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In the present paper the following theorem is proved:

Theorem: Let 0 −→ F −→ G −→ E −→ 0 be an exact sequence of Fréchet– Hilbert
spaces, E ∈ (DN), F ∈ (Ω) then the sequence splits.

Here (DN) denotes the class of all Fréchet spaces admitting a logarithmic convex fun-
damental system of norms, whereas (Ω) denotes the class of all Fréchet spaces which have
a fundamental system of seminorms such that the system of dual (extended real valued)
norms is logarithmic convex. These are linear topological invariant classes. The formulation
in terms of any given fundamental system of seminorms is contained in Sect. 3.

This theorem has been proved first by Vogt and Wagner in [9], [14](cf. [10], Thm. 7.1)
under the assumption, that one of the spaces is nuclear. Other proofs in this or similar
cases can be found in Petzsche [6] and Vogt [12]. While the formulation given in the present
paper appears to be the most desirable one, it is much harder to prove and has been an
open problem for some time. This is because in the nuclear case the crucial decomposition
Lemmata 3.1., 3.2. either become easy by reduction to E or F being a power series space,
or, as done by Petzsche [6], can be proved by using nuclear expansions of the maps. The
present approach was suggested by the observation that the interpolation Lemma 2.1. (cf.
[13], 1.4.) for general linear maps is dual to Petzsche’s decomposition Lemma [6], 3.4. for
nuclear maps. In fact we proceed just the other way in proving an interpolation result for
nuclear norms to obtain by dualization the crucial decomposition result (Lemma 1.1) for
general continuous linear maps.

As a by-result we obtain the interpolation Theorem 1.2 for nuclear operators. It should
be mentioned that by examples of Pietsch [7] nuclear operators between interpolation triples
do in general not interpolate as nuclear operators. Theorem 1.2 is also implicitely contained
e.g. in the proof of [2], Theorem 13.1, as was indicated to the author by A. Pietsch.

Preliminaries : We use common notation for Fréchet spaces (see [3]). For tensor
products and nuclear norms see [8], for scales [4] and for interpolation [1], [2].



A linear operator T from a Banach space G to a Banach space H is called nuclear if it
has a representation (called nuclear representation)

Tx =
∑
n

yn(x)xn

for all x ∈ G, where yn ∈ G
′
and xn ∈ H for all n and∑

n

∥yn∥∗∥xn∥ < +∞ ,

∥ ∥∗ denoting the dual norm. We put

ν(T ) = inf
∑
n

∥yn∥∗∥xn∥

the infimum running through all nuclear representations of T . For instance in case of Hilbert
spaces the dual of the normed space (even Banach space) of all nuclear operators equipped
with the nuclear norm, can be isometrically identified with the Banach space L(H,G) of
all continuous linear operators from H to G. This is done by

⟨T , S⟩ =
∑
n

yn(Sxn) ,

where T is represented as above and S ∈ L(H,G). Obviously the finite dimensional opera-
tors and, in case of scales as used in §1 of this paper, the operators with finite matrices are
dense in the space of nuclear operators.

A locally convex space is called hilbertizable if it admits a fundamental system of semi-
norms given by semiscalar products. A Fréchet-Hilbert space is a hilbertizable Fréchet
space.

1. For any k we denote by ⟨ , ⟩ the usual scalar product on CI k. | | is the euclidian
distance. For nonnegative α1, . . . , αm, β1, . . . , βn and t ∈ IR we put on CIm (resp. CI n):

⟨x , y⟩α,t =
m∑
j=1

e2αjtxjyj , |x|2α,t = ⟨x , x⟩α,t

⟨x , y⟩β,t =
n∑

j=1
e2βjtxjyj , |x|2β,t = ⟨x , x⟩β,t

For a linear map T : CIm −→ CI n we denote by ν(T ) the nuclear norm with respect to | |,
by νt(T ) the nuclear norm of T : (CIm, | |α,t) −→ (CI n, | |β,t).

