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Introduing Groups into Quantum Theory(1926 � 1930)Erhard Sholz, WuppertalAbstratIn the seond half of the 1920s, physiists and mathematiians in-trodued group theoreti methods into the reently invented �new�quantum mehanis. Group representations turned out to be a highlyuseful tool in spetrosopy and in giving quantum mehanial expla-nations of hemial bonds. H. Weyl explored the possibilities of agroup theoreti approah towards quantization. In his seond versionof a gauge theory for eletromagnetism, he even started to build abridge between quantum theoreti symmetries and di�erential geome-try. Until the early 1930s, an ative group of young quantum physiistsand mathematiians ontributed to this new hallenging �eld. Butaround the turn to the 1930s, opposition against the new methods inphysis grew. This artile fousses on the work of those physiists andmathematiians who introdued group theoreti methods into quan-tum physis.IntrodutionIn the middle of the 1920s, understanding of the representations of Lie groupsand understanding of the quantum mehanial struture of matter madegreat advanes, almost simultaneously. Certain members of both disiplinessaw the potential for building new and deep onnetions between mathemat-is and theoretial physis. Thus a ooperative development highly onse-quential for theoretial physis began in the seond half of the 1920s, with themain protagonists being W. Heisenberg, E. Wigner, F. London, W. Heitlerand, to a lesser degree, P.A.M. Dira on the one side, H. Weyl, J. von Neu-mann, and B.L. van der Waerden on the other. The �rst introdution and useof the new method in theoretial physis met soon with opposition (�grouppest�). But it turned out to be suessful in the long run, and to be just the�rst wave of a proess of restruturing mathematial onepts and tehniquesin the theory of the basi strutures of matter. After an intermediate periodof about two deades with a slow and nearly unnotied ontinuation of workin this diretion, another wave of using group-theoretial methods in physisgained momentum in the seond half of the entury. This development hasreently attrated interest from the side of history and philosophy of si-ene.1 It should be quite as interesting from the point of view of the historyof mathematis, beause it established broad and onsequential semantialrelations for an important �eld of modern mathematis.1(Mehra/Rehenberg 2000/2001, Gavroglu/Simóes 1994, Karahalios 2003, Brading2003)



The following artile explores the �rst wave of introdution of new math-ematial methods into quantum physis and hemistry. It starts with theearly realization of the usefulness of group theoreti methods for the studyof spetrosopy and hemial bonds, and stops short of the onsolidation ofwhat was ahieved in the �rst wave in three textbooks on the subjet pub-lished in the early 1930s, (Weyl 1928, 21931), (Wigner 1931) and (van derWaerden 1932), whih have now beome lassis of the �eld. Unlike theother two, Weyl's book had an earlier �rst edition at the end of the 1920. Ittherefore enters the period of investigation of our investigation.This artile is a �rst step into this interdisplinary terrain from the sideof history of mathematis. It relies heavily on the solid bakground laidout by T. Hawkins' study (Hawkins 2000) and H. Rehenberg's hapter ongroup theory and quantum mehanis in (Mehra/Rehenberg 2000/2001, VI1, haps. III.4, III.5).1. Heisenberg and WignerShortly after the invention of the new quantum mehanis, P.A.M. Dira, W.Heisenberg, and E. Wigner started to onsider onsequenes of symmetry inmulti-partile systems for the struture of energy terms in atomi spetra.2Dira studied the role of antisymmetry in multi-eletron systems in summer1926. Important as that was for the growing understanding of quantummehanis, it did not employ group theory beyond the distintion of thesignum of permutations. Group theoreti questions proper started to beaddressed by Heisenberg and Wigner in late 1926 and early 1927.The newly established paradigm of quantum mehanis demanded toharaterize a (quantum) physial system, at the time typially an eletronsystem in the shell of an atom or of a moleule, by a set of Hermitian (ormore generally, symmetri) operators, one for any observable quantity of thesystem, in a state spae S assumed to be a Hilberts spae in order to havesu�ient symbolial struture. In Shrödinger's perspetive, S was viewed asa spae of omplex �wave� funtions. Then the tool of di�erential operatorsould be used.3 Most important was the operator haraterizing the energyof the system (or a onstitutive part of it, like an eletron in a multipartile2For the emergene of matrix, wave, and �q-number� mehanis see, among others,(Hendry 1984, Beller 1999, Pais 1986, Rehenberg 1995, Cassidy 1992, Kragh 1990, Moore1994). A multi-volume enylopedi report is (Mehra/Rehenberg 1982�2001, vols, II,III, IV, V). A six-page ompression of the ruial period 1923 � 1926 an be found inthe introdution to volume VI (Mehra/Rehenberg 2000/2001, VI 1, xxv�xxxi). For asplendid bibliography see (Mehra/Rehenberg 2000/2001, VI 2, 1253�1439); indexes ofthe whole series at the end of the same volume VI 2.3Questions how the funtion spae was to be ompleted, or how domains of the opera-tors should be understood and, perhaps, extended, were generously negleted by the earlyquantum physiists. Suh questions were �rst addressed by J. von Neumann in the later1920s and at the turn to the 1930s. 2



system), the Hamilton operator H. Other operators ould haraterize linearmomenta Pi or oordinatized spatial positions Qi (1 ≤ i ≤ 3), rotational(orbital) momenta Li, the square of the total momentum L2, and, a littlelater, the spin J of a partile (onsidered to express the �partile's� properrotation) et..For an atom, the eigenspaes of the Hamilton operator H ould hara-terize the stationary states of a system of eletrons, or of an outward eletron,depending on the situation. The eigenvalues E1, E2, . . . of H represented theenergy values obtained in these states. Often suh eigenstates turned out tobe degenerate, i.e., they belonged to an eigenvalue of multipliity > 1. Thiswas the ase for atoms or moleules with rotational symmetry. Of ourse,spetrosopy did not allow to measure the energy of eah eigenstate diretly.Only di�erenes between two energy values, say E1 and E2, were observ-able by the frequeny ν of the radiation emitted during the transition of aneletron from one energy state to the other,
hν = E1 − E2 .In early 1925, Pauli onjetured that bound eletron states in a moleulehave an intrinsi two-valuedness and that eletrons obey an exlusion prin-iple forbidding di�erent eletrons (a littler later also other �fermions�) tooupy the same state of a system. Later in the year, S. Goudsmit and E.Uhlenbek established the hypothesis of eletron spin whih they assumed toarise from a �proper rotation� of the eletron. Di�erent empirial evideneindiated that this intrinsi spin was quantized with respet to any spei-�ed spatial diretion in exatly two possible states u and d (spin �up� andspin �down�). Early in 1927, W. Pauli mathematized the idea by a spin statespae C2 extending the omplex phase of the Shrödinger wave funtion ψ(x)(Pauli 1927). In group theoreti language, whih was not yet in Pauli's mindin early 1927, he impliitly worked inside the natural representation of SU2,the overing group of the spatial rotations SO3. He proposed to desribe aspinning partile by a two valued wave funtion ψ̃ = (ψ1, ψ2), later alleda Pauli spinor.4 It ould be onstruted from Shrödinger wave funtionsby forming (tensor) produts with the omplex two-dimensional spae har-aterizing the omplex superpositions of the two possible pure spin statesC2 ∼=< u, d > (here < > denotes the linear span). The total wave fun-tion of a olletion of n eletrons was expressed formally as a �produt�(in later terminology as an element of the n-fold tensor produt ⊗n S). Insummer 1926 P.A.M. Dira realized that Pauli's exlusion priniple impliedthat multi-eletron (more generally fermion) states had to be represented by4Pauli drew upon the symboli ressoures of the Klein-Sommerfeld theory of the spin-ning top, whih ontained the natural representation of SU3 impliitly. For a review of theunderstanding of the rise of spin see (van der Waerden 1960) or (Mehra/Rehenberg 1982,hap. VI.4). 3



alternating produts (Dira 1926).5An ad-ho usage of permutations (W. Heisenberg)Already before Pauli's mathematization of spin was known, Heisenberg startedto onsider the onsequenes of the new phenomenon for multi-eletron sys-tems. In June 1926 he submitted his �rst paper on this topi to Zeitshriftfür Physik (Heisenberg 1926). He looked for reasons for the separation ofenergy terms in the spetrum of higher atoms into di�erent subsets betweenwhih apparently no exhange of eletrons took plae (term systems withoutinterombination). Suh an e�et ould be seen by �missing� lines when oneompared the observed spetral lines with the ombinatoris of all the arisingenergy levels in a higher atom. Heisenberg guessed that the interation ofthe orbital magneti momentum of eletrons (i.e., the magneti momentumresulting from what was left from Bohr's eletron orbits in the new quantummehanis) with the still hypothetial spin might play a ruial role for thisphenomenon (Heisenberg 1926).In a seond part of the paper, submitted in Deember 1926, he ontinuedto explore the hypothesis further. He proposed the view that the distintionof term systems might result from a kind of �resonane phenomenon� betweenthe spin states of the di�erent eletrons and, perhaps, their orbital momenta.He made lear that here the word �resonane� was not to be understood inthe sense of lassial physis, but as an expression of a physial intuition ofthe �more subtle interplay of the eletrons in an atom� (Heisenberg 1927,556, 578). Thus Heisenberg's �quantum mehanial resonanes� referred tospin oupling e�ets for whih at that time no adequate mathematial repre-sentation was known.6 He therefore looked for new tools to deal with themand hoped to �nd them in the theory of permutation groups.In his investigation, Heisenberg studied states of n-eletron systems inan atom or moleule. Abstrating at �rst from spin, he started from neigenfuntions l,m, . . . p (Heisenberg's notation) of the Hamilton operator,whih desribed possible states of single eletrons without spin, possibledegeneraies inluded. As usual he desribed a omposite system by a kindof nonommutative produt of the eigenfuntions. He onsidered the resultas a state of the �unperturbed� omposite system, while the spin oupling(�resonane�) had to be taken into aount as a perturbation due to the �moresubtle interplay of the eletrons�. Beause eletrons are indistinguishable, heonluded:In the unperturbed ase, the eigenfuntion of the total systeman be written as produt of all funtions of the single eletrons,5Cf. (Kragh 1990)6In early quantum hemistry the term �resonane� was used in a omparable metaphor-ial way; see (Mosini 2000). 4



e.g., l1m2 . . . pn. The unperturbed problem is n!-fold degener-ate, beause a permutation of the eletrons leads to equal energyvalues of the total system. (Heisenberg 1927, 557)For an element u of the (tensor) produt spae, written by our authoras u = l1m2 . . . pn with an index 1 ≤ i ≤ n for the di�erent eletrons,Heisenberg onsidered the result of an eletron permutation S ∈ Sn, thesymmetri group of n elements, and wrote it as
Su = lS(1)mS(2) . . . pS(n).If we denote the state spae of a single eletron by V =< l,m, . . . , p >,

dimV = n, the (n!-fold degenerate) total state spae of the quotation aboveorresponds to the span of vetors arising from permutation of the ompo-nents of any one produt state u.7 We we want to denote it here as V (n)

V (n) := 〈Su |S ∈ Sn〉 ⊂ ⊗nV.

V (n) was onstruted to haraterize the state spae of an �unperturbed�system of n eletrons distributed aording to Pauli's priniple (i.e., mappedbijetively) on the n states m, l, . . . , p. Without spin the energy was totallydegenerate (all eigenvalues idential), while the onsideration of spin split itup into di�erent �non-ombining� terms. The physial model of the eletronsystem had to aount for the impossibility of transitions of eletrons betweenthe respetive states or subspaes. Mathematially the question was whetherthe orresponding vetors (wave funtions) or subspaes in Hilbert spae wereorthogonal.Heisenberg looked for a deomposition of V (n) into �nonombining� (or-thogonal) subsystems if spin resonane was onsidered as a kind of perturba-tion. As we will see in a moment, he had good arguments that orthogonalityof subspaes should not be a�eted by the spin perturbation. Its basi stru-ture ould thus be analyzed already on the level of the unperturbed systemwithout spin.In order to address this question, Heisenberg onsidered a yli subgroupof Sn generated by a �substitution� (permutation) S of highest possible order7We may prefer to distinguish Heisenberg's basi state vetors by a lower index i,
ψ1 = l, ψ2 = m, . . . , ψn = p, and to haraterize the bijetion between states and ele-trons by adding an upper index j, ψ(j)

i (1 ≤, i, j ≤ n). Then it is advisable to orderthe tensor produt aording to eletron indexes, ψ(1)
i1

⊗ ψ
(2)
i2

⊗ . . . ψ
(n)
in

(omparable toWigner's notation, see below). That makes the upper (eletron) index redundant, andthe lower (state) index i enodes the di�erent possibilities for bijetions ompletely. Be-ause Heisenberg ordered aording to states and used the eletron indexes to indiatethe bijetion between eletrons and individual states, his permutation S operated on thestate vetors of the (�our�) tensor produt V (n) by inversion S−1 =: σ, i.e. from the right:
(ψ1 ⊗ψ2 ⊗ . . .⊗ ψn).σ = ψσ(1) ⊗ . . .⊗ψσ(n) = ψS−1(1) ⊗ . . .⊗ ψS−1(n). As this detail hasno onsequenes for the orthogonality questions, we follow Heisenberg's desription in thesequel without further retranslations. 5



ν, and an orbit in V (n) of an eigenstate u under suh a subgroup. He thenformed di�erent superpositions of the elements of suh an orbit. For a per-mutation S of order ν he hoose oe�ients formed by powers of a primitive
ν-th root of unity ω, ων = 1, in the following way:

U0 =
1√
ν
(u+ Su+ S2u+ . . . Sν−1u)

U1 =
1√
ν
(u+ ωSu+ ω2S2u+ . . . ων−1Sν−1u)

. . .

