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Abstract This chapter contains a case study of the work and self-definition
of two important mathematicians during the rise of modern mathematics:
Felx Hausdorff (1868–1942) and Hermann Weyl (1885–1955). The two had
strongly diverging positions with regard to basic questions of mathematical
methodology, which is reflected in the style and content of their mathematical
research. Herbert Mehrtens (1990) describes them as protagonists of what he
sees as the two opposing camps of “modernists” (Hilbert, Hausdorff et al.) and
“countermodernists” (Brouwer, Weyl et al.). There is no doubt that Hausdorff
may be described as a mathematical “modernist”’, while the qualification of
Weyl as “countermodern” is rather off the track, once his work is taken into
account.

1 Introduction

In the history of recent mathematics there is a wide consensus that math-
ematics underwent a deep transformation in its epistemic structure and its
social system in, roughly, the last third of the 19th century and the first
third of the following one. This led to what is being considered as modern
mathematics in the sense of the 20th century. Jeremy Gray even called this
phase a “modernist transformation of mathematics” (Gray, 2008). His book
presents a wide panorama of this period of change. The choice of the attribute
“modernist” alludes to a wider cultural context of contemporary change in
(visual, literay and sound) art and architecture. By good reasons Gray left
it open in what way, or even whether, the transformative tendencies in these
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different branches of culture can be comprehended as different expressions of
a common historical phenomenon. This question is still wide open.1

By this choice of the word, and the question indicated by it, our author
took up a suggestion of Herbert Mehrtens made in Moderne Sprache Mathe-
matik (sic! without punctuation) (Mehrtens, 1990). Already the title of this
book is difficult to translate, because it uses an ambiguity of the German
language. It may be translated as “Modern Language Mathematics” or –
adding punctuation – “Modernity, Language, Mathematics”. By leaving out
the punctuation Mehrtens apparently wanted to emphasize the first alterna-
tive, but allowed to understand it in the second way.2 Mehrtens indicated
the huge task of bringing together the historical understanding of the change
in the practice of mathematics as a social (and institutional) system (chap.
5) and the knowledge style developed with it (chaps. 1–4). Apparently influ-
enced by considerations from general history and history of art, he proposed
to highlight the radicality of the modern transformation of mathematics by es-
tablishing a narrative of two opposing camps,3 the protagonists of modernity
(“Moderne”), the “modernists” driving the modern transformation, and those
opposing it, the “countermodernists”, representing some (slightly mythical)
entity called countermodernity (“Gegenmoderne”). For both camps Mehrtens
found two main, or at least typical, protagonists. David Hilbert (1862–1943)
and Felix Hausdorff (1868–1942) (et al.) for the modern camp versus Luitzen
E.J. Brouwer (1881–1966) and Hermann Weyl (1885–1955) (et al.) for the
countermodern camp. Mehrtens made the separation of the camps plausible
by arguing essentially on the discourse level about mathematics, including the
debate on foundational issues, with only marginal references to mathematical
knowledge (the mathematical discourse itself, to state it in his terminology).
The strict separation of the camps did not appear particularly convincing to
many readers and was not taken up by Jeremy Gray. But in a weakened form
it seems to remain a part of the debate on modernism in mathematics.

Hausdorff and Weyl, two protagonists of the opposing camps identified
by Mehrtens, happen to have been objects of my historical studies for some
decades. The present book is a good occasion for laying down my view of
Mehrtens’ presentation of these mathematicians as representatives of his op-
posing camps. The following paper contains thus a simple case study trying
to check the adequacy and usefulness of the proposed categories for our his-
torical understanding of the 20th century.4 Before drawing the conclusion in

1 See the contributions by L. Corry and J. Ferreirós to this volume.
2 The first reading resonates with Mehrtens’ way of presenting mathematics as a
language, organized in two levels of discourse: the discourse of mathematics in the
production, repectively documentation of knowledge, and the discourse on (about)
mathematics, a meta-discourse which may include the foundational studies in the
sense of Hilbert (Mehrtens, 1990, chap. 6).
3 No social, political, or cultural revolution ever happened without having to fight
counter-revolutionary forces.
4 For a discussion of Brouwer see the José Ferreiró’s contribution to this volume.
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the last subsection of the paper, I try to avoid, as far as possible, the quali-
fications “modernist” or “countermodern”, also of “modernism”, at least as
mathematics is concerned. On the other hand, I use the descriptive attribute
“modern” for the deep transformation of mathematics between roughly 1860
and 1940 and the words “rise of modernity” for the social and cultural trans-
formations in the late 19th century and the first half of the 20th.

The paper consists of three sections. It begins with informations on life
and work of our protagonists in order to make the paper accessible for readers
who are not so well acquainted with the details of the history of mathematics
in the 20th century. Although the report on the mathematical work has to
be extremely short at this occasion, information on this aspect of our figures
is of major importance for a judgement about the question how they stand
in the process of the rise of mathematical modernity. The section ends with
an episode of parallel work of our authors on Riemann surfaces in 1912. Both
mathematicians had to deal with the problem to make Riemann surfaces more
precise than was usual at that time. The answers given to this challenge
show the different predilections and different work styles of the two in a
nutshell (sec. 1.3). In the next section the difference between our authors
with regard to three questions which were important for both is discussed:
the understanding of the mathematical continuum (sec. 2.1), the relation
between axiomatic, construction and the foundations of mathematics (sec.
2.2), and the question which role mathematics can, or ought to, play in the
wider enterprise of understanding nature (sec. 2.3). The final section (sec. 3)
discusses how our authors saw themselves in the rise of modern society, before
it comes back to the initial question of modernity and/or countermodernity.

2 Hausdorff and Weyl, two representatives of 20th
century mathematics

2.1 Two generations, two social backgrounds

The main scientific work of our two protagonists took place in the first half of
the 20th century. Felix Hausdorff (1862–1942) was roughly Hilbert’s genera-
tion although seven years younger, Hermann Weyl (1885–1955) was a central
figure of the next generation. Both were Germans, with Hausdorff coming
from a Jewish-German family. During large parts of their life both worked in
German speaking countries. Between 1913 and 1930 Weyl lived in Switzer-
land, the liberal culture of which he learned to value against the torn and
crisis stricken German social life during the inter-war years of the 20th cen-
tury; after 1933 he emigrated to the United States.

Hausdorff obtained his doctorate (1891) and habilitation (1895) at the
University of Leipzig with mathematical studies of the refraction and ab-
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sorption of light as part of the research program of the astronomer H. Bruns.
He then turned towards analysis and Cantor’s theory of transfinite sets, the
most abstract type of mathematics available at the time. Like many Jewish
mathematicians of this time he remained lecturer (Privatdozent) for a long
time before he obtained his first associate professorship (Extraordinarius) at
Bonn University in 1910. Three years later he accepted a call to Greifswald
as full professor. In 1921 he returned to Bonn in the same position and stayed
there for the rest of his life. Because of his Jewish origin he was in more im-
mediate danger than Weyl after the rise of the Nazis to power, but hesitated
to emigrate in the early 1930s. When he finally tried so after 1939 he did
not succeed. In 1942 when the anti-Jewish repression of the German Nazi
regime reached its climax, he committed suicide with his wife and sister in
law, in order to elude deportation and death in the concentration camps of
the regime (Brieskorn and Purkert, 2021; Siegmund-Schultze, 2021).

Weyl had a different start into academic life. He obtained his dissertation
(1908) and habilitation (1910) in Göttingen with research in real analysis
(singular differential equations) under the guidance of D. Hilbert and the
intellectual influence of F. Klein. Swiftly accepted as a promising young re-
searcher he received a call as full professor at the Eidgenössische Technische
Hochschule Zürich already three years after his habilitation. In 1930 he hesi-
tatingly accepted a call to Göttingen as successor of David Hilbert. In 1933,
after the rise of the Nazi movement to power, he emigrated to the USA
following a call to the Institute of Advanced Studies where he was able to
support other less privileged emigrants (Siegmund-Schultze, 2009). He stayed
there until his retirement in 1951 and shuttled between Princeton and Zürich
during the last years of his life. Only at rare occasion he visited post-war
Germany.

