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Abstract A Weyl geometric approach to cosmology is explored, with a scalar field
φ of (scale) weight −1 as crucial ingredient besides classical matter. Its relation to
Jordan-Brans-Dicke theory is analyzed; overlap and differences are discussed. The
energy-stress tensor of the basic state of the scalar field consists of a vacuum-like term
�gμν with � depending on the Weylian scale connection and, indirectly, on matter
density. For a particularly simple class of Weyl geometric models (called Einstein-
Weyl universes) the energy-stress tensor of the φ-field can keep space-time geometries
in equilibrium. A short glance at observational data, in particular supernovae Ia (Riess
et al. in Astrophys. J. 659:98ff, 2007), shows encouraging empirical properties of
these models.

Keywords Cosmology · Cosmological models · Scalar field · Scale covariance ·
Weyl geometry · Mass generation · Pseudo conformal field theory · Einstein-Weyl
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1 Introduction

For more than half a century, Friedman-Lemaitre (F-L) spacetimes have been serv-
ing as a successful paradigm for research in theoretical and observational cosmol-
ogy. With the specification of the parameters inside this model class, �m ≈ 0.25,
�� ≈ 0.75, new questions arise. Most striking among them are the questions of how
to understand the ensuing “accelerated expansion” of the universe indicated by this
paradigm after evaluating the observational data, and those concerning the strange be-
havior of “vacuum energy” [7]. The latter seems to dominate the dynamics of space-
time and of matter in cosmically large regions, without itself being acted upon by
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the matter content of the universe. Such questions raise doubts with respect to the
reality claim raised by the standard approach [14]. They make it worthwhile to study
to what extent small modifications in the geometric and dynamical presuppositions
lead to different answers to these questions, or even to a different overall picture of
the questions themselves.

In this investigation we study which changes of perspective may occur if one in-
troduces scale covariance in the sense of integrable Weyl geometry (IWG) into the
consideration of cosmological physics and geometry. At first glance this may appear
as a formal exercise (which it is to a certain degree), but the underlying intention
is at least as physical as it is mathematical. The introduction of scale freedom into
the basic equations of cosmology stands in agreement with a kindred Weyl geomet-
ric approach to scale covariant field theory [11, 12, 24] and overlaps partially with
conformal studies of semi-Riemannian scalar-tensor theories [15, 19]. In distinction
to the latter, Weylian geometry allows a mathematical overarching approach to cos-
mological redshift, without an ex-ante decision between the two causal hypotheses
of its origin, space expansion or a field theoretic energy loss of photons over cosmic
distances. Although in most papers the first alternative is considered as authoritative,
it is quite interesting to see how in our frame the old hypothesis of a field theoretic re-
duction of photon energy, with respect to a family of cosmological observers, finds a
striking mathematical characterization in Weyl geometry. Cosmological redshift may
here be expressed by the scale connection of Weylian Robertson-Walker metrics, in
a specific scale gauge (warp gauge).

The following paper gives a short introduction to basics of Weyl geometry and the
applied conventions and notations (Sect. 2). After this preparation the scale invariant
Lagrangian studied here is introduced (Sect. 3). Different to Weyl’s fourth order La-
grangian for the metric, an adaptation of the standard Hilbert-Einstein action serves as
the basis of our approach, coupled in such a way to a scale covariant scalar field φ of
weight −1 that scale invariance of the whole term is achieved. This approach is taken
over from W. Drechsler’s and H. Tann’s research in field theory, which explores an
intriguing path towards deriving mass coefficients for the electroweak bosons by cou-
pling to gravity and the scalar field. For gravity theory Weyl geometric scalar fields
show similarities with conformal studies of Brans-Dicke type theories, but differ in
their geometrical and scale invariance properties (Sect. 4). Section 5 of this paper
gives a short outline and commentary of Drechsler/Tann’s proposal of the Weyl geo-
metric Higgs-like “mechanism”.

In the next section the variational equations of the Lagrangian are presented. They
lead to a scale co/invariant form of the Einstein equations, a Klein-Gordon equation
for the scalar field and the Euler equation of ideal fluids (Sect. 6). Then we turn
towards cosmological modeling in the frame of Weyl geometry. The isotropy and
homogeneity conditions of Robertson-Walker metrics are adapted to this context and
lead to scale covariant Robertson-Walker fluids. New interesting features arise in the
Weyl geometric perspective, in particular with respect to the symbolic representation
of cosmological redshift by a scale connection (Hubble connection) (Sect. 7). The
most simple Weyl geometric models of cosmology (Weyl universes) are similar to
the classical static geometries; but here they are endowed with a scale connection
encoding cosmological redshift (Sect. 8).
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Luckily, the geometry of Weyl universes is simple enough to allow an explicit cal-
culation of the energy-stress tensor of the scalar field’s ground state (Sect. 9). Thus
it can be investigated under which conditions the scalar field safeguards dynamical
consistency (equilibrium) of Weyl universes. Those with positive space sectional cur-
vature are called Einstein-Weyl universes. A consistency condition derived from the
Klein-Gordon equation of the scalar field leads to specific coupling condition for
Hubble redshift to sectional curvature of the spatial fibres and thus to the matter con-
tent of the universe.

The article is rounded off by a short look at data from observational cosmology
(Sect. 10) and a discussion of the perspective for cosmology opened up by the Weyl
geometric approach to gravity and of some of the open questions (Sect. 11).

2 Geometric Preliminaries and Notations

We work in a classical spacetime given by a differentiable manifold M of dimen-
sion n = 4, endowed with a Weylian metric [6, 17]. The latter may be given by an
equivalence class [(g,ϕ)] of pairs (g,ϕ) of a Lorentzian metric g = (gμν) of sig-
nature (−,+,+,+, ), called the Riemannian component of the metric, and a scale
connection given by a differential 1-form ϕ = (ϕμ). Choosing a representative (g,ϕ)

means to gauge the metric. A scale gauge transformation is achieved by rescaling the
Riemannian component of the metric and an associated transformation of the scale
connection

g̃ = �2g, ϕ̃ = ϕ − d log�, (1)

where � > 0 is a strictly positive real function on M .
Einstein’s famous argument against Weyl’s original version of scale gauge

geometry (stability of atomic spectra) and—related to it—coherence with quantum
physics [2] make it advisable, to say the least, to restrict the Weylian metric to one
with integrable scale (“length”) connection, dϕ = 0.

The integration of ϕ leads to a scale (or “length”) transfer function λ(po,p1)

allowing to compare metrical quantities at different points of the manifold,

λ(p0,p1) = e

∫ u1
u0

ϕ(γ ′(u))du
, (2)

γ (u) any differentiable path from a fixed reference point p0 = γ (u0) to p = γ (u1).
In simply connected regions the scale connection can be integrated away, g̃ = λ2g,
ϕ̃ = 0, if dϕ = 0. In this case the Weylian metric may be written in Riemannian
form, but need not. By obvious reasons this gauge is called Riemann gauge. Thus
one may work in integrable Weyl geometry (IWG) without passing to Riemann gauge
by default.

There is a uniquely determined Levi Civita connection of the Weylian metric,

	
μ
νλ = g	

μ
νλ + δμ

ν ϕλ + δ
μ
λ ϕν − gνλϕ

μ. (3)

Here g	
μ
νλ denote the coefficients of the affine connection with respect to the Rie-

mannian component g only. The Weyl geometric covariant derivative with respect to
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μ
νλ will be denoted by ∇μ; the covariant derivative with respect to the Riemannian

component of the metric only by g∇μ. ∇μ is an invariant operation for vector and
tensor fields on M , which are themselves invariant under gauge transformations. The
same can be said for geodesics γW of Weylian geometry, defined by ∇μ, and for the
curvature tensor R = Rα

βγ δ and its contraction, the Ricci tensor Ric. All these are
invariant under scale transformations.