Lemma 1.1 νt(T ) ≤ νo(T )
1−t ν1(T )

t for all t ∈ IR.

Proof: For x ∈ CIm (resp. x ∈ CI n) and z ∈ CI we put

A(z)x =
(
eαjzxj

)
j=1,...,m

B(z)x =
(
eβjzxj

)
j=1,...,n



and Tz = M z−1
o M−z

1 B(z)T A(−z) for Mt = νt(T ). We may assume T ̸= 0, hence Mt > 0.
Then we obtain for z = t+ iη :

ν(Tz) = inf
{∑

j

|λj | : Tz =
∑
j

λjxj ⊗ yj , |xj | = |yj |∗ = 1
}

= M t−1
o M−t

1 inf
{∑

j

|λj | : T =
∑
j

λj(B(−z)xj)⊗ (yj ◦A(z)) , |xj | = |yj |∗ = 1
}

= M t−1
o M−t

1 inf
{∑

j

|λj | : T =
∑
j

λjξj ⊗ ηj , |ξj |β,t = |η|∗α,t = 1
}

= M t−1
o M−t

1 νt(T ) .

ν(·) is a continuous, convex function on the spaceM(n,m) of all complex n×m – matrices,
z −→ Tz an entire function with values in M(n,m). Hence z −→ ν(Tz) is a continuous
subharmonic function on CI which depends only on Re z. Therefore t −→ M t−1

o M−t
1 νt(T )

is convex, which implies M t−1
o M−t

1 νt(T ) ≤ 1 on [0, 1].
For any two index sets I, J and families (αi)i∈I , (βj)j∈J of nonnegative real numbers

we put

Gt =
{
x = (xi)i∈I : |x|2t =

∑
i∈I

e2αit|xi|2 < +∞
}

Ht =
{
x = (xj)j∈J : |x|2t =

∑
j∈J

e2βjt|xj |2 < +∞
}

These are Hilbert spaces, equipped with their natural scalar products. νt(·) denotes the
nuclear norm of a nuclear operator Gt −→ Ht.

Theorem 1.2 Let T : Go −→ Ho be nuclear, T G1 ⊂ H1 and T : G1 −→ H1 nuclear. Then
T Gt ⊂ Ht for all t, T : Gt −→ Ht is nuclear and νt(T ) ≤ νo(T )

1−tν1(T )
t for all t ∈ [0, 1].

Proof: First assume T = Tn, where

(Tnx)j =


n∑

ν=1
tµ,νxiν for j = jµ, µ = 1, . . . , n

0 otherwise

Then the first and second assertion are clear, the third follows from Lemma 2.1.. For
arbitrary T there are sequences jµ, µ = 1, 2, . . ., iν , ν = 1, 2, . . . and a matrix (tµ,ν) such
that for Tn defined as above for n = 1, 2, . . . holds

νo(Tn − T ) −→ 0 ,

ν1(Tn − T ) −→ 0 .

In particular (Tn)n∈IN is a νt(·) – Cauchy sequence for t = 0, 1, . . ., hence for all t ∈ [0, 1].
Therefore, for fixed t ∈ [0, 1], (Tn)n converges to a nuclear operator Gt −→ Ht, which is
obviously the restriction of T to Gt. This shows the first and second assertion. The third
follows from

νt(T ) = lim
n
νt(Tn) .



Theorem 1.3 For every continuous linear map S : Ht −→ Gt and every r > 0 there exists
So ∈ L(Ho, Go), S1 ∈ L(H1, G1) such that

∥So∥ ≤ 1

r
1

1−t

∥S∥ ,

∥S1∥ ≤ r
1
t ∥S∥

and Sx = Sox+ S1x for all x ∈ H1.