Both our protagonists came from well-to-do families and grew up in Ger-
man life and culture of the late 19th century and shared its humanistic higher
school education. Hausdorff’s father was a successful textile merchant and
owner of a small publishing house in Leipzig. As a traditional Jew he partici-
pated in the community on a national level and was active against the rising
anti-semitism in late 19th century Germany. He stood in opposition to the
Jewish reformers and contributed to the scholarly orthodox Talmud discus-
sion (Brieskorn and Purkert, 2021, chap. 1). Weyl’s father was a director of
a local bank and city councillor of Elmshorn, a medium sized town in North-
ern Germany. Already during his school time Weyl got deeply immersed in
German idealistic thinking by reading Kant’s critique of pure reason in his
parent home.5 Although his first enthusiastic partisanship for a naive ver-
sion of Kantianism broke down in the early years of his mathematical studies
at Göttingen, in which he encountered Hilbert’s axiomatic approach do ge-
ometry, he remained attracted by German idealistic philosophy in different

5 (Weyl, 1955a, p. 632f.)
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molding, in particular Husserlian phenomenology and Fichtean constructive
idealism (Ryckman, 2005; Sieroka, 2010, 2019).

The young Hausdorff passed through a rather different intellectual trajec-
tory. Standing in opposition to his father’s orthodox Judaism he too was at-
tracted by Kant’s critical philosophy, but he was also fascinated by Schopen-
hauer’s pessimistic philosophy of life and of the young Nietzsche’s radical cul-
tural thoughts. In his later student’s years he joined a circle of modernist in-
tellectuals at Leipzig and participated and became active as a literary writer,
essayist and free lance philosopher under the pseudonym Paul Mongré. Dif-
ferent from Weyl, he considered the liberation from any metaphysical bonds
as a desirable goal of late 19th century thought (Brieskorn and Purkert, 2021,
chaps. 5, 6). These differences in the general intellectual outlook between our
protagonists would turn out to play a major role for their predilections in
mathematics and the way they reflected on their scientific work.

2.2 Attempting the impossible: our authors’ main
contributions to mathematics

Before we discuss the attitudes of our actors on methods, role and goals
of mathematical research we have to recollect their main achievements in
mathematics. We deal here with two “giants” of science and thus face an
essentially forlorn task, as it would need book-length reports each to do justice
to their work. Here we have to restrict to a selective, humble survey on
what may to be considered as the most important topics of their scientific
achievements. For more extended report on F. Hausdorff see (Brieskorn and
Purkert, 2021), for Weyl (Coleman, 2001; Chevalley and Weil, 1957; Atiyah,
2002).

Felix Hausdorff is well known for his axiomatization of the concept of
topological space in his opus magnum Grundzüge der Mengenlehre (Main
Features of Set Theory) (Hausdorff, 1914b). But this book was much more.
Its first 6 chapters contained the leading introduction to Cantorian set the-
ory in the first decades of the 20th century and included a detailed study of
transfinite order structures to which Hasdorff had contributed himself in the
preceding years (including the study of ηα sets which later became important
in foundational studies of set theory). The second half of the book established
a program for founding basic fields of mathematics on an axiomatization in
the framework of set theory. As we now understand, this was a main trend
of the modernization of mathematics in the first half of the 20th century
culminating in the work of “modern algebra” and Bourbaki’s vision of math-
ematics around the middle of the century. Hausdorff himself exemplified the
method for topological spaces (chap.7), metrical spaces (chap. 8), functions
(chap. 9), measure theory and integration (chap. 10).
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Shortly after finishing the book Hausdorff published a paradoxical dis-
joint decomposition of the 2-sphere (using the axiom of choice) into 4 sets
S2 = A∪B∪C∪Q, with Q denumerable (thus essentially negligible from the
point of view of geometric measure theory), A congruent (∼) under Euclidean
rotations to B ∼ C and also congruent to B∪C (Hausdorff, 1919). Hausdorff
was a master of logical precise argumentation without using a formal system
for logic itself and was fond of counter-intuitive effects in the world of Canto-
rian set theory. The above result showed, according to him, that in Euclidean
space “one third of the sphere” may be congruent to “one half” (ibid, p. 430).
Some years later he generalized a measure theoretic approach initiated by C.
Caratheodory and introduced a class of measures on subsets of metric spaces
(Hausdorff measures) which allow to characterize the dimension p of point
sets, where p may assume fractional values (Hausdorff, 1914a). In the wake
of the rise of fractals at the end of the 20th century the concept developed in
this small paper on measure and dimension has become the most cited one
of Hausdorff (Hausdorff dimension).

Other contributions of his relate to different fields of mathematics of the
20th century in algebra (Baker-Campbell-Hausdorff formula in the theory
of Lie groups), set theory (Hausdorff gaps, large cardinals), descriptive set
theory. Also in his lecture manuscripts we find many interesting insights,
e.g. with regard to an axiomatic foundation of probability theory (Hausdorff,
2001ff., vol. 5, 595–723) similar to the one in Kologorov’s famous book (Kol-
mogoroff, 1933), but ten years earlier. The mentioned topics show already the
profile of Hausdorff’s contribution to 20th century mathematics: Cantorian
set theory as the basis for work and as a framework of modern mathemat-
ics, order structures, point set topology, metric spaces, measure theory with
particular attention to paradoxical or seemingly paradoxical (fractional di-
mension) results, and functional analysis. After his turn towards pure math-
ematics the contributions to applied mathematics of his early phase were no
longer of interest to him. On the other hand, his interests in pure mathematics
show traces of his epistemological reflections around 1900 in which he assigned
mathematical arguments an important role for the critique and decomposi-
tion of classical metaphysics (Epple, 2021, sec. 5f.). Hausdorff’s interest and
active participation in philosophical reflection of mathematics faded away af-
ter his turn towards pure mathematics research. As Purkert/Brieskorn write,
his alter ego Paul Mongré “bid farewell to the public” about 1910 (Brieskorn
and Purkert, 2021, p. 318).

Hermann Weyl, on the other side, was acknowledged as a leading figure
of the post-Hilbert generation of mathematicians already during his life time.
His research was as broad as the one of his academic teacher Hilbert; it com-
prised many fields inside mathematics and its foundations as well as long last-
ing contributions to mathematical physics. He was widely read in philosophy
and did not hesitate to share his philosophical reflections on mathematics and
science with the interested public. His most influential work in mathematics
proper results from his studies in Lie theory starting in the mid-1920s (Weyl,
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1925/1926). He combined E. Cartan’s characterization of infinitesimal groups
(Lie algebras) and their representations with an integral approach used by I.
Schur to the characters of certain groups (the special orthogonal ones). Weyl
was able to generalize Schur’s method to all the classical groups and to study
their representations (Hawkins, 2000; Eckes, 2011). In his Princeton years
he extended this approach, in cooperation with R. Brauer, to give a modern
access to the invariants of the classical groups (Weyl, 1939).

Although lying deep inside mathematics proper (i.e., “pure” mathematics),
for Weyl this research topic was multiply intertwined with questions coming
from theoretical physics and leading back to the latter. He had started to
develop interest in infinitesimal symmetries in his thoughts about general rel-
ativity and generalized Riemannian geometry by introducing what he called
a “length” gauge (today scale gauge). This led him to propose a geometri-
cally unified field theory of gravity and electromagnetism in the framework
of the first gauge theory of electrodynamics with local symmetries of geomet-
ric scale as the gauge group (Weyl, 1918b,d).6 In this context he contributed
importantly to clarifying conceptual and mathematical questions in general
relativity (Weyl, 1918c) and differential geometry (Scholz, 1999, 1995).

