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1 Introduction1

Einstein’s theory of general relativity triggered a multiplic-
ity of new ideas in differential geometry. In 1917, Levi-Civita
discovered that Einstein’s interpretation of the Christoffel sym-
bols in Riemannian geometry as components of the gravita-
tional field could be given a geometrical meaning by the con-
cept of parallel displacement. That was the starting point for
investigating a whole range of generalized differential geo-
metric structures. J. A. Schouten and his student D. Struik
studied symbolic methods for establishing an “absolute cal-
culus” in Amsterdam. In Zürich, H. Weyl formed the gener-
alized concept of an affine connection, no longer necessarily
derived from a Riemannian metric, and generalized the con-
cept of metrical structure with the idea of a gauge metric and
a non-integrable scale connection. A. Eddington investigated
affine and linear connections at Cambridge. In Paris, E. Cartan
started his programme of bringing Klein’s view of geometry
to bear upon differential geometry, and at Princeton the group
around O. Veblen, L. P Eisenhart and T. Y. Thomas looked for
projective structures in differential geometry. Most of these
geometrical research programmes were closely related to at-
tempts to create a unified field theory of matter, interactions
and geometry.2

The upsurge of new ideas made the 1920s and 1930s a
happy time for differential geometry. In this contribution we
look at the proposals of H. Weyl and E. Cartan from the early
1920s. The question of how the Kleinian view of transforma-
tion groups could be imported into a differential geometric
setting played a crucial role for both of them. They gave dif-
ferent answers, although with a certain overlap. Only after
further steps of generalization could their views be subsumed
into an even wider frame, that of connections in principal fi-
bre bundles. This was an achievement of the second half of the
century, with C. Ehresmann as one of the principal players. It
will not be discussed here; here we concentrate on Weyl’s and
Cartan’s respective views in the 1920s.

2 Weyl

Weyl’s papers of 1918 and STM
In April 1918, A. Einstein presented Weyl’s paper Gravita-

tion and electricity (Gravitation und Elektizität) (Weyl 1918a)
to the Berlin Academy of Sciences. He added a short crit-
ical comment explaining why he doubted the reliability of
the physical interpretation Weyl gave. The paper contained

a scale gauge generalization of Riemannian geometry, with
a length connection expressed with a differential form ϕ =∑

i ϕidxi as a crucial ingredient. Weyl wanted to identify the
scale connection with the potential of the electromagnetic field
and built the first geometrically unified theory (UFT) of grav-
ity and electromagnetism on this idea (Vizgin 1994, O’Raife-
artaigh 1997). The unification built crucially on the property
of ϕ being a gauge field. This idea turned out to be of long-
lasting importance, although not in its original form. A few
weeks later, a second paper of Weyl followed in Mathematis-

che Zeitschrift (Weyl 1918b). It presented the same topic to a
mathematical audience and put the Weylian metric in the per-
spective of a broader view of differential geometry. Here Weyl
generalized Levi-Civita’s idea of parallel displacement in a
Riemannian manifold to that of an affine connection Γ = (Γi

jk
)

(logically) independent of any metric.
The manuscript of Weyl’s first book on mathematical

physics, Space – Time – Matter (STM) (Raum – Zeit – Ma-
terie), delivered to the publishing house (Springer) Easter
1918, did not contain Weyl’s new geometry and proposal for a
UFT. It was prepared from the lecture notes of a course given
in the Summer semester of 1917 at the Polytechnical Institute
(ETH) Zürich. Weyl included his recent findings only in the
3rd edition (1919) of the book. The English and French ver-
sions (Weyl 1922b, Weyl 1922a), translated from the fourth
revised edition (1921), contained a short exposition of Weyl’s
generalized metric and the idea for a scale gauge theory of
electromagnetism. E. Cartan read it and referred to it imme-
diately.

Weyl’s basic ideas for the generalization of Riemannian
metrics in his papers of 1918 and in STM (3rd edition ff.)
may be summarised as follows:
(1) Generalize Levi-Civita’s concept of parallel displacement

for Riemannian manifolds to an abstract kind of “parallel
displacement”, not a priori linked to a metrical structure,
Γ = (Γi

jk
), called an affine connection (or torsion free lin-

ear connection in Cartanian’s terminology).
(2) Build up geometry from the purely infinitesimal point of

view (“local” in today’s physicists language, i.e. using es-
sentially the tangent structure of the manifold), with sim-

ilarities as the basic transformations of space structure
because no natural unit should be assumed in geometry a
priori.

(3) The possibility to directly compare metrical quantities
(physical observables) at different points of the space-
time manifold M ought to be considered a defect of Rie-



mannian geometry which is due to its historical origin in
Gaussian surface theory. It presupposes a kind of “distant
geometry” counter to modern field physics.
In Weyl’s view it should be possible to choose a scale

(Maßstab) freely and independently at every point of the space-
time M, to gauge the manifold. Then one arrives at a Rieman-
nian (or Lorentzian, etc.) metric g := (gµν) with the squared
line element

ds2 =
∑

gµνdxµdxν.

Let us call it the Riemannian component of a gauged Weylian

metric. Comparison of quantities (observables) at different
points was then possible only by integrating a length or scale

connection, given by a differential 1-form,

ϕ = (ϕµ) ϕ =
∑
ϕµdxµ = ϕidxµ ,

which expresses the infinitesimal change of measuring stan-
dards (relative to the gauge). Both components together (g, ϕ)
specify the metric in the chosen gauge.