For calculating geometric quantities (covariant derivatives, curvatures etc.) of a
Weylian metric in the gauge (g,ϕ) one may start from the corresponding (Rie-
mannian) ones, with respect to the Riemannian component g of the Weylian metric
given by (g,ϕ). Like for the affine connection we use the pre-subscript g to denote the
latter, e.g., gR for the scalar curvature of the Riemannian component. For dimM = n

we know already from [42, p. 21]:

R = gR − (n − 1)(n − 2)ϕλϕ
λ − 2(n − 1) g∇λ ϕλ, (4)

(Ric)μν = gRicμν + (n − 2)(ϕμϕν − g∇(μϕν))

− gμν((n − 2)ϕλϕ
λ + g∇λϕ

λ). (5)

For n = 4, in particular, that is

R = gR − 6(ϕλϕ
λ + g∇λ ϕλ) etc.

In order to make full use of the Weylian structure on M one often considers (real,
complex etc.) functions f or (vector, tensor, spinor . . .) fields F on M , which trans-
form under gauge transformations like

f �−→ f̃ = �kf, F �−→ F̃ = �lF.

k and l are the (scale or Weyl) weights of f respectively F . We write w(f ) := k,
w(F) := l and speak of Weyl functions or Weyl fields on M . To be more precise math-
ematically, Weyl functions and Weyl fields are equivalence classes of ordinary (scale
invariant) functions and fields. Obvious examples are: w(gμν) = 2, w(gμν) = −2 etc.
As the curvature tensor R = Rα

βγ δ of the Weylian metric and the Ricci curvature ten-

sor Ric are scale invariant, scalar curvature R = gαβRicαβ is of weight w(R) = −2.
Formulas similar to (3) to (5) are derived for conformal transformations in semi-

Riemannian gravity [15, Chap. 1.11, 19, Chap. 3]. But there the geometrical and
physical meaning is slightly different. While in semi-Riemannian relativity these
equations are used to calculate the affine connection and curvature quantities of an
“original” metric g after a conformal mapping to a different one, g∗ = �2g, Weyl
geometry considers conformal rescaling as a gauge transformation in the original
sense of the word, expressing the change of measuring devices (or equivalently of
dilatations). The aim her is to study scale covariant behavior of quantities and struc-
tures, with particular attentiveness to scale invariant aspects.

Note that the application of Weyl’s covariant derivative ∇ , associated to the Weyl
geometric affine connection (3), to Weyl fields F of weight w(F) �= 0 does not lead
to a scale covariant quantity. This deficiency can be repaired by introducing a scale
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covariant derivative Dμ of Weyl fields in addition to the scale invariant ∇μ [10, 12,
Appendix A]:

DF := ∇F + w(F)ϕ ⊗ F. (6)

Thus, for example, a scale covariant vector field Fν has the scale covariant derivative

DμFν := ∂μF ν + 	ν
μλF

λ + w(F)ϕμFν,

with the abbreviation ∂μ := ∂
∂xμ etc.

For the description of relativistic trajectories Dirac introduced scale covariant geo-
desics γ with weight of the tangent field u := γ ′ w(u) = −1, defined by

Duu = 0 (7)

with scale covariant derivation D, i.e.

∇μγ ′μγ ′ν − ϕμγ ′μγ ′ν = 0 for ν = 0, . . . , n − 1.

They differ from Weyl’s scale invariant geodesics γW only by parametrization.
By construction g(u,u) is scale invariant. In particular g(u,u) = ±1 for space-

like or timelike geodesics; and geodesic distance d(g,ϕ)(p0,p1) between two points
p0,p1 with respect to g is given by the parameter of the Diracian geodesics. Of
course it depends on the scale gauge (g,ϕ) chosen and coincides with (semi-
Riemannian) distance of Weyl geometric geodesics measured in the Riemannian com-
ponent of (g,ϕ)

d(g,ϕ)(p0,p1) =
∫ τ1

τ0

√|g(γ ′, γ ′)|dτ = (τ1 − τ0). (8)

Dirac’s scale covariant geodesics have the same scale weight as energy E and
mass m, w(E) = w(m) = −1, which are postulated in order to keep scaling consis-
tent with the Planck relation E = hν and Einstein’s E = mc2 (with true constants h

and c). Thus mass or energy factors assigned to particles or field quanta can be de-
scribed in a gauge independent manner in Dirac’s calculus: one just has to associate
constant mass factors m̂ (more formally defined below) to the Diracian geodesics;
the scale gauge dependence is implemented already in the latter.

For any nowhere vanishing Weyl function f on M with weight k there is a gauge
(unique up to a constant), in which f̃ is constant. It is given by (1) with

� = f − 1
k (9)

and will be called f-gauge of the Weylian metric. There are infinitely many gauges,
some of which may be of mathematical importance in specific contexts. An R-gauge
(in which scalar curvature is scaled to a constant) exists for manifolds with nowhere
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vanishing scalar curvature. It ought to be called Weyl gauge, because Weyl assigned a
particularly important role to it in his foundational thoughts about matter and geom-
etry [43, 298f].

Similar to ordinary semi-Riemannian and conformal scalar tensor theories of grav-
ity, one often considers a nowhere vanishing scalar field φ of weight w(φ) = −1 in
Weyl geometry. Originally the name-giving authors of Jordan-Brans-Dicke (J-B-D)
theory hoped to find a “time varying” real scalar field as an empirically meaningful
device, corresponding to the so-called Jordan frame of J-B-D theories [4]. But empir-
ical evidence, gathered since the 1960s, and a theoretical reconsideration of the whole
field since the 1980s have accumulated overwhelming arguments that the conformal
picture of the theory with φ scaled to constant, the so-called Einstein frame, if any at
all, ought to be considered as “physical”, i.e. of empirical content [16].

A similar view holds in the Weyl geometric approach. There the norm |φ| of the
scalar field (now complex or even a Higgs-like isospinor complex two-component
field) may be considered as setting the physical scale [11, 12]. That leads to an ob-
vious method to extract the scale invariant magnitude X̂ of a scale covariant local
quantity X of weight w := w(X), given at point p. One just has to consider the pro-
portion with the appropriately weighted power of |φ|. In this sense the observable
magnitude X̂(p) of a Weyl field X with w = w(X) is given by

X̂(p) := X(p)

|φ|−w(p)
= X(p)|φ|w(p). (10)

By definition X̂ is scale invariant.
For example the scale invariant length l̂(ξ ) of a vector ξ at p, ξ ∈ TpM , is l̂(ξ ) =

|φ| |g(ξ, ξ)| 1
2 , independent of the scale gauge considered. Matter energy density in

the sense of ρ = T
(mat)
00 (cf. (30)) has to be compared with observed quantities by

ρ̂ = ρ|φ|2, etc. Geodesic distance in the sense of (8) is a non-local, scale dependent
concept; but its observable d̂(p0,p1), i.e. the scale invariant distance between two
points, is calculated by integrating local “observables” derived from the infinitesimal

arc elements. For geodesics ds = |g(γ ′, γ ′)| 1
2 = 1 and thus

d̂(p0,p1) =
∫ τ1

τ0

|φ|dτ. (11)

This is identical to geodesic distance in |φ|-gauge.
Choosing the scale gauge such that the norm of φ becomes constant may thus

facilitate the calculation of scale invariant observables considerably. In |φ|-gauge X̂

is identical to X up to a (“global”) constant factor depending on measuring units. If
lower ∗ denotes values in |φ|-gauge, we clearly have

X̂
.= const X∗ with const = |φ∗|w(X). (12)

The dotted
.= indicates that the equality only holds in a specified gauge (respectively

frame, if one considers the analogous situation in conformal scalar tensor theories, cf.
Sect. 4). In this sense |φ| gauge is physically preferred. Observables X̂ are directly



Found Phys

read off from the quantities given in this gauge, X̂ ∼ X∗. In particular for distances

d̂(p0,p1)
.= d∗(p0,p1),

up to a global constant. If scale invariant local quantities of Weyl geometric grav-
ity (with a scalar field) are empirically meaningful, |φ|-gauge expresses directly the
behavior of atomic clocks or other physically distinguished measuring devices. On
the other hand, there may be mathematical or other reasons to calculate X̃ in another
scale gauge first.

The physical fruitfulness of Weylian geometry (in the scalar field approach) de-
pends on the answer to the following question: Can measurements by atomic clocks
characterized by scale invariant classical observables like above?—Those who stick
to the default answer that this is not the case and Riemann gauge expresses observ-
ables directly will be led back to Einstein’s semi-Riemannian theory. If this were the
only possibility, the generalization to IWG would be redundant. However, this is not
at all the case when we consider a Weyl geometric version of scalar tensor gravity
with the assumption that |φ| “sets the scale” (in the sense above).