His proposal of a scale gauge theory of electromagnetism did not work
out directly as a physical theory but could be “recycled” after the advent
of the new quantum mechanics in form of a gauge theory for the phase of
wave functions of charged particles (Vizgin, 1994; Scholz, 2004). Through the
intermediation of W. Pauli (1933), (Pauli, 1941), Weyl’s idea of a gauge field
approach to electromagnetism was generalized by C.N. Yang and L. Mills in
1954 to a more general gauge group of isotopic spin SU(2) (O’Raifeartaigh,
2000). After a long interlude of laborious research in high energy physics it
acquired a central role in the standard model of elementary particle physics
in the 1970 (O’Raifeartaigh, 1997). About the same time it entered also the
research of differential topology and was used for defining new topological in-
variants (Kreck, 1986). On a different, although connected route Weyl started
to use group representation theory in the new quantum mechanics after 1926
(Weyl, 1928). Together with E. Wigner he may be considered as a main actor
for propagating symmetry considerations in the study of quantum systems
which again became a main tool for particle physics in the second half of the
20th century (Borrelli, 2017, 2015).

A third field in which Weyl intervened with long lasting consequences was
the debate on the foundations of mathematics in the first third of the 20th
century. In spite of his high regard for Hilbert as a mathematician he was

6 In Jed Buchwald’s contribution to this volume “gauging” is discussed in the pre-
Weylian perspective of under-determination of the electromagnetic potential (decom-
posed in its scalar and its vector part) up to exact differentials as a history of “gauge”
ante letteram. We learn from it that important physical questions of this under-
determination have been posed and answered long before the explicit concept of
gauge was introduced; for the later development see, among others, (O’Raifeartaigh,
1997, 2000).
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not at all convinced philosophically by his teachers proposal for a formalistic
solution of the problems arising in transfinite set theory around 1905 and
the consequences for analysis, arithmetics and mathematics in general. Weyl
started to develop a constructive alternative for the foundation of analysis
(Weyl, 1918a). A little later he even fought for some years at the side of
Brouwer for an intuitionistic program in the foundations of mathematics
attacking Hilbert harshly (Weyl, 1921). In later writings he came to a more
balanced view of Hilbert’s foundational program (see below).

Like in the presentation of Hausdorff’s work this survey is necessarily
extremely selective: other fields of Weyl’s work, e.g., in convex geometry, real
and complex analysis have fallen completely through the cracks. The next
subsections gives the chance for partially correcting this at least with regard
to complex analysis.

2.3 Contrasting trajectories: Riemann surfaces as an
example

By a funny historical coincidence our two protagonists lectured on complex
function theory at the same time without knowing of each other. In the
winter semester 1911/12, Hausdorff gave an introduction to function theory
at Bonn university, Weyl lectured on Riemann’s theory of Abelian integrals
in Göttingen. Both had to struggle with the concept of a Riemann surface,
which at that time was still only vaguely defined, and both made proposals
how to attack this question, with long ranging repercussions. Weyl’s notes
became a draft for his book on the idea of Riemann surface (“Die Idee der
Riemannschen Fläche”) published in the following year (Weyl, 1913). This
book is widely known for presenting the first definition of a manifold at least
for the 2-dimensional case. For Hausdorff the lecture gave him reason to think
about neighbourhood systems which turned into his axiomatics of topological
spaces two years later.

Weyl drew upon Hilbert’s sketch of an axiomatic characterization of the
(real) plane, based on topological concepts (Hilbert, 1903b).7 Hilbert defined
a plane as a “system of things” (set), with elements (“things”) called points,
which is bijectively mapped as a whole on the “number plane”. He then used
Jordan domains of the latter for characterizing neighbourhoods (“Umgebun-
gen”) of points in the plane. Weyl could link up to this idea but had to modify
it. For Riemann surfaces, thought to arise semi-constructively from analytic
function elements (“analytische Gebilde”) in the sense of Weierstrass, he had
to localize Hilbert’s idea and could no longer presuppose a global bijection
with the number plane. This led to the first definition of a manifold F in
Riemann’s sense, although restricted to the 2-dimensional case, by establish-

7 Also in (Hilbert, 1903a, appendix IV).
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ing an axiomatics of neighbourhood systems in F, with bijective maps to
open disks in the the Euclidean plane (Weyl, 1913, p. 17f.). This sufficed
for defining continuity, differentiability and even analyticity of maps between
such manifolds and of functions and to build Riemann’s theory of Abelian
differentials on such a fundament. In particular the topological notions of tri-
angulation, simple connectedness, covering surfaces, group of covering trans-
formations and the topological genus of the surfaces etc. were thus put on an
essentially clarified mathematical basis, if one kept the constructive context
(analytic function elements and disks as coordinate images) in mind. A later
analysis from the more refined point of view of Hausdorff’s topology would
show that Weyl’s axioms were not strong enough as a self-sufficient formal
axiomatization: the later Hausdorff separation property was not secured by
his axioms although implicitly presupposed in the derivations. But this was
not Weyl’s concern during the next few decades. Only during the preparation
of the English translation by lectures given in 1954 at Harvard and Princeton,
and in the third German edition Weyl finally added Hausdorff separation as
an further axiom (Remmert, 1997, p. xii).

The idea to talk about neigbourhoods of points not only in geometry proper
but also in Weierstrassian function theory and even for characterizing more
general spaces on the background of Cantorian set theory was not an ex-
clusive privilege of the Göttingen mathematicians. Weierstrass had used the
terminology already, and also F. Riesz used it in thoughts about generalized
spaces (Riesz, 1908; Rodriguez, 2006). Hausdorff, who had started to lecture
on Cantorian set theory in Leipzig in summer semester 1901 and again in
Bonn in 1910, had not yet taken up this idea in his discussions of topological
aspects in general sets. In his lectures on function theory he was confronted
with neighbourhoods of function elements in a natural way. In his lecture
notes of winter semester 1911/12 we find clear evidence that he realized at
this point that the study of neighbourhood systems was the clue for “order-
ing the system of points” which arose from the study of equivalence classes
of analytic function elements, and also more generally. Moreover he became
aware that the structural properties of such neighbourhood systems had to
be analysed. This he did more extensively in summer semester 1912, in which
he gave his next course on set theory at Bonn. Here we find four structural
properties of systems of neighbourhoods in metrical spaces which were es-
sentially the axioms of topological space, published in his book (Hausdorff,
1914b). Moreover he already announced that these structural properties could
be used as axioms for general spaces (Epple et al., 2002, p. 714ff.).

This small episode seems characteristic for the different thought styles of
our protagonists: Hausdorff used the analysis of conceptual features of Weier-
strassian function elements underlying the concept of Riemann surface as a
stepping stone for a more fundamental search of a general characterization
of topological spaces in the framework of Cantorian sets. Weyl, on the other
hand, took the same incentive as a starting point for establishing an ax-
iomatic clarification of the intuitive concept of Riemann surface which had
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been in use already for several decades. He kept it closely linked to the con-
struction of global objects from Weierstrassian function elements, aiming at
concrete mathematical objects with multiple structures. This difference may
seem a nuance of research orientation only; but we will see that it is charac-
teristic for their contrasting positions with regard to the aim and character
of mathematics. During the following years it would develop into an open
opposition.