To secure consistency, a different choice of the scale g̃ =

Ω2g has to be accompanied by a transformation

ϕ̃ = ϕ − d(logΩ) = ϕ −
dΩ

Ω
, (1)

a gauge transformation (Eichtransformation) in the literal sense
of the word. In late 1918, this word appeared in correspon-
dence with Einstein (Einstein 1987ff., VIII, 661), maybe af-
ter their oral discussion in the months before. In 1919, Weyl
started to use it in his publications.

In moderately modernized language, we may consider a
Weylian metric [(g, ϕ)] to be defined by an equivalence class
of pairs (g, ϕ). Equivalence is given by gauge transformations.

With this generalization of Riemannian geometry, Weyl
looked for gauge covariant descriptions of properties and in
particular for gauge invariant objects, among which the scale

curvature (curvature of the scale connection) f := dϕ was
the first to be found. He discovered that a Weylian metric
uniquely determines a compatible affine connection, the (scale
gauge dependent) Weyl-Levi-Civita connectionΓ = Γ(g, ϕ). It
leads to scale invariant Riemann and Ricci curvatures, Riem,

Ric, and scale invariant geodesics. A Weylian metric turned
out to be reducible to a Riemannian one if and only if f =

dϕ = 0 (integrable Weyl geometry). Finally, Weyl derived a
tensor C = (Ci jkl) depending only on the conformal class [g]
of the metric, with C = 0 a necessary condition for conformal
flatness (but not sufficient) if dim M = n > 3. Later it was
called conformal curvature or the Weyl tensor (Weyl 1918b,
21).

As has already been mentioned, Weyl originally identi-
fied the scale connection ϕ with the potential of the elec-

tromagnetic field. That led to a gauge field theory for elec-
tromagnetism with group (R+, ·). He thus thought that the
Weylian metric [(g, ϕ)] was able to unify gravity and electro-
magnetic interaction. In this frame the Mie-Hilbert theory of
matter with its combined Lagrangian for gravity and electro-
magnetism could be placed in a geometrically unified scheme.
This would, so Weyl hoped for roughly two years, lead to a
success for a purely field theoretic, dynamistic theory of mat-
ter.

Einstein did not trust Weyl’s new theory physically, al-
though he admired it from a mathematical point of view. He

praised the “beautiful consequence (wunderbare Geschlossen-
heit)” of Weyl’s thought “. . . apart from its agreement with

reality . . . ” (emphasis, ES) (Einstein 1987ff., vol. VIII, letter
499). For Einstein the path dependence of the scale transfer
function for the measurement units

λ(p0, p1) = e
∫ 1

0
ϕ(γ′)dτ, γ path from p0 to p1 (2)

gave reason for serious concern. In his view, no stable fre-
quency of atomic clocks could be expected in Weyl’s theory.
But Weyl was not convinced. He countered with the assump-
tion that there seems to be a natural gauge for atomic clocks
because they adapt to the local field constellation of scalar
curvature (Weyl gauge).

Other physicists, among them A. Sommerfeld, W. Pauli
and A. Eddington, reacted differently and at first positively.
But after a period of reconsideration they also adopted a more
critical position. That did not remain without influence on
Weyl. In particular, Pauli’s critique formulated in his arti-
cle on general relativity in the Enzyklopädie Mathematischer

Wissenschaften (Pauli 1921), known to Weyl in draft already
in Summer 1920, and during discussions at Bad Nauheim in
September the same year, left traces on Weyl’s position.

In late 1920, Weyl withdrew from defending his pro-
gramme of a purely field theoretical explanation of matter and
relativised the role of his unified field theory. But he did not
give up his programme of purely infinitesimal geometry.

What remained?
Weyl’s ideas contained two germs of insight which turned out
to be of long-lasting importance:
– The enlargement of the automorphism group of classical

differential geometry by the scale gauge group resulted in a
new invariance principle. Weyl identified it as “the law of
the conservation of electricity” (Weyl 1918a, 38).

– Moreover, scale gauge geometry was conceptually basic
and structurally well founded. Weyl showed this in an in-
vestigation which he called the analysis of the problem of

space (APOS)

The first point was later identified as a special case of
E. Noether’s theorems (Noether 1918).3 With Yang/Mills and
Utiyama’s generalization, it became an important structural
feature of non-abelian gauge theory in the second half of the
century. With regard to the second point, Weyl took up mo-
tifs of the 19th century discussion of the problem of space in
the sense of Helmholtz – Lie – Klein and adapted the mode
of questioning to the constellation of field theoretic geometry
after the rise of GRT. That made Weyl’s enterprise compat-
ible to Élie Cartan’s broader programme of an infinitesimal
implementation of the Kleinian viewpoint.

Analysis of the problem of space (APOS)

Between 1921 and 1923, Weyl looked for deeper conceptual
foundations of his purely infinitesimal geometry in a mani-
fold M (the “extensive medium of the external world”) as an
a priori characterization of the “possible nature of space”. In a
clear allusion to Kant’s distinction of different kinds of state-
ments a priori, Weyl distinguished an “analytic” part and a
“synthetic” part of his investigation. In the first step, Weyl
analysed what he considered the necessary features of any
meaningful transfer of congruence considerations to purely



infinitesimal geometry. In the second step he enriched the
properties of the resulting structure by postulates he consid-
ered basic for a coherent geometric theory.