Uν−1 =
1√
ν
(u+ ων−1Su+ ω2(ν−1)S2u+ . . . ω(ν−1)2Sν−1u).These linear ombinations were formed in analogy to the onstrution ofthe roots of resolvents in the theory of algebrai equations. In fat, Heisen-berg referred to a textbook of higher algebra, a �fty year old German transla-tion of a lassial book by Serret (Serret 1868), whih had been written origi-nally in 1866 (third edition), as one of the �rst books ontaining a passage onthe reently revived theory of E. Galois.8 For dimensional reasons (ν < n!)there were elements w = Tu, T ∈ Sn, of the de�ning basis of V (n) (Heisen-berg: �eigenfuntions�) whih were linearly independent of the U0, . . . , Uν−1.They lead to analogously formed linear superpositions W0, . . . ,Wν−1. Heapplied the same proedure, step by step, until the whole spae V (n) wasspanned by elements of suh a form: U0, . . . , Uν−1,W0, . . . ,Wν−1 . . ..9Now, Heisenberg olleted all funtions Uj,Wj , . . . starting with the sameexponent j of the unitary root ω into one olletion,

Γωj := {Uj ,Wj , . . .} ,and proposed that the orresponding subspaes ould be taken as symbolialrepresentatives for the di�erent term systems. He argued that the span of
Γωj and Γωk ought to be orthogonal (for di�erent j and k)

∫

f̄jgk = 0 , fj ∈ Γωj , gk ∈ Γωk , j 6= k . (1)His argument for this laim depended ruially on an invariane argumentof the transition integral under any permutation:If under the integral (. . . ) the eletron numbers are somehowpermuted, the value of the integral annot hange. (Heisenberg1927, 559)The physial ontext of the alulation demanded suh an invariane. Al-though Heisenberg's onstrution of the �term systems� Γωj did not ensure8(Kiernan 1971, 110�.)9Cf. (Mehra/Rehenberg 2000/2001, 489�.).6



suh an invariane, his argument held for similar onstrutions in whih theinvariane ondition was satis�ed.10 The form of his argument was lose toone used in early Galois theory (�as the whole onstellation does not dependon the hoie of the ordering of the roots of the equation, . . . suh and suhinferene an be drawn . . . �) and may have been prompted by the latter.Heisenberg agreed with Dira that an �eigenfuntion� of the total systemshould be antisymmetri under permutation of the eletrons. It seemed im-possible, at the moment, to draw onsequenes of this postulate.11 On theother hand, he plausibly assumed that any perturbation of transition proba-bilities, arising from spin oupling, should be symmetri under transpositionof two eletrons. That was su�ient, in his ontext, to show that the de-omposition of the total spae of n eletrons V (n) into orthogonal subspaeswas not a�eted by spin resonane. Thus, so he onluded, the subspaesspanned by the Γωj ought to haraterize the deompositions of energy termsinto non-ombining partial systems inluding spin (Heisenberg 1927, 559).12Although the argument did not work in his own ad-ho onstrution, it wouldbeome important (and orret) one it was transferred to a deompositioninto truely invariant subspaes.All in all, Heisenberg's paper gave an inventive treatment of the termsystem problem, although it must have apppeared surprising for mathe-matial readers of the time (like J. von Neumann or H. Weyl). For theonstrution of non-ombining term systems, Heisenberg relied on a ratherold-fashioned algebrai bakground (Serret 1868). Neither H. Weber's text-book (Weber 1895/96) nor any other more reent algebrai text was evenmentioned. Suh a negletion of more reent methods may not neessarilybe of great disadvantage for a new appliation of mathematis by a physiist.But in this ase, the negletion of younger algebrai developments inludedthe methods of representation theory of �nite groups, whih dealt with stru-tures muh loser to Heisenberg's problem than algebrai equation theory.In his �rst step into the new terrain, Heisenberg had to rely on formal ex-pressions originally introdued in a ompletely di�erent ontext. Thus hishypothesis for the identi�ation of non-ombining term systems by his Γ-olletions was quite daring and would surely have led to di�ulties, had itbeen used in future investigations without major modi�ations.From hindsight it is easy to see that Heisenberg's deomposition did notlead to irreduible representations of the permutation group. Worse than10We will see in a moment (equation (2)) that Heisenbergs Γωj , respetively their linearspans, are no invariant subspaes under the full permutation group . Heisenberg's ownargument shows that therefore his model was physially unreliable. Wigner's approahsolved the problem. It was di�erent to Heisenberg's, ontrary to what the latter believed.11A strutural answer to this question was given later by Weyl and a more pragmatione by von Neumann and Wigner, see below.12I thank an anonymous referee for having made me aware of this important passage inHeisenberg's argument. 7



that, Heisenberg's hypothetial �non-ombining term systems� Γωj were noteven invariant subspaes under the full permutation group. His onstrutionmade sure that a subspae Γωj is an eigenspae with eigenvalue ωj of theyli subgroup generated by the permutation S. But this does not hold forother permutations. Already for n = 3, ω = e
2πi
3 and any 3-yle S, e.g.

S = (123), a transposition T with TST = S2, e.g. T = (12), maps U1 ∈ Γωto U2 ∈ Γω2 ,
SU1 = ωU1 , STU1 = TS2U1 = ω2TU1 . (2)In fat, the linear spans of {U1, U2} and {W1,W2}, in Heisenberg's nota-tion, are opies of the two-dimensional irreduible representation of S3.13 Inother words, the irreduible spaes are transversal to the subspaes o�eredby Heisenberg as �non-ombining term systems�. But before suh disrepan-ies ould start to irritate other ontributors to the program, Heisenberg'smethod was outdated by an approah to the problem proposed by his ol-league E. Wigner.So it was good news, and even better ones than Heisenberg knew, thathe ould refer to Wigner's investigations already in a footnote added in proofto his Deember paper. He erroneously believed that his approah agreedwith Wigner's (Heisenberg 1927, 561, footnote (1)). In fat, a rash viewould support this belief, as in the ase of 3-eletrons, e.g. a Lithium atom,both methods led to equal numbers and dimensions of the respetive termsystems: two one-dimensional term systems (symmetri and antisymmetri)and two equivalent two-dimensional term systems (standard representationin Wigner's approah), 6 = 1+1+2+2. But while Wigner haraterized thenon-ombining term systems by subspaes whih atually were irreduiblesubrepresentations, we have seen that Heisenberg's deomposition was dif-ferent, even in this ase.In the end, it appears as a luky sequene of events that Wigner's papersthrew new light on the question so fast. His approah superseded Heisen-berg's group theoretially ad-ho method, before the latter ould lead intoa dead end. Wigner's papers opened the path towards an introdution ofgroup representation into the study of multi-partile systems and establisheda sound mathematial frame into whih Heisenberg's perturbation alula-tion ould be integrated without ontraditions.14Turn towards group representations (E. Wigner)Eugene Wigner had studied hemial engineering at Budapest and Berlin(TH) during the years 1920 to 1925 and had gained aess to the physialommunity organized around the olloquia of the Deutshe Physikalishe13Cf. (Fulton/Harris 1991, 8�.).14In the literature on history of quantum mehanis this essential di�erene be-tween Heisenberg's and Wigner's approahes is often passed over in silene; f. e.g.,(Mehra/Rehenberg 2000/2001, 489�.). 8



Gesellshaft and the loal Kaiser-Wilhelm Institutes.15 After he had �nishedhis diploma degree, he went bak to Budapest and worked as a hemialengineer in a leather tannery (his father's raft), but he ontinued to readthe Zeitshrift für Physik with the interest of an a�ionado. Thus he was wellinformed about the breakthroughs in quantum mehanis, ahieved during1925. He immediately aepted the hane to go bak to Berlin, when hewas invited by Karl Weissenberg to beome his assistant at the Kaiser-Wilhelm Institute for �bre researh. Weissenberg himself had studied appliedmathematis with R. von Mises and had then turned towards ondensedmatter physis. He needed support in his X-ray investigations of rystalstrutures. At Weissenberg's suggestion, Wigner started to read the grouptheoreti parts of Weber's textbook (Weber 1895/96) and to explore thesymmetry haraters of rystals in the new setting.16 Beause of this interestin atual X-ray rystallography, he was muh better aquainted with grouptheory than Heisenberg in 1926.In late 1926, Wigner started to study the question of how n-partilesystems an be built from n given, pairwise di�erent, single partile states
ψ1, . . . , ψj , . . . ψn, initially without onsidering spin e�ets. Like Heisenberg,he wanted to know how the n-partile state spae deomposes under permu-tations of the eletrons. Eah eletron was (in the stationary ase) identi�edmathematially by its hypothetial �spae oordinates� ri = (xi, yi, zi) ∈ IR3,where i served as an index to haraterize di�erent eletrons.In his �rst paper on the topi (Wigner 1926), submitted on November 12,1926, he onsidered a produt of n �eigenfuntions� ψ1, . . . , ψn. Any state ψkan be �oupied� by any (the i-th) eletron, whih was denoted by Wignerby ψk(ri). He then onsidered permutation states of the form

ψσ1(r1)ψσ2(r2) . . . ψσn(rn) =: vσ,where σ is any permutation of n elements, (the notation vσ is ours). ThusWigner studied essentially the same subspae V (n) of the n-fold tensor prod-ut of V =< ψ1, . . . , ψn > as Heisenberg. In his �rst paper he onsideredonly the speial ase n = 3 and alulated the deomposition of V (3) intoirreduible omponents under permutations �by hand�. No wonder, that hefound Dira's symmetri and antisymmetri representations among them andin addition two 2-dimensional �systems�.17 He onluded similar to Heisen-berg:15For the following passage on Wigner ompare (Chayut 2001) and (Makey 1993).16See (Chayut 2001) and Wigner's autobiographial report in (Wigner 1992, 105).17The regular representation of S3 (f. next footnote), R3
∼= V (3), deomposes into thetrivial representation U , the antisymmetri representation U ′ (both 1-dimensional) andtwo opies of the twodimensional irreduible subspae S2 := {(z1, z2, z3) | z1 +z2 +z3 = 0}of the natural representation on C3 arising from permutations of the basis vetors: R3 =

U ⊕ U ′ ⊕ S2 ⊕ S2. 9



The additional systems are all degenerate, this degeneration issuh that it annot be broken by any perturbation symmetri inthe single partiles whih are assumed to be equivalent. (Wigner1926, 34)The state spae V (3) was spanned by vetors vσ identi�ed by permuta-tions σ ∈ S3. The operation of S3 on V (3) was multipliation of permutations(in Wigner's ase from the left), just like in the regular representation.18 Inthis way Wigner hit, at �rst unknowingly, upon the problem of a deompo-sition of the regular representation of the symmetri group S3. His approahto the problem made it apparent that, more generally, V (n) was by its veryonstrution just another version of the regular representation of the sym-metri group. It had been studied by Frobenius, Shur, Burnside, Youngand others in their works on the representation theory of �nite groups.19WhenWigner disussed this question with J. von Neumann, a good friendof his sine their ommon shool days at Budapest, his friend immediatelyreognized what Wigner was doing from a mathematial point of view andexplained the problem in terms of a deomposition of the regular represen-tation. Thus Wigner started the seond part of his ontribution (submittedNovember 26, 1926) with a general observation whih introdued the rep-resentation theory of the symmetri group. Noting the rising alulationalomplexity, when one wanted to extend the results from n = 3 to higherases, he remarked:There is a well prepared mathematial theory, however, whihone an use here, the theory of transformation groups isomorphito the symmetri group (. . . ), whih has been founded at the endof the last entury by Frobenius and has been elaborated later byW. Burnside and J. (si!) Shur, among others. J. von Neumannwas so kind to make me aware of these works, and predited thegeneral result orretly, after I told him the result for the ase
n = 3. (Wigner 1927b, 43)Therefore Wigner onsidered it worthwhile introduing the basi fats of therepresentation theory of the symmetri group to the readers of the Zeitshriftfür Physik.20 In partiular, he explained in his artile how on an alulatethe dimension N(λ) of a representation of Sn haraterized by a partition18The regular representation RG of a �nite group G is given by the operation of G on thegroup algebra C[G] := {

∑

h
zhh|zh ∈ C} (summation of h over G) by operation from theleft. It ontains all �nite dimensional irreduible representations of G. More preisely, ineah representation of the symmetri group of n elements eah irreduible omponent Xappears in the regular representation with multipliity dimX. Cf. (Fulton/Harris 1991)or any other book on representation theory.19See (Hawkins 1972, Hawkins 1974) and the overview in (Hawkins 2000, 373�384).20For a more reent introdution to the subjet, see (Sternberg 1994).10



(λ) := (λ1, . . . , λk) of n,21
n = λ1 + λ2 + . . .+ λk, λi ≥ λi+1.After Wigner beame aware of the deomposition of the regular represen-tation, he ould adapt Heisenberg's perturbation argument for spin ouplingto the modi�ed ontext:In a system with n equal mass points, between whih initiallythere is no exhange of energy, eah eigenvalue is n! degenerate(if the orresponding state does not ontain equivalent orbits).If one reates an exhange of energy, eah eigenvalue splits intoseveral. (Wigner 1927b, 44)He proposed to alulate the degeneray of the orresponding term by thedimension N(λ) as above. The basi struture for the splitting of energyterms in an atom with n (peripheral) eletrons, whih had been translatedby Heisenberg into the problem of deomposing V (n) into minimal invariantsubspaes, was now eluidated by applying standard methods of represen-tation theory for the symmetri group. To Wigner and von Neumann thisturn may have appeared like some kind of �pre-established harmony� be-tween physis and mathematis, stipulated in the ontemporary Göttingenmilieu of mathematis and mathematial physis. For other partiipants itmay have looked more like a kind of magi of mathematial symbolism.On the other hand, many questions were still open. Among them mostimportantly the question whih of the irreduible representations of the per-mutation group on the spae of Shrödinger wave funtions were ompatiblewith the Pauli-Dira priniple of antisymmetry for the total (Pauli-) wavefuntion. In order to address this question, the spin phenomenon and itsrelation to rotational symmetries had to be understood better.2. Wigner and von NeumannEarly in 1927, Wigner made onsiderable advanes. He enrihed the study ofinvariane by inluding rotations of the state spae of eletrons in an outeratomi shell. In his third paper in spetrosopy, he started to derive thebasi strutural data of spetrosopi terms from the rotational symmetryof the eletron state spaes (Wigner 1927a).22 Already in the introdutionto the paper he stated:The simple form of the Shrödinger di�erential equation allowsus to apply ertain group methods, more preisely, representation21The dimension of N(λ) is the quotient of n! by the produt of all �hook lenghts� of theorresponding Young diagram. For details see (Sternberg 1994, 89�.).22Reieved May 5, 1927. 11



theory. These methods have the advantage that by their help onegets results nearly without alulation, whih do not only holdexatly for the one-partile problem (hydrogen atom), but also forarbitrarily omplex systems. The disadvantage of the method isthat it does not allow us to derive approximative formulas. Inthis way it is possible to explain a large part of our qualitativespetrosopial experiene. (Wigner 1927a, 53)Representations of the rotation groupAgain it was J. von Neumann who advised Wigner what to read in order tounderstand the representation theory of the speial orthogonal group SO3,in partiular the reent papers by I. Shur and H. Weyl (Shur 1924, Weyl1924b).23 Thus Wigner disussed, among others, the irreduible representa-tions of the rotations in the plane, SO2, whih are (omplex) 1-dimensional.They are haraterized by an integer parameter m, suh that any plane ro-tation δα by an angle α has the representation as the (one by one) �matrix�
eimα. Let us denote, for brevity, this representation of the plane rotationgroup as dm. Then, of ourse, the representation matrix of the rotation δαis the 1 × 1 matrix

dm(δα) = eimα;in other words, the representation of the rotation by the angle α has theeigenvalue eimα.Wigner then introdued the (2l+ 1)-dimensional representations of SO3(of highest weight l ∈ IN0), whih we denote here as Dl, aording to presentonventions, and indiated how to alulate the representation matries
Dl(A) = (Dl

jk(α, β, γ))1≤j,k≤2l+1for any rotation A ∈ SO3, haraterized by its three Euler angles α, β, γ(Wigner 1927a, 68�.). Moreover, he disussed the deomposition of Dl underrestrition to the subgroup SO2 of rotations about the z-axis into 2l+1 one-dimensional subspaes. This leads to representations dm in our notationabove, where m may assume the 2l + 1 pairwise di�erent values
−l ≤ m ≤ l.That �tted struturally so well with the observed lassi�ation of spe-tra and their disrete parameters, the quantum numbers, that Wigner ouldimmediately proeed to a spetrosopial interpretation of these representa-tion theoreti quantities. The highest weight l ould be identi�ed with theazimuthal quantum number of the Bohr-Sommerfeld theory (Wigner 1927a,23See (Wigner 1927a, 63, fn. (1)). 12