3 Mathematics in the tension between formal thought
and insight

3.1 Two opposing views of the continuum: a modified
classical concept versus a set theoretic perspective

Already in the period 1910 to 1914 Hausdorff and Weyl had developed quite
different ideas of how to deal with the mathematical concept of continuum.
As we know already Hausdorff was attracted by the epistemic perspective
opened up by Cantor’s transfinite set theory once he got to know of it; Weyl
was highly sceptical with regard to any truth claim for the latter (see be-
low). W. Purkert was able to reconstruct from indirect evidence (remarks
on the infinite in philosophical essays written under the pseudonym Mongré)
that Hausdorff got to know Cantor’s theory during the year 1897, the year
of the First International Congress of Mathematicians at Zürich (Brieskorn
and Purkert, 2021, p. 262ff.). Hausdorff/Mongré was fascinated by the in-
tellectual perspective of Cantor’s treatment of the transfinite cardinal and
ordinal numbers (although not yet clarified in sufficient detail, not to speak
of its axiomatization). At this time he pursued a philosophical program in the
footsteps of Kant, radicalized by Nietzsche, for “proving”, more precisely by
arguing with the use of mathematical metaphors, that no knowledge of the
“thing in itself” is possible, and in particular no insight into the structure of
“absolute time” or “absolute space” or even “cause” is possible (Stegmaier,
2002; Epple, 2021; Mongré, 1898a, 1899). Wearing the hat of Mongré, our
author tried to convince his readers by an “apagogic proof” (a proof by con-
tradiction) that absolute time or space, if assumed, cannot have any type of
structure. For this goal Cantorian set theory seemed to him an ideal tool.
Relative structures, i.e., not completely absolute ones, were of course pos-
sible also for him, i.e., order structures in the case of time and geometrical
or even topological structures (before the advent of the word) in the case
of space. According to Mongré/Hausdorff such non-absolute structures were
“selected” by the mind, to make human action and survival possible; they
could then form a rather individualistic “cosmos”. The individualistic exag-
gerations to be found at many places of the early Mongré’s literary and some
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of the philosophical utterances were, however, step by step moderated and
substituted by what Hausdorff a bit later called a considerate empiricism,
which respected empirically founded scientific knowledge, including theoret-
ical refinement and critique (Epple, 2006).

As M. Epple and other authors have argued, Hausdorff’s mathematical
research topics in the time between 1900 and 1914 was still embossed by his
interest in logically consistent, although intuitively surprising, perhaps even
paradoxical insights in order structures (∼ time) and/or topological, metrical
and measure structures (∼ space) (Epple, 2006, sec. 5.6). Hausdorff’s first im-
portant works in transfinite set theory consisted in profound and technically
demanding contributions to order structures (Hausdorff, 1901). W. Purkert
observed that an additional motivation for this work seems to have been to
come closer to a proof of Cantor’s famous continuum hypothesis; i.e. the as-
sumption (at first a claim of Cantor) that the cardinal number of the subsets
of the natural numbers is the same as the cardinal number c of the “contin-
uum”, i.e. the real numbers:

2ℵ0 = c

In Hausdorff’s view, the “continuum” itself would have to be understood by
using all kinds of different types of topological and/or measure structures.
Intuitive insight into the nature of the continuum seemed him of ephemeral
value only, perhaps important for the imagination of the individual mathe-
matician, but without any epistemic value with regard to truth claims. His
great book Grundzüge der Mengenlehre was a splendid exemplification of this
general view.

Weyl had a completely different view of the continuum, which was deeply
influenced by the long tradition in mathematical and philosophical thought
upon this subject. Riemann’s concept of manifold appeared to him as the
most promising modern clue to the topic. Its logical and formal founda-
tions remained an open question for him until the end of his life, although
he himself made at least three attempts to come to grips with it (Scholz,
2000): an arithmetical constructive attempt in (Weyl, 1918a), an intuitionis-
tic one in (Weyl, 1921), and a combinatorial topological one at different occa-
sions (Weyl, 1923/1924) or in his lecture course on Axiomatics in Göttingen
1930/31 (Weyl, 1930/31, §37).

In a paper written for the Lobachevsky anniversary in 1925, though pub-
lished only posthumously, we find a most explicit remark why Weyl would
not agree with Cantor’s or Hausdorff’s approach to the continuum, at least
understood in the sense of a manifold describing physical space. In such a
manifold the local descriptions by coordinates in a “number space” are “arbi-
trarily projected into the world” and everything else, in particular the metric
structure is turned into a field on the space. This could well be reflected in
a Kantian type of approach which shaped his understanding of the role of
the spacetime concept in general relativity. A few years earlier he had con-
tributed to a deeper understanding of the underlying concepts by posing the
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problem of space anew, facing the changed situation after the rise of special
and general relativity (Scholz, 2016; Bernard, 2019). In the mid-1920s Weyl
resumed a (relativized) Kantian perspective and sharpened his criticism of a
set theoretic substitute for it in the following way:

Space thus emerges [by separating the topological manifold from the metrical
and other fields on it, ES] even more clearly as the form of appearances in
contrast to its real content: the content is measured once the form is referred
to coordinates. [Set theory, one may say, goes even further; it reduces the mf
to a set as such and considers already the continuous connection as a field on
the latter. It should, however, be clear that in doing so it violates against the
essence of the continuum which by its nature cannot be smashed into a set of
isolated elements. The analysis of the continuum should not be founded on the
relation between element to the set, but to the one between part and the whole.
. . . ] (Weyl, 1925/1988, p. 4f., second square brackets in orig., translation ES)8

With other words, Weyl considered transfinite sets as an overstretched formal
concept without substantial content, at least as far as physical spacetime is
concerned. Below we see that his scepticism did not only relate to the contin-
uum as a concept of mathematical physics but also to its role in mathematical
analysis and in the foundations of mathematics.

3.2 Axiomatics, construction and the open problem of the
foundations of math

Weyl understood axiomatics as the defining basis of a conceptual framework
on which a mathematical theory could be built. He saw no opposition be-
tween axiomatics and the construction of mathematical object fields. The
task of an axiomatic formulation was to clarify the structure of some field
of mathematical thought; its objects were to be constructed and dealt with
symbolically. This should happen without too strong hypotheses about the
infinite, in particular without making use of transfinite set theory and only if
unavoidable with applying the principle of the excluded third without a con-
structive underpinning. Weyl’s axiomatization of the 2-dimensional manifold
and of Riemann surfaces was an early example. And he stuck to this con-
ception essentially for his whole life (i.e., with gradual modifications only).

8 “Deutlicher tritt dadurch der Raum als Form der Erscheinungen seinem realen
Inhalt gegenüber: der Inhalt wird gemessen, nachdem die Form willkürlich auf Koor-
dinaten bezogen ist. [Die Mengenlehre, kann man sagen, geht darin noch weiter; sie
reduziert die Mf auf eine Menge schlechthin und betrachtet auch den stetigen Zusam-
menhang schon als ein in ihr bestehendes Feld. Es ist aber wohl sicher, daß sie dadurch
gegen das Wesen des Kontinuums verstößt, als welches seiner Natur nach gar nicht
in eine Menge einzelner Elemente zerschlagen werden kann. Nicht das Verhältnis von
Element zur Menge, sondern dasjenige des Teiles zum Ganzen sollte der Analyse des
Kontinuums zugrunde gelegt werden. Wir kommen darauf sogleich zurück.]” (Weyl,
1925/1988, §37)
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In the late 1930s he came into contact with members of the early Bourbaki
group, in particular C. Chevalley, and started to develop more respect for the
algebraists usage of axiomatics as a research tool in its own right, although
still not with respect to foundational issues (which were not in the focus of
Bourbaki anyhow).