Proof: Let E be the space of all complex (J×I) – matrices with only finitely many nonzero
entries, considered as a subspace ofHt⊗πG

′
t for all t. Put Ut = {u ∈ E : νt(u) ≤ 1}. Lemma

1.1. tells that

r
1

1−tUo ∩ 1

r
1
t

U1 ⊂ Ut(1)

for all r > 0 and t ∈ [0, 1]. S defines a linear form σ on E with |σ(u)| ≤ ∥S∥ for all
u ∈ Ut hence of the left side of (1). Therefore there are linear forms σo, σ1 on E such that
σo + σ1 = σ and

sup
{
|σo(u)| : u ∈ r

1
1−t Uo

}
≤ ∥S∥

sup
{
|σ1(u)| : u ∈ 1

r
1
t

U1

}
≤ ∥S∥ .

σo, σ1 define continuous linear maps So : Ho −→ Go, S1 : H1 −→ G1 with

∥So∥ ≤ 1

r
1

1−t

∥S∥ ,

∥S1∥ ≤ r
1
t ∥S∥

and Sox + S1x = Sx for all x with only finitely many nonzero coordinates, hence for all
x ∈ H1.

2. We shall make use of the following result:

Lemma 2.1 Let G,H be linear spaces and on each of them seminorms ∥ ∥o ≤ ∥ ∥1 ≤ ∥ ∥2
such that with suitable 0 ≤ τ < ϑ ≤ 1 and C ≥ 0

∥ ∥∗1 ≤ C∥ ∥∗o
1−ϑ∥ ∥∗2

ϑ on (G, ∥ ∥o)
′

∥ ∥1 ≤ C∥ ∥1−τ
o ∥ ∥τ2 on H .

Then there exists D such that for every linear map A : G −→ H with ∥Ax∥j ≤ Cj∥x∥j for
j = 0, 2 and x ∈ G, we have ∥Ax∥1 ≤ DC1−τ

o Cτ
2 ∥x∥1 for all x ∈ G.



Proof: Instead of the first inequality we may write (possibly increasing C):

∥y∥∗1 ≤ C
(
r∥y∥∗o + r1−

1
ϑ ∥y∥∗2

)
for all r > 0 and y ∈ (G, ∥ ∥o)

′
. The bipolar theorem yields

U1 ⊂ C
(
rUo + r1−

1
ϑU2

)
for all r > 0, where Uj = {x ∈ G : ∥x∥j ≤ 1}, j = 0, 1, 2.

Let x ∈ U1. For every n ∈ INo we have xn ∈ C2−n(1− 1
ϑ
)U2, yn ∈ C2−nUo with

x = xn − yn. Since xn − xn+1 = yn − yn+1 we obtain

∥Axn −Axn+1∥1 ≤ C2C1−τ
o Cτ

2 2 · 2−n(1−τ)−(n+1)(1− 1
ϑ
)τ

≤ D
′
C1−τ
o Cτ

2 2
−n(1− τ

ϑ
) .

Since C ≥ 1 we may assume xo = 0 and obtain

sup
n

∥Axn∥1 ≤ DC1−τ
o Cτ

2 .

For n so large that ∥x∥2 ≤ C2n(
1
ϑ
−1) we may assume yn = 0, i.e. x = xn. This proves the

assertion.

We prove two consequences of this lemma.

Lemma 2.2 Let F2
ι12−→ F1

ιo1−→ Fo, ι
o
2 = ιo1 ◦ ι12 be continuous linear maps with dense range

between Hilbert spaces such that

∥y ◦ ιo1∥∗1 ≤ C∥y∥∗o
1−ϑ∥y ◦ ιo2∥∗2

ϑ

for all y ∈ F
′
o. Then there exists a scale Gt, t ∈ IR, as is §1 and for every 0 ≤ ϑo < ϑ ≤ 1

continuous linear maps Ao, A1, A2, which make the following diagram commute

Fo
Ao−→ Go

↑ ↑
F1

A1−→ Gϑo

↑ ↑
F2

A2−→ G1

and such that Ao is invertible and A2 is surjective (hence has a right inverse R2).