71) (later often alled orbital angular momentum quantum number).24 More-over, the weight m of the spei�ed abelian subgroup SO2 appeared as a grouptheoreti haraterization of the magneti quantum number of the eletron.The latter had been introdued in order to explain the split of spetral lines(indexed by the prinipal quantum number n of the so-alled Balmer-seriesand by l) into di�erent terms (�multipletts�) under the in�uene of a strongmagneti �eld, the so-alled normal Zeeman e�et.25 A similar e�et hadbeen observed under the in�uene of a homogeneous eletri �eld (Starke�et).26 Thus the basi features of the dynamis of the eletron were ap-parently losely related to the basi parameters of representations of thesymmetry group of its orbit.After a short disussion of the fat that transitions of eletrons ourredin nature only between neighbouring azimuthal (orbital angular momentum)quantum numbers l, orresponding to a hange △l = ±1, Wigner turned tothe onsequenes of the introdution of a homogeneous eletri �eld:By means of an eletri �eld along the Z-axis the substitutiongroup of our di�erential equation is diminished (verkleinert).Thus we have to proeed [as above℄ and redue the three-dimensionalrotation group to a olletion of representations of the two-dimensionalgroup (about the Z-axis). (Wigner 1927a, 72)As a result, under the in�uene of an external homogeneous �eld, a termwith azimuthal quantum number l splits into 2l + 1 lines, indexed by themagneti quantum number m.27For atoms with more than one eletron involved in radiation proesses,the situation was, of ourse, muh more ompliated. Here Wigner ouldonly vaguely indiate, how the representation of the rotation group and ofpermutations might work together to form the the total state spae of an
n-eletron system and how they determine the ombined quantum numbers(Wigner 1927a, 77f.).The spin group SU3For a detailed investigation, a more subtle study of the interplay between ro-tational symmetry, its relation to spin properties, and the exhange symme-tries (permutations) of multi-partile systems beame neessary. At almost24In spetrosopy, an alphabetial ode is used for l: S for l = 0, P for l = 1, D for
l = 2 et..25With a magneti �eld in diretion of the observation, P. Zeeman had observed suhan e�et in 1896, while perpendiular to the �eld a �third� (undisplaed) line appeared.H.A. Lorentz had explained it a year later in terms of a lassi theory of the eletron inthe magneti �eld, f. (Rehenberg 1995, 161), (Darrigol 2001) or (Pais 1986, 76f., 268�.).26The Stark e�et had been observed in 1913.27In this ontext (Stark e�et), Wigner alledm the �eletri quantum number� (Wigner1927a, 73). 13



the same time as Wigner's paper on rotational symmetries, Pauli submittedhis path-breaking proposal to mathematize Uhlenbek's and Goudsmit's hy-pothesis of an intrinsi �spin� of the eletron by the use of �two-omponent�wave funtions (Pauli 1927).28 Charles G. Darwin stepped in with a seriesof papers on the �eletron as a vetor wave�.29 That made it possible forWigner to extend the investigations of symmetries to spin e�ets.For suh studies von Neumann's advie beame even more importantthan before. The publiations disussed above were written by E. Wignerwhen he was still an assistant for theoretial hemistry at the tehnial uni-versity Berlin. In spring 1927 he moved to Göttingen for one year, as anassistant of Hilbert's. At that time, Hilbert su�ered strongly from perni-ious anemia and was nearly inaessible to his new assistant. Nevertheless,Wigner ame into lose ontat with other young physiists working at Göt-tingen, among them in partiular L. Northeim, P. Jordan, and W. Heitler.Moreover, von Neumann visited Göttingen regularly (Mehra 1993). Thusthere were good onditions for Wigner and von Neumann to establish thebasi representation theoreti features of atomi spetra, inluding spin ef-fets, during late 1927 and the �rst half of 1928, simultaneously with H.Weyl's work on the same topi and independently of it.Between Deember 1927 and June 1928, E. Wigner and von Neumannsubmitted a series of three papers on spetra and the �quantum mehanisof the spinning eletron (Drehelektron)� to the Zeitshrift für Physik.30 AsWigner later reported, he wrote the papers after intense disussions withhis olleague and friend whom he therefore onsidered to be a oauthor(Mehra/Rehenberg 2000/2001, 496). In this series, the authors emphasizedthe oneptual role of representation theory for quantum mehanis in an ex-pliit and programmati manner and parallelized it to the invariane methodof general relativity.. . . It may not be idle to all the strong heuristial value (Spürkraft)to attention, whih dwells in these and similar priniples of sym-metry, i.e. invariane, in the searh for the laws of nature: In ourase it will lead us, in a unique and ompelling way, from Pauli'squalitative piture of the spinning eletron to the regularities ofthe atomi spetra. That is similar to the general theory of rel-ativity, where an invariane priniple made it possible to unveilthe universal laws of nature. (Wigner/v.Neumann 1928a, 92)In their paper, Wigner and von Neumann took up Pauli's haraterizationof spin by a (ommutative) produt of a Shrödinger wave funtion
ψ(x), x = (x1, x2, x3) ∈ IR3,28Reeived May 8, 1927, by Physikalishe Zeitrshrift, three days after the submissionof Wigner's paper (Wigner 1927a).29(Darwin 1927, Darwin 1928)30Dates of reeption: Deember 28, 1927; Marh 2, 1928; June 19, 1928.14



and a omplex funtion ζ(s) depending on variable in a disrete two-point�internal� spin spae, s ∈ {±1}. The ombined funtion
ϕ(x, s) = ψ(x)ζ(s) (3)had been introdued by as Pauli as (spin-) wave funtion. The dependeneon s ould just as well be written in index form

ϕs(x) := ϕ(x, s), with s ∈ {±1}.Then the Pauli wave funtion was given by two omponents,
ϕ̃(x) := (ϕ−1(x), ϕ1(x)) ,and ϕ̃ ould be onsidered as a modi�ed wave funtion (on IR3) with valuesin C2, a �hyperfuntion� in Wigner's terminology (later alled a Pauli spinor�eld on IR3).For an n-partile system the wave funtion aquired the form

ϕ̃(x1, . . . , xn) := (ϕs1...sn(x1, . . . , xn)) , xj ∈ IR3, sj ∈ {±1} . (4)Then the values of ϕ̃ were in C2n (Wigner/v.Neumann 1928a, 94)Wigner and von Neumann studied how to express the operation of therotation group SO3 on the Pauli wave-funtions by a unitary operator. Theyintrodued an expliit expression for the omplexi�ed version Ã of a rotation
A = A(α, β, γ) given in terms of the Euler angles α, β, γ (Wigner/v.Neumann1928a, 98),̃
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A 7→ Ã ∈ SU2,suh that a rotation A−1 ∈ SO3 operated on the wave-funtions by

ϕ(x) 7→ Ãϕ(A−1x). (6)That agreed well with what Pauli had done; but while Pauli had madeuse of the omplex desription of the spinning top, well known in the Som-merfeld shool, Wigner and von Neumann embedded the formula into arepresentation theoreti perspetive. In partiular they referred to the se-ond paper of Weyl's great series on the representation theory of the lassialLie groups (Wigner/v.Neumann 1928a, 98, footnote). Here Weyl had dis-ussed the universal overings of the speial orthogonal groups (later to be15



alled spin groups), had proved the full reduibility and derived the har-aters and dimensions of all irreduible representations (Weyl 1925/1926).31Von Neumann and Wigner stated learly that they needed only ertain as-pets of the general theory.32 But they made quite lear that now one hadto take into aount �two-valued� representations of the SO3, in addition tothe (one-valued) ones studied by Wigner in his last paper (alled above Dl,
l ∈ IN0). That gave an additional series whih will be denoted here by D k

2(dim(D k
2 ) = k + 1), k odd, aording to more reent onventions.33For the goal of their paper, they onsidered the most basi two-valuedrepresentation, in fat a loal inverse of the overing map

SU2 −→ SO3,given by equation (5) up to sign. Then D 1
2 was given by the standardrepresentation of the overing group SU2; more preisely

D 1
2A = ±Ã.In the perspetive of their paper, this representation arose naturally fromthe operation of SO3 on the 1-partile state as desribed in equation (6). Itwas essential to �nd the onsequenes for the n-partile state.They indiated how to �nd the matrix expressions of a representationmatrix D k

2A for a rotation A ∈ SO3, haraterized by its Euler angles α, β, γ,in analogy to Wigner's formulas in the lassial (one-valued) ase. In doingso, they relied on Weyl's result and stated that for eah dimension n ∈ INthere exists exatly one representation of SO3 (or its universal over) indexedby j := n−1
2 . In the sequel we use the slightly more reent unifying notationfor the two series:

Dj = D(j,0), of dimension n = 2j + 1, j ∈ {0, 1
2
, 1,

3

2
, 2, . . .} (7)Here n odd (respetively j integer valued) orresponds to one-valued repre-sentations, and n even (j half-integer) to �two-valued� representations of theorthogonal group.With the mahinery of representation theory at their disposal, it waslear how to proeed to the desription of the n-partile states desribedby n-fold tensor produts. They ended the �rst paper of the series with anobservation on how to deompose the tensor produt spaes into irreduibleomponents:31See (Hawkins 2000).32�Of ourse, muh less than Weyl's deep rooted results are neessary for our presentgoals.� (Wigner/v.Neumann 1928a, 98, footnote)33Cf. (Sternberg 1994, 181�.). 16



In the appliations it will be important to know the irreduiblerepresentations of the rotation group in {na
(R)
s,t } [Wigner/vonNeumann's symbol for ⊗nD 1

2 , E.S. ℄; that is easily ahieved, asits trae is additively omposed from the traes of the former.(Wigner/v.Neumann 1928a, 108)They gave an expliit result, desribed verbally, but without any ambiguity.Written in more reent symbolism, it was
⊗n D 1

2 = D n
2 ⊕ (n− 1)D n−2

2 ⊕ n

2
(n− 3)D n−4

2 ⊕ . . . . (8)Permutations, spin, and anomalous Zeeman e�etIn the seond paper of their series, Wigner and von Neumann ombinedthe rotational and spin symmetries with the permutation aspet from whihWigner had started. Wigner's basi physial intuition was that in atomispetrosopy the energy operator H will be omposed,
H = H1 +H2,by a part H1 resulting from the spatial motion of the eletron only (themotion of the �enter of gravity� of the eletron, as he said) and the ensuinggross e�et of the eletromagneti interation with the �eld of the atomiore. The seond part, H2, should model other aspets, most importantamong them the eletron spin (Wigner/v. Neumann 1928b, 133). Thus oneould start from the eigenvalue problem of the �spin-less� wave funtion ψ(Shrödinger wave funtion),
H1ψ = λψ ,and re�ne the result by passing to the �hyperfuntions� ϕ inluding spin (i.e.,the Pauli spinors).For the investigation of symmetry properties with respet to permuta-tions, it was therefore natural to distinguish di�erent types of operations fora permutation α ∈ Sn, an operation P on spae variables only and an oper-ation O on both, spin and spae variables (Pα and Oα in Wigner's notation):

P−1
α ϕ(x1, . . . , xn; s1, . . . , sn) := ϕ(xα1 , . . . , xαn ; s1, . . . , sn)

O−1
α ϕ(x1, . . . , xn; s1, . . . , sn) := ϕ(xα1 , . . . , xαn ; sα1 , . . . , sαn).The operation Q of permutations on spin variables only ould be onstrutedfrom these (Wigner/v. Neumann 1928b, 133) by

Qα := P−1
α Oα.Obviously �spin-less� wave funtions transformed under Pα, while the trans-formation Oα of �hyperfuntions� ould be built from P and Q, Oα = PαQα.17



Wigner then onsidered a slow ontinuous hange from an energy statein whih the spin ontribution ould be negleted (H = H1) to one, in whihthis was no longer the ase (Wigner/v. Neumann 1928b, 133). He made thefollowing observation:While the original state with H = H1 is invariant under O and P , aninreasing spin perturbation H2 may redue the original symmetry to O only.In this ase, the formerly irreduible subspaes for H1 are deomposed intosmaller irreduible omponents of H1 +H2.That was a onvining group theoreti view of the split of spetral termsby a perturbation bringing spin di�erenes into the game. Empirially suha phenomenon had been observed long ago in the anomalous Zeeman e�et:If a weak magneti �eld was swithed on, spetral lines belonging to thesame magneti number m ould split into di�erent terms.34But it was still to larify how to deal with the antisymmetry priniplefor the total wave funtion of an n-eletron system. Aording to Dira�. . . only those states our in nature, the eigenfuntions of whih are anti-symmetri� (Wigner/v. Neumann 1928b, 133). Wigner and von Neumanntherefore ontinued with the study of the irreduible representations of thesymmetri group Sn in the antisymmetri part of the total �hyperfuntion�representation, i.e., in
∧nṼ ⊂ ⊗nṼ ,where Ṽ denotes a state spae of single-partile �hyper-funtions� (Pauli-spinor �elds). Of ourse, suh irreduible antisymmetri representations areone-dimensional, and the question was, under whih onditions suh an-tisymmetri representations in the �hyperfuntion� spae ould be derivedfrom an irreduible representation of the spin-free wave funtions. To sim-plify language, we denote the representation of Sn in V (n) orresponding toa partition (λ) = (λ1, . . . , λk) by V (n)

(λ) .If one starts from a degenerate energy term with multipliity m of thespin-less Shrödinger equation of an n-eletron system
H1ψ = E0ψ , (9)one an form a basis of m 2n orresponding �hyperfuntions�, by allowingfor the ombinatoris of possible spin values for the n onstituents. If anal-ogously m denotes the dimension of an irreduible representation V (n)

(λ) likeabove, the m 2n-dimensional spae of spin extended hyperfuntions may bealled Ṽ (n)
(λ) . Obviously it forms an invariant subspae of ⊗nṼ (under permu-tations). Our authors now looked for irreduible omponents of Ṽ (n)

(λ) , and inpartiular one-dimensional antisymmetri ones.34The �anomalous Zeeman e�et� had been observed by A.A. Mihelson and T. Pre-ston in 1898, and ould not be explained in the Bohr-Sommerfeld theory of the atom; f(Rehenberg 1995, 161f.) or (Pais 1986). 18



Using a result of A. Speiser's book on group theory (Speiser 1923), theyame to the onlusion that a partition (λ) allows to form a (non-trivial,one-dimensional) antisymmetri extension in Ṽ (n)
(λ) , if and only if (λ) is of theform

(λ) = (2, 2, . . . , 2, 1, 1, . . . , 1) . (10)That was an important result for the group theoretial program in spe-trosopy. It showed learly, why (and under whih onditions) irreduiblerepresentations of the symmetri group ould haraterize a term system ofhigher atoms.Still the question had to be answered, in how many �ne struture terms aspetral line of an n-eletron system, orresponding to an azimuthal (orbitalmomentum) quantum number l and partition (λ), ould split. Thus Wignerand von Neumann �nally studied the ombinatorial possibilities, by whihthe total magneti quantum number m = m1+ . . .mn of suh a system ouldbe built from the quantum numbers mj of the individual eletrons and whihe�ets ould be expeted from swithing on a spin perturbations H2. Theyame to the onlusion that the momentum (inluding spin) of an n-eletronsystem in suh a state an be haraterized by a (integer or half-integer)value j, alled internal quantum number, with
|n− 2z

2
− l| ≤ j ≤ n− 2z

2
+ l(with di�erene 1 betweeen two values of j). For eah j the total magnetimomentum inluding spin m̃ then may aquire values in −j ≤ m̃ ≤ j. Thenumber t of di�erent values for m̃, i.e., the number of possible terms intowhih the n-eletron state (λ) with azimuthal quantum number l ould split,was then, aording to Wigner/v. Neumann (1928b, 140�143):

t = min { n− 2z + 1
2l + 1This result agreed beautifully with empirial �ndings and with the rulesderived in other theoretial approahes.35 Wigner was proud about what hehad ahieved ooperatively with von Neumann:Thus the, probably, most important qualitative spetrosopialrule has been derived. Independent of the immense e�etiveness(Leistungsfähigkeit) of quantum mehanis (. . . ), one will be sur-prised that all this was �pluked out of the air�, as one might say(daÿ alles, wie man sagt �durh die Luft� ging ), i.e., withouttaking into aount the speial form of the Hamiltonian fun-tion, only on the basis of symmetry assumptions and of Pauli'squalitative idea. (Wigner/v. Neumann 1928b, 143)35Like Hund's �Aufbauprinzip� (Wigner/v. Neumann 1928b, 140).19