Weyl was extremely sceptical with regard to Hilbert’s program of founding
mathematics by axiomatization and a formal analysis of the proof structure
with the aim of showing its internal consistency. He considered such a justifi-
cation of mathematical theories or even of mathematics as a whole as nothing
but a formalistic showpiece which might be impressive because of its acumen,
but would fail completely the goal of justifying the substance of mathemat-
ics. In his view a meaningful justification would presuppose a clarification of
the basic conceptual ingredients of a mathematical theory by symbolic con-
struction, as he called it (Weyl, 1927, 1949). A preliminary version of how a
constructive approach to analysis might work was given in his famous book
Das Kontinuum (Weyl, 1918a); for its long ranging impact see (Feferman,
2000). But Weyl was discontent with his own achievements, not even because
it justified only a restricted variant of analysis (without the general existence
of a supremum of a bounded set of the reals). After he had constructed his
reduced (denumerable) range of real numbers, he opened the discussion of
the relation to geometry with a self-critical remark. He deplored that the
intuition of connectivity inherent in the geometrical concept continuum was
not depicted in his constructive number continuum:

Once we have torn the continuum apart into isolated points, it is difficult to
reconstruct ex post the connectivity between the single points, which are non-
self-maintained, by some conceptual equivalent. (Weyl, 1918a, 79, translation
ES)9

So his constructive (denumerable) continuum of 1918 offended against the
“essence” of the continuum at least as much as a Hausdorffian set theoretic
approach (criticized in the quotation a the end the last subsection). Its only
advantage was its (semi-finitist) constructive methodology rather than the
one in which transfinite sets were postulated axiomatically. Irrevocable con-
nectivity between points by their inseparable infinitesimal neighbourhoods
was what Weyl looked for. For a while he believed to find it in the intuition-
ist approach proclaimed by L.E.J. Brouwer more or less at the same time
(Brouwer, 1919). So Weyl’s attempts at laying the cornerstones of a con-
structive clarification for analysis shifted for some years (between 1919 and
1923) towards a strong support for Brouwer’s more radical intuitionistic pro-
gram, most decidedly expressed in his open polemics of (Weyl, 1921). This
most radical phase of his contributions to the foundations of mathematics

9 “Nachdem wir das Kontinuum in isolierte Punkte zerrissen haben, fällt es jetzt
schwer, den auf der Unselbständigkeit der einzelnen Punkte beruhenden Zusam-
menhang nachträglich durch ein begriffliches Äquivalent wieder herzustellen” (Weyl,
1918a, 79). The translation in (Weyl, 1918/1987a, 103f.) suppresses the details “ex
post” and the proxy character of the “conceptual equivalent”.
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has attracted much attention in the history and philosophy of mathematics,
among them (Rowe, 2002, 2021; Hesseling, 2003; Scholz, 2000), (Mehrtens,
1990, sec. 4.1), and with more technical details (Coleman, 2001, sec. 6).

About the mid-1920s he started to accept that Hilbert’s formalist program
was, after all, a defensible position. He remained sceptical, however, with re-
gard to the epistemic value of such a formalist axiomatic approach to the
foundations of mathematics and to the concept of continuum, because it did
not live up to his (undefined and probably undefinable) criteria of “insight”
and “meaning”. At different occasions he sketched how he would imagine a
constructive symbolic approach to the continuum, based on methods taken
from combinatorial topology. He explored here how far a symbolic represen-
tation of cell complexes with (denumerably) infinite sequences of barycen-
tric subdivisions would carry (Weyl, 1923/1924, 1930/31, 1940, 1985); but a
purely combinatorial constructive characterizations of topological manifolds,
which he considered as the best mathematical approach to the “continuum”,
remained an unsolved problem.

At the turn towards the middle of the century he accepted and appreciated
the meanwhile widely spread axiomatic approach in mathematics:

. . . the axiomatic attitude has ceased to be the pet subject of the methodologists
[researchers in formal logic and foundations of mathematics, ES] its influence
has spread from the roots to all branches of the mathematical tree (Weyl, 1940).

But it remained important for him that axiomatic postulates were not dis-
solved from “symbolic construction”. He was not satisfied with taking (semi-)
finitist methodology serious only at the level of metatheorical investigation
(like Hilbert had proposed in his proof theoretic program for showing the con-
sistency of axiomatic theories). He demanded that on all levels of its knowl-
edge production and reflection mathematics ought to be a “. . . dexterous
blending of constructive and axiomatic procedures” (Weyl, 1985, 38). The
foundations of mathematics, on the other hand, remained an open problem
for him until the very end of his life.

In one respect Hausdorff’s view of axiomatics was not too different from
Weyl’s (and any other 20th century mathematician): in the sense of giving
the format for defining the basic concepts of a mathematical theory. But
in others it differed drastically. Hausdorff was an excellent logically sharp
thinker who did not see a need for formalizing logic, as we noticed already.
He would never give up a principle like the one of the excluded middle. This
would unnecessarily reduce the range of mathematics and was completely
unacceptable to him. Symbolically supported creation combined with logical
precision took the place occupied by symbolic construction for Weyl in the
generation of mathematical knowledge. Transfinite set theory as outlined by
Cantor, continued by himself and adopted by Hilbert and his school estab-
lished a language and thought milieu for symbolic creativity par excellence.
He knew, of course, about the open questions in the foundations of set theory,
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in particular that the comprehension of infinite totalities had to be handled
with care, but he saw no hindrance to build mathematical theories along
these lines. Still in the late 1920, at the occasion of the so-called second edi-
tion of his book on set theory (in fact, a new book) he emphasized the aspect
of creativity in his lucid rhetoric:

It is the eternal achievement of Georg Cantor to have dared this step into infin-
ity, under interior and exterior struggles against seeming paradoxies, popular
prejudices, philosophical statements of power (infinitum actu non datur), but
also against reservations pronounced by the greatest mathematicians. By this
he has become the creator of a new science, set theory, which today forms the
grounding of the whole of mathematics. In our opinion, this triumph of Canto-
rian ideas is not belittled by the fact that a certain antinomy arising from an
excessively boundless freedom of forming sets still needs a complete elucidation
and elimination. (Hausdorff, 1927, 11, Werke 3, 55)10

He knew that in the environment of Hilbert (Zermelo, Franekel, Bernays)
the axiomatization of set theory was under way, but saw no pressure to pro-
ceed along these lines, and was far from feeling any “anxiety” that something
would go wrong with the foundations set theory and mathematics (Brieskorn
and Purkert, 2021, sec. 7.3).

From such a viewpoint a methodology which demanded a reduction of
symbolic creation to procedures that would deliver only denumerable ranges
of objects (Weyl’s constructivism or Brouwer’s intuitionism) appeared to him
ridiculous, or even worse. He did not state such an opinion publicly, but was
clear up to extremity in a letter to Abraham Fraenkel written June 9, 1924,
in response to Fraenkel’s step forward with regard to the foundations of set
theory (Fraenkel, 1923). He thanked for the progress his correspondent had
achieved for an axiomatic framing of set theory and the discussion of the set
theoretic antinomies, because this spared him the work to deal with questions
for which he has no knack for (”Dinge, die mir nicht liegen”). From now on
he would be able just to refer to Fraenkel’s book. He continued:

You have even succeeded in making the oracle pronouncements of Brouwer and
Weyl understandable – without making them appear to me any less nonsensical!
You and Hilbert both treat intuitionism with too much respect; one must for
once bring out heavier weapons against the senseless destructive anger of these

10 “Es ist das unsterbliche Verdienst Georg Cantors, diesen Schritt in die Un-
endlichkeit gewagt zu haben, unter inneren wie äußeren Kämpfen gegen scheinbare
Paradoxien, populäre Vorurteile, philosophische Machtsprüche (infinitum actu non
datur), aber auch gegen Bedenken, die selbst von den größten Mathematikern aus-
gesprochen waren. Er ist dadurch der Schöpfer einer neuen Wissenschaft, der Men-
genlehre geworden, die heute das Fundament der gesamten Mathematik bildet. An
diesem Triumph der Cantorschen Ideen ändert es nach unserer Ansicht nichts, daß
noch eine bei allzu uferloser Freiheit der Mengenbildung auftretende Antinomie der
vollständigen Aufklärung und Beseitigung bedarf.” (Hausdorff, 1927, 11, Werke 3,
55)
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mathematical Bolsheviks! (Hausdorff, 2001ff., vol. 9, 293, translation (Rowe,
2021))11

Hausdorff’s surprisingly militant language has to be understood on the back-
ground of Weyl’s polemical language in his paper propagating an intuitionistic
“revolution” – and the excited time conditions in post-war Germany of the
early 1920s. It indicates a deep dividing line among early 20th century mathe-
maticians (in Germany) with regard to basic methodological convictions and
the value of certain research programs. But can this dividing line be better
understood by declaring our two protagonists as belonging to two separate
camps of modernists (Hausdorff) and counter- or even antimodernists (Weyl)
as proposed by (Mehrtens, 1990)? – David Rowe calls Weyl, just to the con-
trary, a “reluctant revolutionary” (Rowe, 2002). This seems to me much more
to the point; we will come back to this question in the final discussion.