His basic idea was that a group of generalized “rotations”,
a (connected) Lie subgroup G ⊂ S LnR, had to be consid-
ered similarly to Kleinian geometry. In the new framework of
purely infinitesimal geometry, the group could no longer be
assumed to operate on the manifold M itself but had only “in-
finitesimal” ranges of operation. In slightly modernised ter-
minology, G operates on every tangent space of M separately.

Conceptually necessary features (“Analytic part” of APOS):
– At each point p ∈ M point congruences (“rotations”) Gp ⊂

S LnR are given. They operate on the infinitesimal neigh-
bourhood of the point (in TpM). All Gp are isomorphic to
some G ⊂ S LnR.

– The Gp differ by conjugations from point to point

Gp = h−1
p Ghp ,

where hp lies in the normalizer G̃ of G and depends on the
point p. Weyl called G̃ the “similarity group” of G.

The Gp allowed one to speak of point congruences (“rota-
tions”) inside each infinitesimal neighbourhood TpM only.
In order to allow for a “metrical comparison” between two
neighbourhoods of p and p′, even for infinitesimally close
points p and p′, another gadget was necessary. Weyl argued
that the most general conceptual possibility for such a com-
parison was given by a linear connection.
– In addition to the Gp, a linear connectionΛ = (Λi

jk
) is given

(in general with torsion in the later terminology of Cartan).
Weyl calledΛ an infinitesimal congruence transfer, or even
simply a (generalized) metrical connection.

An infinitesimal congruent transfer need not be “parallel”.
Thus an affine connection Γ (without torsion)4 continued to
play a different role from a general metrical connection. More-
over, two connectionsΛi

jk
and Λ̃i

jk
may characterize the same

infinitesimal congruence structure. This is the case if they dif-
fer (point dependently) by “infinitesimal rotations” from the
Lie group of G. In more modern language that meant:

Λ ∼ Λ̃⇐⇒ Λ − Λ̃ = A,

A diff. form with values in g = Lie G . (3)

Rotations in the infinitesimal neighbourhoods and metrical
connections were, according to Weyl, minimal conditions nec-
essary for talking about infinitesimal geometry in a (general-
ized) metrical sense. He did not yet consider these conditions
sufficient but established two additional postulates.

Complementary conceptual features (“synthetic part” of
APOS): In order that an infinitesimal congruence structure in
the sense of the analytic postulates may characterize the “na-
ture of space”, Weyl postulated that the following conditions
are satisfied.

– Principle of freedom.
In a specified sense (not discussed here in detail) G al-
lows the “widest conceivable range of possible congruence
transfers” at one point.

With this postulate Weyl wanted to establish an infinitesimal
geometric analogue to the Helmholtz postulate of free mo-
bility in the classical analysis of space. Of course, it had to

be formulated in a completely different way. Weyl argued that
the “widest conceivable” range of possibilities for congruence
transfers has to be kept open by the geometric structure, in or-
der not to put restrictions on the distribution and motion of
matter. In place of free mobility of rigid bodies Weyl put the
idea of a free distribution of matter.

The widest possible range for congruence transfer given,
Weyl demanded from the group G that it took care of a cer-
tain coherence of the infinitesimal geometric structure. For
him such a coherence condition was best expressed by the
existence of a uniquely determined affine connection among
all the metrical connections which could be generated from
one of them by arbitrary infinitesimal rotations at every point
(compare with equation (3)).

– Principle of coherence.
To each congruent transfer Λ = (Λi

jk
) exists exactly one

equivalent affine connection.

In his Barcelona lectures (Weyl 1923) Weyl gave an inter-
esting argument by analogy to the constitution of “a state”
in which a postulate of freedom (for citizens, rather than for
matter in general) is combined with a postulate of coherence.
He expected from the constitution of a liberal republic that
the free activity of the citizens is restricted only by the de-
mand that it does not contradict the “general well-being” of
the community (the “state”). So Weyl saw a structural anal-
ogy between the constitution of a liberal state and the “nature
of space” and used it to motivate the choice of the postulates
of the “synthetic” part of his analysis of the space.

After a translation of the geometrical postulates into con-
ditions for the Lie algebra of the groups which are able to
serve as “rotations” of an infinitesimal congruence geometry
in the sense of the APOS (analytical and synthetic part), Weyl
managed, in an involved case by case argument, to prove the
following.

Theorem. The only groups satisfying the conditions for “ro-

tation” groups in the APOS (analytic and synthetic part) are

the special orthogonal groups of any signature G � S O(p, q)
with “similarities” G̃ � S O(p, q) × R+.

That was a pleasing result for Weyl’s generalization of Rie-
mannian metrics. It indicated that the structure of Weyl geom-
etry was not just one among many more or less arbitrary gen-
eralizations of Riemannian geometry but of basic conceptual
importance.5 Note that, in modernized language, the “similar-
ities” G̃, i.e., the normalizer in GL(n) of the “congruences” G,
plays the role of the structure group, not the “rotations” them-
selves. Weyl implemented a (normal) extension of the con-
gruence group as the structure group of his generalized “met-
rical” infinitesimal geometry. That gave place to the gauge
structure characteristic for his approach.

According to the 4th edition of STM, Weyl proudly de-
clared that the analysis of the problem of space ought to
be considered “. . . a good example of the essential analysis
[Wesensanalyse] striven for by phenomenological philosophy
(Husserl), an example that is typical for such cases where a
non-immanent essence is dealt with” (Weyl 1922b), transla-
tion from (Ryckman 2005, 157).