Although de�nite values of the energy di�erenes ould not be derived bygroup theoreti methods alone, Wigner's and von Neumann's approah gavea onvining explanation for the splitting of a spetral line under a magneti�eld (Zeeman e�et) of any kind into �multiplett� terms of the �ne struture.3. London and HeitlerIn quantum hemistry, representations of permutation groups made their�rst appearane about the same time as they did in spetrosopy. The topiwas opened up by a joint publiation of two young physiists, Walter Heitlerand Fritz London, who had ome to Zürih on Rokefeller grants in 1926(F. London), respetively 1927 (W. Heitler), to work with E. Shrödinger.36While a loser sienti� ooperation with their professor turned out to bemore di�ult than expeted, they used the opportunity to exhange anddevelop ideas with eah other. In June 1927 they submitted a paper onthe quantum mehanial explanation of so-alled ovalent bonds (those dueto valene eletron pairs), whih arose from an idea of W. Heitler. It soonwas onsidered as the entry point for quantum mehanial model building inhemistry (Heitler/London 1927). Aording to L. Pauling, one of the great�gures of the �rst generation in quantum hemistry, Heitler's and London'spaper an be onsidered as. . . the greatest single ontribution to the lari�ation of the hemist'soneption whih has been made sine G. Lewis's suggestion in1916 that the hemial bond between two atoms onsists of apair of eletrons held jointly by two atoms (Pauling 1935, 340)(quoted from (Mehra/Rehenberg 2000/2001, 542)).The story of this invention leads deep into the history of quantum theoryand of hemistry and is overed as suh in the respetive historial litera-ture.37 We want to onentrate here on a spei� aspet, whih is at theenter of our investigation of the use of modern mathematial methods inphysial hemistry: the ontexts, reasons and mode for the appearane anduse of group theoreti methods. Suh methods were �rst applied in two pa-pers by W. Heitler, published in 1928 (Heitler 1928a, Heitler 1928b). Theybuilt upon a joint paper with F. London, published during their ommonsummer in Zürih (Heitler/London 1927).In their joint paper, Heitler and London started from an investigationof two hydrogen atoms and their eletrons, initially modelled separately, ata distane d = ∞ between the nulei, by idential Shrödinger funtionswith energy eigenvalue E0. Using a perturbative approah, they studied36(Gavroglu 1995)37See (Gavroglu/Simóes 1994, Karahalios 2000, Karahalios 2003, Nye 1993, Simões2003) and (Mehra/Rehenberg 2000/2001, 540�.).20



what happened to the eletrons and their added energies when the atomidistane d was redued. They showed the existene of two solutions, ψ1 and
ψ2 for the ombined system, with respetive total energies E1 and E2, andinterpreted the energy di�erene

△Ei := Ei − 2E0 , i = 1, 2,as a kind of exhange energy of the eletrons.38 With their hoie of sign,negative exhange energy expressed that the ompound system had a lowerenergy state than the two single systems. Moreover, the exhange energieswere dependent on the distane parameter d. Their analysis showed that,with d inreasing from a little above 0 to some value d1, E1 fell to a minimum,rising again for inreasing d from d1 to ∞, while E2 fell monotonously for
d > 0 with inreasing d (d → ∞). Thus ψ1 represented a bound statefor d = d1, while ψ2 haraterized a repulsive fore for any value of theatomi distane (the van der Waals repulsion between the two hydrogenatoms)(Heitler/London 1927, 460).A ontinuation of the alulation for two helium atoms, eah ontainingtwo eletrons, showed that only the ase of a repulsive interation ould beobtained, if eletron spin and the Pauli exlusion priniple were taken intoaount (i.e., if both eletrons of one atom were assumed to be in di�erentspin states). In this sense, the �exhange energy� of Heitler and Londonappeared as an e�et of spin oupling and was positive in this ase. Itexplained why helium did not form two-atomi moleules and behaved asnoble gas. The priniples of non-relativisti quantum mehanis seemed toopen the possibility of understanding the struture (graph-like ombinatorisof atomi �valenes�) and the quantity (energies) of hemial bonds.Heitler's theory of valene bondsIn summer 1928, E. Shrödinger went from Zürih to Berlin, as a suessoron M. Plank's hair; in Otober F. London joined him there as an assistant.W. Heitler, whose Rokefeller grant had run out more or less at the sametime, aepted an o�er from Max Born to beome an assistant at Göttin-gen. There he got to know E. Wigner whose group theoreti works he hadstarted to read with great interest when in Zürih.39 Now Heitler exploredwhat the representation theory of the symmetri group ould ahieve for thedetermination of quantum mehanial bond states.38The quantum physial idea behind this terminology was the following: If one joinedtwo probability �louds� about two nulei to one (of the ombined system) some kind of�exhange� of partiles between two �partial louds� related to the nulei, although fusedto represent one state, seemed now possible (i.e., had positive probability). The languageof �exhange energy� has to be taken, again, as a lassial metaphor for a quantum e�et.For a more detailed disussion see (Shweber 1990, 380f.).39(Mehra/Rehenberg 2000/2001, VI.1, 502, 547)21



Already in January 28, 1928, he submitted his �rst artile on the topi(Heitler 1928a). His goal was to extend the approah of his joint workwith London to �higher� moleules. For the time being, that did not meanmore than two-atomi moleules with n > 2 outer eletrons. He stated hismethodologial preferenes learly at the beginning of the paper:Among all methods, the group theoreti is the one whih de�-nitely ahieves most for the multi-partile problem: it was broughtin by E. Wigner [Heitler referred to (Wigner 1927b, Wigner 1927a),E.S.℄ to ahieve a qualitative overview of all existing terms. (Heitler1928a, 836)Heitler ame to the onlusion that already at large distanes the ex-hange fores between valene eletrons of opposite spin resulted in a re-dution and even a relative minimum of bond energy, whih expressed anattrative fore between the two atoms. Here he de�ned valene eletrons assuh eletrons of quantum numbers (l,m) in the outer �shell�40 whih hadno partner of equal quantum numbers l, m with opposite spin in the sameatom. Heitler hinted at ertain restritions of his approah:We still have to warn of an overestimation of the impliations(Tragweite) of our results in two respets. The simple formulasfor the interation energy . . . an only be onsidered as a veryrough approximation, beause the perturbative alulation ne-glets several points and holds only for large distanes. Seondly,the �exhange moleules� onsidered by us represent only a partof the hemial moleules. although of the most prominent andmost stable ones (N2, O2, NH3, CH4 et.). A large part of thehomopolar ompounds, however, relies on perturbations of a dif-ferent kind . . . .41 (Heitler 1928b, 837)Thus Heitler distinguished learly between di�erent kinds of hemialbonds only some of whih ould be explained, in his opinion, by spin ouplingaessible to group theoreti methods. He alled them exhange moleules.We have to keep this in mind when we look at the extension of Heitler'stheory of valene bonds from a more strutural, mathematial point of view(e.g., by Weyl) and its reeption by physiists and hemists.Here, Heitler investigated two eletron systems A and B, eah of whihonsisted of n (valene) eletrons, initially without interation. All in all,he studied a system of 2n eletrons. Following Wigner, he haraterized a40�Outer shell� now referred to eletrons of highest azimuthal (orbital momentum) quan-tum number l with respet to its spherial symmetryDl in the atom, and with a ompatiblemagneti quantum number m (−2l ≤ m ≤ 2l).41Heitler referred to the negletion of �polarization� whih he estimated for H2 to beabout 25 % and guessed that it should be muh higher for higher moleules.22



term system by an irreduible representation of the permutation group of 2nelements S2n. Let us all it R.Under the assumption of no interation, R ould also be onsidered as arepresentation of eah of the n eletrons A and B and thus of two subgroupsisomorphi to Sn, let us say RA and RB . The latter were no longer irre-duible. Thus Heitler studied the deomposition of R into subspaes whihwere simultanously irreduible in RA and in RB . This work was failitatedby the assumption (unproved but onsidered as self-evident by Heitler) thatthe Pauli priniple implies that. . . the representations appearing in nature [are℄ those whih on-tain only 2 and 1 in their partition (Heitler 1928a, 846).42He onluded that only those representations ould appear, in whih forboth partial systems A and B the respetive n valene eletrons are hara-terized by a ompletely �antisymmetri term system� and have antiparallelspin (Heitler 1928a, 848). On this basis he was able to give an approximativealulation of the exhange energies.This result established a quantum mehanial explanation of ertain non-ioni bonds whih ould not be explained in terms of Coulomb fores. Tra-ditionally, hemists had used valene dashes to represent suh moleules. In1916, G. Lewis had proposed a qualitative interpretation of a valene dash asa pair of eletrons shared by two atoms. But the underlying physial foresremained a mystery. Now it seemed promising to look for an explanation ofsuh �valenes� by the pairing of eletrons with opposite spin, but otherwiseequal quantum numbers. Heitler's proposal was thus to investigate the rangeof the hypothesis that spin oupling of valene eletron pairs lay at the baseof moleule formation.In a seond artile on the topi, submitted September 13, 1928, Heitlerextended his investigations to moleules with more than 2 atoms (Heitler1928b). Here Heitler was less autious than in January. He now desribedthe result of his �rst artile as having established a �omplete equivalene�of the quantum mehanial explanation of homopolar hemial bonds fortwo-atomi moleules and the traditional explanation of hemial valenesby eletron pairs (Lewis). He introdued an integral expression JQ derivedby Heisenberg for the exhange energy between two systems Q, onstitutedby the partial systems A and B (Heisenberg 1928), and resumed:Eah suh exhange energy JQ between two atoms an be in-terpreted as a valene bond symbolially denoted by a valenedash (Valenzstrih). Nearly all typial and stable two-atomimoleules of hemistry rely on suh an exhange bond; and vie42This ondition was proved a little later by Wigner in his joint work with von Neumann,as we have seen. It may have been orally ommuniated knowledge in Göttingen alreadyin winter 1927/28. 23



versa: if the valene theory permits the existene of a two-atomimoleule then it is possible quantum mehanially. (Heitler 1928b,805, emphasis in original)Although his theory did not predit new or di�erent e�ets in omparisonto lassial hemial knowledge, it laimed to explain the empirial knowl-edge of valene bonds struturally, for the ase of two-atomi moleules.Moreover, it should lead to a quantitative determination of bond energies,even if only in the sense of a rough, �rst estimation (see quotation above).Other approahesCompeting approahes to the quantum mehanis of hemial bonds weredeveloped by F. Hund and a little later by L. Pauling, R. Mulliken, and oth-ers. They shed doubt on the range of Heitler's and London's theory and onits quantitative reliability. They did not rely on the exhange energy of spinoupling, but onentrated on the spatial distribution of the Shrödingerfuntion. During the next deade it turned out that for more ompliatedmoleules Heitler's method led to unrealisti preditions. The alternativeapproahes were neessary, even on the strutural level, to ahieve a satis-fatory agreement with experimental knowledge.In summer 1928 these onsequenes were not yet lear, although hemistslike Mulliken and Pauling already thought along di�erent lines.43 For a shortwhile Max Delbrük who beame well known for his later researhes on themoleular basis of genetis onsidered Heitler's and London's approah worthfollowing. He studied perturbative formulas for the determination of ex-hange energies based on group theoretial methods (Delbrük 1928). ThusHeitler ould see his position strengthened and ontributed to further ex-plorations of his method in (Heitler 1928b). Here he posed the fundamentalquestion as to the existene of multi-atomi moleules, on the basis of ex-hange energies of valene pairs of eletrons.This type of question was highly interesting from a mathematial pointof view, but may have appeared useless to most hemists. Heitler onsideredhis investigation as nothing more than a �preliminary study (Vorstudie)�.In the ourse of it, he ame to admit that in the alulations of exhangeenergies, it might happen that permutations of more than two eletronsontribute essentially to the interation. That had already been onjeturedby F. London. Heitler remarked that, in his opinion, bonds whih rely onsuh higher exhanges ould not be onsidered as �valene bonds in the senseof Lewis�. They would onstitute a di�erent type of bond. Nevertheless hethought it justi�ed to study, how far one ould ome with valene bondsproper (�in the sense of Lewis�) (Heitler 1928b, 815). At the time, he still43See (Gavroglu/Simóes 1994, Nye 1993) or (Mehra/Rehenberg 2000/2001, 552�.).24



hoped that hain moleules of organi hemistry and lattie strutures mightbelong to �our bond ategory� (Heitler 1928b, 806).This hope did not ome true. During the 1930s, L. Pauling's and R.Mulliken's approah of onstruting �moleular orbitals�, i.e., Shrödingerfuntions of multi-eletron systems about a omplex of atoms (moleularore), built muh less on strutural priniples suh as permutations. Theydrew upon previously unformalized hemial knowledge on hypothetial spa-tial onstellations of the atoms for the modelling of Shrödinger funtionsof a system of eletrons. The striking suesses of this approah turnedout to be ruial for the aeptane of quantum mehanis among hemists(Gavroglu/Simóes 1994). It beame the ore mathematial tehnique dur-ing the next few deades for a fruitful elaboration of quantum mehanialmodels for more ompliated moleules, in partiular in organi hemistry.443. Weyl at the bakstageTaking the results of Wigner, von Neumann, and Heitler into aount, itmight look as if not muh was left for Hermann Weyl when he entered the�eld. But suh an impression would be ompletely wrong; Weyl took up awhole range of questions pertaining to the hallenging new �eld and enteredinto seond phase of ative involvement in mathematial physis between1927 and 1931. This seond phase was a natural follow up to his �rst phaseof ativity in theoretial physis between 1917 and 1923, in whih he hadmade ruial ontributions to general relativity, uni�ed �eld theory, andosmology.45 When he entered the terrain of quantum mehanis, he waspartiularly interested in the role of group representation and ontributed tothe introdution of gauge methods into the quantum physial setting.The bakground of Weyl's intervention in the �eld was one of the surpris-ing onjuntions in the history of siene, whih turned out to be tremen-dously fruitful. During the years 1925/26 the Münhen-Göttingen-Copen-hagen group of Heisenberg, Born, Jordan, and Pauli, losely ommuniatingwith Bohr, invented quantum mehanis; Shrödinger, at that time work-ing at Zürih, omplemented it with his �wave mehanis�, P.A.M. Dira,in Cambridge, developed his perspetive of �q-numbers� (a formal operatorsymbolism, partiularly well adapted to the physiists way of thinking) androwned the whole development by an overarhing view � alled �transfor-mation theory� by physiists.At the beginning of this period, in April 1925, Weyl had just �nished hisgreat work on the representation theory of lassial (Lie-) groups.46 For him,44Up to our days, it ontinues to be the basis for the semi-lassial approximationsused as building bloks for the omputer simulations of moleular strutures, f. (LeBris/Lions 2005).45See (Sigurdsson 1991, Coleman/Korté 2001, Sholz 2001, Makey 1988, Speiser 1988).46Weyl delivered the three parts of the series (Weyl 1925/1926) in January, February,25



it was not only the attration of the fasinatingly rih mathematial stru-tures of overing groups, deomposition of representations into irreduiblespaes, alulation of haraters, lassi�ation of root systems, weight ve-tors, and re�etion groups et., whih made him turn towards this work, butrather its intriguing interplay with oneptual questions lying at the basis ofphysial theory building. Weyl had met lassial groups and Cartan's lassi-�ation of their in�nitesimal versions (Lie algebras) on two oasions duringhis �rst phase of ative involvement in mathematial physis. He found themto be ruial for answering two questions in this ontext:� Why are tensors suh a good and, in fat, universal tool in generalrelativity and, more general, in di�erential geometry?� What are group theoreti reasons for the �pythagorean� (Weyl's termi-nology for what later was alled semi-Riemannian) nature of the metriin general relativity?The �rst question was answered by Weyl in 1925 with the insight, and itsproof, that all irreduible representations of the general linear group GLnIRan be onstruted as invariant subspaes of tensor powers of the underlyingstandard representation (for di�erential geometry, V = TpM ∼= IRn, thetangent spae at a point p to the underlying manifold M). In this sense,tensors and tensor spaes were universal objets for the representation of thegeneral linear group. For the proof he ould build upon methods developedby I. Shur in his dissertation from 1901, omplemented by an idea of Hurwitz(the so-alled unitarian restrition) to prove omplete reduibility. All theirreduible representations ould then be haraterized by some symmetryondition inside some tensor power ⊗kV . Thus an intriguing orrespondenebetween the representations of the symmetri group Sk and the irreduiblerepresentations of GLn(IR) inside ⊗kV (representations of �order k�) playedan important role in the answer to his �rst question.47 During the nexttwo years, this orrespondene turned out to be intimately related to theonstrution of state spaes for k �indistinguishable partiles� (often eletronsbound in an atom) from the state spaes of the single partiles.This result appeared all the more important to Weyl, as already beforethe advent of quantum mehanis he had formed the onvition that exatlysuh irreduible subspaes of ⊗nV form the proper mathematial domain ofthe lassial physial �eld quantities. He onsidered the relativisti eletro-magneti �eld tensor F i
j with its antisymmetry property (n = 2),