3.3 Mathematics and the material world

Although Hausdorff did no longer contribute actively to natural sciences af-
ter his disappointing experiences with his early works in astronomical optics,
he held a dedicated opinion with regard to the question which role mathe-
matics may play for understanding the outer world via its use in the natural
sciences, (Brieskorn and Purkert, 2021, chap. 3). His contributions to proba-
bility theory remained relatively unnoticed (Brieskorn and Purkert, 2021, sec.
4.2, 10.3 ); the lecture containing a set theoretic axiomatization of probability
remained unpublished (Hausdorff, 1923/2006).

In the 1890s and early 1900s he was highly interested in the question of
non-Euclidean geometry and in philosophico-mathematical question of space
and time concepts (Epple, 2021), (Brieskorn and Purkert, 2021, sec. 5.6).
In his radical thoughts on philosophical (epistemological and ontological)
questions, published under the name Paul Mongré, mathematics played an
important role for undermining the belief in fixed, perhaps even a priori,
forms of knowledge of the external (material) world. The great variety of
geometrical or, in nuce, even topological structures for spacelike thinking,
and of order structures for timelike thinking became an important tool for
him in putting established notions of mathematical physics, astronomy and
cosmology in question. On the other hand, he made sure that the ordering of
sense perceptions and scientific empirical knowledge needed mathematics for
acquiring a well defined and intelligible form. He called such a methodology
considered empiricism (“besonnener Empirismus”), in contrast to empiricism

11 “Es ist Ihnen sogar geglückt, die Orakelsprüche der Herren Brouwer und Weyl
verständlich zu machen – ohne dass sie mir nun weniger unsinnig ercheinen! Sowohl
Sie als auch Hilbert behandeln den Intuitionismus zu achtungsvoll; man müsste gegen
die sinnlose Zerstörungwuth dieser mathematischen Bolschewisten einmal gröberes
Geschütz auffahren! . . . ” (Hausdorff, 2001ff., vol. 9, 293)
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sans phrase and positivism on the one hand and neo-Kantianism, or any other
rejuvenated version of German idealism, on the other (Epple, 2006).

In later years Hausdorff did not completely lose interest in mathematical
physics but it clearly moved to the background of his attention. We know
that he prepared talks, perhaps even a introductory publication for a wider
public, on (special) relativity (Epple, 2021, sec. 5.1), but he never took up
questions from mathematical physics for his own research. From the begin-
ning of the 20th century onward his research profile became the one of a
“pure” mathematician who appreciated the role of mathematics for an open
minded and critical understanding of the material world. In his early years
he had formulated a basic attitude underlying such a role of his science in an
aphorism:

What we are are missing is a self-critique of science; the verdicts of science
given by art, religion and sentiment are just as numerous as useless. Perhaps
this is the final determination of mathematics. (Mongré, 1897, aphorism 401,
transl. ES) 12

Weyl, on the other hand, was a highly creative contributor to mathematical
and theoretical physics, besides his great achievements in pure mathematics,
by far too huge to be resumed here. As is well known, he made outstanding
contributions to Einstein’s theory of gravity and early cosmology (Giulini,
forthcoming; Lehmkuhl, 2020; Goenner, 2001; Rowe, 2016), the generaliza-
tion of Riemannian geometry as a scale covariant (conformal) framework for
relativistic field theory (Vizgin, 1994; Ryckman, 2005; McCoy, 2021), to the
introduction of the gauge principle into the rising quantum mechanics (Strau-
mann, 1987; O’Raifeartaigh, 1997), and finally he displayed, conjointly with
B.L van der Waerden and E. Wigner, the usability of group representations
as a basic frame for studying symmetries in quantum physics (Eckes, 2012;
Schneider, 2011; Scholz, 2006). All of this turned out to be of long ranging
influence on the course of physics during the 20th century, and probably also
beyond (Yang, 1986; Mackey, 1988; Borrelli, 2015, 2009; Scholz, 2018).

In addition to his direct interventions into mathematical and theoretical
physics, Weyl published (and proposed in talks) profound reflections on the
epistemology and ontology of the physical world, and the role of mathematics
in it, most notably (Weyl, 1927, 1948/49, 1955b). Transformations of math-
ematical structures played a great role in his his reflections; but in stark
contrast to Hausdorff he proposed to identify, as clearly as possible, what
he considered the automorphisms (global and gauge) of “Nature” herself to
which the transformation group of the descriptive symbol system ought to
adapt as smoothly as possible. Weyl’s objective-transcendental constructive
mode has recently been taken up in the philosophy of physics by (Catren,
2018). We have seen that Hausdorff used the method of transformation and

12 “Uns fehlt eine Selbstkritik der Wissenschaft; Urtheile der Kunst, der Religion,
des Gefühls über die Wissenschaft sind so zahlreich wie unnütz. Vielleicht ist dies die
letzte Bestimmung der Mathematik.” (Mongré, 1897, Aph. 401)



18 Erhard Scholz

the related structure groups with the opposite goal of undermining a belief
(at least a naive one) in being able to discern such structures in the world,
i.e., in a deconstructivist mode ante letteram.

For Weyl, philosophical reflections seemed important also for securing
a cultural basis for mathematics, in particular the parts which were not
amenable to what he accepted as constructive (i.e., essentially by denumer-
able procedures). From the mid-1920s onward he realized, at first hesitatingly,
that the principle of the excluded third and axiomatically postulated trans-
finite mathematical objects of higher cardinality may be of importance and
acceptable because of their role in making the difficult structures of modern
physics intelligible, at least in an indirect symbolic way.

From the formalist standpoint, the transfinite component of the axioms takes
the place of complete induction and imprints its stamp upon mathematics. The
latter does not consist here of evident truths but is bold theoretical construction,
and as such the very opposite of analytical self-evidence. . . .

In axiomatic formalism, finally, consciousness makes the attempt to ‘jump over
its own shadow’. to leave behind the stuff of the given, to represent the tran-
scendent – but, how could it be otherwise?, only through the symbol. (Weyl,
1949, 64ff.)

Hausdorff found joy in searching for logically consistent insight into trans-
finite constructions in the wide sense; he considered it as a goal of its own
which carried an intrinsic value. Weyl, in contrast, considered such symbolical
thought figures (dealing with a stronger transfinite than denumerable con-
structivism would accept) as meaningful only if it could be related to natural
sciences directly or indirectly (Weyl, 1949, 61). The difference could not be
larger. But does one of these opinion devaluate the other as a legitimate po-
sition of a 20th century “modern” mathematician? We better consider both
as understandable reactions of creative mathematicians to the challenge of
the cultural and social modernization they lived in and contributed to.