3 Lagrangian

We start from scale invariant Lagrangians similar to those studied in conformal J-B-D
type theories of gravity [15, 19] with a real scalar field φ. Tann [41] and Drechsler
and Tann [12] have investigated the properties of a complex version of it in their field
theoretic studies of a Weyl geometric unification of gravity with electromagnetism.
Drechsler [11] even includes semi-classical fields of the standard model (fermionic
and bosonic), extending φ to a Higgs-like isospinor spin 0 doublet. Here we deal
exclusively with gravity and might specialize to a real scalar field, but we do not.

In order to indicate the symbolical interface to the extension of the Weyl geometric
approach to electromagnetism and/or the standard model sector of elementary particle
physics (EP), studied by Drechsler and Tann, we stick (formally) to a complex version
of the scalar field φ, although for our purposes we are essentially concerned with |φ|
only. The Lagrangian is

L = √|g|(L(HE) + L(φ) + · · · (LEP · · ·) + L(em) + L(m)
)
, (13)

where |g| = |det(gij )|. Standard model field theoretic Lagrangian terms, L(EP), are
indicated in brackets (cf. Sect. 5). L(HE) is the Hilbert-Einstein action in scale in-
variant form due to coupling of the scalar curvature to a complex scalar field φ,
w(φ) = −1. L(φ) is the scale invariant Lagrangian of the scalar field, L(m) the La-
grangian of classical matter for an essentially phenomenological characterization of
mean density matter. Here we consider the most simple form of a neutral fluid (even
dust). A more sophisticated (general relativistic magnetohydrodynamical) L(m) will
be necessary for more refined studies, e.g. of structure formation arising from hot
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intergalactic plasma of intergalactic jets etc.1

L(HE) = 1

2
ξ(φ∗φ)

n−2
2 R, w(φ) = −1,

L(φ) = −
(

1

2
Dμφ∗Dμφ − V (φ)

)

,

L(m) = μ(1 + ε), w(μ) = −4,

L(em) = [c]
16π

FμνF
μν

(14)

ξ = n−2
4(n−1)

(n = dimension of spacetime) is the known coupling constant establishing

conformal invariance of the action L(HE)+ L(φ), if covariant differentiation and scalar
curvature refer to the Riemannian component of the metric only (g∇μ and gR in the
notation above) [30, 41]. Here n = 4, ξ = 1

6 .
The potential term in L(φ) is formal placeholder for a quadratic mass like and a

biquadratic self interaction term

V (φ) = λ2(φ
∗φ) + λ4(φ

∗φ)2, w(λ2) = −2, w(λ4) = 0, (15)

with scale invariant coupling constant λ4 like in [11] and scale covariant quadratic
coefficient λ2. Formally, V looks like the Lagrange term of a scale covariant cos-
mological “constant”. We shall see, however (33), that the energy stress tensor of φ

contains other, more important contributions.
Our matter Lagrangian consists of a fluid term with energy density μ and internal

energy ratio ε similar to the one in [22, 69f], with functions μ,ε on spacetime of
weight w(μ) = −4, w(ε) = 0. L(m) is related to timelike unit vectorfields X = (Xμ)

of weight w(X) = −1 representing the flow and constrained by the condition that
during variation of the flow lines its energy density flow

j := μ(1 + ε)X

satisfies the local energy conservation of the matter current

div j = Dμjμ = 0. (16)

For abbreviation we set

ρ := μ(1 + ε). (17)

As an alternative, one might try to model classical matter by a second scalar field
� with the same scale weight as φ [19, Chap. 3.3]. The coupling to the scalar field φ

[19, (3.60)ff] could be transformed into a Weyl geometric kinetic term gμνDμ�Dν�

with scale covariant derivative Dμ� = (∂μ − ϕμ)�. But for cosmological applica-
tions the (observational) restriction of negligible pressure, would lead to an artificial

1For a first heuristic discussion of structure formation compatible with Einstein-Weyl models, cf. [18,
Chap. 6].
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coupling between matter and the scalar field φ. We therefore choose here the ap-
proach adapted from [22].

In terms of extension of gauge groups, the Weyl geometric approach to gravity
works in the frame of the scale extended Lorentz or Poincaré group, sometimes called
the (metrical) Weyl group

W ∼= R
4

� SO(1,3) × R
+.

For inclusion of standard model (EP) fields it has to be extended by internal symme-
tries SU3 × SU2 × U(1)Y .

To bring the constants in agreement with Einstein’s theory, the constant in |φ|-
gauge has to be chosen such that the coefficient of the Hilbert Einstein action becomes

1

2
ξ |φ∗|2 .= [c4]

16πG
. (18)

For n = 4 that means

|φ∗|2 .= 6
c4

8πG
. (19)

In other words

|φ∗|
√

�c
.= 1

2

√
3

π
EPl ≈ 1

2
EPl, |φ∗|−1

√
�c

.= 2

√
π

3
lPl ≈ 2lPl, (20)

with EPl, lPl Planck energy, respectively Planck length.
Some authors conjecture [23, 24, 27, 40] that a condensation, close to the Planck

scale, of an underlying non-trivial scale bosonic field ϕ with dϕ �= 0 may give a
deeper physical reason for the assumption that φ “sets the scale” in the sense of (10)
and (18). If this were true, the scalar field φ, and with it the integrable scale connec-
tion ϕ taken into consideration here, would probably characterize a macroscopic state
function of some kind of scale boson condensate. This is an interesting thought, but
at present a reality claim for this conjecture would be premature.

4 |φ|-Gauge and Scalar Tensor Theories of Gravity

In a formal sense, our Lagrangian may be considered as belonging to the wider fam-
ily of scalar-tensor theories of gravity. The scale invariant Hilbert-Einstein action is
analogous to the one of Jordan-Brans-Dicke theory. One should keep in mind, how-
ever, that the conceptual frame and the (model) dynamics are different. In J-B-D
theories rescaling of the metric g∗ = �2g expresses a conformal mapping in which
the affine connection and curvature quantities derived from g are “pulled back” to
the new frame and expressed in terms of g∗. Two conformal pictures, usually called
“frames” (g or g∗), represent possible different physical models [16]. Thus the ques-
tion arises which of the pictures (frames) may be “physical”, if any. Faraoni et al. [16]
give strong arguments in favor of the conformal picture in which the factor |φ|2 in
the Hilbert-Einstein action is normalized to a constant, the so-called Einstein frame.
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Some authors have started to look for a bridge between scalar tensor theories and
Weyl geometry [38, 39].

In the Weyl geometric approach all scale gauges are, in principle, equivalent. Weyl
geometry is a scale invariant structure; local physical quantities X (locally defined
“lengths”, energy densities, pressure, . . .) are scale covariant (transform according
to their gauge weight), but have scale invariant observable quantities X̂, cf. (10).
In this sense, Weyl geometry is a gauge theory like any other (needless to remind
that it has given the name to the whole family). On the other hand, scale invariant
quantities X̂ can be read off directly in |φ|-gauge up to a constant factor. In this
respect and different to other gauge theories, |φ|-gauge provides us with a preferred
scale. This corresponds well to the established knowledge that atomic clocks etc.
define a physical scale, a fact which cannot be neglected in any reasonable theory of
gravity, cf. [32, 33].

In integrable Weyl geometry, which we consider here exclusively (cf. Sect. 2), the
scale connection ϕ is “pure gauge”, i.e. has curvature zero, and can be integrated
away. So there are two distinguished gauges, one in which the scale connection is
gauged away and one in which the norm of the scalar field is trivialized, i.e. made
constant. The complex, or isospin, phase of φ plays its part only if electromagnetic
fields or weak interaction is considered (is “switched on”), cf. [11, 12]; here we ab-
stract from its dynamical role:

(g̃, ϕ̃), φ̃, with ϕ̃ = 0 (Riemann gauge),

(g∗, ϕ∗), φ∗, with |φ∗| = const (|φ|-gauge).

Formally the Einstein frame of J-B-D theories corresponds to |φ|-gauge, Jordan
frame (more precisely one of its choices) to Riemann gauge.