Weyl on conformal and projective structure in 1921

Shortly after having arrived at the main theorem of APOS,
Weyl wrote a short paper on the “placement of projective and
conformal view” in infinitesimal geometry (Weyl 1921). It
was triggered by a paper of Schouten which he had to re-
view for F. Klein. In his paper Weyl investigated classes of
affine connections with the same geodesics. These defined a
projective structure (“projektive Beschaffenheit”) on a differ-
entiable manifold. Weyl derived an invariant of the projective
path structure, the projective curvature tensor Π of M. Van-
ishing ofΠwas a condition for the manifold to be projectively
flat. In this case it is locally isomorphic to a linear projective
space.

In addition, Weyl found a highly interesting relationship
between conformal and projective differential geometry and a
Weylian metric.

Theorem. If two Weylian manifolds (M, [(g, ϕ)]),
(M′, [(g′, ϕ′)]) have identical conformal curvature C = C′

and identical projective curvature Π = Π′, they are locally

isometric in the Weyl metric sense (Weyl 1921).

This theorem, so Weyl explained, seemed to be of deep physi-
cal import. The conformal structure was the mathematical ex-
pression for the causal structure in a general relativistic space-
time. Physically interpreted, the projective structure charac-
terized the inertial fall of mass points, independent of param-
etrization, i.e., independent of conventions for measuring lo-
cal time. Thus Weyl’s theorem showed that the causal and

inertial structure of spacetime uniquely determine its Weylian

– not Riemannian – metric. This observation was taken up by
Ehlers/Pirani/Schild half a century later in their famous paper
The geometry of free fall and light propagation (Ehlers 1972).
It made the community of researchers in gravitation theory
aware of the fundamental character of Weyl metric structures
for gravity.

Outlook on Weyl in the later 1920s

In the following years (1923–1925) Weyl started his exten-
sive research programme in the representation theory of Lie
groups (Hawkins 2000). After an intermezzo of intense stud-
ies in the philosophy of mathematical sciences in late 1925
and 1926 (Weyl 1927), he turned toward the new quantum
mechanics. He published his book on Group Theory and Quan-

tum Mechanics (Weyl 1928) and, a little later, on the general
relativistic theory of the Dirac equation with a U(1) version of
the gauge idea. This idea had been proposed, in different con-
texts, by E. Schrödinger, F. London, O. Klein and V. Fock.6

In the early 1920s, he started a correspondence with E. Car-
tan, interrupted for some years but taken up again in 1930. In
a later phase of the correspondence the two mathematicians
tried to find out how far they could agree on the basic prin-
ciples of infinitesimal geometry in the area dominated by the
ideas of general relativity. We come back to this point at the
end of this paper.

3 Cartan

Towards an infinitesimal version of Kleinian spaces
In 1921–1922 Cartan studied the new questions arising from
the theory of general relativity (GRT) for differential geome-

try. At that time he could already build upon a huge exper-
tise in the theory of infinitesimal Lie groups (now Lie al-

gebras),7 which he had collected over a period of roughly
30 years. Among others, he had classified the simple com-
plex Lie groups in (Cartan 1894), and 20 years later the real
ones (Cartan 1914). Moreover, he had brought to perfection
the usage of differential forms (“Pfaffian forms”) in differen-
tial geometry (Katz 1985). In 1910 he had started to describe
the differential geometry of classical motions by generaliz-
ing Darboux’s method of “trièdres mobiles” (moving frames)
(Cartan 1910).8

In the early 1920s Cartan turned towards reshaping the
Kleinian programme of geometry from an infinitesimal ge-
ometric point of view. In several notes in the Comptes ren-

dus he first announced his ideas of how to use infinitesimal

group structures for studying the foundations of GRT. Dif-
ferent from Weyl and most other authors, he did not rely on
the “absolute calculus” of Ricci/Levi-Civita. He rather built,
as much as possible, on his calculus of differential forms.
Starting from Levi-Civita’s parallel displacement like Weyl,
he generalized this idea to connections with respect to vari-
ous groups and devised a general method for differential ge-
ometry, which transferred Klein’s ideas of the Erlangen pro-
gramme to the infinitesimal neighbourhood in a differentiable
manifold. These were “glued” together by the generalized
connection in such a (“deformed”) way that the whole col-
lection did not, in general, reduce to a classical Kleinian ge-
ometry. The arising structures were later to be called Cartan

geometries (Sharpe 1997).

Deforming Euclidean space
Before Cartan could “deform” Euclidean space E3, the latter
had to be analysed in the literal sense of the word. That is,
the homogeneous space E3

� IsomE3/S O(3,R) was thought
to be disassembled into infinitesimal neighbourhoods bound
together by a connection, such that from an integral point of
view classical Euclidean geometry was recovered. In a second
step, the arising structure could be deformed to a more general
infinitesimal geometry.

In order to analyse Euclidean space with coordinates x =

(x1, x2, x3) Cartan postulated that:

– orthogonal 3-frames (“trièdres” – triads) (e1(x), e2(x), e3(x))
be given at every point A;

– frames in an “infinitesimally close point” A′ (described in
old-fashioned notation by coordinates x + dx) may be re-
lated back to the one in A by (classical) parallel transport.
Cartan expressed that by differential 1-forms

ω1, ω2, ω3, ωi j = −ω ji (1 ≤ i, j ≤ 3) .

