, can be calculated in advance by a method going back to Terzioğlu [4] which we describe now.

Let X be a vector space and $A \subset B$ absolutely convex subsets of X. We set

$$\delta_n(A,B) := \inf\{\delta > 0 : \text{ exists linear subspace } F \subset X, \dim F \leq n \text{ with } A \subset \delta B + F\}.$$

It is called the n-th Kolmogoroff diameter of A with respect to B.

If now E is a complemented subspace of s, that is, E is nuclear and has properties (DN) and (Ω) , then we choose p such that $\|\cdot\|_p$ is a dominating norm and for p we choose q > p according to property (Ω) . We set

$$\alpha_n = -\log \delta_n(U_q, U_p)$$

where $U_k = \{x \in E : ||x||_k \le 1\}$. The space $\Lambda_{\infty}(\alpha)$ is called the associated power series space and $E \cong \Lambda_{\infty}(\alpha)$ if it has a basis.

If $\limsup_n \alpha_{2n}/\alpha_n < \infty$ then, by Aytuna-Krone-Terzioğlu [2, Theorem 2.2], $E \cong \Lambda_{\infty}(\alpha)$. This is, in particular, the case if E is stable, that is, if $E \oplus E \cong E$.

For all that and further results of structure theory of infinite type power series spaces see [6], for results and unexplained notation of general functional analysis see [3].

2 Main result

Lemma 2.1 Let E be a complemented subspace of s, $\|\cdot\|_0$ a dominating hilbertian norm and $\|\cdot\|_1$ a hilbertian norm chosen for $\|\cdot\|_0$ according to (Ω) . If there is a linear isomorphism $\psi: E \oplus E \to E$ such that

$$||x||_0 + ||y||_0 \le C_0 ||\psi(x \oplus y)||_0$$

$$||\psi(x \oplus y)||_1 \le C_1 (||x||_1 + ||y||_1)$$

then $E \cong s$.

PROOF. For $x \oplus y \in E \oplus E$ we set $|||(x,y)|||_0 := (||x||_0^2 + ||y||_0^2)^{1/2}$ and $|||(x,y)|||_1 := (||x||_1^2 + ||y||_1^2)^{1/2}$. With new constants C_k we have

$$|||x \oplus y|||_0 \le C_0 ||\psi(x \oplus y)||_0 \text{ and } ||\psi(x \oplus y)||_1 \le C_1 |||x \oplus y|||_1.$$
 (1)

To calculate the associated power series space for E we set:

$$\alpha_n = -\log \delta_n(U_1, U_0) \text{ where } U_k = \{x \in E : ||x||_k \le 1\},\$$

 $\beta_n = -\log \delta_n(V_1, V_0) \text{ where } V_k = \{x \oplus y \in E \oplus E : |||x \oplus y|||_k \le 1\}.$

Due to the estimates (1) we have

$$\frac{1}{C_1}\psi(V_1) \subset U_1 \subset U_0 \subset C_0\psi(V_0)$$

and therefore

$$\delta_n(V_1, V_0) = \delta_n(\psi V_1, \psi V_0) \le C_0 C_1 \delta_n(U_1, U_0)$$

which implies

$$\alpha_n \le \beta_n + d$$

with $d = \log C_0 C_1$.

By explicit calculation of the Schmidt expansion of the canonical map j_1^0 between the local Hilbert spaces of $||| \cdot |||_1$ and $||| \cdot |||_0$ and by use of the fact that singular numbers and Kolmogoroff diameters coincide, we obtain that $\beta_{2n} = \beta_{2n+1} = \alpha_n$ for all $n \in \mathbb{N}_0$.

Therefore we have $\alpha_{2n} \leq \beta_{2n} + d = \alpha_n + d$ for all $n \in \mathbb{N}_0$ and this implies $\alpha_{2k} \leq \alpha_1 + k d$ for all $k \in \mathbb{N}_0$. For $n \in \mathbb{N}$ we find $k \in \mathbb{N}$ such that $2^{k-1} \leq n \leq 2^k$ and we obtain $\alpha_n \leq \alpha_{2k} \leq \alpha_1 + k d \leq (\alpha_1 + d) + d \log n$.

Since $E \subset s$, which implies the left inequality below, we have shown that there is a constant D > 0 such that

$$\frac{1}{D}\log n \le \alpha_n \le D\log n$$

for large $n \in \mathbb{N}$. This implies that $\Lambda_{\infty}(\alpha) = s$.

A Fréchet-Hilbert space E is called *normwise stable* if it admits a fundamental system of hilbertian seminorms for which there is an isomorphism $\psi: E \oplus E \to E$ such that

$$\frac{1}{C_k}(\|x\|_k + \|y\|_k) \le \|\psi(x \oplus y)\|_k \le C_k(\|x\|_k + \|y\|_k)$$

for all k. Since, clearly, s is normwise stable we have shown.