Scale connection ϕ∗ (of |φ|-gauge) and scalar field |φ̃| (in Riemann gauge) deter-
mine each other. Structurally speaking they are different aspects of the same entity
(in integrable Weyl geometry). The scalar field in Riemann gauge, more precisely its
norm, can be written as

|φ̃| = |φ̃(p0)|e−σ with σ(p) =
∫ p

p0

ϕ∗(γ ′), (21)

γ connecting path between p0,p, and ϕ∗ the scale connection in |φ|-gauge. It is
just the inverse of Weyl’s “length” (scale) transfer function (2) in |φ|-gauge up to
a constant, |φ̃| ∼ λ(p0,p)−1. The other way round, the scale connection ϕ∗ in |φ|-
gauge can be derived from the scalar field φ̃ in Riemann gauge,

ϕ∗ = dσ = −d log |φ̃| = −d|φ̃|
|φ̃| , i.e. ϕμ = ∂μσ. (22)

The dynamics of ϕ (in |φ|-gauge) is governed by the Lagrangian of the φ-field
in (14), L(φ) = √|g|(− 1

2Dμφ∗Dμφ + V (φ)). In IWG ϕ cannot have a scale curva-
ture term “of its own” (dϕ vanishes). This does not mean that the Weyl geometric ex-
tension of classical gravity is dynamically trivial. In Riemann gauge its non-triviality
is obvious. At first glance it may appear trivial in |φ|-gauge, because |φ| = const.
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A second glance shows, however, that it is not, due to the scale connection terms of
the covariant derivative. The dynamics of the scalar field in Riemann gauge is now
expressed by a Lagrangian term in the scale connection ϕ = dσ , i.e., in the derivatives
of σ .

It may be useful to compare the |φ|-gauge Lagrangian

L(EH,φ) .= √|g∗|
(

1

2
ξR∗ − 1

2
Dμφ∗∗Dμφ∗ + V (φ∗)

)

(23)

with the corresponding expression of semi-Riemannian scalar tensor theory. If non-
gravitational (em or ew) interactions are abstracted from, |φ| can be considered as an
essentially real field

φ = |φ|.
The corresponding expression in Einstein frame [19, Chap. 3.2]

√|g∗|
(

1

2
ξ g∗R∗ − 1

2
(1 + 6ξ)g

μν∗ ∂μσ∂νσ + V (φ∗)
)

(24)

is variationally equivalent to (23). It just has shifted the 6ϕ
μ∗ ϕ∗μ term of (4), plugged

into (23), to the kinetic term in ∂μσ = ϕ∗μ. The last term, 6g∇λϕ
λ, in (4) is a gradient

and has no consequence for the variational equations.2

Nobody would consider semi-Riemannian scalar tensor theories in Einstein frame
dynamically trivial. This comparison may thus help to understand that even a scale
connection with dϕ = 0 can play a dynamical role in Weyl geometric gravity. Below
we shall study a simple example, where ϕ even assumes constant values in large
cosmological “average”, respectively idealization. We have to keep in mind that even
then the Weylian scale connection ϕ indicates a dynamical element of spacetime.
“Statics” is nothing but a dynamical constellation in equilibrium.

5 Extension to the Field Theoretic Sector

Field theoretic contributions to the Lagrangian (electroweak, Yukawa, fermionic),
adapted from conformal field theory, are studied in [11, 24] and other works:

L(ew) = α1(WμνW
μν + BμνB

μν)

L(Y ) = α2
(
(ψ̄Lφ̃)�R + (ψ̄Rφ̃)�L

)

L(�) = i

2
(�̄Lγ μD̃μ�L − �̄LD̃μγ μ�L)

+ i

2
(�̄Rγ μD̃μ�R − �̄RD̃μγ μ�R)

2Fujii and Maeda’s σ contains a factor
√

1 + 6ξ , compared with our’s and a different sign convention
for V [19, (3.28), (3.30)].
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� denotes left and right handed spinor fields of spin S(�) = 1
2 ; (γ μ) is a field

of Dirac matrices depending on scale gauge. Weyl weights are w(�) = − 3
2 ,

w(γ μ) = −1. φ̃ is the scalar field (spin 0) w(φ̃) = −1, extended to an isospin 1
2

bundle, i.e., locally with values in C
2. D̃μ denotes the covariant derivative lifted

to the spinor bundle, respectively the isospinor bundle, taking the electroweak
connection with Wμν (values in SU(2)) and Bμν (values in u(1)Y ) into account
(w(Wμν) = w(Bμν) = 0) [11]. After substitution of Dμ by D̃μ in L(φ), the total
Lagrangian becomes

L = [c4]
16πN

(
L(HE) + L(φ) + L(ew) + L(Y) + L(�) + · · ·)

+ · · · + L(m) + [L(em)]. (25)

The electromagnetic action L(em) arises after symmetry reduction, induced by fix-
ing the gauge of electroweak symmetry imposing the condition φ̃o = (0, |φ|). In
|φ|-gauge it is normed to a constant. In this context Drechsler sets it to the ew en-

ergy scale,
√

2|φ|[�c]− 1
2

.= v ≈ 246 GeV, i.e., scaled down to laboratory units by a
“global” factor 10−17 with respect to (18).

The infinitesimal operations of the ew group then lead to a “non-linear realization”
in the stabilizer U(1)em of φ̃0 and contribute to the covariant derivatives and the
energy momentum tensor of the φ field. In this way the energy-momentum tensor of φ

indicates the acquirement of mass of the electroweak bosons, even without assuming
a “Mexican hat” type potential and without any need of a speculative symmetry break
in the early universe.

Drechsler’s study shows that mass may be acquired by coupling the ew-bosons to
gravity through the intermediation of the φ-field. This is a conceptually convincing
alternative to the usual Higgs mechanism. In similar approaches, Hung Cheng [24]
and Pawlowski and Raczka [29] have arrived at similar expressions by deriving mass
terms perturbatively on the tree level from the same scale invariant Lagrangian with-
out the Mexican hat potential. This is a remarkable agreement. With the Large Hadron
Collider (LHC) coming close to starting its operation, such considerations deserve
more attention by theoretical high energy physicists.

In their investigation Drechsler and Tann consider a mass term of the scalar field
as a scale symmetry breaking device, by substituting −M2

0 |φ|2 in V (φ) for −λ2|φ|2,
where w(M0) = 0, M0 �= 0 [11, 12, 41]. This choice, although possible, is not com-
pulsory for the analysis of a Higgs-like mechanism which couples ew-bosons to grav-
ity [20], neither does it seem advisable. The similarity of this approach to the one
of [29] which relies on unbroken conformal scale covariance and a conformally weak-
ened gravitational action, indicates that this type of coupling does not depend on the
scale breaking condition w(M0) = 0 for a scalar field mass. Therefore it seems prefer-
able to assume M0 = 0 (or if M0 �= 0, gauge weight w(M0) = −1 and M0 ≡ λ2), in
order to keep closer to the Weyl geometric setting.
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6 Variational Equations

Variation with respect to φ∗ leads to a Klein-Gordon equation for the scalar field
[12, (2.13)], which couples to scalar curvature,

DμDμφ +
(

ξR + 2

φ

∂V

∂φ∗

)

φ = 0. (26)

The factor

ξR + 2

φ

∂V

∂φ∗ =: m̃2
φ = m2

φc4

�2
(27)

functions as a mass-like factor of the φ-field. The contributions of the quadratic and
biquadratic terms of V to (27) are intrinsic to the φ-field. If they vanish, mφ is derived
exclusively from the mass-energy content of spacetime via scalar curvature R and the
Einstein equation.

Variation of flow lines with adjustment of ρ such that the mass energy current is
conserved, i.e. respects the constraint (16), leads to an Euler equation for the acceler-
ation of the flow Ẋμ := DλX

μXλ,

(ρ + pm)DλX
μXλ = −∂λpm(gλμ + XλXμ), (28)

where pm = μ2 dε
dμ

is the pressure of the fluid and ρ = μ(1 + ε) as above (17), cf.
[22, p. 96] for the semi-Riemannian case.