F i
j + F j

i = 0 ,and April 1925. For this part of the story see (Hawkins 2000, Borel 2001, Slodowy 1999).47(Hawkins 2000, 455�.) 26



as an outstanding example for this priniple. The methods developed in thestudy of the general linear group beame the lue to his general theory ofrepresentation of the lassial groups.The seond question had been answered by Weyl already a little earlierin his investigations of the �mathematial analysis of the problem of spae�.It had given him reason to absorb more of E. Cartan's lassi�ation of thein�nitesimal Lie groups than before.48During the ruial years 1925 and 1926, Weyl was busy in other �elds.Immediately after he had �nished his researhes in representation theory ofLie groups, he started intense reading for a book-length artile on philos-ophy of mathematis and natural sienes, whih he had promised to theeditors of a handbook of philosophy.49 In winter semester 1926/27 he le-tured on the theory of ontinous groups and their representation as a guestat the Göttingen mathematial institute.50 Nevertheless he was well awarewhat was going on in quantum mehanis. Even more than that, he a-tively partiipated in the internal disourse of the protagonists. He was inregular ommuniation with E. Shrödinger who taught at the university ofZürih in diret neighbourhood to the ETH where Weyl was teahing. Andhe ontinued to be a kind of external �orresponding member� of the Göttin-gen mathematial siene milieu � notwithstanding his di�erenes with D.Hilbert on the foundations of mathematis.Communiation with M. Born and P. JordanIn the fall of 1925, Weyl orresponded with M. Born and P. Jordan on theiratual progress in larifying Heisenberg's idea of non-ommuting �physialquantities� in quantum mehanis, whih was initially stated in a mathemat-ially rather inomprehensible form.51 Heisenberg's idea was ingenious andopened new perspetives for theoretial physis, but it was very di�ult tounderstand. It beame a omprehensible piee of mathematial physis onlyafter the lari�ation brought about by joint work with Born and Jordan onthe one side and by Dira's ontributions on the other.52Weyl was well informed about the work done by the Göttingen physiistsand even ontributed atively to the researh disussion among Born, Jordan,48See (Hawkins 2000), (Sholz 2001b, Sholz 2004b). The order of the questions is heregiven aording to their relative importane identi�ed by Tom Hawkins for Weyl's turntowards the new researh projet in representation theory of Lie groups.49Published as (Weyl 1927a).50In this leture Weyl did not yet touh the appliation of group theory to quantummehanis (Weyl Ms 1926/27). I thank M. Shneider who found H. Grell's Ausarbeitungof Weyl's guest leture in the Nahlass Herglotz.51(Heisenberg 1925) submitted July 29, 1925.52The �rst paper of Born and Jordan (Born/Jordan 1925) was reeived on Septem-ber 27, 1925, by the Physikalishe Zeitshrift and a sueeding one by all the three(Born/Heisenberg/Jordan 1926) on November 16, 1925. Dira joined on November 5,(date of reeption) (Dira 1925). 27



and Heisenberg in the ruial months of mid and late 1925. In September1925 Born visited Weyl at Zürih and reported him about the latest progressin quantum mehanis. Weyl immediately started to �alulate a bit tolarify things� for himself, as he wrote to Jordan a little later.53 He informedBorn about his insights with great admiration for the work of the Göttingenphysiists:Dear Herr Born!Your Ansatz for quantum theory has impressed me tremendously.I have �gured out the mathematial side of it for myself, perhapsit may be useful for your further progress . . . . (Weyl Ms1925a)Weyl proposed to onsider the relationship between unitary one-parametergroups P (δ) and Q(ǫ) with their anti-hermitean in�nitesimal generators p,and q
P (δ) = 1 + δp+ . . . and Q(ǫ) = 1 + ǫq + . . . (0 ≤ δ, ǫ) .He argued that the properties of the (Lie) algebra generated by pairs ofonjugate in�nitesimal operators,

pq − qp = h̄1,with 1 the identity and � h̄ a number�, as Weyl wrote (he omitted the imagi-nary fator i), ould be related to a ommutation relation among the integraloperators like
PQ = αQP, α = 1 + h̄δǫ+ . . . .Typial relations among the in�nitesimal operators ould then be derivedfrom this approah.54About a week after the submission of his joint artile with Jordan, Borngave a friendly answer, but with a ertain reserve. He wrote:It was a great pleasure for me to see that our new quantummehanis attrats your interest. In the meantime, we have madeonsiderable progress and are now sure that our approah oversthe most important aspets of the atomi struture. It is very�ne (sehr shön) that you have thought about our formulas; wehave derived these formulas in our way, even if not as elegant asyou, and intend to publish the subjet in this form, beause yourmethod is di�ult for physiists to aess. . . . (Born Ms 1925)The ommuniation went on. Weyl reeived a page proof of the submittedpaper diretly from the Zeitshrift für Physik and wrote a supportive letter53(Weyl Ms1925b)54As an example Weyl presented the haraterization of the formal derivative fq :=

npmqn−1 of a monomial f = pmqn used by Born and Jordan: fq = h̄−1(pf − fp).28



to the younger olleague, P. Jordan, in whih he apparently referred to hisalternative approah to the ommutation relations one more.55Jordan thanked Weyl for his omments on November 25, 1925, shortlyafter submission of the seond paper jointly written with Heisenberg. Heremarked that he had read Weyl's letter to Born at the time �with greatinterest�. He emphasized that Born and he had ome lose to a derivation ofthe anonial ommutation relation from the de�nition of the derivative d
dt
Aof an operator valued funtion A = A(t) of a real variable t. In a footnotehe added:When Born talked to you, we still believed that pq − qp = h

2πi
1is an independent assumption. (emphasis in original)Already in this early orrespondene with his olleagues, Weyl lookedfor unitary groups lying at the base of the quantization proedures usedby Heisenberg, Born and Jordan. His proposal of his letter to Born wasapparently a �rst step into the diretion of using unitary one-parametergroups obeying a weakened ommutativity relation (see below, equ. (12)) asa a lue to derive the Heisenberg relations from basi properties of projetiveunitary representations.In two postards to Jordan, written in late November 1925, Weyl indi-ated how in his approah an observable H = H(p, q) given in terms of theonjugate observables p and q ould be haraterized.I arrive at a haraterization of the domain of reasonable fun-tions H by the Ansatz

∫ ∫

eξp+ηqϕ(ξ, η)dξdη ,whih is less formal than ∑ pmqn. (Weyl Ms1925)This was the �rst indiation of what in his publiation two years later(Weyl 1927b) beame the proposal to use inverse Fourier transforms for quan-tization, the now so-alled Weyl-quantization (equations (14) and (15) be-low). Born and his assistant Jordan deided, however, that Weyl's approahwas too umbersome for the introdution of the new quantum mehanis tothe physis ommunity, and relied on their own approah. The long delayedand seletive reeption of Weyl's idea shows that Born may have been right55On November 25, 1925, Jordan wrote to Weyl that the latter ould �of ourse keepthe proofs�. In a footnote he added an exuse: �I do not know, why they [the page proofs,E.S.℄ have been sent to you in suh a ompliated and demanding form (umständlihund anspruhsvoller Form). Born and I are innoent of that (sind unshuldig daran).�(Jordan 1925). We an guess that the printer of the Zeitshrift had sent the proofsagainst aknowledgement of reeipt, and that Weyl was a bit perplexed by this proe-dure wondering, perhaps, whether his Göttingen olleagues wanted to make sure their(undisputed) priority. 29



in this estimation. On the other hand, his deision may have ontributed tothe long delay for a reognition of Weyl-quantization as a useful approah inmathematial physis.Abelian ray representationsWeyl ame bak to his early proposals nearly two years later in his �rstartile dealing with quantum mehanis (Weyl 1927b).56 He learly dis-tinguished between pure states and of mixtures. Pure states were mathe-matially represented by eigenvetors (or more preisely by orrespondingomplex unit rays) of the typial observables whih desribed the de�ningproperties of a partile or dynamial state. Mixtures, on the other hand,were desribed ontextually as omposed from pure states in �any mixing ra-tio� (Weyl 1927b, 97). In this way Weyl indiated that a mixed state mightbe haraterized by a probability measure on the state spae, although hedid not spell out details. A little later, and originally without knowledgeof Weyl's manusript, von Neumann proposed to formalize both mixed andpure systems by (positive) hermitian operators A. Pure states were thosegiven by projetion operators onto one-dimensional subspaes and mixturesby more general positive hermitian operators (von Neumann 1927, 215�.).57Weyl's main point was, however, the disussion of what he onsidered the�more profound� question of the �essene (Wesen) and the orret de�nitionof anonial variables�(Weyl 1927b, 91) P and Q, satisfying the anonial orHeisenberg ommutation relation:
[P,Q] =

h̄

i
1. (11)He proposed to relate any hermitian operator A to the unitary 1-parametergroup generated by its skew hermitian relative iA

t 7→ eitAand to onsider the quantum mehanial observables from an �integral� pointof view, in the sense of the generated 1-parameter groups. That was aoneptual move similar to the one in Weyl's work on representation theory,where he found intriguing new aspets by passing from the in�nitesimal point56Reeived Otober 13, 1927.57Von Neumann presented his paper on November 11, 1927, to the GöttingerGesellshaft. In the page proofs he added a referene to Weyl's paper (von Neumann 1927,219, footnote) and vie versa (Weyl 1927b, 90, footnote); ompare (Mehra/Rehenberg2000/2001, 431�.). In later terms, von Neumann's positive hermitian operator A an berelated to a trae lass operator T by A = (T ∗T )
1

2 , where T is of unit trae norm T1 = 1.Here |T |1 := TrT =
∑

k
(Tuk, uk) = 1 with respet to any omplete orthonormal set {uk}.Moreover, the trae of T an be alulated by the sum of the (positive) eigenvalues aν of

A, TrT =
∑

ν
aν . 30



of view (the Lie-algebras in later terminology) to the integral perspetive (thegroups themselves).Turning the perspetive round, he onsidered a lassial state spae de-sribed by pairs of n onjugate observable quantities (p, q), suh as the spatialdisplaement q with respet to a frame and its onjugate momentum p. Thenthe state spae ould be onsidered as an abelian group G of two ontinuousparameters (t, s) ∈ IR2 = G (in the ase of n = 1 pairs). For the quantizationit was natural to look at a unitary ray representation, i.e. a representationup to multipliation by a omplex number of unit norm.Then it was lear that in the quantum ontext the ommutation relationfor the generating 1-parameter groups eitP and eisQ have to be weakened.Commutativity had to hold only up to a unitary fator,
eisP eitQ = eic steitQeisP , (12)where c is a real onstant normalized to c = 1 or c = h̄. Let us referto equation (12) as the Weyl-ommutation relation for onjugate pairs of1-parameter groups in unitary projetive (quantum) representations.Weyl showed that for the orresponding skew-hermitian in�nitesimal gen-erators iP , iQ the deviation (12) from strit ommutativity implies
PQ−QP = −ic 1,i.e., the Heisenberg ommutation rule (11) for a pair of onjugate observables.Weyl generalized this proedure to n-tuples of pairs of observables P1, Q1,

. . . , Pn, Qn. Then a representation on quantum rays58 allowed to modify thestrit ommutation relation of an abelian group (t1, . . . , tn, s1, . . . sn) ∈ G =IR2n to slightly deformed Weyl-ommutation relations of the form
eisµPµeitνQν = eicδ

µ
ν sµtνeitνQνeisµPµ ,with δµ

ν the Kroneker delta and c = 1, or c = h̄. For the in�nitesimalgenerators that orresponded to a normalized form of the skew symmetrisystem of oe�ients cµν in the system of relations (Weyl 1927b, 114)
PµQν −QνPµ = −icµν 1. (13)That led to intriguing relations for the addition rule for the 2n-parameterunitary ray representation. If we use the denotation (s, t) ∈ IR2n and

Ws,t := eis1P1eis2P2 . . . eisnPneit1Q1 . . . eitnQn ,the addition beomes
Ws+s′,t+t′ = e−ic<s′,t>Ws,tWs′,t′ ,58�Quantum ray� signi�es that from the one-dimensional subspae, the lassial proje-tive ray, only the norm 1 representatives play a role in the quantum mehanial ontext.31



where < s′, t >:=
∑

ν s
′
νtν and, as above, c = 1 or c = h̄. The resultingstruture was an irreduible projetive unitary representation of the abeliangroup G = IR2n; Weyl alled it an �irreduible abelian rotation group operat-ing on a the �eld of rays (Strahlenkörper) of pure states � (Weyl 1927b, 118).He restrited his investigation to the ase of everywhere de�ned, bounded(skew-) hermitian generators and the resulting unitary transformations andgave a skethy argument that these were the only irreduible projetive rep-resentations for eah n.For a serious appliation to quantum mehanis, the generalization to thease of unbounded operators was, of ourse, important. It was solved inde-pendently by Marshall Stone and von Neumann (Stone 1930, von Neumann1931). Von Neumann showed, in addition, that the Weyl ommutation rela-tions ((12), (13)) haraterize irreduible unitary projetive representationsof ontinuous abelian groups up to unitary isomorphism.Weyl quantizationWeyl, on the other hand, ontinued his artile by looking for a proedurewhih ould give operator ompanions to (lassial) physial quantities ina systemati way, i.e., he looked for a systemati approah to quantization(Weyl 1927b, 116). If a lassial quantity is expressed by a funtion f(p, q)of the anonial variables p, q (f ∈ L2IR2 for n = 1), he looked at the Fouriertransform ξ of f . Then f an be gained bak from ξ by

f(p, q) =

∫

ei(ps+qt)ξ(s, t)dsdt, . (14)Weyl proposed to use the analogously formed operator-valued integral
F :=

∫

ei(Ps+Qt)ξ(s, t)dsdt =

∫

ξ Ws,t dsdt (15)as the quantum mehanial version of the physial quantity related to f .In ase of periodi variables, pairs (p, q) represent elements on the torus
G = T 2 := S1×S1 ∼= IR2/Γ, where Γ is the lattie generated by the periods.Then the integration redues to a summation over integer numbers s and tin ZZ, beause the Fourier transform ξ lives on the disrete domain Ĝ = ZZ2.Moreover, f is an element of the funtion algebra on the abelian group
G = IR2, or T 2 in ase of periodi variables. For a real valued funtion f , inpartiular, the orresponding ξ satis�es