In total, ω = (ω1, ω2, ω3, ω12, ω13, ω23) obtained values in the
infinitesimal inhomogeneous Euclidean group R3

⊕ so(3).9

Cartan knew that in Euclidean space the ωs had to satisfy
a compatibility condition

ω′i =
∑

k

[ωkωki] ; ω′i j =
∑

k

[ωikωk j] .

He called this the structure equation of Euclidean space (later
the Maurer-Cartan equation). Here ω′

i
denoted the exterior

derivative of the differential form and square brackets the al-
ternating product of differential forms.



Using upper and lower index notation ωi and ω k
j

for the
differential forms and Einstein’s summation convention, the
equation may be rewritten as

dωi = ωk
∧ ω i

k , dω
j

i
= ω k

i ∧ ω
j

k
. (1)

Passing to “deformed Euclidean space”, Cartan allowed for
the possibility that parallel transport of the triads around an in-
finitesimal closed curve may result in an “infinitesimal small
translation” and/or an infinitesimal “rotation” (Cartan 1922d,
593f.). Then the structure equations were generalized and be-
came, denoted in moderately modernized symbolism,

dωi = ωk
∧ ω i

k + Ω
i (2)

dω
j

i
= ω k

i ∧ ω
j

k
+ Ω

j

i
, (3)

with differential 2-forms Ωi (values in the translation part of
the Euclidean group) and Ω j

i
(rotational part), which describe

the deviation from Euclidean space. Cartan called them the
torsion (2) and curvature form (3) respectively.

Cartan spaces in general

A little later, Cartan went a step further and generalized his
approach of deforming Euclidean spaces to other homoge-
neous spaces. The underlying idea was:

One notices that what one has done for the Euclidean group,
the structural equations of which [(1) in our notation, E.S.] have
been deformed into [(2, 3)], can be repeated for any finite [di-
mensional] or infinite [dimensional] group.10 (Cartan 1922a, 627)

As announced in this programmatic statement, Cartan stud-
ied diverse “spaces with connections” or “non-holonomous
spaces” (later terminology: Cartan spaces) over the following
years.11 Cartan’s spaces M arose from “deforming” a classi-
cal homogeneous space S with Lie group L acting transitively
and with isotropy group G, such that

S ≈ L/G .

He directed his interest on the infinitesimal neighbourhoods
in S , described, in modernized symbolism, by

l/g � k with l = Lie L, g = Lie G ,

and k an infinitesimal sub-“group” (i.e., subalgebra of l), in-
variant under the adjoint action of G.12

The “deformation” of a Kleinian geometry in S ≈ L/G

presupposed identifications of a typical infinitesimal neigh-
bourhood of S with the infinitesimal neighbourhoods of any
point of a manifold M (Cartan: “continuum”) that was used
to parametrize the deformed space. Cartan thought about such
identification in terms of smoothly gluing homogeneous spaces
S to any point p ∈ M. More precisely, k had to be “identified”
with TxM for all points x ∈ M in such a manner that the tran-
sition to an infinitesimally close point p′ could be related to
the TpM sufficiently smoothly. Such an identification was not
always without difficulties, although in general Cartan pre-
sented the transformation group L as operating on a (properly
chosen) class of “reference systems” (“répères”) and could
derive such an identification from the infinitesimal elements
in the “translational” part of L.13 These intricacies aside, a
connection 1-form ω on M with values in l could be used to
define a connection in the infinitesimalized Kleinian geome-
try. Then the structural equations (2), (3) defined torsion and
curvature of the respective “non-holonomous” (Cartan) space.

In particular, Cartan studied non-holonomous spaces of
the:
– Poincaré group in papers on the geometrical foundation

of general relativity (Cartan 1922a, Cartan 1923a, Cartan
1924b) (for torsionΩi = 0 such a Cartan space reduced to a
Lorentz manifold and could be used for treating Einstein’s
theory in Cartan geometric terms).

– Inhomogeneous similarity group (for torsion = 0, this case
reduced to Weylian manifolds).

– Conformal group (Cartan 1922b).
– Projective group (Cartan 1924c).
In the last case, Cartan introduced barycentric reference sys-
tems in infinitesimal neighbourhoods of a manifold (tangent
spaces TpM) (“répères attachés aux differentes point de la var-
iété”) and considered projective transformations of them. He
remarked that this is possible in “. . . infinitely many differ-
ent ways according to the choice of the reference systems”.14

That came down to considering the projective closure of all
tangent space.

In this way, Cartan developed an impressive conceptual
frame for studying different types of differential geometries:
Riemannian, Lorentzian, Weylian, affine, conformal, projec-
tive, . . . All of them were not only characterized by connec-
tions and curvature but enriched with the possibility of allow-
ing for the new phenomenon of torsion. And all of them arose
from Cartan’s unified method of adapting the Kleinian view-
point to infinitesimal geometry.

Cartan’s space problem

Cartan learned about Weyl’s problem of space from the
French translation of STM (Weyl 1922a) and gave it his
own twist (Cartan 1922c, Cartan 1923b). He tried to make
sense of Weyl’s descriptions of how the “nature of space”
ought to be characterized by “rotations” operating in infinites-
imal neighbourhoods in terms of his own concepts. He inter-
preted Weyl’s vague description of the “nature of space” to
mean a class of non-holonomous spaces with isotropy group
G ⊂ S LnR and the corresponding inhomogeneous group
L � G ⋉ Rn.