Variation with respect to δgμν gives the scale covariant Einstein equation

Ric − R

2
g = (ξ |φ|2)−1(T (m) + T (φ) + [· · · + T (Z) · · ·]) (29)

with a classical matter tensor compatible with (28)

T (m)
μν = −2

1√|g|
δLm

δgμν
= (ρ + pm)XμXν + pmgμν, (30)

and field tensors

T (Z) := −2
1√|g|

δL(Z)

δgμν
, Z for φ, ew,�,Y ,

of scale weight w(T ) = −2. They are calculated in [11]; here we only need T (φ).
G̃ defined by generalization of (18)

8πG̃

[c4] := ξ−1|φ|−2

may be considered as a scale covariant version of the gravitational “constant”. Its
weight corresponds to what one expects from considering the physical dimension
of G,

[[G]] = [[L3M−1T −2]] = [[LM−1]] = 2 = w(G̃).



Found Phys

L,M,T denote length, mass, time quantities respectively, [[. . .]] the corresponding
metrological (“phenomenological”) scale weights. w(G̃) correctly cancels the weight
of the doubly covariant energy-momentum tensor with w(Tμν) = −2. If one wants,
one may even find some of the intentions of the original J-B-D theory (e.g., “time de-
pendence” of the gravitational constant) reflected in the behavior of the Weyl geomet-
ric G̃ in Riemannian gauge. In |φ|-gauge the gravitational coupling is constant; that
corresponds to the Einstein frame picture of conformal J-B-D theory and underpins
the importance of this gauge as a good candidate for proportionality to measurements
according to atomic clocks, without further reductions like (10).

The r.h.s. of (29) will be abbreviated by

� := (ξ |φ|2)−1(T (m) + T (φ) + [· · · + T (Z) · · ·]) (31)

and its constituents by �(m) := (ξ |φ|2)−1T (m) etc.
The energy-stress tensor of the Weyl geometric φ-field has been calculated in

[41, (372)] and [12, (3.17)]. It is consistent with the (non-variationally motivated)
proposal of Callan et al. [5] to consider an “improved” energy tensor:

T (φ) = D(μφ∗Dν)φ − ξD(μDν)(φ
∗φ)

− gμν

(
1

2
Dλφ

∗Dλφ − ξDλDλ(φ
∗φ) − V ((φ∗, φ)

)

. (32)

Crucial for Drechsler/Tann’s calculation is the observation that the coupling of
R with |φ|2 leads to additional, in general non-vanishing, terms for the variational
derivation δgμν of the Hilbert-Einstein Lagrangian. These terms (those with factor
ξ in the formula above) agree with the additional terms of the “improved” energy
tensor of Callan-Coleman-Jackiw [41, 98–100].

This modification has to be taken into account also in scalar-tensor theories more
broadly. Although it is being used in some of the present literature, e.g. [37], it has
apparently found no broad attention. In [15, (7.29)] the “improved” form of Callan
energy-momentum tensor is discussed as one of several different alternatives for an
“effective” energy-momentum tensor. Faraoni sees here the source of the problem of
non-uniqueness of the “physically correct” energy momentum tensor of a scalar field.

Tann’s and Drechsler’s derivation shows, however, that there is a clear and unique
variational answer (32) to the question. It also indicates that the truncated form of
the energy tensor (without the ξ -terms) is in general incorrect for theories with a
quadratic coupling of the scalar field to the Hilbert-Einstein action, independent of
the wider geometrical frame (conformal semi-Riemannian or Weyl geometric). We
shall see that already for simple examples this may have important dynamical conse-
quences (Sect. 9).

We even may conjecture that (32) opens a path towards a solution of the long-
standing problem of localization of gravitational energy, mentioned in this context
by other authors, cf. [15, 157]. As φ is an integral part of the gravitational structure,
one may guess that (32) itself may represent the energy stress tensor of the gravita-
tional field. At least, it is a well-defined energy tensor and is closely related to the
gravitational structure. Moreover it is uniquely defined by the variational principle.
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�(φ) = ξ−1|φ|−2T (φ) decomposes (additively) into a vacuum-like term propor-
tional to the Riemannian component of the metric

�
(�)
μν = −�gμν , with

� := (ξ |φ|2)−1
(

1

2
Dλφ

∗Dλφ − ξDλDλ(φ
∗φ) − V ((φ∗, φ)

)

,
(33)

and a matter-like residual term

�(φres)
μν = (ξ |φ|2)−1(D(μφ∗Dν)φ − ξD(μDν)(φ

∗φ)). (34)

Clearly � is no constant but a scale covariant quantity (of weight −2). By the
scalar field equation (26) it depends on scalar curvature of spacetime and matter
density. Its weight is w(�) = −4.

If T (φres) reduces to its (0,0) component, it acquires the form of a dark matter
term. There are indications that the scalar field contributions close to galactic mass
concentrations may be helpful for understanding dark matter [26, 27].

Another energy-momentum tensor of a long range field (after ew symmetry re-
duction) is the e.m. energy stress tensor. As usual it is

T (em)
μν = [c]

4π

(

FμλF
λ
ν − 1

4
gμνFκλF

κλ

)

. (35)

In our context T (em) is negligible. So is the internal energy of the fluid. For the pur-
pose of a first idealized approximation of cosmic geometry in the following sections
we work with ε = 0, i.e. with dust matter,

pm = 0, ρ = μ. (36)

For the sake of abbreviation we also use the matter density parameter

ρ̃ = ξ−1|φ|−2ρ. (37)

Remember that we have not included a dynamical term proportional to f μνfμν into
the Lagrangian, f := dϕ curvature of the Weylian scale connection. So we exclude,
for the time being, considerations which might become crucial close to the Planck
scale, presumably supplemented by scale invariant higher order terms in the curva-
ture [40], mentioned at the end of Sect. 3.

7 Cosmological Modeling

Any semi-Riemannian manifold can be considered in the extended framework of
integrable Weyl geometry. For cosmological studies, Robertson-Walker manifolds
are particularly important. They are spacetimes of type

M ≈ R × M(3)
κ
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with M
(3)
κ a Riemannian 3-space of constant sectional curvature κ , usually (but not

necessarily) simply connected. If in spherical coordinates (r,�,�)

dσ 2
κ = dr2

1 − κr2
+ r2(d�2 + sin2 �d�2) (38)

denotes the metric on the spacelike fibre M
(3)
κ , the Weylian metric [(g,ϕ)] on M is

specified by its Riemann gauge (g̃,0) like in standard cosmology:

g̃: ds2 = −dτ 2 + a(τ)2dσ 2
κ (39)

τ = x0 is a local or global coordinate (cosmological time parameter of the semi-
Riemannian gauge) in R, the first factor of M . We shall speak of Robertson-Walker-
Weyl (R-W-W) manifolds.

In the semi-Riemannian perspective a(τ), the warp function of (M, [(g,ϕ)]), is
usually interpreted as an expansion of space sections. The Weyl geometric perspective
shows that this need not be so. For example, there is a gauge (gw,ϕw) in which the
“expansion is scaled away”:

gw = �2
wg with �w := 1

a
. (40)

With

t :=
∫ τ du

a(u)
= h−1(τ ) and its inverse function h(t) = τ (41)

we get a gauge

gw(x) := −dt2 + dσ 2
κ ,

ϕw(x) = d log(a ◦ h) = (a′ ◦ h)dt = a′(h(t)) dt,
(42)

in which the Riemannian component of the metric looks static. According to (9),
it may be called warp gauge of the Robertson-Walker manifold, because the warp
function is scaled to a constant. The other way round, the warp function is nothing
but the integrated scale transfer of warp gauge (2)

a(p) = a(p0)e
∫ 1

0 ϕw(γ ′). (43)

The geodesic path structure is invariant under scale transformations of IWG. In
agreement with Diracian geodesics of weight −1 the observer field Xi = ∂/∂xi has
also to be given the weight w(X) = −1. Then the energy e(p) of a photon along a
null-geodesic γ , observed at p by an observer of the family X is given by

e(p) = gp(γ ′(p),X(p)).