Theorem 2.2 $E \cong s$ if, and only if, E is isomorphic to a complemented subspace of s and normwise stable.

We may express Lemma 2.1 also in the following way:

Theorem 2.3 Let the Fréchet-Hilbert space E be a complemented subspace of s, $\|\cdot\|_0$ a dominating norm and $\|\cdot\|_1$ be a norm chosen according to (Ω) . Let P be a linear projection in E, continuous with respect to $\|\cdot\|_0$. We set $E_1 = R(P)$, $E_2 = N(P)$ and assume that there are linear isomorphisms $\psi_j : E \to E_j$, j = 1, 2, continuous with respect to $\|\cdot\|_1$ such that ψ^{-1} is continuous with respect to $\|\cdot\|_0$. Then $E \cong s$.

PROOF. We set $\psi(x \oplus y) := \psi_1(x) + \psi_2(y)$ and obtain with suitable constants:

$$||x||_0 + ||y||_0 \le C'(||\psi_1(x)||_0 + ||\psi_2(y)||_0) \le C_0||\psi_1(x) + \psi_2(y)||_0 = C_0||\psi(x \oplus y)||_0$$

$$||\psi(x \oplus y)||_1 = ||\psi_1(x) + \psi_2(y)||_1 \le ||\psi_1(x)||_1 + ||\psi_2(y)||_1 \le C_0(||x||_1 + ||y||_1).$$

Lemma 2.1 yields the result.

3 Application

An interesting application of this result is the following. Let $X \subset [0,1]$ be the classical Cantor set and $C_{\infty}(X) := \{f|_X : f \in C^{\infty}[0,1]\} = \{f|_E : f \in C^{\infty}(\mathbb{R})\}$. The space $C_{\infty}(X)$ equipped with the quotient topology is a nuclear Fréchet space and, since $C^{\infty}[0,1] \cong s$ isomorphic to a quotient of s, hence has property (Ω) . By a theorem of Tidten [5] it has also property (DN). Therefore it is isomorphic to a complemented subspace of s (see [8]).

We should remark that, due to the fact that X is perfect, we have $C_{\infty}(X) = \mathcal{E}(X)$ where $\mathcal{E}(X)$ denotes the space of Whitney jets on X, for which Tidten's result is formulated.

By obvious identifications we have

$$C_{\infty}(X) \cong C_{\infty}(X \cap [0, 1/3]) \oplus C_{\infty}(X \cap [2/3, 1]) \cong C_{\infty}(X) \oplus C_{\infty}(X)$$

and it is easily seen that this establishes normwise stability. Therefore we have shown

Theorem 3.1 If X is the classical Cantor set, then $C_{\infty}(X) \cong s$.

It should be remarked that in [1] it has been shown that for the Cantor set X the diametral dimensions of $\mathcal{E}(X)$ and s coincide, from where, by means of the Aytuna-Krone-Terzioğlu Theorem, on can derive the same result.

Referring to the terminology of [7] we have also shown that $A_{\infty}(X) \cong s$ which completes the theory developed in [7].

References

- Arslan, B., Goncharov, A. P., Kocatepe, Spaces of Whitney functions on Cantor-type sets, Canad. J. Math. 54 (2002), 225–238.
- [2] Aytuna A., Krone J., Terzioğlu T., Complemented infinite type power series subspaces of nuclear Fréchet spaces, Math. Ann. **283** (1989), 193–202.

- [3] Meise R., Vogt D., (1997) Introduction to Functional Analysis, Clarendon Press, Oxford.
- [4] Terzioğlu T., On the diametral dimension of some classes of F-spaces, J. Karadeniz Uni. Ser. Math.-Phys. 8 (1985), 1–13.
- [5] M. Tidten: Fortsetzungen von C^{∞} -Funktionen, welche auf einer abgeschlossenen Menge in \mathbb{R}^n definiert sind, Manuscripta Math. 27 (1979), 291–312.
- [6] Vogt D., Structure theory of power series spaces of infinite type, Rev. R. Acad. Cien. Serie A. Mat. 97 (2), (2003), 1–25
- [7] Vogt, D., Restriction spaces of A^{∞} , to appear in Rev. Mat. Iberoamericana 29.4 (2013)
- [8] Vogt D., Wagner M. J., Charakterisierung der Quotientenräume von s und eine Vermutung von Martineau, Studia Math. **68** (1980), 225–240.

Bergische Universität Wuppertal, FB Math.-Nat., Gauß-Str. 20, D-42119 Wuppertal, Germany e-mail: dvogt@math.uni-wuppertal.de