Proof: After (if necessary) an equivalent change of the scalar product in F2 we may assume
that

ιo2x =
∑
i∈I

e−αi⟨x , ei⟩i∈Ifi

where (fi)i∈I is a complete orthonormal system in Fo and (ei)i∈I is an orthonormal system
in F2, complete in (ker ιo2)

⊥ (see [8], 8.3.1.). We set Aox = (⟨x , fi⟩o)i∈I and apply Lemma



2.1. to G := im ιo2 equipped with the norms ∥ ∥o, ∥ ∥1, ∥ ∥2 induced from Fo and, by ιo1
(resp. ιo2), from F1 (resp. F2). ∥ ∥2 can be expressed as follows

∥x∥22 =
∑
i∈I

e2αi |⟨x , fi⟩o|2

which means that |Aox|1 = ∥x∥2 for x ∈ G. We obtain, using | |ϑo ≤ | |1−ϑo
o | |ϑo

1 that

|Aox|ϑ ≤ 2D∥x∥1

for all x ∈ G. The maps A1 = Ao ◦ ιo1, A2 = Ao ◦ ιo2 satisfy the assertions of the Lemma.

Lemma 2.3 Let E2
ι12−→ E1

ιo1−→ Eo, ι
o
2 = ιo1 ◦ ι12 be continuous linear injective maps with

dense range between Hilbert spaces such that

∥ι12x∥1 ≤ C∥ιo2x∥1−τ
o ∥x∥τ2

for all x ∈ E2. Then there exists a scale Ht, t ∈ IR, as in §1 and for every 0 ≤ τ < τo ≤ 1
continuous linear maps Bo, B1, B2 which make the following diagram commute

Ho
Bo−→ Eo

↑ ↑

Hτo
B1−→ E1

↑ ↑

H1
B2−→ E2

and such that Bo and B2 are invertible.

Proof: We proceed as in the previous proof and first may assume that

ιo2x =
∑
j∈J

e−βj ⟨x , ej⟩2fj

where (ej)j∈J (resp. (fj)j∈J) are complete orthonormal systems in E2 (resp. Eo). We set

Bo(ξ) =
∑
j∈J

ξjfj

for ξ ∈ Ho. Then for B2 := Bo|H1 we have

B2(ξ) =
∑
j∈J

eβjξjej .

Hence Bo and B2 are isomorphisms. We apply Lemma 2.1. to H1 with the norms | |o, | |τo ,
| |1 and to E2 with the norms ∥ιo2x∥o, ∥ι12x∥1, ∥x∥2. We obtain using | |∗τo ≤ | |∗o

1−τo | |∗τo ,
that

∥ι12B2x∥1 ≤ D|x|τo
for all x ∈ H1, hence for all x ∈ Hτo . So B1 = ι12B2 satisfies, together with Bo, B2, the
assertion of the Lemma.

Finally we obtain the following result, which is crucial for the splitting theorem of §3.



Proposition 2.4 Let E2
ι12−→ E1

ιo1−→ Eo, F2
ι12−→ F1

ιo1−→ Fo be as in Lemmata 2.3.,
2.2.. Assume 0 ≤ τ < ϑ ≤ 1, φ ∈ L(E1, F1), ε > 0. Then there exist φo ∈ L(Eo, Fo),
φ2 ∈ L(E2, F2) such that ∥φo∥ ≤ ε and ιo1 ◦ φ ◦ ι12 = φo ◦ ιo2 + ιo2 ◦ φ2.

Proof: We choose 0 ≤ τ < t < ϑ ≤ 1 and, in the notation of Lemmata 2.2., 2.3., apply
Theorem 1.3. to ψ = A1 ◦φ ◦B1 ∈ L(Ht, Gt) and suitable r > 0. We obtain ψo ∈ L(Ho, Go)
and ψ1 ∈ L(H1, G1) such that ∥ψo∥ ≤ ε

∥A−1
o ∥ ∥B−1

o ∥ and ψx = ψox + ψ1x for all x ∈ H1.