ξ(−s,−t) = ξ(s, t)and leads to a hermitian operator F .In the methods introdued and used by physiists at the time for thequantization of lassial observables, p 7→ P , q 7→ Q , the non-ommutativity32



of P and Q led to a fundamental di�ulty for an observable given as a fun-tion f(p, q) of the basi dynamial variables p and q. Already in the simpleases of a polynomial funtion, it was not lear whih operator one shouldhoose for the formal expression f(P,Q). For example for f(p, q) = p2qone ould hoose any of P 2Q, PQP or QP 2, et.. Weyl's unitary ray rep-resentation approah resolved (or avoided) this di�ulty from the outset.The operator inverse of the Fourier transform (15) gave a unique and stru-turally well determined assignment f 7→ F of hermitian operators to realvalued quantities. Weyl was therefore onvined that �our group theoretiapproah shows immediately the right way� towards the quantization prob-lem (Weyl 1927b, 117f.).Of ourse, the whole approah worked only for non-relativisti mehan-ial systems in whih time is �the only independent variable�, whereas �eldtheory deals with quantities extended over time and spae, whih relateobservations and measurements among eah other. Weyl onsidered the in-dependent variables as �projeted into the world� by arbitrary onventionsin suh a manner that the dependene of physial quantities on them ouldnot be measured (Weyl 1927b, 124). In this sense, the independent variablesplayed for him the role of some kind of a-priori omponent in theory on-strution. They were neessary for the oneptual arhiteture of the wholesymboli onstrution, although they were not diretly related to observ-able quantities. In non-relativisti quantum mehanis time was the only�independent variable� left. He added:If one wants to resolve the ritiized omission of the time oneptof the old pre-relativisti mehanis, the observable quantitiestime t and energy E have to be onsidered as another anoniallyonjugate pair, as is indiated already by the ation prinipleof lassial mehanis. The dynamial law [of the Shrödingerequation, E.S℄ will then ompletely disappear. (Weyl 1927b, 127)He referred to Shrödinger's �rst attempts to obtain a relativisti theory ofthe eletron in a entrally symmetri �eld, but neither here, nor in any laterpubliations, did he start to work out this idea of how one might proeed tobuild a relativisti quantum �eld theory. A good oasion would have beenhis ontributions to Dira's eletron theory, two years later; but by then hehad already aepted that the physiists working on this question � Dira,Jordan, Heisenberg, and Pauli � had hosen a ompletely di�erent approah.They developed the method of so-alled seond quantization, whih seemedeasier �to aess for physiists�, to take up Born's words from his letter ofOtober 2, 1925 to Weyl.The problems skethed in Weyl's 1927 paper, the method of unitaryray representations of ommutative groups, and the ensuing quantizationmethod proposed were soon reonsidered in Weyl's book (Weyl 1928) andmade more aessible to an international audiene by its English translation33



in 1931. The only traes it left on ontemporary work was that of vonNeumann and Stone, mentioned above. But it turned out to be of long rangeinspiration. In the next generation, G. Makey took up Weyl's representationtheoreti perspetive and developed it into a broader program for the study ofirreduible projetive representations as a starting point for a more struturalunderstanding of quantum physial systems (Makey 1949).In the 1960s, Weyl's quantization started to be revitalized. In this deade,the torus ase, G = T 2, was reonsidered as a speial, and the historiallyearliest, way to introdue a deformed produt on the Fourier dual group,
Ĝ = ZZ2. For two elements f, h of the funtion algebra on G with Fouriertransforms ξ = f̂ , η = ĥ, ξ, η ∈ Ĝ, let the Weyl quantization be written as
f 7→ F , h 7→ H. Then the omposition of the Weyl quantized operators

F ·Hould be transported bak to the original funtions f, h or their Fouriertransforms ξ, η. That led to a deformed produt depending on a parameter
c (typially c = 1 or c = h̄),

f ∗c g, respetively ξ∗̂cη ,with properties whih attrated a new generation of researhers.59The resulting non-ommutative funtion algebra on the torus T 2 or itsFourier dual T̂ 2 = ZZ2 beame the starting point for the study of the non-ommutative torus, one of the �rst well-known ases of non-ommutativegeometry. Weyl-quantization turned out to be just one among a larger lassof deformation quantization proedures.Thus Weyl's �rst paper presented ideas to the publi, whih he had de-veloped essentially when he was still �at the bakstage� of the quantummehanial sene, as we have alled it, turned out to have long range impatin several respets,� for the study of irreduible projetive representations (Stone, von Neu-mann, Makey e.a.),59For an overview see (Rie�el 1994). Rie�el refers to (Pool 1966) as the �rst paper inwhih an expliit desription of the deformed produt on the Fourier transform funtionswas given. His laim that already von Neumann had �pointed out that Weyl quantizationindues a new produt on funtions� (Rie�el 1994, 70) seems, however, to be anahronisti.The losest approximation to suh a view in von Neumann's paper is, as far as I ansee, a referene to the �Gruppenzahlen� at the end of the paper, where the terminology�Gruppenzahlen� refers to funtions f on G as elements of the group algebra C[G] (vonNeumann 1931, 229). Suh a perspetive was also disussed in Weyl's paper (Weyl 1927b,106) (and there even in more detail). In the abelian ase onsidered here the group algebrais ommutative and ould at best serve as the starting point for the introdution of thedeformed produt. Neither von Neumann nor Weyl mentioned the idea that the Weyl-quantized operators might be used to introdue a modi�ed (non-ommutative) produt ofthe �Gruppenzahlen� themselves. 34



� as an inspiration for the searh for oneptually founded quantizationproedures suh as the Weyl-quantization, as it was alled after the1960s,� and �nally as one of the soures for a non-ommutative modi�ation ofthe the torus (Pool, Rie�el e.a.).At the time of their publiation, Weyl's proposals were, however, far toodistant from ontemporary quantum mehanial researh to be taken up inthe physis ommunity. For several deades the paper (Weyl 1927b) remaineda lonely standing monument.5. Weyl entering the stageIn late 1927, Weyl entered the �eld of quantum mehanis with full fore. Hehad announed a leture ourse on group theory at the Zürih EidgenössisheTehnishe Hohshule, ETH, for winter semester 1927/28. In the summer ofthis year, both Zürih theoretial physiists aepted alls to other plaes, E.Shrödinger left the University of Zürih and went to Berlin; P. Debye gaveup his hair at the ETH on oasion of a all to Leipzig. Weyl used the op-portunity to reorient his leture ourse originally announed on group theoryonly and o�ered it now as a ourse on �Group theory and quantum mehan-is (Gruppentheorie und Quantenmehanik)", without running the risk ofputting o� his loal olleagues in physis. Now he had a good opportunityto present his views on group theoretial methods in quantum mehanis.His main interest was entered on the intriguing interplay between represen-tations of the orthogonal group SO3 (and SU2) and the permutation group,whih about the same time Wigner and von Neumann hit upon from theirside. Let us remember that in summer or autumn 1927 only Wigner's ownpapers were published. The joint work with von Neumann was still going,on when Weyl prepared the book manusript from the leture notes in thesummer semester 1928. In late August the book was �nished and given tothe publisher. In the sequel we will also use the abbreviation GQM for it(Weyl 1928).60Weyl's ontributions to the topi and the joint work by Wigner and vonNeumann were developed in parallel and independently of eah other, as faras any diret exhange of ideas is onerned. They nevertheless establisheda ommon theoretial approah to groups in the quantum mehanial expla-nation of atomi spetra. This is a good ase for a omparative study of how60If not otherwise stated, quotations refer to the �rst edition of GQM. If possible trans-lations are taken from H.P. Robertson's English version of the seond edition; whereneessary or advisable (beause of meaning a�eting shifts) diret translations from the�rst edition are given by the author (E.S.). The seond edition will be quoted by(Weyl 1928, 21931), the English translation by (Weyl 1931a). For a disussion of thebook see (Speiser 1988). 35



Weyl's perspetives as a mathematiian with great expertise in group repre-sentations in�uened his approah to the subjet. We an ompare it diretlywith the Wigner � von Neumann �team�, one of them (von Neumann) a bril-liant mathematiian who had assimilated the new results in representationtheory in a speed whih later beame legendary, the other one a theoretialphysiist of admirable mathematial powers.Two points of the broader story of group theoretial methods in quantumphysis have to be mentioned, before we ome to the disussion of Weyl'streatment of the interplay of the symmetri and the orthogonal groups inspetrosopy and quantum hemistry. Here we an only mentioned them inpassing, although they deserve loser srutiny in their own ontexts.General relativisti spinor �eldsExatly at the end of Weyl's ourse and shortly after it �nished, Dira'stwo path-breaking papers on the relativisti theory of the eletron appeared(Dira 1928) and found immediate reognition (Kragh 1990). ThereforeWeyl's book already ontained a hapter on Dira's theory. Later in theyear 1928 and early the next one, Weyl took up Dira's theory, simpli�edit from the point of view of group representations and put it into a gen-eral relativisti framework. For physial reasons, Dira worked with a re-duible representation of the Lorentz group, now written as D( 1
2
, 1
2
), whereasWeyl proposed a redution to irreduible omponents, haraterized by thestandard representation of SL2C in C2, D( 1

2
,0), and/or its onjugate D(0, 1

2
)(�Weyl spinors� versus �Dira spinors�, in later terminology). Weyl's maingoal in a series of papers in the year 1929 was, of ourse, of a di�erent nature,the adaptation of spinor theory to general relativity. In this enterprise he hadagain independent parallel workers, V. Fok and D. Ivanenko at Leningrad.Weyl and Fok/Ivanenko built essentially the same ore theory, but di�eredin outlook and details. That is an interesting story in itself, whih annotbe told here.61 Weyl did not inlude this generalized treatment of the Diraequation in the seond edition of the book, but only referred to it in passingat various plaes (Weyl 1928, 21931, VII, 195).In the seond edition he hanged and extended, the treatment of thespeial relativisti Dira equation. In the �rst edition he disussed a non-relativisti �rst approah to �seond� quantization of the eletron and theeletromagneti �eld (Weyl 1928, �44). At the end of the passage Weylremarked:We have thus disovered the orret way to quantize the �eldequations de�ning eletron waves and matter waves. The exatrealization will be the next task of quantum physis; the main-tainane of relativisti invariane seems to o�er serious di�ul-61Compare (Vizgin 1994, Goenner 2004, Straumann 2001, Sholz 2001a).36



ties. Here again we �nd that quantum kinematis is not to berestrited by the assumption of Heisenberg's speialized ommu-tation rules. And again it is group theory, whih supplies the nat-urally generalized variant, as is shown by the next setion . . . [inwhih unitary ray representations and the �rst steps of Weyl-quantization were presented, E.S.℄. (Weyl 1928) (Weyl 1928,
21931, 203)In summer 1928, he apparently still assumed that his approah to quan-tization might allow a generalization from the group IR3 of non-relativistikinematis to the relativisti ase. In the seond edition he omitted the se-ond and the last sentenes, after in January 1929 Heisenberg and Pauli hadmade deisive progress in their approah to �seond quantization�. Weyl stillkept the passage on unitary ray representations and to (Weyl-) quantization,but no longer reommended his own approah as a a path towards relativis-ti �eld quantization. He inluded two new setions with a disussion ofthis new and di�ult terrain, following Pauli, Heisenberg and Jordan, al-though now the obstale of unontrollable ini�nities appeared at the horizon(Weyl 1928, 21931, hap.IV, ��12, 13).Disrete symmetriesIn these new passages Weyl started also to explore the role of disrete sym-metries in the ontext of early relativisti �eld theory, parity hange P , timeinversionT , and harge onjugation C. They ended with a remark whihstruk readers of the next generation as surprising and even �propheti�:. . . this means that positive and negative eletriity have essen-tially the same properties in the sense that the laws govern-ing them are invariant under a ertain substitution whih inter-hanges the quantum numbers of the eletrons with those of theprotons [later readers would funtionally rephrase the term by�positrons�, E.S. ℄. The dissimilarity of the two kinds of eletri-ity thus seems to hide a seret of Nature whih lies yet deeperthan the dissimilarity of past and future. (Weyl 1928, 21931,English, 264)We annot take up the thread of the rise and establishment of the disretesymmetries in quantum �eld theory here; readers interested in this topimay like to have a look at the disussion in (Coleman/Korté 2001, 293) and(Straumann 2001, 141).6. Weyl on stageWe ome bak to omparing the di�erent outlooks of Weyl and Wigner/vonNeumann on groups in quantum mehanis. Tehnially, they agreed om-37



pletely, as Weyl frankly stated when he wrote the prefae to his book inAugust 1928.62 Disussing the role of group representations in quantummehanis, he observed:The ourse of events is so inevitable (zwangsläu�g) that nearlyeverything that was still new at the time when I gave the oursehas been published elsewhere in the meantime, in partiular bythe work of the olleagues (der Herren) C.G. Darwin, F. London,J. von Neumann and E. Wigner.He added:That is di�erent with Dira's wave equation of the eletron, whihintrodued essential new ideas into the theory during the timewhen this book was being written. (Weyl 1928, vi)The referene to F. London, and at other plaes to W. Heitler, referred tothe theory of moleular bonds, whih Weyl had approahed with the tool kitof representations of the symmetri group, starting from the joint artile ofHeitler and London.63 Even more than the other authors, Weyl emphasizedthe strutural role group representations for the understanding of quantumphysis. He hoped that they would survive future hanges of the atualmathematial models of the atomi or moleular systems:Reently it turned out that group theory is of fundamental im-portane for quantum mehanis. In this ontext it reveals themost essential features whatever the form of the dynamial lawmay be, i.e., without de�nite assumptions on the fores whih areating. (Weyl 1928, 2, emphasis E.S.)The last remark desribed quantum mehanis as a theory in develop-ment. Weyl onsidered it to be in an un�nished state. That di�ered fromthe redo of the Copenhagen � Göttingen group whih argued strongly infavour of having ahieved a �ompletion� of quantum mehanis.64 Weyl didnot share, however, Einstein's opinion that quantum mehanis had to beonsidered as of only provisional harater, as long as its purely stohastidetermination was not redued to a lassial �eld theory lying at its base.Weyl even had welomed the stohastial harater of natural laws well be-fore the birht of the �new� quantum mehanis (Weyl 1920). Of ourse, hewas, well aware of the fundamental problem that quantum mehanis and62Remember that all three parts of the Wigner/von Neumann series had appeared atthat time, the last one in June 1928.63(Weyl 1928, 21931, 300, hap. V, endnote 10). Darwin's publiations dealt with thespin phenomenon; among them (Darwin 1927, Darwin 1928). It did not involve expliitgroup theoreti aspets.64Compare the title of volume VI of (Mehra/Rehenberg 1982�2001): �The Completionof Quantum Mehanis 1926 � 1941�. 38



relativity had established two theories of basi levels of nature, whih wereoneptually and mathematially far apart. Already during his �bakstageperiod� Weyl had looked for possibilities of reoniliation of relativity theoryand quantum physis (see above). In summer 1928, after Dira's break-through to a �rst relativisti quantum theory with empirial suesses, heexpeted further hanges to ome. In suh a period, Weyl thought that theassumptions on the �form of the dynamial law� might still be subjet toonsiderable hange. The representation theoretial methods, on the otherhand, appeared to him as part of a stable ore of quantum mehanial knowl-edge.This onvition of a deep strutural meaning of group representations wasthe entral topi in GQM. Similar to his �rst book on mathematial physis,Spae - Time - Matter, Weyl gave a omplete introdution to the mathemat-is of the �eld and wrote one of the �rst textbook expositions of quantummehanis. He started with an introdution to what he alled unitary geom-etry, i.e., the theory of Hilbert spaes and the diagonalization of hermitianforms, although essentially restrited to the �nite dimensional ase (hap-ter I). He ontinued with an introdution to quantum mehanis integratingthe Shrödinger view of the dynamial law in the non-relativisti ase andthe Göttingen (Heisenberg-Born-Jordan) point of view of observables repre-sented by hermitian operators and their quantum stohastial interpretation(hapter II). Of ourse, he emphasized the turn quantum mehanis hadtaken with respet to lassial natural siene. Both had in ommon to be�onstrutive�.Natural siene is of a onstrutive harater. The onepts withwhih it deals are not qualities or attributes whih an be ob-tained from the objetive world by diret ognition. They anonly be determined by an indiret methodology, by observingtheir reation with other bodies; their impliit de�nition is on-sequently onditioned by de�nite laws of nature governing rea-tions. (Weyl 1928, 66)Classial mehanis was able to assume that suh �onstrutive properties�were attributes of the �things as suh (Dingen an sih)�, in the sense of per-taining to them, even if the manipulations neessary to their determinationwere not undertaken. In quantum physis this was no longer possible. Inthis point Weyl agreed with N. Bohr.With quanta we run into a fundamental barrier (Shranke) to thisepistemologial position of onstrutive natural siene. (ibid.,emphasis in original, my translation, ES)This limitation lay at the basis of Heisenberg's undeterminay relation. Weylaepted it as a fundamental insight, di�erent from Heisenberg's mathemat-39



ial haraterization of the ommutation relation.65In the third setion Weyl introdued the representation theory of �nitegroups with some general remarks on ontinuous groups, their haraters andtheir in�nitesimal groups (hapter III). The presentation of onrete exam-ples, in partiular the orthogonal group, Lorentz group, the speial unitaryand the symmetri groups were postponed to the later setions on �applia-tions of group theory to quantum mehanis� (hapters IV and V). ChapterIV ontained the theory of atomi spetra, Dira's eletron theory, and hisown method of unitary ray representations. The last hapter developed theombined theory of representations of the unitary group and the symmetrigroup, preparing his approah to the theory of valene bonds (hap. V).His presentation of atomi spetra (Weyl 1928, 157�.) relied muh moreon theoretial arguments and used less expliit alulations of eigenfuntionsthan Wigner/von Neumann's. Nevertheless his disussion went as deep intothe physis ontext as Wigner's. It inluded, among others, a onise grouptheoreti disussion of Pauli's mathematization of spin and of the anomalousZeeman e�et. Weyl apparently wanted to demonstrate the usefulness of thestrutural view of mathematis for a oneptual understanding in physis.Pauli spinors from the point of view of representation theoryFor the haraterization of eletron spin Weyl ould build upon his ob-servation of 1924, that the speial orthogonal groups SOnIR are not sim-ply onneted but possess, for n > 2, a two-fold universal overing group(Weyl 1924a). He learly distinguished �two-valued� and one-valued repre-sentations of these groups (Weyl 1925/1926, II, 602�.). For the introdutionof eletron spin, he nevertheless preferred the more physial approah of ex-tending Shrödinger wave funtions to Pauli spinors. To onentrate ideas,he started with the disussion of alkali spetra, governed by one externaleletron with a state spae alled E :We deal with a single eletron; the wave funtion depends onlyon t and the three spae oordinates x, y, z. It annot be a salar,however, but is a two-omponent ovariant quantity of type D 1
2
.Then we have D = D 1