Cartan understood Weyl’s “metrical connection” in the
sense of a class of (Cartan) connections [ω] with regard to
G, and L, where two exemplars of the class ω, ω̄ ∈ [ω] dif-
fered by a 1-form with values in g only. That was a plausible
restatement of the “analytical part” of Weyl’s discussion; but
Cartan passed without notice over Weyl’s distinction between
“congruences” (G) and “similarities” (G̃). So he suppressed
the specific group extension (basically G̃ = G × R+) which
led to Weyl’s scale gauge structure.

On that background Cartan reinterpreted Weyl’s “synthetic”
part of the analysis and stated:
– “le premier axiome de M. H. Weyl”. In any class [ω] defin-

ing a (“metrical”) connection with values in L, one can find
one connection with torsion = 0.

– “le second axiome de M. H. Weyl”. Every class [ω] gives
rise to only one torsion free connection.

Cartan’s rephrased “premier axiome” had, in fact, not much
to do with Weyl’s postulate of freedom but at least it was an
attempt to make mathematical sense of it. Using his knowl-
edge in classification of infinitesimal Lie groups, he could ar-



gue that the “first axiom” is satisfied not only by the general-
ized special orthogonal groups S O(p, q) but also by the spe-
cial linear group itself, the symplectic group (if n is even) and
the largest subgroup of S LnR with an invariant 1-dimensional
subspace (Cartan 1923b, 174). If the second axiom was added,
only the special orthogonal groups remained (Cartan 1923b,
192).

Cartan’s simplification avoided the subtleties and vague-
ness of Weyl’s “postulate of freedom”. Together with the
streamlining of the analytical part of the analysis, he arrived at
a slightly modified characterization of the problem of space.
In this form it was transmitted to the next generation of differ-
ential geometers and entered the literature as Cartan’s prob-

lem of space (S. S. Chern, H. Freudenthal, W. Klingenberg,
Kobayashi/Nomizu).

In the 1950/60s, Cartan’s space problem was translated
into fibre bundle language of modern differential geometry
without the use of Cartan spaces. In these terms, an n-frame
bundle over a differentiable manifold M, with group reducible
to G ⊂ S LnR, was called a G-structure on M. In G-structures,
linear connections with and without torsion could be investi-
gated. The central question of the Cartan–Weyl space problem

(i.e., the Weylian space problem in Cartan’s reduced form)
turned into the following. Which groups G ⊂ S LnR have the
property that every G-structure carries exactly one torsion free
connection?

It turned out that the answer was essentially the one given
by Weyl and Cartan, i.e. the generalized special orthogonal
groups of any signature, with some additional other special
cases (Kobayashi 1963, vol. II). From the group theoretical
point of view these considerations were still closely related to
Weyl’s problem of space, while the geometrical question had
now been modified twice, first by Cartan then by the differ-
ential geometers of the next generation. Only a minority of
authors were still aware of the difference between Weyl’s and
Cartan’s problem of space (Scheibe 1988, Laugwitz 1958).
These authors insisted that it ought not to be neglected from a
geometrical point of view.

Toronto talk: Erlangen, Riemann and GRT

At the International Congress of Mathematicians 1924 in
Toronto, Cartan found an occasion to explain his view of dif-
ferential geometry in a clear and intuitive way to a broader
mathematical audience. He started from a reference to the
classical problem of space in the sense of the late 19th cen-
tury:

From M. F. Klein (Erlangen programme) and S. Lie one knows
the important role of group theory in geometry. H. Poincaré pop-
ularized this fundamental idea among the wider scientific pub-
lic [. . . ]

[. . . ] In each geometry one attributes the properties [of fig-
ures] to the corresponding group, or fundamental group [Haupt-
gruppe] [. . . ]

It was clear, however, that Riemann’s “Mémoire célèbre: Über
die Hypothesen, welche der Geometrie zu Grunde liegen”
stood in stark contrast to such a perspective.

At first look, the notion of group seems alien to the geome-
try of Riemannian spaces, as they do not possess the homo-
geneity of any space with [Hauptgruppe]. In spite of this, even

though a Riemannian space has no absolute homogeneity, it
does, however, possess a kind of infinitesimal homogeneity; in
the immediate neighbourhood it can be assimilated to a [Kleinian
space]. [. . . ]

Such an “assimilation”, as understood by him, stood in close
connection to frames of references or, in the language of
physics, to observer systems in relativity. Cartan observed:

[T]he theory of relativity faces the paradoxical task of interpret-
ing, in a non-homogeneous universe, all the results of so many
experiences by observers who believe in homogeneity of the uni-
verse. This development has partially filled the gap which sepa-
rated Riemannian spaces from Euclidean space (“qui permit de
combler en partie la fosse qu séparait les espace de Riemann de
l’espace euclidien”) [. . . ]. (Cartan 1924a)

Thus he did not hide the important role of general relativ-
ity for posing the question of how to relate the homogeneous
spaces of the classical problem of space to the inhomoge-
neous spaces of Riemann. But while in physics and philoso-
phy of physics the debate on the changing role of “rigid” mea-
suring rods or even “rigid” bodies was still going on, Cartan
himself had been able to “fill the gap which separated Rie-
mannian spaces from Euclidean space” in his own work –
building upon the work of Levi-Civita and his own expertise
in Lie group theory and differential forms. That was similar
to what Weyl had intended; but Cartan devised a quite general
method for constructing finitely and globally inhomogeneous
spaces from infinitesimally homogeneous ones. In the result,
Cartan achieved a reconciliation of the Erlangen programme
and Riemann’s differential geometry on an even higher level
than Weyl had perceived.