It is of weight w(e) = 2 − 1 − 1 = 0 and thus scale invariant. Therefore redshift
(cosmological or gravitational) of a photon emitted at p0 and observed at p1 with
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respect to observers of the family X,

z + 1 = e(p0)

e(p1)
= gp0(γ

′(p0),X(p0))

gp1(γ
′(p1),X(p1))

, (44)

is also scale invariant (γ null-geodesic connecting p0,p1).
We see that cosmological redshift is not necessarily characterized by a warp func-

tion a(x0); in warp gauge it is expressed by the scale connection ϕw and can be read
off directly from Weyl’s “length” transfer because of z + 1 = a(p)

a(p0)
and (43):

z + 1 = e
∫ 1

0 ϕ(γ ′)dτ = λ(p0,p1), γ connecting path. (45)

We therefore call ϕw the Hubble connection of the R-W-W model. It is timelike,
ϕw = H(t)dt , with H(t) = a′(h(t)).

If Hubble redshift is not due to space expansion but to a field theoretic energy
loss of photon energy with respect to the observer family, the warp gauge picture
will be more appropriate to express physical geometry than Riemann gauge. In this
case, the Hubble connection should not be understood as an independent property
of cosmic spacetime, but rather depends on the mean mass-energy density in the
universe. Different authors starting from [45] to the present have tried to find a higher
order gravitational effect which establishes such a relation. A convincing answer has
not yet been found. If however the Hubble connection is “physical”, Mach’s principle
suggests that it should be due to the mean distribution of cosmic masses. As simplest
possibility, we may conjecture that a linear relation between H 2 and mass density
might hold in large means in warp gauge,

H 2 = η1ρ̃ + η0, η1 > 0 (H 2 conjecture). (46)

In the models studied below such a coupling of H 2 to mass density is a consequence
of the scalar field equation and the Einstein equation (59).

As geodesic distance (8) is no local observable and not scale invariant, the ques-
tion arises which of the gauges, Riemann or warp gauge gauge (or any other one),
expresses the measurement by atomic clocks. In the context of Weyl geometric scalar
field theory the question can be reformulated: Does |φ|-gauge coincide with one of
these gauges and if so, with which? Ontologically speaking, the two gauges, Riemann
or warp, correspond to two different hypotheses on the cause of cosmological redshift:
space expansion (Riemann gauge) or a field theoretic energy loss of photons (warp
gauge). Weyl geometry allows to translate between the two hypotheses and provides
a theoretical framework for a systematic comparison.

8 Weyl Universes

In order to get a feeling for the new perspectives opened up by Weyl geometric scalar
fields, we investigate the simplest examples of R-W-W cosmologies with redshift.
In warp gauge their Weylian metric is given by a constant Riemannian component
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ds2 = −dt2 + dσ 2
κ (where κ ∈ R denotes the sectional curvature of the spatial fibres

M
(3)
κ ) and a constant scale connection with only a time component:

ds2 = −dt2 +
(

dr2

1 − κr2
+ r2dϑ2 + r2 sin2 ϑ dφ2

)

,

ϕ = (H,0,0,0), H > 0 constant.

(47)

H is called Hubble constant (literally). We encounter here a Weyl geometric general-
ization of the classical static models of cosmology, but now including redshift (45):

z + 1 = eH(t2−t1).

These models will be called Weyl universes. Different to the classical static cosmolo-
gies this type of static geometry can be upheld, under certain conditions, in a natural
way by the dynamical effects of the scalar field φ, respectively the Weylian scale
connection ϕ (Sect. 9).

The integration of the scale connection leads to an exponential length transfer
function λ(t) = eHt . Transition to the R-W metric presupposes a change of the cos-
mological time parameter τ = H−1eHt ; then

a(τ) = Hτ. (48)

Thus this class deals with a Weyl geometric version of linearly warped (“expanding”)
R-W cosmologies.

Up to (Weyl geometric) isomorphism, Weyl universes are characterized by one
metrical parameter (module) only,

ζ := κ

H 2
. (49)

In warp gauge the components of the affine connection with respect to spherical
coordinates (47) are

	0
00

.= H, 	α
0α

.= H (α = 1,2,3),

	0
11

.= H(1 − κr2)−1, 	0
22

.= Hr2, 	0
33

.= Hr2 sin2 ϑ,

	
γ
αβ

.= g	
γ
αβ (α,β, γ = 1,2,3).

(50)

Ricci and scalar curvature are

Ric
.= 2(κ + H 2)dσ 2

κ ,

R
.= 6(κ + H 2).

(51)

Similar to those of the classical static models, Weyl universes have constant entries
of the energy momentum tensor but contain quadratic Hubble terms H 2 in addition
to spacelike sectional curvature terms:

�00
.= 3(κ + H 2), �αα

.= −(κ + H 2)(dσ 2
κ )αα (α = 1,2,3). (52)
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That corresponds to a total energy density ρ and pressure p

ρ̃
.= 8πGρ

.= 3(κ + H 2), p̃
.= 8πGp

.= −(κ + H 2).

For κ > 0 we obtain Einstein-Weyl models similar to the classical Einstein universe.
The next question will be, whether the equilibrium condition between energy den-

sity and negative pressure necessary for upholding such a geometry may be secured
by the scalar field.

9 Energy Momentum of the Scalar Field and Dynamical Consistency

Here and in the following sections we work in warp gauge, i.e., spacelike fibres M
(3)
κ

are gauged to constant (time-independent) sectional curvature, if not stated otherwise.
Therefore the following equations are in general no longer scale invariant.

In warp gauge the Beltrami-d’Alembert operator of Weyl universes is given by

�φ = DλDλφ
.= −(∂2

0 − 3H∂0 + 2H 2)φ + ∇̃α∇̃αφ, (53)

where λ = 0,1,2,3, α = 1,2,3, and ∇̃α denotes the covariant derivatives of the Rie-
mannian component of the metric along spatial fibres.

Separation of variables

φ(t, x̃) = eiωtf (x̃), x̃ = (x1, x2, x3),ω ∈ R,

with an eigensolution f of the Beltrami-Laplace operator and w(f ) = −2,

∇̃α∇̃αf = λf, λ ∈ R,

leads to

�φ
.= (ω2 + 3H 2ωi + λ − 2H 2)φ.

Reality of the mass like factor of the K-G equation implies ω = 0. Moreover, for
Einstein-Weyl universes, κ > 0, f is a spherical harmonic on the 3-sphere S3 with
eigenvalue λ. The only spherical harmonic with constant norm is f ≡ const, λ = 0,
and thus φ = Re(φ) = const is a ground state solution (after separation of variables)
of the scalar field equation in warp gauge. We conclude that warp gauge of Weyl
universes coincides with |φ|-gauge and

�φ
.= −2H 2φ.

As we work in this section in |φ| gauge anyhow, the denotation φ∗ used where differ-
ent gauges are compared is here simplified to φ.

Using (51) we see that the K-G equation (26) is satisfied, iff

H 2 .= κ + 2

φ

∂V

∂φ∗ . (54)
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The contributions to the energy momentum tensor (32) in |φ|-gauge (identical to
warp gauge) are given by:

D0φ
.= −Hφ, Dαφ

.= 0 (α = 1,2,3)

and therefore

Dλφ
∗Dλφ

.= −H 2|φ|2. (55)

For constant functions f of weight w(f ) = −2, like |φ|2, the scale covariant gra-
dient does not vanish because of the weight correction of (6),

D0f
.= (∂0 + w(f )H)f

.= −2Hf, D0f
.= 2Hf,

while all other components vanish, Dαf
.= 0. For the next covariant derivative the

only non-vanishing component of the affine connection is 	0
00

.= H . That leads to

D0D0f
.= (∂0 − 	0

00 + w(D0f )H)D0f
.= 6H 2f.

Thus 1
2D0φ

∗D0φ − 1
6D0D0|φ|2 .= H 2

2 |φ|2. From (33) we find

�
.= 3H 2 − 6

V

|φ|2 . (56)

The truncated version of (32) would lead to a different value and thus to a completely
different dynamics of the whole system.