2
× E , and the deomposition of E into itsirreduible omponents Dl with the integer azimuthal quantumnumber l gives the onstituents D 1

2
× Dl. Eah of those deom-poses again into a doublet Dj with j = l + 1

2 and j = l − 1
2 . . . .(Weyl 1928, 162)66The observation of the last sentene was an immediate onsequene ofthe deomposition formula for a tensor produt of representations of SU2,65Weyl presented Heisenberg's undeterminay in a form due to a ommuniation by W.Pauli (Weyl 1928, 67, appendix 1).66Weyl's Dj orresponds, of ourse, to our D(j,0) of equation (7).40



given here in Weyl's notation (Weyl 1928, 166)
Ds ⊗Dl =

l+s
∑

j=|l−s|

Dj .As the old theory without spin haraterized the terms very well up tosmall e�ets, Weyl assumed that the two-omponent wave funtions were wellapproximated by the �old� Shrödinger wave funtions (as did his quantumphysial olleagues). The dimension of the funtion spae was now doubled,with a orresponding rise in the degree of degeneray. He introdued thenotation El for an invariant subspae of E , El
∼= D 1

2
⊗ Dl and gave hisinterpretation of the appearane of spin doublets:. . . thus El now possesses all pairs ψ = (ψ1, ψ2) as eigenfuntions. . . . They obviously form a linear manifold of 2(2l + 1) dimen-sions. But now a small perturbation term will be added to thewave equation, the �spin-perturbation� whih ouples the om-ponents ψ1, ψ2 among eah other. Thus the former aidentaldegeneray is broken, the 2(2l + 1)-fold eigenvalue El is splitinto two values of multipliities 2j + 1, with j = l ± 1

2 , just asthe representation D 1
2
× Dl is deomposed into two irreduibleonstitutents. This is the theory of the doublet phenomenon asskethed by W. Pauli. (ibid.)This was a beautiful demonstration of how representation theoreti stru-tures appeared very naturally in the material of basi quantum mehanis.They were able to eluidate the symboli onstrutions and the perturba-tion arguments introdued by ontemporary physiists, inluding the kind ofstrutural approximation whih led from Shrödinger's to the Pauli's wavefuntions.In the disussion of the anomalous Zeeman e�et, i.e, the split of spetrallines of multiplets under the in�uene of an external magneti �eld, Weylshowed that the representation theoreti view ould also lead to quantitativeresults; he gave a theoretial derivation of the Landé formula for the split ofspetral terms in an external magneti �eld (Weyl 1928, 164�.).6767Landé had determined a harateristi fator g, important for the alulation of thewidths of the line split, as g = 2j+1
2l+1

, where l was the old (integer valued) azimuthalquantum number and j = l ± 1
2
an ad-ho modi�ation whih ould later be interpretedas the �internal� quantum number of the representation D(j,0) , taking spin into aount.Weyl derived g in very good approximation from the magneti momenta of the Pauli-spinors as g−1 =

j(j+1)−l(l+1)+ 3

4

2j(j+1)
, whih redues to Land'e's formula in the ases j = l± 1

2
.Compare (Mehra/Rehenberg 2000/2001, 499).
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A physial role for representations of the symmetri groupIn his presentation of moleular bonds and its group theoreti bakground(hap. V), Weyl was apparently intrigued by a strutural analogy of the spin-oupling problem of the n-eletron system with his general studies of grouprepresentations. In both ases, a strong and deep interplay of a ontinuousgroup (SO3 or SU2 in the spin ase, more generally any lassial group) withthe operation of the symmetri group, or some subgroup (the Weyl-groupin the general ase), formed the essential ore of his analysis. Thus Weyldelared that one of the goals of his leture ourse and the book was togive a uni�ed piture of the representation theory of �nite and of ontinuousgroups.Already from the purely mathematial point of view, it no longerseems justi�ed to make suh a sharp distintion between �niteand ontinuous groups as is done in the traditional textbooks.(Weyl 1928, V)He was very pleased that the study of the spin of an n-partile systemrelied on what he alled at di�erent oasions a bridge between the disreteand the ontinuous group representations (Weyl 1929). His goal was to makethis bridge oneptually as lear as possible, not only to use its onsequenesin the determination of term systems or in the investigation of hemialbonds. This does not mean that he ontented himself with purely struturalinsights. He rather started to elaborate the representation theory of thesymmetri group with the expliit goal to derive alulatory tools. For thispurpose he re�ned the use of Young diagrams and Young tableaus.In the last respet he made onsiderable advanes after the publiationof the book. Several artiles on this topi followed during the next year,among it the main researh paper (Weyl 1929a) and some expository ones(Weyl 1929b, Weyl 1929d, Weyl 1929). In these papers Weyl ahieved astrutural larity in the study of spin-oupling, omparable to the one hehad gained during the years 1925/26 for the representation theory of thelassial groups. On the basis of these results he ompletely rewrote thelast part of his book (hapter V) for the seond edition (and its Englishtranslation). The revised hapter V beame the soure for a tradition of along, although slow, trikling down of knowledge and of symbolial tools fromthe representation theory of the symmetri group to the theory of atomi andmoleular spetrosopy (later even to nulear spetrosopy) and to quantumhemistry.In these onsiderations Weyl employed similar methods to those he haddeveloped in his studies of representation theory in 1924/25. Central for bothapproahes was the assoiation of a symmetry operator A to eah element aof the group algebra C[Sf ] of the symmetri group Sf , operating on a tensorprodut spae ⊗f V . Using Weyl's notation F = F (k1, . . . , kf ) for a tensor42



F ∈⊗f V ,68 the symmetry operator A assoiated to
a =

∑

s∈Sf

a(s)s ∈ C[Sf ]was given by:
A : F (k1, . . . , kf ) 7→

∑

s∈Sf

a(s)F (ks(1), . . . , ks(f)) .Using suh symmetry operators, Weyl formulated symmetry onditions forelements in the tensor spae ⊗f V and showed that invariant subspaes ofthe regular representation on C[Sf ] speify invariant subspaes of GL(V ) on
⊗f V .Theorem 1 There is a 1 : 1 orrespondene between invariant subspaesof the regular representation of Sf and invariant subspaes of the operationof GL(V ) on ⊗f V . The same holds for its irreduible building bloks (theorresponding irreduible representations).(Weyl 1929a), (Weyl 1931a, 350)A omparable orrespondene had already been used by I. Shur in hisdissertation (Shur 1901) and, in a modi�ed form again in (Shur 1927). Weylgave full redit to these works. Only his method of symmetry operators wasnew, and he thought it to be of advantage for the lari�ation of the overallstruture of the orrespondene. In an exhange of letters, whih is onlypartially preserved, Shur expressed omplete onsent:I do not �nd anything in your interesting paper whih I had toobjet to. I even aept as not illegitimate the gentle ritiismwhih you o�er to my publiation from the year 1927. I am veryglad to see that you emphasize the onnetion between my oldapproah from the year 1901 and your elegant formulation. Ialso give preferene to this diret method and would go even alittle farther than you on p. 4 of your manusript. I am not ofthe opinion that the later method is the more progressive one.(Shur Ms.N.d.)69Any representation of Sf is haraterized by a harater χ, i.e., theomplex valued funtion on Sf , de�ned by the trae of the orresponding68This notation takes allows to use a shorthand notation for the operations of C[Sf ] ongeneral tensors F =

∑

j
αj v

(j)
1 ⊗ . . . ⊗ v

(j)
f , de�ned by linear extension of the naturallyde�ned operation on the deomposable tensors v(j)

1 ⊗ . . .⊗ v
(j)
f .69Shur's (undated) letter is an answer to a letter by Weyl, whih is not preserved.The disussion relates well to (Weyl 1929a). The only point I annot identify is the thereferene to the remark �. . . on p. 4 of your manusript . . . �.43



represention matries. For an irreduible representation it is known that
(χ, χ) = 1, with respet to the salar produt in the funtion spae on Sf .In the sequel we shall use the notation ρV (χ) for the irreduible represen-tation of GL(V ) in ⊗f V , orresponding to χ by this orrespondene andWeyl's theorem.70 Weyl onsidered a spin-extension of the underlying ve-tor spae of 1-partile states, V (dimV = n), in the sense of Pauli wavefuntions,

W := V ⊗C2 , dimW = 2n . (16)In the ase of an f -eletron system one has to study the irreduible om-ponents of the operation of GL(V ) indued on the antisymmetri part ofthe tensor produt, ∧nW . The deomposition of ∧nW aording to Weyl'smain theorem leads to multipliities mχ for the irreduible representationsof type ρW (χ), suh that
∧n

W =
⊕

mχ ρW (χ) (17)For the alulation of the multipliities mχ Weyl established a kind of �dual-ity� (Weyl's terminology) among the representations of the symmetri group.To any representation ρU of Sf in a vetor spae U there is an induedrepresentation ρ∗U on the dual spae U∗. By ontextual reasons, Weyl mod-i�ed the sign of this indued operation on U∗ by the signum funtion.71Then he ould use the apparatus of harater formulae and found a strikingreiproity relation (Weyl's terminology) between the multipliity of an irre-duible representation of the symmetri group and the dimension of its dualrepresentation:Theorem 2 The multipliities mχ in (17) are equal to the dimensions ofthe orresponding dual representations χ∗,
mχ = dimχ∗ ,(Weyl 1929a, 187),(Weyl 1931a, 352).A diret onsequene was that mχ = 0, if the Young diagram orrespond-ing to χ has more than 2 olumns.72 From a pragmati point of view, this70Weyl's notation for our ρV (χ) was Λn(χ), where n = dimV .71If ρU orresponds to a harater χ, Weyl de�ned the dual representation χ∗ as therepresentation of Sf given by

σ 7→ signum(σ)ρ∗U(σ) (Weyl 1929a, 187).72The signum fator in Weyl's de�nition of the dual representation implies dimχ∗ = 0for dual representations with more than 2 rows. The Young diagram of the representationin the dual spae U∗ is obtained from the diagram in U by transposition. Thus onlyrepresentations with Young diagrams of 1 or 2 olumns have non-vanishing multipliitiesin the deomposition of the alternating produt (17) (Weyl 1931a, 350, 352, 370).44



result stated the same ondition for the existene of an antisymmetri spinextension as the one given by Wigner and von Neumann in terms of thepartition (λ) (equation (10)). But Weyl onsidered this insight as more thanjust a alulational tool. For him it established a kind of reiproity law ofundoubtedly material importane.The modi�ation, whih is brought about by the existene ofspin under negletion of its dynamial e�ets and by the Pauliexlusion priniple, onsists in nothing more than in a trans-formation of the multipliity of the term system orrespondingto χ from [mχ℄ into [dimχ∗℄. . . . The dynamial e�et of spinresolves these multipletts in as many omponents, as given byits multipliity [dimχ∗℄; moreover it indues weak interombina-tions between the di�erent lasses of terms. [Notation adaptedto ours, emphasis in original, E.S.℄ (Weyl 1929a, 188)Spin oupling in general exhange moleulesWeyl even extended the reiproity theorem to a more general ase, W =
V ′ ⊗ V ′′. At �rst glane, this generalization may look like a pure mathe-matiians game, without onnetions to the physial ontext, but Weyl washighly interested in its appliation to moleular bonds.He onsidered two atoms A and B with eletron numbers ν ′ and ν ′′and symmetry types given by the irreduible representations Gχ′ , Gχ′′ (withharaters χ′ and χ′′ � Weyl's notation). If they form a moleule, the bondwould be desribed by (olletive) states of the ombined eletron system inthe tensor produt. The mathematially elementary states would then beharaterized by the irreduible representations in the produt. Weyl gener-alized Heitler's and London's theory from exhange moleules with eletronpairs to the many (ν = ν ′ + ν ′′) eletron ase. His generalized reiproitytheorem (Weyl's terminology) ontained the lue for analyzing the possiblebonding onstellation of higher atoms.In one of his presentations of the result to a wider audiene, a publishedversion of talks he gave during his journey through the United States in late1928 and early 1929, he explained his basi idea:This reiproity law governs the fundamental hemial problemof ombining two atoms to obtain a moleule . . . . The moleulewhih is obtained by ombining the two atoms will be in one ofthe symmetry states ζ whose orresponding Gζ [Weyl's symbolfor an irreduible representation of the full permutation groupof all ν = ν ′ + ν ′′ eletrons with harater ζ, E.S.℄ appears in

Gχ′ ×Gχ′′ and the alulation of the assoiated energy is aom-plished with the aid of these harateristis [haraters, E.S.℄.These irumstanes whih annot be represented by a spaial45