4 Discussion Cartan – Weyl (1930)

Weyl’s Princeton talk 1929

In June 1929, Weyl visited the United States and used the
occasion to make Cartan’s method known among the Prince-
ton group of differential geometers. Veblen and T. Y. Thomas
had started to study projective differential geometry from the
point of view of path structures (Ritter 2011). To bring both
viewpoints together, Weyl outlined Cartan’s approach of in-
finitesimalized Kleinian geometries. He discussed, in particu-
lar, how to identify Cartan’s generalized “tangent plane”, the
infinitesimal homogeneous space k in the notation above, with
the tangent spaces TpM (“infinitesimal neighbourhood” of p)
of the differentiable manifold M. To make the Princeton view
comparable with Cartan’s, one needed not only that an iso-
morphism k −→ TpM be given for every point p ∈ M but
also a contact condition of higher order (“semi-osculating”)
(Weyl 1929, 211). In this case, a torsion free projective con-
nection, in the sense of Cartan, was uniquely characterized
by a projective path structure studied by the Princeton group
(leaving another technical condition aside).

Cartan’s disagreement
Cartan was not content with Weyl’s presentation of his point
of view. He protested in a letter to Weyl, written in early 1920:

Je prend connaissance de votre article recent [. . . ] paru dan le
Bulletin of the Amer. Math. Society. Je ne crois pas fondée les
critiques que vous addressez à ma théorie des espace á connexion



projective [. . . ] L’exposition que vous faites de ma théorie ne
répond pas tout à faites à mon point de vue. [. . . ] (Cartan to
Weyl, 5 Jan 1930)

A correspondence of three letters between January and De-
cember 1930 followed.15

Cartan did not agree that an infinitesimal Kleinian space
had to be linked to the tangent spaces TpM of the manifold
as strictly as Weyl had demanded. He defended a much more
general point of view.16 He even went so far as to admit a ho-
mogeneous space of different dimension from the base man-
ifold.17 Thus Cartan tended toward what later would become
fibre bundles over the manifold, here a projective bundle with
fibres of dimension n over a manifold of dimension m. On the
other hand, he had also studied the conditions under which the
integral curves of second order differential equations could be
considered as geodesics of a (“normal”) projective connection
(Cartan 1924c, 28ff.).

Weyl insisted even more on the necessity of a (“semi-
osculating”) identification of the infinitesimal homogeneous
space with the tangent spaces of the manifold, in order to get
a differential geometric structure that would be truly intrin-

sic to M. He reminded his correspondent that they had dis-
cussed this question already in 1927, after a talk of E. Cartan
at Bern:18

I remember that we discussed this question already at Bern, and
that I was unable to make my point of view understood by you.
(Weyl to Cartan, 24 Nov 1930)

In particular, for the conformal and projective structures
Weyl now saw great advantages of the studies of the Prince-
ton group (Veblen, Eisenhart, Thomas). Apparently he came
to the conclusion that they could be connected to the Cartan
approach only after such a smooth (semi-osculating) identifi-
cation.

Although he did not mention it in the discussion, it seems
quite likely that the physical import of conformal (causal) and
projective (inertial) structures for GRT played an important
background role for Weyl’s insistence on the “intrinsic” study
of conformal and projective structures. In 1922, Weyl had re-
alised that inertial/projective and causal/conformal structure
together determine a Weylian metric uniquely (compare with
the end of Section 2). Such considerations make sense, of
course, only if conformal and projective structures are under-
stood as intrinsic to the manifold.

Trying to find a compromise

Although Cartan at first defended his more abstract point of
view, he agreed that he might better have chosen a different
terminology avoiding the intuitive language of a “projective
tangent space”, which he applied even in the more abstract
case of fibre dimension different from dim M.

After Weyl had explained why he insisted on the closer
identification, Cartan became more reconciliatory:

[. . . ] je vous accorde très volontiers. [. . . ] C’est un problème im-
portant et naturel de chercher comment l’espace linéaire tangent
est ‘eingebettet’ dans l’espace non-holonome donné. (Cartan to
Weyl, 19 Dec 1930)

At the end of the year, after the initial problems of under-
standing each other had been resolved, Cartan admitted that

Weyl’s question was not just any kind of specification inside
his more general approach. Cartan’s general view was nei-
ther withdrawn nor devalued; it later found its extension in
the theory of fibre bundles. But for the more intrinsic ques-
tions of differential geometry the identification of infinites-
imal Kleinian geometry with the tangent space of the base
manifold has become part of the standard definition of Car-

tan geometry.19

5 In place of a résumé

Weyl and Cartan started from quite different vantage points
for the study of generalized differential geometric structures
motivated by the rise of general relativity. Both put infinites-
imal group structures in the centre of their considerations. In
the early 1920s, Cartan had a lead over Weyl in this regard
and it was exactly such geometrical considerations that led
Weyl into his own research programme in Lie group represen-
tations (Hawkins 2000). After he came into contact with Ein-
stein’s theory, Cartan immediately started to work out a gen-
eral framework for how differential geometry could be linked
to an infinitesimalized generalization of Klein’s Erlangen pro-
gramme.