We put φo = A−1
o ◦ ψo ◦ B−1

o , φ2 = R2 ◦ ψ2 ◦ B−1
o . Then φo ∈ L(Eo, Fo), φ2 ∈ L(E2, F2),

∥φo∥ ≤ ε, and on H1 we have

Ao ◦ ιo1 ◦ φ ◦ ι12 ◦B2 = A1 ◦ φ ◦B1

= ψo + ψ2

= Ao ◦ (φo ◦ ιo2 + ιo2 ◦ φ2) ◦B2 .

This yields the result.

3. We can now prove the main result of this paper, a splitting theorem for exact sequences
of Fréchet–Hilbert spaces. We assume that F , G, E are Fréchet–Hilbert spaces, i.e. there
exists a fundamental system ∥ ∥o ≤ ∥ ∥1 ≤ . . . of seminorms given as ∥x∥2k = ⟨x , x⟩k for
some positive semidefinite scalar product ⟨ , ⟩k.

Let 0 −→ F
j−→ G

q−→ E −→ 0 be a (topologically) exact sequence. We shall identify
F = ker j.

We assume that E has property (DN)

∃ p ∀ k ∃K,C : ∥ ∥k2 ≤ C∥ ∥p∥ ∥K

and F has property (Ω)

∀ p ∃ q ∀Q ∃ 0 < ϑ < 1, C : ∥ ∥∗q ≤ C∥ ∥∗p
1−ϑ∥ ∥∗Q

ϑ .

Property (DN) is equivalent to the existence of a logarithmically convex fundamental sys-
tem of seminorms, (Ω) to the existence of a fundamental system of seminorms, such that
its dual norms are a logarithmically convex system. Further descriptions can be found in
the literature (see [9],[14]). For the above mentioned description see [11]. Obviously (DN)
is equivalent to

∃ p ∀ k , 0 < τ < 1 ∃K,C : ∥ ∥k ≤ C∥ ∥1−τ
p ∥ ∥τK .

We may assume, as we will do from now on, that p in (DN) is 0.

Moreover we may choose a fundamental system of hilbertian seminorms in G, such that
for the induced (hilbertian) seminorms on F we have with suitable 0 < ϑk < 1 , Ck

∥ ∥∗k ≤ Ck∥ ∥∗k−1
1−ϑk∥ ∥ϑk

k+1 .



On E we assume as fundamental system of (hilbertian) seminorms the quotient norms of
the ∥ ∥k. This can be done so as to make p in (DN) to be zero.

Let Fk, Gk, Ek be the Hilbert spaces associated to the ∥ ∥k, ιlk : Ek −→ El, etc. the
connecting map for k ≥ l, and ιk : E −→ Ek, etc. the canonical map. For every k we have
an exact sequence

0 −→ Fk
jk−→ Gk

qk−→ Ek −→ 0

of Hilbert spaces, which clearly splits.
On E we define ∥x∥∼k = inf{∥ιkx+ ξ∥k : ξ ∈ kerιok}. This is an equivalent fundamental

system of hilbertian seminorms on E because, choosing K > k for given k according to
(DN), we obtain kerιoK = kerιkK and therefore for x ∈ E :

∥x∥∼k ≤ ∥x∥k ≤ inf{∥ιKx+ ξ∥K : ξ ∈ kerιkK} = ∥x∥∼K .

Moreover p in (DN) may be chosen again as 0 and all ιok (hence ιkk+1) are injective. This is
easily seen from the fact that the local Banach spaces are E∼

k = Ek/kerι
o
k and ∥·∥0 = ∥·∥∼0 .

Lemma 3.1 For every φ ∈ L(E,Fk) and ε > 0 there are ψ ∈ L(E,Fk−1), χ ∈ L(E,Fk+1)
such that sup

∥x∥o≤1
∥ψx∥k−1 ≤ ε, ιk−1

k
◦ φ = ψ + ιk−1

k+1
◦ χ.