4 Outlook: Modernity, emancipation or crisis in
permance?

4.1 Hausdorff: liberation, rationalism and the “end of
metaphysics”

We are well informed about Hausdorff’s perception and evaluation of the
cultural development in late 19th century Germany through the publication
of his alter ego Mongré, in particular his time-critical essays in the Neue
Deutsche Rundschau, a leading journal of liberal intellectuals in Germany
(Brieskorn and Purkert, 2021, Chap. 6), (Hausdorff, 2001ff., vol. 7). As men-
tioned above, he came from an orthodox Jewish parents home, the religious
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traditions and creed of which he did not share. He grew up in a German envi-
ronment in rapid modernizing change, which allowed for a slow and selective
emancipation of Jewish people on the one hand, but on the other hand was
also hatching a rising anti-Semitism in daily life. On this background Haus-
dorff developed a sharp-minded, critical, highly individualistic view of life
and culture which at the turn to the 20th century was characterized in Ger-
many by a streaky mix of turbid tradition and cheered up modernism. Later
in his life he characterized his own cultural and philosophical trajectory as
having developed “from Wagner to Schopenhauer, from there back to Kant
and forward to Nietzsche” (Hausdorff, 2001ff., vol. 9, 503). With “Nietzsche”
Hausdorff at this place referred to the the young (pre-crisis) writer whom he
emphatically talked about, at a different place, as the

. . . affectionate, tempered, appreciative, freethinking Niezsche and the cool,
dogma free, system-less sceptic Nietzsche and the (. . . ) world blessing, all pos-
itive ecstatic Zarathustra (Brieskorn and Purkert, 2021, 181).13

This picture of Nietzsche stands in stark contrast to the later “fanatic” Ni-
etzsche who, in addition, was contorted to the worse by his the editors under
the leadership of his sister. The late, fanatic Niezsche preached a morality
which, according to an observation made by Hausdorff as early as 1902, con-
tained the potential for “turning into a world-historic scandal which might
dwarf the inquisition and the witch trials, sucht that they would appear as
harmless aberrances” (Brieskorn and Purkert, 2021, 180).14

In short, the young Hausdorff/Mongré developed into an enlightened Ni-
etzschean dissident in late 19th century Germany. He considered the cultural
modernisation as an emancipatory chance, with the intellectual and social lib-
eration of the individual as the cultural task of the time. Some of his writings
as P. Mongré had the flavour of an, in my view (ES), drastically exaggerated
emphasis on the role of individual perception of the world, and the fiction of
the happiness of the “higher” persona standing above the happiness of the
many and in contrast to any other kind of social bonds (Mongré, 1898c),
(Brieskorn and Purkert, 2021, sec. 6.1.1). To him the motif of individual free-
dom seemed to fit well with Cantor’s battle cry for set theory: “the essence
of mathematics is freedom”. In contrast to Cantor himself, Hausdorff took
set theory as a chance for dissolving thinking from metaphysical bonds not
only inside mathematic, but in general, with mathematics as a trailblazer. In
his view, mathematical thought ought to be tied back to the social and outer

13 “. . . von dem gütigen, maßvollen, verstehenden Freigeist Nietzsche und von dem
kühlen, dogmenfreien, systemlosen Skeptiker Nietzsche und von dem Triumphator
des Ja-und Amenliedes, dem weltsegnenden, allbejahenden Ekstatiker Zarathustra”
(Brieskorn and Purkert, 2021, 181).
14 “In Nietzsche glüht ein Fanatiker. Seine Moral der Züchtung, auf unserem heutigen
Fundamente biologischen und physiologischen Wissens errichtet: das könnte ein welt-
geschichtlicher Skandal weden, gegen den Inquisition und Hexenprozeß zu harmlosen
Verirrungen verblassen” (Brieskorn and Purkert, 2021, 180).
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material world only in the indirect and sceptical form of his “considerate
empiricism” (see above).

In his book-length essay “The Chaos in Cosmic Selection” Hausdorff/Mongré
hoped to be able to do away with metaphysics once and for all. The book
ended with the often cited, (all too) proud claim:

Therewith the bridges have been torn down, which, in the imagination of all
metaphysicians, connect the chaos [the transcendent world, ES] and the cosmos
[the ordered sensible and intelligible world, ES] in both directions, and the end
of metaphysics has been declared, the explicit one no less than the masked one,
both of which the science of the coming century is obliged to eliminate from its
architecture (Mongré, 1898a, 209; 7, 803, emph. in the original).15

He broadened the argument in a more popular and widespread article
“The unclean century” in the Neue Deutsche Rundschau (Mongré, 1898b).
It contains a beautiful, in large parts satirical, general settlement with the
cultural inconsistencies of the semi-modern culture in Wilhelmian Germany.
Hausdorff/Mongré attacked, among others, the militaristic habitus among
the German self-defined elite, still fond of the duel as form of honour-saving
conflict resolution, certain aspects of Neo-Kantianism in German humanistic
education as cultural hypocrisy, the rising neo-religiousness of diverse flavours
as obscurantism, and the unacknowledged metaphysical elements in natural
science (Brieskorn and Purkert, 2021, sec. 6.1.2). In his polemics all this
appeared as a hangover of earlier times and had to be done away with by

. . . an act of cleanliness with which any retiring century should recommend itself
to its successor (Mongré, 1898b, 352).16

For the young Hausdorff (Mongré) some sort of purified modernity appeared
as a desirable future state of the human world. Needless to say that this
optimistic perspective was broken by the two Great Wars, the deep world
crisis of the early 20th century between them, and the rise of Nazism to
power in Germany, with all the humiliations and cruelties against the Jewish
population, which he himself had to go through. One of his last letters written
in January 1941, about a year before his enforced suicide, ended with realistic
resignation:

Nietzsche always feared that Europe might perish because of a hysteria of
pity: one cannot claim that this diagnosis was particularly realistic (Hausdorff,
2001ff., vol. 9, 357).17

15 “Damit sind die Brücken abgebrochen, die in der Phantasie aller Metaphysiker vom
Chaos zum Kosmos herüber und hinüber führen, und ist das Ende der Metaphysik
erklärt, – der eingeständlichen nicht minder als jener verlarvten, die aus ihrem Gefüge
auszuscheiden der Naturwissenschaft des nächsten Jahrhunderts nicht erspart bleibt”
(Mongré, 1898a, 209; 7, 803).
16 Man “. . . vollzieht einen Act der Reinlichkeit, mit dem jedes scheidende Jahrhun-
dert sich seinem Nachfolger empfehlen sollte” (Mongré, 1898b, Werke 7, 352).
17 “Nietzsche hat immer befürchtet, dass Europa an einer Hysterie des Mitleids zu-
grunde gehen würde: man kann nicht behaupten, dass diese Diagnose sehr zutreffend
war” (Hausdorff an J. Käfer, 2. Jan. 1941, (Hausdorff, 2001ff., vol. 9, 357))
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4.2 Weyl: awareness of crisis and the search for
metaphysical horizons

Weyl was among those who, while still at school, was strongly affected by
Kant’s critical philosophy. For him this did not at all lead to a complacent
and indolent attitude, so pungently attacked by Mongré in his essay about
the “unclean century”. In retrospect he characterized the effect of Kant’s
teaching of the “ideality of space and time” quite differently:

. . . by one jerk I was awoken from the ‘dogmatic slumber’; the world was most
radically put into question for the mind of the adolescent (Weyl, 1955a, 4,
632).18

Thus, for Weyl, the reading of Kant had an effect usually ascribed to “moder-
nity” or “modernism”: a radical detachment of assuming simple bonds to
reality. This detachment was even enhanced, when he entered Göttingen uni-
versity and learned of Hilbert’s studies of the foundations of geometry. The
“multitude of different unfamiliar geometries” studied in the axiomatic ap-
proach destroyed his simplified picture of an “edifice” of Kantian philosophy,
which he had erected in his mind (ibid. 633). This retrospective description
indicate that Weyl, in contrast to Hausdorff/Mongré, sensed the confronta-
tion with a “modern” view of the world, and the adoption of it for himself, as
a deeply irritating experience. In much of his later writings we find an embar-
rassment about the basic detachment of mathematical knowledge from the
link to the external world. Weyl would sometimes speak of a “transcendent”
reality, apparently alluding also to the religious connotation of the word be-
sides a vague reference to an outer nature beyond the one “given” to the
senses and to phenomenal insight.

Many authors have argued that the experience of the breakdown of civil
norms during the Great War and the following deep social crisis in Germany
aggravated Weyl’s, and others, sensitivity with regard to the stability also
of scientific and even mathematical knowledge (Mehrtens, 1990; Sigurdsson,
2001; Schappacher, 2003). The latter had been untightened already in the
later 19th century by the loss of credibility of pre-modern metaphysics and an
imputed direct reference to an external reality. This seems to have strongly
influenced Weyl’s sensitivity for crisis in the debate on the foundations of
analysis and set theory.

