Weitere Aufgaben zu Mathematik C

A. Kurvenintegrale und Stammfunktionen

1. Das Vektorfeld $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ sei gegeben durch

$$\mathbf{F}(x, y, z) = 2z(x + y)\mathbf{e}_1 + 2z(x + y)\mathbf{e}_2 + (x + y)^2\mathbf{e}_3$$

- a) Parametrisieren Sie die Strecke C, die die Punkte (0,0,0) und (1,1,2) verbindet und berechnen Sie das Kurvenintegral $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- b) Zeigen Sie, dass \mathbf{F} ein Gradientenfeld auf \mathbb{R}^3 ist. Bestimmen Sie eine Stammfunktion ϕ und verifizieren Sie das Resultat aus a) mittels dieser Stammfunktion..

Etwas schwierigere Variante: Sei C die Strecke von (1,0,1) nach (2,2,0).

2. Das Vektorfeld $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ sei gegeben durch

$$\mathbf{F}(x,y,z) = \begin{pmatrix} \cos(x+y) + \cos(z) \\ \cos(x+y) + z \\ y - x\sin(z) \end{pmatrix}.$$

- a) Parametrisieren Sie die Strecke C, die die Punkte $(-\pi, \pi, 0)$ und $(0, 0, \pi)$ verbindet und berechnen Sie das Kurvenintegral $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- b) Zeigen Sie, dass \mathbf{F} ein Gradientenfeld auf \mathbb{R}^3 ist. Bestimmen Sie eine Stammfunktion ϕ und verifizieren Sie das Resultat aus a) mittels dieser Stammfunktion.
- **3.** Das Vektorfeld $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ sei gegeben durch

$$\mathbf{F}(x,y,z) = \begin{pmatrix} 2xy + e^x \\ x^2 + yz^2 \\ y^2z \end{pmatrix}.$$

- a) Parametrisieren Sie den Streckenzug C, der von (0,0,0) über (0,1,0) nach (1,1,1) verläuft und berechnen Sie das Kurvenintegral $\int_C \mathbf{F} \cdot d\mathbf{r}$.
- b) Zeigen Sie, dass \mathbf{F} ein Gradientenfeld auf \mathbb{R}^3 ist. Bestimmen Sie eine Stammfunktion ϕ und verifizieren Sie das Resultat aus a) mittels dieser Stammfunktion..

4. Das Vektorfeld $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ sei in Abhängigkeit vom Parameter $\lambda \in \mathbb{R}$ gegeben durch

$$\mathbf{F}(x,y,z) = \begin{pmatrix} e^{yz} \\ z(\lambda + xe^{yz}) \\ y(1 + xe^{yz}) \end{pmatrix}.$$

- a) Sei C die Strecke von (1,0,0) nach (0,1,0) gefolgt vom Viertelkreisbogen von (0,1,0) nach (0,0,1) in der Ebene x=0. Berechnen Sie das Kurvenintegral $\int\limits_C \mathbf{F} \cdot d\mathbf{r}$.
- b) Gibt es einen Wert für λ , so dass **F** ein Gradientenfeld auf \mathbb{R}^3 ist? Wenn ja, bestimmen Sie in diesem Fall eine Stammfunktion ϕ und verifizieren Sie das Resultat aus a) mittels dieser Stammfunktion.
- **5.** Gegeben sei das folgende Vektorfeld $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$:

$$\mathbf{F}(x,y,z) = \begin{pmatrix} 3x\sqrt{x^2 + y^2} \\ 3y\sqrt{x^2 + y^2} \\ 0 \end{pmatrix}$$

- a) Parametrisieren Sie die Strecke C von (0,0,0) nach (3,4,2) und berechnen Sie das Kurvenintegral $\int\limits_C {\bf F} \cdot d{\bf r}.$
- b) Weisen Sie nach, dass F ein Gradientenfeld ist und finden Sie eine Stammfunktion.
- c) Schreiben Sie die Stammfunktion in Zylinderkoordinaten.
- d) Benutzen Sie schließlich die Stammfunktion, um das Ergebnis aus a) zu bestätigen.
- **6.** Das Vektorfeld $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ sei gegeben durch

$$\mathbf{F}(x, y, z) = (x^2 + xy^2 + 2z)\mathbf{e}_1 + (x^2y + z)\mathbf{e}_2 + (2x + y)\mathbf{e}_3.$$