T (φres) vanishes and

�(φ) = −�g. (57)

Formally �(φ) looks like the “vacuum tensor” of the received approach. Note, how-
ever, that here the coefficient � is no universal constant but couples to the mass
content of the universe via H 2, the relation (54) and the energy component of the
Einstein equation (29). The (0,0)-component of the latter is

3(κ + H 2)
.= ρ̃ + �

.= ρ̃ + 3H 2 − 6
V

|φ|2 ,

3κ
.= ρ̃ − 6

V

|φ|2 ,

(58)

where the convention (37) for ρ̃ has been applied. Equation (54) and the observation
that in the V considered here 1

φ
∂V
∂φ∗ − V

|φ|2 = λ4|φ|2 imply

H 2 .= ρ̃

3
+ 2λ4|φ|2, �

.= ρ̃ − 6λ2. (59)

Thus the H 2-conjecture (46) turns out to be true for the case of Weyl universes. In
agreement with Mach’s “principle” H 2 and � depend on the mass content of the
universe. This agrees with the basic principle of physics that a causally important
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structure of spacetime and matter dynamics should not be independent of the mat-
ter content of the universe. The basic principle is satisfied for the energy tensor of
the scalar field of Weyl universes and for � in general. According to [14] this is a
desideratum for any realistic cosmological model.

Now it is clear which conditions have to be satisfied by φ and V (φ), if Weyl uni-
verses are to be kept in equilibrium by the scalar field. In this case the total amount of
mass-energy density and the negative pressure of the vacuum-like term of the scalar
field tensor have to counterbalance each other (dynamical consistency of Weyl uni-
verses). The general balance condition for total energy density ρ and pressure p of
fluids is [13]

ρ + 3p = 0.

Because of p̃ = −� it becomes in Einstein universes:

ρ̃ + �
.= �00

.= 3� ←→ ρ̃
.= 2�. (60)

Altogether K-G equation (54), Einstein equation (58) and the consistency condi-
tion for Weyl universes (60), including (56), give an easily surveyable set of condi-
tions (the Euler equation (28) is trivially satisfied)

κ + 2λ2 + 4λ4|φ|2 .= H 2,

3κ − ρ̃ + 6λ2 + 6λ4|φ|2 .= 0,

ρ̃ + 12λ2 + 12λ4|φ|2 .= 6H 2.

(61)

To get a first impression what this means in terms of energy densities for low values

of ζ we list some examples including comparison with ρcrit = 3H 2[c4]
8πG

.= 3H 2ξ |φ∗|2.

Examples A moderate curvature module 1 arises for

ρ̃
.= 4H 2, �

.= 2H 2, κ
.= H 2, λ2

.= H 2

3
, λ4|φ|2 .= −H 2

6
,

�m = 4

3
, �� = 2

3
, ζ = 1.

(62)

For λ4 = 0, on the other hand, we get

�m = 1, �� = 1

2
, ζ = 1

2
, λ2

.= H 2

4
. (63)

It cannot come as a surprise that we find relatively high mass energy densities, as
we are working with positive space curvature. They increase with higher curvature
values, e.g., �m = 2, �� = 1 for ζ = 2 etc.

Considering present mass density estimations, this might appear as a reason to
discard these models. But there are other reasons to shed a second glance at them,
at least as “toy” (i.e. methodological) constellations. In the light of the conjecture
(Sect. 6) that T (φ) may be considered as energy tensor of the gravitational struc-
ture (extended by φ), these simple models demonstrate the possibility of a cosmic
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geometry balanced by the gravitational stress energy tensor itself (cf. in a different
context [14]). This may be important for attacking the problem of stability. We do not
do this here; but turn to a second glance at the empirical properties of these models.
This also illuminates the more general question how Weyl geometric models behave
under empirical scrutiny.

10 First Comparison with Data

First of all, it is clear that the precision of the empirical tests of GRT inside the
solar system lie far away from cosmological corrections in any approach. In Weyl
geometry the cosmological corrections to weak field low velocity orbits amount to
an additional coordinate acceleration ẍ = −Hẋ =: aH [35, Appendix II]. For typi-
cal low velocities of planets or satellites ∼10 km s−1, this is 9 orders of magnitude
below solar gravitational acceleration at distance 10 AU (astronomical units) from
the sun, and 4 orders of magnitude below the anomalous acceleration aP of the Pio-
neer spacecrafts determined in the late 1990s [1]. Present solar system tests of GRT
work at an error margin corresponding to acceleration sensitivity several orders of
magnitude larger [44].

Thus, for the time being, the Weyl geometric cosmological corrections cannot
be checked empirically by their dynamical effects on the level of solar system in
terms of parametrized postnewtonian gravity (PPN). On the other hand the Hubble
connection leads to an additional redshift �ν ≈ Hc−1v�t over time intervals �t for
space probes of the Pioneer type with nearly radial velocity v. This corresponds to
the absolute value of the anomalous Pioneer acceleration, but is of wrong sign, if
compared with the interpretation of the Pioneer team. Follow up experiments will be
able to clarify the situation [9].

At present a first test of the model with data from observational cosmology is
possible by confronting it with the high precision supernovae data available now for
about a decade [31], recently updated [34]. In the Weyl geometric approach the damp-
ing of the energy flux of cosmological sources is due to four independent contribu-
tions: In addition to damping by redshift ∼ (1 + z) (energy transfer of single photons
with respect to X), the internal time dilation due to scale transfer of time intervals (2)
reduces the flux by another factor ∼ (1 + z) (reduction of number of photons per
time). Moreover the area increase A(z) of light spheres at redshift z in the respec-
tive geometry (here in spherical geometry) and an extinction exponent ε have to be
taken into account. As distance d ∼ (1 + z), the absorption contributes another factor
∼ (1 + z)ε . The energy flux F(z) is thus given by

F(z) ∼ (z + 1)−(2+ε)A(z)−1.

For the module ζ = κH−2 the area of spheres is

A(z) = 4π

κ
sin2(

√
ζ ln(1 + z)).
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Fig. 1 Magnitudes of 191 supernovae Ia (mag) z ≤ 1.755 [34], and prediction in Weyl geometric model
ζ = 1

Then the logarithmic relative magnitudes m of sources with absolute magnitude M

become (cf. [35])

m(z, ζ, ε,M) = 5 log10
[
(1 + z)

2+ε
2 ζ− 1

2 sin
(
log(1 + z)ζ

1
2
)] + CM (64)

where the constant CM is related to the absolute magnitude of the source by

CM = M − 5 log10(H110−5) .

A fit of the redshift-magnitude characteristic of Einstein-Weyl universes with the
set of 191 SNIa data in [34] leads to best values ε0 ≈ 1 and ζ0 ≈ 2.5 with confi-
dence intervals 1.46 ≤ ζ ≤ 3.6 and 0.65 ≤ ε ≤ 1.3.3 The root mean square error is
σWeyl(ζ ) ≤ 0.22 and increases very slowly with change of ζ . In the whole confidence
interval it is below the mean square error of the data σdat ≈ 0.24 (given by Riess
et al.) and below the error of the standard model fit σSMC ≈ 0.23. For ε ≈ 0.65 (lower
bound of its confidence interval) the root mean square error of the Weyl model pre-
dictions for ζ = 0.5, compared with the data, is still σWeyl(ζ ) ≈ 0.231 comparable to
the quality of the SMC and < σdat. It surpasses the latter only for ζ ≤ 0.2. According
to this criterion our examples (62), (63) survive the test of the supernovae data as well
as the standard approach (Fig. 1).

3In [35, (38)] a more aprioristic deduction of the energy damping has been used, fixing ε to 1. The empir-
ically minded approach given here follows a proposal of E. Fischer (personal communication).
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At the moment supernovae data do not allow to discriminate between the Weyl
geometric approach and the Friedman-Lemaitre one of the SMC. That may change,
once precise supernovae data are available in the redshift interval 2 < z < 4.

Of course many more data sets have to be evaluated, before a judgment on the
empirical reliability of the Weyl geometric approach can be given. The cosmic mi-
crowave background, e.g., appears in our framework as a thermalized background
equilibrium state of the quantized Maxwell field. A corresponding mathematical
proof of a perfect Planck spectrum of a high entropy state of the Maxwell field in
the Einstein universe has been given by I.E. Segal [36]. Anisotropies seem to corre-
late with inhomogeneities of nearby mass distributions in the observable cosmolog-
ical sky by the Sunyaev-Zeldovic (SZ) effect [28]. For more distant clusters that is
completely different: The almost lack of SZ effects for larger distances has been char-
acterized as “paradoxical” by leading astronomers [3]. It seems to indicate that the
origin of the microwave background does not lie beyond these clusters. Empirically
the assumption of a deep redshift origin of the anisotropies is therefore no longer as
safe as originally assumed, perhaps even doubtful.