It seems that Weyl experienced the rise of modernity, i.e., of modern society
in the sense of late 19th- and 20th-century high capitalism and its scientific
culture, as a challenge and a crisis set in permanence. We have seen that
in the second half of the 1920s he was willing to accept that Hilbert’s proof
theoretic (“finitist”) program might even be successful with regard to a formal
legitimation of the use of (strong) transfinite methods in mathematics. But in

18 “. . . mit einem Ruck war ich aus dem dogmatischen Schlummer’ erwacht, war dem
Geist des Knaben auf radikale Weise die Welt in Frage gestellt” (Weyl, 1955a, 4, 632).
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his opinion this would not solve the problem of cultural founding of such parts
of mathematics, which were based on transfinite axiomatic methods. In his
view (as we know. not in Hilbert’s view) Gödel’s incompleteness theorem for a
sufficiently strong formal system embracing arithmetic and a formalized logic
as strong as the one of Russell’s Principia Mathematica dealt a “terrific blow”
to Hilbert’s program (Weyl, 1946, 4, 279). This was written after another,
even more devastating war than the one after which he had declared the
new “crisis” in the foundations of mathematics. Weyl gave a short survey of
the development of the research in the foundations of mathematics during
the last few decades; then he repeated his diagnosis of the situation, given
roughly 30 years ago:

From this history one thing should be clear: we are less certain than ever about
the ultimate foundations of (logic and) mathematics. Like everybody and ev-
erything in the world today, we have our ‘crisis’. We have had it for nearly fifty
years. (Weyl, 1946, 4, 279)

As we also know, this did not hinder him to participate in the enterprise
of modern mathematics and physics, but it shaped his selection of research
topics and methods. He continued:

Outwardly it does not seem to hamper our daily work, and yet I for one confess
that it has had a considerable practical influence on my mathematical life: it
directed my interests to fields I considered relatively ’safe’, and has been a
constant drain on the enthusiasm and determination with which I pursued my
research work. (ibid.)

Remember that ‘safeness’ in the sense of cultural meaning of mathematics
included its link to the clarification of knowledge in the natural science, in
particular physics. In addition, this remark may also be read as a partial
explanation for Weyl’s never-ending efforts to find support in philosophical
reflection of his work, an effort which did not stop short of explicit metaphys-
ical considerations. This stands in the sharpest possible contrast to Hausdorff
whose verdict of (classical) metaphysics we have seen above.

4.3 Final remarks: modern – countermodern –
trans-modern ?

Neither of our two protagonists maintained a Platonist view of the objects
of mathematical knowledge. Hausdorff rejected any claim of ideal order be-
yond the insights gained by precise logically founded symbolic production
following the transfinite argumentation opened by Cantor. He was convinced
that the latter can be expanded without running into contradictions, as long
as a carefully restrained use of the comprehension principle was made. Al-
though Hausdorff did not, to my knowledge, publish a short, conclusive verbal
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description of his view of mathematics, he may well be called a symbolic for-
malist.19 In this respect he had a completely different conception of set theory
than Cantor, one which may rightly be called “modernist”. Weyl, as we have
seen, had a rather different understanding of what mathematics is about, or
at least ought to be about. His perspective of a constructivist or, over a time
period, even intuitionist understanding (sui generis) of mathematical objects
did not allow him to join the radical modernist attitudes of Hilbert, Hausdorff
and, later, the young mathematicians of the Bourbaki generation. In its decid-
edly constructivist perspective it was, however, not at all “countermodern”.
It even had strong resemblances to certain features of modernist architec-
ture (Bauhaus) or art (cubism). Also Weyl’s most important philosophical
inspirations received from Husserl’s phenomenology and Fichte’s “construc-
tivism” (as he himself described it in (Weyl, 1955a, 4, 641)) and the lat-
ter’s contemporary liberal interpreter Fritz Medicus cannot be qualified as a
“countermodern” (in contrast to the conservative nationalist interpreters of
the South-German Fichteans), or even as an “antimodern” influence on Weyl
.

Finally, if one takes the corpora of the mathematical research work into
account, surely the most important sources for the description of a mathe-
maticians, we see here two towering figures of mathematics in the “modern”
period of the late 19th and the 20th century. It would be beside the track to
describe one of them, Weyl, as a “countermodern” mathematician and only
the other one, Hausdorff, as modern. But, of course, the qualification of Weyl’s
and Brouwer’s position in the foundations of mathematics as representatives
of “countermodernism” (“Gegenmoderne”) in Herbert Mehrtens influential
book (Mehrtens, 1990, 289ff., 301) is not without any factual base. It resides
on real differences between the two authors, which may be described in sim-
ple terms as follows: While Hausdorff, at least as a young man, welcomed
the rising modernity/modernism in science and culture enthusiastically as a
liberating movement, Weyl was irritated and suffered from the loss of secu-
rity and kept distance to modernist positions in the reflective disourse on
mathematics (as Mehrtens calls it). This made him a modern scientist (not
a modernist), who was critical of many aspects of modernity, not only with
regard to epistemic questions but also with regard to the social destructions
which were part of the rise of modernity.

After the second Great War of the 20th century he was shocked by the
destructive potential which had developed on the basis of scientific achieve-
ments. In a manuscript written close to the end of his life and published
posthumously by T. Tonietti, he deplored the state of things, dramatically
clothed in his grave, humanistic style. He warned that modern science may
be characterized by a kind of hybris (violent arrogance) and went on

19 The closest approximation to such a short characterisation can be found in sec-
tion 1, “Der Formalism”, of an unpublished fragment (Hausdorff, 1904/2021) written
about 1904, in particular folio 5ff, vol. 6, p. 475ff.
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For who can close his eyes against the menace of our own self-destruction by
science? The alarming fact is that the rapid progress of scientific knowledge is
not paralleled by a corresponding growth of man’s moral strength and respon-
sibility, which have hardly changed in historical times (Weyl, 1985, 12).

Weyl could not even follow Hardy’s move after the first War for exculpating
pure mathematics on the basis of its “uselessness” in practical matters, which,
according to Hardy, would protect it against a participation in “exploitation
of our fellow-men” and the destruction up to their “extermination” (Weyls
words). Weyl did not believe in such a escape route and emphasized:

However the power of science rests on the combination of experiment, i.e.,
observation under freely chosen conditions, with symbolic construction, and the
latter is its mathematical aspect. Thus if science is found guilty, mathematics
cannot evade the verdict. (ibid.)

We remember that a similar, although less dramatically stated fright was
expressed in Hausdorff’s downplayed remark of 1941 on Nietzsche’s not “par-
ticularly realistic” warning that modern history might suffer from too much
pity for the fellow-men or nature.

Weyl was a sceptic modern actor all over his life. As we know too well, the
dangers of extermination of mankind by war and/or destruction of our natural
habitat are now even more severe than in the 1950s. But science is not only
an accomplice of the destructive sides of modernity; it also plays the role of
collecting the warning signs and is necessary for exploring exit strategies from
the ongoing destruction. From our vantage point of the early 21st century,
Weyl may appear as a modern scientist who tried to dive through the wave of
modernism towards some not yet clearly visible type of trans-modern culture.
The latter would mean to stay true to the enlightened elements of modernity,
but to get rid of the destructive forces against nature and our fellow-men.
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mannschen Fläche, ed. Reinhold Remmert. Springer pp. ix–xii. 9

Riesz, Frigyes. 1908. “Stetigkeitsbegriff und abstrakte Mengenlehre.” pp. 18–
24. In (Riesz, 1960, vol. 1). 9

Riesz, Frigyes. 1960. Gesammelte Arbeiten, Bd. I. Akademie der Wis-
senschaften. 27

Rodriguez, Laura. 2006. “Friedrich Riesz’ Beiträge zur Herausbildung des
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