- a) Parametrisieren Sie die Strecke C, die die Punkte (0,0,0) und (2,1,3) verbindet und berechnen Sie das Kurvenintegral $\int\limits_C \mathbf{F} \cdot d\mathbf{r}$.
- b) Zeigen Sie, dass \mathbf{F} ein Gradientenfeld auf \mathbb{R}^3 ist. Bestimmen Sie eine Stammfunktion φ und verifizieren Sie das Resultat aus a) mittels dieser Stammfunktion..

B. Flächenintegrale und die klassischen Integralsätze

1. Die Fläche S sei der durch $x^2+y^2=a^2,\,0\leq z\leq h$ definierte Zylindermantel (a,h>0). Sei $\mathbf{F}\colon\mathbb{R}^3\to\mathbb{R}^3$ das Vektorfeld

$$\mathbf{F}(x,y,z) = xz\mathbf{e}_1 + yz\mathbf{e}_2 + z^2\mathbf{e}_3.$$

- a) Berechnen Sie das Flussintegral $\int\limits_{S} \mathbf{F} \cdot \mathbf{n} \, dS.$
- b) Ergänzen Sie die Fläche zu einer geschlossenen Fläche S', indem Sie den Boden $\{(x,y,0)\mid 0\leq x^2+y^2\leq a^2\}$ und den Deckel $\{(x,y,h)\mid 0\leq x^2+y^2\leq a^2\}$ hinzufügen. Bestimmen Sie $\int\limits_{S'}\mathbf{F}\cdot\mathbf{n}\,dS$.
- $\mathbf{2}$. Sei S die Oberfläche der Körpers

$$K = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 4, \ 0 \le z \le 4 - x^2 - y^2\}.$$

Sei $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ das Vektorfeld definiert durch

$$\mathbf{F}(x, y, z) = (x + y) \mathbf{e}_1 + (y + z) \mathbf{e}_2 + (x + z) \mathbf{e}_3$$

und ${\bf n}$ die äußere Flächennormale. Berechnen Sie $\int\limits_S {\bf F} \cdot {\bf n} \, dS$

- a) direkt, d.h. als Flächenintegral,
- b) mit Hilfe des Satzes von Gauß.
- $\mathbf{3.}$ Sei C die Randkurve der Fläche

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - 2z = 0, \ 0 \le z \le 2\}$$

und $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ das Vektorfeld definiert durch

$$\mathbf{F}(x,y,z) = 3y\,\mathbf{e}_1 - xz\,\mathbf{e}_2 + yz^2\,\mathbf{e}_3.$$

Sei ${\bf n}$ die nach oben zeigende Flächennormale und C bezüglich ${\bf n}$ positiv orientiert (Rechte-Hand-Regel). Bestimmen Sie $\int\limits_C {\bf F} \cdot d{\bf r}$

- a) direkt, d.h. als Wegintegral,
- b) mit Hilfe des Satzes von Stokes.

4. Sei S die Randfläche des Würfels

$$W = \{(x, y, z) \in \mathbb{R}^3 \mid 0 \le x \le 1, \ 0 \le y \le 1, \ 0 \le z \le 1\}$$

und $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ das Vektorfeld $\mathbf{F}(x, y, z) = 4xz \, \mathbf{e}_1 - y^2 \, \mathbf{e}_2 + yz \, \mathbf{e}_3$.