Some empirical evidence, like quasar data, goes similarly well in hand with the
Weyl geometric cosmological approach as with the SMC, other worse. Most impor-
tantly, present estimations of mass density lie far below the values indicated by our
models. But the last word on mass density values may not have been spoken yet.
The determination of the present values for �m(≈ 0.25) is strongly dependent on the
standard approach of cosmology. We should not be faulted by what philosophers call
the experimenters “regress” (testing theories by evaluatoric means which presuppose
already parts of the theory to be tested) and keep our eyes open for future develop-
ments [18, 25].

On the other hand, other data are better reconcilable with the Weyl models than
with the SMC. In particular the lack of a positive correlation of the metallicity of
galaxies and quasars with cosmological redshift z seems no good token for a universe
in global and longtime evolution. Moreover, the observation of high redshift X-ray
quasars with very high metallicity (BAL quasar APM 08279+5255 with z ≈ 3.91 and
Fe/O ratio of about 3) appears discomforting from the expanding space perspective.
Present understanding of metallicity breeding indicates that a time interval of about
3 Gyr is needed to produce this abundance ratio, while the age of SMC at z ≈ 3.91 is
about t ≈ 1.7 Gyr, just above half the age needed [21].

Many more data sets have to be investigated carefully comparing different points
of view afforded by differing theoretical frames. It is too early to claim anything like
secure judgment on this issue.

11 Conclusion and Discussion of Open Questions

The extension of the Weyl geometric approach from field theory to cosmology leads
to a formally satisfying weak generalization of the Einstein equation by making all
its constituents scale covariant, (29). The corresponding Lagrangian (14) uses a min-
imal modification of the classical Lagrangians. It is inspired by a corresponding scale
covariant approach to semi-classical field theory of W. Drechsler and H. Tann and
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is similar to the one used in J-B-D type scalar-tensor theories. Weyl geometric grav-
ity theory has features similar to those of conformal J-B-D theories (Sect. 4); but
it builds upon different geometrical concepts. The scale connection ϕ, the specific
new geometrical structure of Weyl geometry, shows remarkable physical properties.
Integrated it describes transfer properties of metric dependent quantities (2), and
its dynamics is basically that of the scalar field. Both can be transformed into an-
other (21), (22). Local observables can be formulated scale gauge invariantly (10),
but have a direct representation in a preferred gauge (12).

A difference to large parts of the work in J-B-D scalar-tensor theory arises from
the actual consequences drawn from coupling the scalar field to the Riemann-Einstein
action for variation with respect to δgμν . Tann and Drechsler have shown that a cor-

rect evaluation of δ(|φ|2R)
δgμν leads to the same additional terms in the energy tensor of

the scalar field (32) as postulated by Callan/Coleman/Jackiw by different (quantum
physical) considerations. This argument has apparently found not much attention in
the literature on J-B-D theories, although it should have done so. As long as this is
not the case, the dynamics of scalar fields in J-B-D theories and in Weyl geometry
seems to be different.

The scale covariant perspective sheds new light on the class of Robertson-
Walker solutions of the Einstein equation. Weyl geometry suggests to consider non-
expanding versions of homogeneous and isotropic cosmological geometries, in which
the redshift is encoded by a Weylian scale connection with only a time component
ϕ = Hdt , the Hubble connection (42). Thus the question arises, whether the warp
function of Robertson Walker models does describe a real expansion, as usually as-
sumed, or whether it is no more than a mathematical feature of the Riemannian com-
ponent of a scale gauge without immediate physical significance.

For a first approach to this question we have investigated special solutions of the
coupled system of a scale covariant Euler type fluid equation (28), in the simplest
case dust, the scalar field equation (26), and a scale invariant version of the Einstein
equation (29). This leads to the intriguingly simple geometrical structure of Weyl
universes (47) and gives a first impression of the new features which can arise in
Weyl geometric gravity. The Riemannian component of the metric of these models
coincides with that of the classical static solutions of cosmology; but in addition we
have a time-homogeneous Hubble connection. The scalar field’s energy-stress tensor
can be evaluated explicitly, (56) and (57). It shows good physical properties, if it is
considered in the untruncated form of (32). Formally it looks like the vacuum tensor,
� = −�g, of the standard approach; physically, however, it is different. For the case
of Weyl universes a close link between the coefficient H of the Hubble connection
and mean cosmic mass energy density can be established (59). This can be considered
as a kind of implementation of Mach’s principle.

In several aspects Weyl geometric models behave differently from what is known
and expected for classical F-L models of cosmology. In this sense they may be useful
to challenge some deeply entrenched convictions of the received view:

(1) Cosmological redshift need not necessarily be due to an “expansion” of
spacetime, corresponding to a realistic interpretation of the warp function
of Robertson-Walker models. It may just as well be expressed by the scale
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connection (Hubble connection) corresponding to a Weyl geometric scalar
field (45), (22).

(2) Scalar fields can develop a dynamical contribution (32) which may stabilize the
geometry even to the extreme case of a “static” Weyl geometry (although linearly
expanding in the Riemann picture) (60). The arising problems of stability and of
a possible tuning of the parameters λ2, λ4 of V have been left open here. More
sophisticated examples will have to be investigated; some of them may show
oscillatory behavior.

(3) This approach leads to cosmological models beyond the standard approach which
are, in any case, methodologically interesting (62), (63). Perhaps they even are
of wider empirical interest.

(4) Our case study of Weyl universes shows that in particular the consequences of
Tann’s and Drechsler’s calculation of the variational consequences of coupling
the scalar field to the Einstein-Hilbert action have to be taken seriously already
on the semi-classical level.

The Einstein-Weyl models should be studied more broadly from the point of view
of observational cosmology. Here we had to concentrate on one aspect only, the super-
novae data. They are well fitted by this models and clearly favour positive curvature
values in the Weyl universe class, 0.2 ≤ ζ < 3.6. This indicates higher mass density
values than accepted at present. Our main example (62) has values �m = 4

3 ,�� = 2
3 ,

ζ = 1. Many will consider this already as an indicator of lacking empirical adequacy.
But we have reasons to be more cautious in this respect; we should wait for further
clarification of this issue (Sect. 10).

Moreover, there may arise motivations from another side to improve the approach
to cosmology presented here, if the Weyl geometric approach turns out fruitful in
the field theoretic sector. The scale covariant scalar field prepares the path towards
a different approach to the usual Higgs mechanism for understanding the mass ac-
quirement of ew bosons [11]. An analysis of the consequences of the Weyl geometric
“pseudo-Higgs” φ-field without boson for the perturbative calculations of the (mod-
ified) standard model of elementary particle physics is a desideratum. For a com-
parison with upcoming experimental results at the LHC it may even become indis-
pensable. Should the empirical evidence fail to support the present expectation of a
massive Higgs boson, and even exclude it in the whole energy interval which at the
moment is still theoretically and experimentally consistent with the present standard
model EP (120–800 GeV) after several years of data collection, the scale covari-
ant scalar field would be a good candidate for providing a new conceptual bridge
between elementary particle physics and cosmology. In this case the missing link
between gravity and the quantum had be sought for in a direction explored in first
aspects from the point of view of in quantum gravity, e.g., by [40]. If the “pseudo-
Higgs” explanation of ew boson mass would be supported by a negative experimental
results for the massive Higgs boson, we even had to face the possibility that effects
of gravity may be observable in high energy physics (and in fact have been observed
already) at laboratory energy scales, much lower than usually expected.

Such strong perspectives will very likely be turned down or corroborated in the
coming few years by experiment. Even if they should be invalidated, our cosmolog-
ical considerations will not have been in vain. The Weyl geometric models show a



Found Phys

route how the anomalous behavior of cosmic vacuum energy may be dissolved in
a weak extension of classical GRT, without sacrificing the empirical phenomena or
even the overall link to experiment. If this achievement stabilizes and can be extended
to the problem of dark matter, the cosmological implications alone would be worth
the trouble to work out more details of the Weyl geometric approach.
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