Proof: We have ∥φx∥k ≤ C∥x∥∼
k′
, for suitable C, k

′
. We choose τ with 0 < τ < ϑk < 1

and for k
′
, τ numbers K

′
, C

′
according to the second form of (DN). Then the assertion is

an immediate consequence of Proposition 2.4..

Lemma 3.2 For every φ ∈ L(E,Fk) and ε > 0 there are ψ ∈ L(E,Fk−1), χ ∈ L(E,F )
such that sup

∥x∥o≤1
∥ψx∥k−1 ≤ ε, ιk−1

k
◦ φ = ψ + ιk−1 ◦ χ.

Proof: We put φo = φ and choose inductively maps φp ∈ L(E,Fk+p). If φp is chosen
we find, according to Lemma 3.1., ψp ∈ L(E,Fk+p−1), φp+1 ∈ L(E,Fk+p+1), such that

sup
∥x∥o≤1

∥ψpx∥k+p−1 ≤ ε2−p−1, ιk+p−1
k+p

◦ φp = ψp + ιk+p−1
k+p+1

◦ φp+1.

We put

χk+p−1 = ιk+p−1
k+p

◦ φp −
∞∑
ν=p

ιk+p−1
k+ν−1

◦ ψν .(2)

Then χk+p−1 ∈ L(E,Fk+p−1), and χk+p−1 = ιk+p−1
k+p

◦ χk+p. Hence there is χ ∈ L(E,F )

such that χk+p−1 = ιk+p−1 ◦ χ for all p.
We set

ψ =
∞∑
ν=0

ιk−1
k+ν−1

◦ ψν .

Then ψ ∈ L(E,Fk−1), sup
∥x∥o≤1

∥ψx∥k−1 ≤ ε and the required equality is (2) with p = 0.

Lemma 3.3 For any sequence φk ∈ L(E,Fk), k = 0, 1, . . ., there is a sequence Sk ∈
L(E,Fk), k = 0, 1, . . ., such that φk = Sk − ιkk+1Sk+1 for all k.



Proof: For φk and ε = 2−k we choose ψk and χk according to Lemma 3.2. and put

Sk = φk −
k∑

ν=0

ιk ◦ χν +
∞∑

ν=k+1

ιkν−1 ◦ ψν .

A straightforward calculation shows the result.

Theorem 3.4 If 0 −→ F
j−→ G

q−→ E −→ 0 is an exact sequence of Fréchet–Hilbert
spaces, if moreover E has property (DN) and F has property (Ω), then the sequence splits.

Proof: Assuming the arrangement described in the beginning of the section, let rk be a
right inverse for qk and Rk = rk ◦ ιk ∈ L(E,Gk). We put φk = ιkk+1

◦ Rk+1 − Rk. Then
φk ◦ qk = 0, hence φk ∈ L(E,Fk). Notice, that we consider Fk as a subspace of Gk.
According to the previous Lemma there are Sk ∈ L(E,Fk) such that φk = Sk − ιkk+1Sk+1

for all k. Therefore
ιkk+1 ◦ (Rk+1 + Sk+1) = Rk + Sk ,

which means that there is R ∈ L(E,G) such that Rk + Sk = ιk ◦ R. Hence R is a right
inverse for q.

Remark: It should be noted, that Lemma 3.3. says slightly more, than used in Theorem
3.4.. It states that Proj1(L(E,Fk))k = 0, (cf. [6], 3.3.; [5]). In consequence any exact
sequence 0 −→ F −→ G −→ E −→ 0 splits, also without the assumption, that G is
hilbertizable, if we only know that the local sequences split. However, this clearly implies
that G is hilbertizable. Theorem 3.4. can be expressed by saying, that Ext1(E,F ) = 0 in
the category of Fréchet–Hilbert spaces.
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mutung von Martineau’, Studia Math. 68 (1980), 225-240.