- a) Berechnen Sie $\int_{S} \mathbf{F} \cdot \mathbf{n} \, dS$.
- b) Sei $B = \{(x, y, z) \in S \mid z = 0\}$ der Boden des Würfels und $S' = S \setminus B$ die Fläche, die aus S durch Entfernen des Bodens B entsteht. Berechnen Sie $\int_{S'} \mathbf{F} \cdot \mathbf{n} \, dS$.
- $\mathbf{5}$. Sei S die Oberfläche der Kugel

$$K = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le R^2\}$$

und $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ das Vektorfeld $\mathbf{F}(x, y, z) = x^3 \mathbf{e}_1 + y^3 \mathbf{e}_2 + z^3 \mathbf{e}_3$.

- a) Berechnen Sie $\int_{S} \mathbf{F} \cdot \mathbf{n} \, dS$.
- b) Sei $S'=\{(x,y,z)\in S\mid z\geq 0\}$ die obere Hemisphäre. Berechnen Sie $\int\limits_{S'}\mathbf{F}\cdot\mathbf{n}\,dS.$
- 6. Bestimmen Sie $\int\limits_{S}$ rot $\mathbf{F} \cdot \mathbf{n} \, dS$ in den folgenden Fällen:
 - a) $\mathbf{F}(x, y, z) = 2y \mathbf{e}_1 + 3x \mathbf{e}_2 z^2 \mathbf{e}_3$,

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 9, \ z \ge 0\}$$

(obere Hemisphäre vom Radius 3 um den Nullpunkt), ${\bf n}$ die nach oben zeigende Normale.

b)
$$\mathbf{F}(x, y, z) = (x - z)\mathbf{e}_1 + (x^3 + yz)\mathbf{e}_2 - 3xy^2\mathbf{e}_3$$
,

$$S = \{(x, y, z) \in \mathbb{R}^3 \mid z = 2 - \sqrt{x^2 + y^2}, \ z \ge 0\}$$

(Mantel des Kegels um die z-Achse mit Öffnungswinkel 90°), ${\bf n}$ die nach oben zeigende Normale.

C. Vektorfelder in Zylinder- und Kugelkoordinaten

1. Das Vektorfeld $\mathbf{F} \colon B = \mathbb{R}^3 \setminus \{xy\text{-Ebene}\} \to \mathbb{R}^3$ sei gegeben durch

$$\mathbf{F}(x, y, z) := \frac{2x}{z} \mathbf{e}_1 + \frac{2y}{z} \mathbf{e}_2 - \frac{x^2 + y^2}{z^2} \mathbf{e}_3.$$

4

- a) Transformieren Sie das Feld in Zylinderkoordinaten.
- b) Berechnen Sie Divergenz und Rotation (ebenfalls in Zylinderkoordinaten).
- c) Ist **F** wirbelfrei? Wenn ja, geben Sie ein Potential auf B an.

2. Das Vektorfeld $\mathbf{F} \colon B = \mathbb{R}^3 \setminus \{\{z\text{-Achse}\} \cup \{xy\text{-Ebene}\}\} \to \mathbb{R}^3$ sei gegeben durch

$$\mathbf{F}(x,y,z) := \frac{1}{\sqrt{x^2 + y^2}} \left(\frac{x}{z} \, \mathbf{e}_1 + \frac{y}{z} \, \mathbf{e}_2 - \frac{(x^2 + y^2)}{z^2} \, \mathbf{e}_3 \right).$$

- a) Transformieren Sie das Feld in Zylinderkoordinaten.
- b) Berechnen Sie Divergenz und Rotation (ebenfalls in Zylinderkoordinaten).
- c) Ist \mathbf{F} wirbelfrei? Wenn ja, geben Sie ein Potential auf B an.
- **3.** Sei $S=\{(x,y,z)\in\mathbb{R}^3\mid z=\sqrt{x^2+y^2}-2\,,\ z\leq 0\}$ der Kegelmantel mit Spitze in (0,0,-2) und Höhe 2 und $\mathbf n$ seine nach außen (also nach unten) zeigende Flächennormale. Das Vektorfeld $\mathbf F\colon\mathbb{R}^3\to\mathbb{R}^3$ sei gegeben durch

$$\mathbf{F}(x,y,z) = \sqrt{x^2 + y^2} \begin{pmatrix} 2x \\ 2y \\ -3z \end{pmatrix} .$$

