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In 1972 A. Miller questioned the view that C.F. Gauss may have used
the data of the large triangle Brocken – Hohehagen – Inselsberg as a basis
for a precision test of the validity of Euclidean geometry for physical space
(Miller 1972). He contrasted this view with a discussion of the same trian-
gle in Gauss’ Disquisitiones generales circa superficies curvas. Since then,
the doubts among historians of mathematics have been deepened by adding
arguments of principle in the sense that Gauss even would have been un-
able to use the data for a test as reported by Sartorius of Waltershausen
(Breitenberger 1984).

On the other hand it seems clear that Gauss’ angle sum theorem of non-
Euclidean geometry (NEG) could very well be used in the framework of
Gauss’ knowledge of the early 1820s to establish precision bounds for the
reliability of Euclidean geometry as an empirical theory of physical space.
To understand the whole problem constellation one has to be aware that
geodesists use light rays (if necessary, after correction of atmospheric pertur-
bations) as empirical representations of straight lines. Theodolite measure-
ments of sufficiently large triangles do not determine the angles α, β, γ of the
light ray triangle itself, but rather measure angles α̂, β̂, γ̂ projected into the
horizontal plane, that is in three (generally different) tangent planes to the
earth figure (here to be approximated by the sphere, as was shown by Gauss
in his Disquisitiones generales). That means that measurement data are es-
sentially those of a triangle on a sphere in Euclidean or in non-Eculidean
space, depending on the underlying physical geometry of (light ray) space.

Gauss applied the technique of closure data of triangles as a quality
criterion for his precision measurements. That means he compared the angles
sum with the value expected in a spherical triangle of Euclidean geometry:

α̂ + β̂ + γ̂ = π +
1

R2
A + ε. (1)

Here A denotes the area of the triangle and R the earth radius. The term ε
denotes the closure error of the measurement. In principle ε might contain
a systematic error derived from a hypothetical non-Euclidean curvature κ
of the physical space (notation adapted to terminology of Gauss’ surface
theory which he carefully avoided in his remarks on NEG). In NEG Gauss
used formulations of a characteristic constant C, describing the deviation of
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NEG from the Euclidean case, with C −→ ∞ for the latter. It relates to κ
by C = 1√

|κ|
. If physical space should be non-Euclidean with characteristic

constant C, Gauss could expect a deviation δ := κA = − A
C2 of the angle

sum of the light ray triangle from π. Simple approximation considerations
then show that (in very good linearized approximation) the same deviation
δ would appear as a systematic contribution to the closure error ε in equ.
(1).1

Gauss was very careful in reducing closure errors in his total net of the
degree measurement campaign linking Göttingen to Hamburg Altona. There
he could link his triangulation to the one of his Danish colleague and friend
Schumacher. Schumacher had gauged his net by a direct base line measure-
ment of the best available precision. After error equalization Gauss arrived
at a mean square error σ ≈ 0.48′′ (empirical standard deviation) of single
angles in his total net from Göttingen to Altona. That was an extremely
good result. Comparable measurements of the time had a mean square er-
ror one order of magnitude larger and worked with much smaller triangles.
The triangulation of the Netherlands by C. von Krayenhoff, e.g., achieved
a precision of σ ≈ 2.7′′ only. With a typical area A ≈ 300 km2 even the
spherical excess of singles triangles, A

R2 ≈ 1.5′′, was hidden deep inside the
measurement error.

On the other hand, Gauss kept the largest triangle between the three
mountains Brocken – Hohehagen – Inselsberg, the large triangle4BHI (with
side lengths BH ≈ 69 km, HI ≈ 85 km, BI ≈ 107 km, area A ≈ 2920 km2)
distinct from the error equalization procedures of the main net. In this
triangle the spherical excess was

A

R2
≈ 14.86′′,

two orders of magnitude above his mean square error.
A search for possible systematic errors of closure data became now mean-

ingful for the first time. Gauss calculated the closure error of this large tri-
angle seperately and found ε ≈ 0.6′′, far below the mean square error of the
total net. Therefore any systematic contribution δ to the error (independent
of the sign) could reasonably be expected to have smaller absolute value. In
terms of the constant of non-Euclidean geometry,

|δ| = A

C2
< 0.6′′ , C2 >

A

0.6′′ .

With Gauss’ calculation of the spherical excess of the large triangle A
R2 ≈

14.86”, another comparison could easily be made:

C2 >
A

0.6′′ ≈
14.86
0.6

R2 ≈ 25R2.

1For a detailed exposition of the argument see (Scholz 2004).
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Thus the constant of NEG had to be

C > 5R. (2)

Gauss never stated the result in this form, probably because it was ridicu-
lously small in comparison with what he expected anyhow (astronomical
orders of magnitude for C). But reliable astronomical data were difficult or
even impossible to acquire in the 1820s. As an experienced empirical math-
ematician and astronomer Gauss would probably not have tried to draw
precise quantitative conclusions from astronomical evidence before the first
stable parallax measurement of fixed stars were available (Bessel in 1838).2

This leads to another story, the determination of curvature bounds of astro-
nomical space by parallax measurements in the 19th century, in which Gauss
and his Göttingen environment (in particular B. Riemann) again played their
part.

The geodetical data, on the other hand, were determined with unpec-
cable precision already in the 1820s. Sartorius von Waltershausen reported
that in his inner circle Gauss sometimes referred to his result on the large
triangle when he wanted to give bounds for the validity of Euclidean geome-
try. Then he referred to an error bound of “two tenths of a second per angle”
as measured for the large triangle of his Hannover degree campaign.

If one looks at the arguments given in (Miller 1972) from hindsight, it ap-
pears surprising why such a harsh and weakly founded criticism of Sartorius’
report as in Miller’s myth was so easily accepted not only among historians
of science but also among historians of mathematics, and why Sartorius von
Waltershausen’s report was discredited as a reliable source.3 The reasons
have probably to be sought for in the community constellation of the history
of science at that time and a certain weakness of history of mathematics in
it on an international level, rather than in the epistemic achievements of the
original publication.
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