Weyl, on the other hand, started from a natural, philo-
sophically motivated generalization of Riemannian geome-
try which, as he hoped for about two years, might be help-
ful for unifying gravity and electromagnetism and might help
to solve the riddle of a field theoretic understanding of ba-
sic matter structures. After he began to doubt the feasibil-
ity of such an approach, he turned towards a more general
conceptual-philosophical underpinning of his geometry. That
led him to take up the analysis of the problem of space from
the point of view of infinitesimal geometry.

Both authors agreed upon the importance of using infinites-
imal group structures for a generalization of differential ge-
ometry in the early 1920s. They read each other’s work and
managed to come to grips with it, even though sometimes
with difficulties and with certain breaks. Still, at the end of
the 1930s Weyl admitted, in an otherwise very positive and
detailed review of Cartan’s recent book (Cartan 1937), the
problems he had had with reading Cartan.20 But in spite of
differences with regard to technical tools and emphasis of re-
search guidelines, they came to basically agree on the way
that connections in various groups could be implemented as
basic conceptual structural tools in the rising “modern” dif-
ferential geometry of the second third of the new century.

Notes

1. First appeared in Boletim da Sociedada Portuguesa de Matemáti-

ca (special issue Proceedings of Mathematical Relativity in Lis-
bon, International Conference in honour of Aureliano de Mira
Fernandes (1884–1958), Lisbon, 2009). Reprinted with permis-
sion.

2. Accordingly much of the historical literature is directed at the
unified field theory side of the story (Vizgin 1994, Goenner 2004,
Goldstein 2003); others look at the geometrical side (Reich 1992,
Gray 1999, Bourgignon 1992, Scholz 1999, Chorlay 2009).



3. Noether’s paper Invariante Variationsprobleme was presented 26
July 1918 to the Göttingen Academy of Science by F. Klein;
the final version appeared in September 1918. Weyl could not
know it in his publications (Weyl 1918a, Weyl 1918b). He re-
ferred to variational considerations of Hilbert, Lorentz, Einstein,
Klein and himself. This remained so even in his later publica-
tions (Kosman-Schwarzbach 2011, Rowe 1999).

4. Weyl continued to call Γ a “parallel transfer”, in distinction to
the “metrical” transfer.

5. In this sense, the analysis of the problem of space may also be
read as a belated answer to another of Einstein’s objections to
accepting Weyl geometry as a conceptual basis for gravitation
theory: why should there not appear a “Weyl II” who proposes
to make angle measurement dependent on the local choice of
units? (Einstein 1987ff., VIII, 777)

6. (Vizgin 1994, Goenner 2004, Scholz 2005).
7. Here we shall switch between the historical and the present ter-

minology without discrimination.
8. For a more detailed discussion of the following see (Nabonnand

2009).
9. The infinitesimal displacement dx = (dx1, dx2, dx3) from A to A′

is described by a tangent vector
∑
ωiei. The ωi are differential 1-

forms dual to the ei (they depend linearly on the dx j). The change
of orthogonal frames in A to frames e′1, e

′

2, e
′

3 in A′ is described
by an infinitesimal rotation ei =

∑
ω

j

i
e j ((ω j

i
) element of the Lie

algebra so(3)), the entries of which not only depend linearly on
dxk but also on the parameters of the rotation group (written by
Cartan as x3, x4, x6).

10. “On conçoit que ce qui a été fait poir le groupe euclidien, dont les
équations de structure (1) sont déformées en (1’), peut se répéter
poir n’importe quel groupe, fini ou infini.”

11. The terminology “non-holonomous” was taken over from the
specification of constraints in classical mechanics, see (Nabonnand
2009).

12. Compare the modern presentation of Cartan geometry in (Sharpe
1997).

13. Later the rep ere mobiles were substituted by introducing Car-

tan gauges, locally defined by certain L-valued forms on the
manifold. The whole collection of possible rep eres can be de-
scribed in modern terms by a principal G-bundle endowed with a
l-valued connection, the Cartan connection. The identification of
tangent spaces of the base manifold with k can then be expressed
by the translational part of the Cartan connection. In the physics
literature one often speaks of a solder form (Sharpe 1997, 174,
181, 235). Compare also the discussion with Weyl discussed be-
low.

14. “. . . une infinité des manières different suivant le choix de répères”.
Translated into much later language, Cartan hinted here at the
possibility of different trivializations of the projective tangent
bundle.

15. The correspondence is preserved at ETH Zürich, Handschriften-
abteilung (Cartan 1930). I thank P. Nabonnand for giving me ac-
cess to a transcription.

16. “En tous cas le problème d’établir une correspondance ponctuelle
entre l’espace à connexion projective et l’espace projectif tangent
ne se pose ici pour moi: c’est un problème intéressant mais qui,
dans ma théorie, est hors de question” (Cartan 1930, Cartan to
Weyl, 5 Jan 1930).

17. “On pourrait même généraliser la géométrie différentielle projec-
tive à n dimensions sur un continuum à m , n dimension [. . . ] ”
(Cartan to Weyl, 5 Jan 1930).

18. (Cartan 1927)
19. Cf. footnote 12.
20. “Does the reason lie only in the great French geometric tradition

on which Cartan draws, and the style and contents of which he

takes more or less for granted as a common ground for all ge-
ometers, while we, born and educated in other countries, do not
share it?”(Weyl 1938, 595)
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