- a) Stellen Sie \mathbf{F} in Zylinderkoordinaten dar.
- b) Berechnen Sie Divergenz und Rotation von ${\bf F}$ in Zylinderkoordinaten.
- c) Berechnen Sie $\int_{S} \mathbf{F} \cdot \mathbf{n} \, dS$.
- d) Berechnen Sie $\int_{S} \mathbf{rot} \, \mathbf{F} \cdot \mathbf{n} \, dS$.
- 4. Das Vektorfeld $\mathbf{F} \colon B = \mathbb{R}^3 \setminus \{\mathbf{0}\} \to \mathbb{R}^3$ sei gegeben durch

$$\mathbf{F}(x, y, z) := \frac{1}{(x^2 + y^2 + z^2)^2} (x\mathbf{e}_1 + y\mathbf{e}_2 + z\mathbf{e}_3).$$

- a) Transformieren Sie das Feld in Kugelkoordinaten.
- b) Berechnen Sie Divergenz und Rotation (ebenfalls in Kugelkoordinaten).
- c) Ist \mathbf{F} wirbelfrei? Wenn ja, geben Sie ein Potential auf B an.

D. Funktionentheorie

1. Geben Sie die Singularitäten der folgenden komplexen Funktionen an und bestimmen Sie ihren Typ.

a)
$$f(z) = \frac{z - \sin z}{z^3}$$
 b) $g(z) = \frac{\sin z}{1 - \tan z}$ $\left[c \right] h(z) = \frac{1}{\sin\left(\frac{1}{z}\right)}$ (schwerer)

2. Bestimmen Sie die Residuen der folgenden Funktionen in allen ihren isolierten Singularitäten.

a)
$$f(z) = \frac{1}{(z-1)(z+1)^2}$$
 b) $g(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$ c) $h(z) = e^{-\frac{1}{z}}$.

3. Die komplexe Funktion f sei gegeben durch

$$f(z) = \frac{e^z - 1}{z(z+1)(z-2)}.$$

- a) Geben Sie die isolierten Singularitäten von f an und bestimmen Sie ihren Typ.
- b) Berechnen Sie die Residuen in den Singularitäten.
- c) Sei C eine einfach geschlossene, positiv orientierte Kurve, die keine Singularität von f enthält. Welche Werte kann, in Abhängigkeit von der Kurve, $\oint_C f(z) dz$ annehmen?
- 4. a) Geben Sie die isolierten Singularitäten der Funktion

$$f(z) = \frac{z}{(z-1)(z+1)^3}$$

an und bestimmen Sie ihren Typ.

- b) Berechnen Sie das Integral $\oint_{|z+1|=1} f(z) dz$.
- 5. Die komplexe Funktion f sei gegeben durch

$$f(z) = \frac{1}{(z^2+1)^2(z^2+4)}.$$

- a) Geben Sie die Singularitäten von f an und bestimmen Sie ihren Typ.
- b) Bestimmen Sie die Residuen in den Singularitäten.
- c) Berechnen Sie das reelle Integral

$$\int_{-\infty}^{\infty} \frac{dx}{(x^2+1)^2(x^2+4)} \, .$$

6. Berechnen Sie

$$\int_{0}^{\infty} \frac{x^2}{(x^2+4)^2(x^2+9)} \, dx \, .$$

E. Fourierreihen

- 1. Sei f die periodische Fortsetzung der Funktion $g(t) = t^3$, $-1 \le t \le 1$. Bestimmen Sie die Fourierreihe von f in komplexer Form sowie als Sinus/Kosinusreihe.
- **2.** Sei $f: \mathbb{R} \to \mathbb{R}$ die 2-periodische Fortsetzung der Funktion $g: (-1,1] \to \mathbb{R}$ definiert durch

$$g(t) = \begin{cases} t+1 & \text{für } -1 < t \le 0, \\ 1 & \text{für } 0 < t \le 1. \end{cases}$$

- a) Skizzieren Sie den Graphen von f.
- b) Bestimmen Sie die Fourierreihe von f in komplexer Form sowie als Sinus/Kosinusreihe.
- 3. Sei f die 2π -periodische Fortsetzung der Funktion $g\colon (-\pi,\pi]\to\mathbb{R}$ definiert durch

$$g(t) = \begin{cases} 0 & \text{für } -\pi < t \le 0, \\ \sin t & \text{für } 0 < t \le \pi. \end{cases}$$

- a) Skizzieren Sie den Graphen von f.
- b) Bestimmen Sie die Fourierreihe von f in komplexer Form sowie als Sinus/Kosinusreihe.
- **4.** Sei f die 2-periodische Fortsetzung der Funktion $g:(-1,1] \to \mathbb{R}$ definiert durch

$$g(t) = \begin{cases} (t+1)^2 & \text{für } -1 < t \le 0, \\ (t-1)^2 & \text{für } 0 < t \le 1. \end{cases}$$

- a) Skizzieren Sie den Graphen von f.
- b) Bestimmen Sie die Fourierreihe von f in komplexer Form sowie als Sinus/Kosinusreihe.
- **5.** Sei f die T-periodische Fortsetzung der Funktion $g:(0,T]\to\mathbb{R}$ definiert durch

$$g(t) = \begin{cases} -1 & \text{für } 0 < t \le T/2, \\ 2 & \text{für } T/2 < t \le T. \end{cases}$$

- a) Skizzieren Sie den Graphen von f.
- b) Bestimmen Sie die Fourierreihe von f in komplexer Form sowie als Sinus/Kosinusreihe.

7

F. Fouriertransformation

- **1.** Die Funktion $f: \mathbb{R} \to \mathbb{R}$ sei definiert durch $f(t) = \cos(t)e^{-|t|}$.
 - a) Skizzieren Sie den Graphen von f. Ist f gerade, ungerade oder keines von beidem?
 - b) Berechnen Sie die Fouriertransformierte von f.
- **2.** Für $a \in \mathbb{R}$ sei die Funktion $f_a : \mathbb{R} \to \mathbb{R}$ definiert durch

$$f_a(t) = \begin{cases} 1 & \text{für } -2 < t < -1, \\ a & \text{für } -1 < t < 1, \\ 1 & \text{für } 1 < t < 2, \\ 0 & \text{sonst.} \end{cases}$$

- a) Skizzieren Sie den Graphen von f_a .
- b) Berechnen Sie die Fouriertransformierte F_a von f_a .
- c) Benutzen Sie b), um die Fouriertransformierte der Funktion $g \colon \mathbb{R} \to \mathbb{R}$ mit

$$g(t) = \begin{cases} t+2 & \text{für } -2 < t < -1, \\ -t & \text{für } -1 < t < 1, \\ t-2 & \text{für } 1 < t < 2, \\ 0 & \text{sonst} \end{cases}$$

sowie der Funktion h(t) = tg(t) zu bestimmen.

- **3.** Sei $f : \mathbb{R} \to \mathbb{R}$ gegeben durch $f(t) = \begin{cases} 1, & |t| \leq 1, \\ 0, & |t| > 1. \end{cases}$
 - a) Berechnen Sie die Fouriertransformierte von f.
 - b) Bestimmen Sie g(t) = (f * f)(t).
 - c) Berechnen Sie die Fouriertransformierte von g.
 - d) Benutzen Sie b), c) und die Umkehrformel, um

$$\int_{-\infty}^{\infty} \left(\frac{\sin x}{x}\right)^2 dx$$

zu bestimmen.

4. Sei a eine positive reelle Zahl. Bestimmen Sie die Fouriertransformierte der Funktion

$$f \colon \mathbb{R} \to \mathbb{R}, \quad f(t) = |t|e^{-a|t|}.$$

5. Die Funktion $f \colon \mathbb{R} \to \mathbb{R}$ sei definiert durch

$$f(t) = \begin{cases} -\frac{1}{2} & \text{für } -2 < t < -1, \\ \frac{1}{2} & \text{für } 1 < t < 2, \\ 0 & \text{sonst.} \end{cases}$$

- a) Skizzieren Sie den Graphen von f. Ist f gerade, ungerade oder keines von beidem?
- b) Berechnen Sie die Fouriertransformierte von f.
- c) Bestimmen Sie die Fouriertransformierte von tf(t).

G. Laplace-Transformation und Differentialgleichungen

1. Lösen Sie das Anfangswertproblem

$$\begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} \sigma(t) \\ 0 \end{pmatrix} \;, \qquad \begin{pmatrix} y_1(0) \\ y_2(0) \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 0 \end{pmatrix} \;.$$

2. Lösen Sie das Anfangswertproblem

$$y'_1 + y_1 + 2y_2 = t + 2$$
 $y_1(0) = 0$
 $y'_2 + 2y_1 - 2y_2 = 2t + 2$ $y_2(0) = 2$

3. Lösen Sie das Anfangswertproblem

$$y'_1 - y_1 + y_2 = -t$$
 $y_1(0) = 0$
 $y'_2 + 2y_1 - 2y_2 = 2t + 2$ $y_2(0) = 2$

4. Lösen Sie das Anfangswertproblem

$$y'_1 + 2y_2 = 3t$$
 $y_1(0) = \frac{3}{4}$
 $y'_2 - 2y_1 = 4$ $y_2(0) = 1$

5. Lösen Sie das Anfangswertproblem

$$y'_1 + y_1 - y_2 = 0$$
 $y_1(0) = 0$
 $y'_2 + y_2 - 4y_3 = 0$ $y_2(0) = 1$
 $y'_3 - y_1 + 4y_3 = 0$ $y_3(0) = -1$

H. Z-Transformation und Differenzengleichungen

1. Lösen Sie die Differenzengleichung

$$x_{n+3} - 3x_{n+2} + 3x_{n+1} - x_n = n$$

zu den Anfangsbedingungen $x_0 = 0$, $x_1 = x_2 = 1$ mittels Z-Transformation. Überprüfen Sie Ihr Ergebnis, indem Sie die Folgeglieder x_3 , x_4 direkt aus der Rekursionsformel berechnen.

2. Lösen Sie die Differenzengleichung

$$8x_{n+2} - 6x_{n+1} + x_n = 0$$

zu den Anfangsbedingungen $x_0 = x_1 = 1$ mittels Z-Transformation. Überprüfen Sie Ihr Ergebnis, indem Sie die Folgeglieder x_2 , x_3 direkt aus der Rekursionsformel berechnen.

3. Lösen Sie die Differenzengleichung

$$2x_{n+2} + 3x_{n+1} - 2x_n = f_n \quad \text{mit} \quad f_n = \begin{cases} -1 & \text{für } n = 0, \\ 0 & \text{für } n = 1, \\ 3n - 5 & \text{für } n > 1 \end{cases}$$

zu den Anfangsbedingungen $x_0 = 0$ und $x_1 = 1$. Überprüfen Sie Ihr Ergebnis, indem Sie die Folgeglieder x_2 , x_3 direkt aus der Rekursionsformel berechnen.

4. Lösen Sie die Differenzengleichung

$$x_{n+2} - x_{n+1} - 6x_n = 3^n - 1$$

zu den Anfangsbedingungen $x_0 = 1$ und $x_1 = 3$. Überprüfen Sie Ihr Ergebnis, indem Sie die Folgeglieder x_2 , x_3 direkt aus der Rekursionsformel berechnen.

5. Lösen Sie die Differenzengleichung

$$x_{n+2} - 4x_{n+1} + 3x_n = 2^{n+2}$$

zu den Anfangsbedingungen $x_0 = 1$, $x_1 = 3$ mittels Z-Transformation. Überprüfen Sie Ihr Ergebnis, indem Sie die Folgeglieder x_2 , x_3 direkt aus der Rekursionsformel berechnen.