(si!) piture, onstitute the basis for the understanding of thehomopolar bond, the attration (or repulsion) existing betweenneutral atoms . . . (Weyl 1929a, 290f.)With respet to the strong oneptual relationship between mathemat-is and physis, these words may appear similar to those Weyl had writtena deade earlier, in the years between 1918 and 1920 when he pursued hisprogram of a geometrially uni�ed �eld theory. But during the 1920s Weylhad beome muh more sensitive to empirial questions. At the end of thedeade he had the impression that ground was touhed in the formerly fath-omless searh for a mathematization of the basi strutures of matter. Thisnew viewpoint seemed inompatible with the earlier hopes for a uni�ed �eldtheory of matter in terms of lassial �elds, whih Weyl now onsidered tobe illusionary.73 The role played in his earlier work in general relativity anduni�ed �eld by generalized di�erential geometri strutures was now takenover by group representations in Hilbert spaes (�unitary geometry�) and thequantum theory of atoms and their bonds.While in the early 1920s he still thought in terms of a-priori struturessupported by strong methodologial and ontologial speulations, he nowonly spoke of an �appropriate language� for the expression of the natural�laws�.The onnetions between mathematial theory and physial ap-pliation whih are revealed in the work of Wigner, v. Neumann,Heitler, London and the speaker is here loser and more ompletethan in almost any other �eld. The theory of groups is the ap-propriate language for the expression of the general qualitativelaws whih obtain in the atomi world. (ibid.)In winter 1928/29 Weyl used a journey to the US to bring the gospelof group theory to the sienti�ally rising ountry. He gave letures atPrineton and Berkeley on �Appliation of group theory to quantum me-hanis� (Weyl Ms1929), and published three artiles on the topi in North-Amerian journals (Weyl 1929a, Weyl 1929d, Weyl 1929).74 After his movefrom Zürih to Göttingen in early 1930, he took part in the seminar onthe struture of matter, whih went bak to the Hilbert tradition and wasnow run by Born. He was thus led to a further elaboration of his method(Weyl 1930, Weyl 1931b). The seond of these notes ontained an analysis ofdeterminantal methods used by W. Heitler and G. Rumer in their ommonwork presented in the seminar.75Building on his previous analysis, Weyl showed how to express the spinstates of an m-eletron system formed from the shells of k atoms, with73Compare (Sholz 2004a).74(Weyl 1929a) was published in German in the Annals of Mathematis.75(Heitler 1931) 46



m1, . . . ,mk valene eletrons eah (m =
∑k

1 mj), and the ondition that m0valenes remained free. Admissible spin oupling onstellations of the valeneeletrons ould be onstruted from alternating produts of the eigenfun-tions of pairs of eletrons from di�erent atoms. After assigning variables
x1, . . . , xk to eah atom and x0 to represent empty valenes, Weyl developeda method to alulate moleular bond energies. The method relied on the�rst fundamental theorem of invariant theory aording to whih it is possibleto express the invariants of any set of vetors {x0, . . . , xk} ⊂ C2 under theoperation of SL2(C) by integer polynomials in the �fundamental invariants�
zi,j derived from the vetors by determinants

zi,j := det(xi, xj) 0 ≤ i, j ≤ k .Weyl used the abbreviated notation z = [x, y] (the fundamental binary in-variant), for any two vetors x and y.Aording to Weyl, a �pure valene state� was haraterized by a mono-mial of total order m and order mj in eah omponent xj (0 ≤ j ≤ k),formed from binary invariants [x, y].76 Eigenstates of the moleule wouldnot be pure valene states but superpositions of them, whih are eigenstatesof the Hamilton Hp operator of the bound and spin perturbed system,
Hp = H0 +

∑

Hαβ ,linearized in terms due to the exhange (transposition) of any two of thevalene eletrons. Here H0 denotes the Hamilton operator of the eletronsystem without spin oupling. Weyl developed a method for a alulationof the perturbation term Hp − H0, if the exhange energies Wαβ betweentwo valene eletrons (1 ≤ α ≤ mi, 1 ≤ β ≤ mj) of two atoms with index iand j ould be alulated (Weyl 1931b, 323f.). The ritial point for appli-ations of the method was then the alulation of all the �exhange energies�involved. It presupposed the solution of a generalizated version of Heitler'sand London's problem for eletron pairs. Moreover, the whole method ouldbe physially relevant only for moleules for whih the exhange energy on-tributes essentially to the total bond energy. Moleules with large H0, withrespet to the spin perturbation, ould be analysed just as well by studyingonly the Shrödinger wave omponent of their Pauli spinors.77From a theoretial perspetive,the struture of the proedure was verysatisfying. Weyl argued that, by assigning formally a �valene dash� (be-tween atom x and y) to eah binary invariant of type [x, y], one arrived atgraphs for pure valene states, whih were in striking agreement with an old76The totality of pure valene states is not algebraially independent, but obeys a rela-tion, given by the �seond fundamental theorem of invariant theory�.77These are moleules in whih the geometry of �moleular orbits� of valene eletronsand the Coulomb potential are the essential determinants of the bond energy.47



proposal by J.J. Sylvester. In 1878, Sylvester had proposed, in a purely spe-ulative approah, to express hemial valene relations by binary invariants.Formally his proposal oinided with the algebrai ore of Weyl's onstru-tion. Now Sylvester's proedure ould be understood as an expression of analgebrai struture underlying the determination of bound states in the newquantum mehanial theory of valene bonds. No wonder that Weyl andHeitler were fond of the new quantum hemial underpinning of Sylvester'sspeulative method.78There remained, of ourse, several problems. The pratial usefulnessof the method ould be tested only if the exhange energies of single ele-tron pairs ould somehow be alulated. Even then it remained to be seen,whether the result would be in agreement with empirial hemial knowledge.In his �rst publiation, Weyl only indiated the general method (Weyl 1931b,323f.).79 In the 1930s he ontinued with the alulation of examples. Thatis shown by notes in his Nahlass (Weyl Ms.N.d.) and by remarks in a newappendix written for (Weyl 1949).But the method was never adopted in the hemial ommunity. Mostof the moleules of organi hemistry turned out to be di�erent from thebonding lass whih Heitler had alled exhange moleules, even in Weyl'sgeneralization. During the years, hemists found overwhelming evidenethat their models of moleular orbits, in whih the spatial distribution of theShrödinger part of the wave funtion ontributed deisively to the bindingenergy and su�ed in most ases to solve their problems. Moreover, themethod of moleular orbits was loser to the imagination of the hemistsand its mathematis was easier to handle for them. The more struturalmethod of exhange energies of spin oupling remained marginal for thepratie of physial hemistry, even in the extended and re�ned form whihWeyl had started to develop and to present as a methodologial tool to theommunity of physiists and physial hemists .7. OutlookIn spite of its surprising theoretial ahievements, the rise of groups in quan-tum mehanis was far from a straight forward story. With its �rst suessesat the turn to the 1930s, there arose septial reservation, ritiism, andeven strong ounterfores to the spread of group theoreti methods in thenew �eld of theoretial physis. Suh ritiism was not always meant as a realopposition to the modernizing tendeny; sometimes it was just an expres-sion of uneasiness with the new algebrai methods. Soon after Pauli moved78For a more detailed disussion see (Parshall 1997) and (Karahalios 2003, setion 3.1,163�177).79A graphial method for the onstrution of a basis of invariants, based on an idea ofG. Rumer, was written down by Rumer, Teller and Weyl in (Rumer e.a. 1932).48



from Hamburg to Zürih as the suessor of Debye, in April 1928, Ehrenfestasked him for help in the di�ult the new matter. Pauli was well-knownfor his ability to absorb new mathematis with ease and to adapt it to theneessities of theoretial physis. Moreover, in his last year at Hamburg hehad partiipated in a leture ourse on algebra and group theory given byEmil Artin. After his arrival in Zürih in early 1928, he stood one again inlose ommuniation with Weyl like in the early 1920s.80Group pestIn September 1928, Ehrenfest turned to Pauli and asked for help in under-standing the �terribly many papers on the group-pest (Gruppenpest)�, ofwhih he �ould not read any one beyond the �rst page�, as he wrote toPauli on September 22, 1928.81 In parts of the � still small � ommu-nity, this word beame the athword for opposition to the use of grouptheoreti methods in quantum mehanis. Apparently Ehrenfest unwillinglyontributed a verbal battle sign to the emerging anti-group amp. For himthe word expressed nothing more than uneasiness about the rising hallengesof the new mathematial methods in theoretial physis. He was not at allopposed by priniple to the new tendenies. On the ontrary, he supportedits development atively. On his initiative, B. L. van der Waerden started todevelop his alulus of spinor representations of the Lorentz group (van derWaerden 1929); and one of his later dotoral students, H. Casimir, startedto do researh work on quantum mehanis, very muh in�uened by Weyl'sbook. As has been disussed on other oasions,82 Casimir �nally even on-tributed to the re�nement of representation theory itself, by proposing anidea for a purely algebrai proof of the full reduibility of representations ofLie groups, derived from his researh on the problem of rotation in quantummehanis.Real and strong opposition to the group theoreti approah to quantummehanis ame from another amp led by John Slater, who showed thatalready traditional algebrai tools were highly e�etive in the alulation ofthe energy of higher atoms and binding energies of moleules (Slater 1929).Slater's bakground in a more pragmati tradition of theoretial physis inthe United States surely played a role for his strong rejetion of the more the-oretially minded approahes like representation theory (Shweber 1990).8380(Meyenn 1987), (Mehra/Rehenberg 2000/2001, 472). A ouple of weeks after hisarrival Zürih, Pauli wrote in a letter to N. Bohr : �I have now learned so muh eruditegroup theory from Weyl that I am really able to understand the papers of Wigner andHeitler� (Pauli 1928). Moreover, he read and ommented page proofs of Weyl's GQM inearly summer 1928 (Pauli 1955, 402).81Quoted from (Mehra/Rehenberg 2000/2001, 473).82(Meyenn 1989), (Mehra/Rehenberg 2000/2001, 512�514), (Hawkins 2000).83See also (Sigurdsson 1991), (Mehra/Rehenberg 2000/2001, 499�.) and for a broaderomparative disussion of German and Amerian physial hemists of the �rst generation49



Slater's suess in developing determinant methods for quantum mehan-ial alulations found immediate aeptane among leading protagonists ofthe Göttingen milieu. Shortly before Weyl deided to ome bak to Göttin-gen as the suessor to David Hilbert, Max Born warned him, in an otherwisevery friendly welome letter, that he supported the �attempt to throw grouptheory out of the theory of atomi and moleular strutures, as far as possi-ble� (Born Ms 1930a). At that time, Born was lose to �nishing an artilein whih he attempted to get rid of group theoreti methods in the theory ofhemial bonds (Born 1930). He even was proud of having onvined Heitler,after the latter's arrival at Göttingen as Born's assistant, to give up the ideathat group theoreti onsiderations might play an important role in stud-ies of moleular bonds.84 This perspetive resulted in a ommon artile byW. Heitler and G. Rumer on hemial bonds, whih only used �traditional�algebrai methods along the line of Slater and Born (Heitler 1931).85 Onthe other hand, group theoreti methods in physis and quantum hemistryontinued to be a topi for leture ourses at the Göttingen mathematialinstitute.86Weyl at GöttingenIn the meantime, in May 1930, Weyl had aepted the all to Göttingen andstarted to teah there in winter semester of the same year. That gave him asplendid oasion for ritial exhanges and ollaboration with Born, Heitler,Rumer, and Teller on group theoretial methods in the nasent quantumhemial ontext. Although Born had been highly septial of the methodearlier on, he gave ritial support to the enterprise after Weyl moved toGöttingen, in his own way. This exhange of ideas with the theoretialphysiists around Born in the ommon Göttingen seminar led Weyl to a moredetailed elaboration of his use of symmetry operators in the n-fold tensorspae of eletron states for the haraterization of moleular bond states andthe establishment of the link to binary invariants (Weyl 1930, Weyl 1931b).In a subsequent review artile on the quantum theory of moleular bondsin the Ergebnisse der exakten Naturwissenshaften, Born �nally rephrasedthose results of Weyl's investigation whih seemed of importane to himfor physiists and physial hemists. In the introdution to his artile hefrankly delared that the proofs of Weyl's results ould not be rephrasedunder �omplete avoidane of the `group pest' whih Slater and the author(Gavroglu/Simóes 1994).84(Born Ms 1930a)85The artile was written after Weyl had arrived at Göttingen, and after a disussionof the method in the ommon seminar on the struture of matter.86W. Heitler gave a ourse on this subjet in winter semester 1929/30 at the mathemat-ial institute (Heitler Ms 1929/30). He onentrated on the subjet matter of Wigner'sand von Neumann's theory. Only in the last hapter he gave a short introdution to thetheory of moleular bonds. I owe Martina Shneider the information on this ourse.50



[Born℄ had intended�. He therefore restrited the presentation to formulasand rules, without proofs, suh that the results ould be understood byphysiists and hemists without being fored to read �the di�ult works ofFrobenius and Shur on the representation theory of groups�, as he wrote inhis introdution (Born 1931, 390).All in all, the �rst wave of rapid development of group theoretial meth-ods in quantum mehanis ran into the opposition of a strong, multi-faeted,anti-group amp; or, at least, it had to fae pragmati septiism amongphysiists and theoretial hemists at the turn to the 1930s.On the other hand, new fores joined the party of mathematial ontrib-utors to representation theoreti methods for mathematial physis. Mostimportant, from the side of young mathematiians, was Bartel Leendert vander Waerden who entered this sene with his spinor paper written with theexpliit goal of serving the physis ommunity (van der Waerden 1929).87 Inpersonal ommuniations with Weyl he also ontributed ritial remarks tothe understanding of algebrai strutures underlying spin oupling. Van derWaerden ritiised Weyl's approah from the viewpoint of a young �mod-ern�, i.e., struturally oriented, algebraist. In a letter from April 4, 1930,he argued that in Weyl's derivation of the �reiproity theorem� it was un-neessary to build upon the �inessential property that π [Weyl's symbol forthe permutation group, E.S.℄ is a permutation group�. Obviously he ab-horred the �multitude of indies� used by Weyl and laimed that one oulddo without them in this investigation(van der Waerden Ms1930). After someexhanges of letters, of whih only the van der Waerden part is preserved,he argued that the result was essentially a question in the representationtheory of algebras. Aording to van der Waerden's analysis, Weyl's re-sult depended essentially on the fat that a matrix algebra A indued fromthe operation of the group algebra C[Sf ] on ⊗f V ommutes with a om-pletely reduible representation of the general linear group GL(V ) on thetensor produt (van der Waerden Ms1931).88 It seems that Weyl was notompletely onvined that suh a level of strutural abstration suited hispurpose. He rather insisted on the use of the �multitude of indies�, beausethey were essential for the ontext of modelling the ombined eletron sys-tems of two atoms in a moleule. Nevertheless he aepted the proposal tostraighten the derivation of the reiproity theorem (Weyl 1931b, 310).In this sense, the interation between physiists and mathematiians loseto the Göttingen and Zürih milieu seemed to be a a splendid sienti�environment for a further onsolidation of group theoreti methods in physisand hemistry at the turn to the 1930s. In the next ouple of years, the triadof now lassial text books on the use of group theory in quantum mehanisappeared (Wigner 1931), the seond edition of Weyl's GQM and its English87More details will be disussed in (Shneider 2006).88See also (van der Waerden 1930a). 51



translation by H.P. Robertson (Weyl 1931a), and (van der Waerden 1932).These books broadened the basis for an extension of the approah, invitedseptiists to take an own look at the question, and enabled newomers fromdi�erent bakgrounds to join the enterprise.From an intermediate period . . .As we know, and most of the partiipants sensed well, the soial stability ofthis milieu stood on shaky ground. Only little later, with the Nazi's rise topower, the Göttingen mathematial siene group was dismantled. As oneof the onsequenes, the losely knit interation between pragmati septiswith respet to the group theoreti method, lose to Born, and the group ofative protagonists like Weyl, van der Waerden, Heisenberg, Wigner and vonNeumann, whih was easily organized around Göttingen, was interrupted.Although several of the protagonists of the �rst wave ontinued to elaborateand to teah or propagate the new method, no great gains in terms of broaderaeptane ould be made during the next two deades .Weyl ontinued to argue for the use of the new method, in partiular inthe ontext of hemial bonds, in publiations, talks and leture ourses. Buthe was very well aware of the reservations of the pratitioners of the �eld feltin rageard to his proposals of using invariant theory for the haraterizationof bond states, and he aepted it. In an undated manusript of a talk givenin the seond part of the 1930s, Weyl remarked that the development inthe �eld had not been �very favorable to the sheme� whih he had laid out.The reent report (Van Vlek 1935) had nearly passed it over �in silene�. Herealistially added that in his exposition he even intended to �learly indiatethe boundaries of appliability for our sheme� (Weyl Ms.N.d., 2).Finally he onentrated his researh and publiation e�orts on the math-ematial foundation of the theory. In joint work with Rihard Brauer hedeveloped a global haraterization of spin representations in any dimension(and of arbitrary signature) by Cli�ord algebras (Brauer 1935).89 All thisulminated in his book on The Classial Groups (Weyl 1939). That was nodisillusioned withdrawal to pure mathematis. It rather was an expressionof a realisti evaluation of the atual situation in the �eld of appliation.Even though Weyl's alulation of binary invariants did not enter the oreof the theory of hemial bonds, his invariant theoretial analysis of spinonstellations turned out, in the long run, to be an important ontributionto the study of spin-oupling, whih has reently started to attrat new in-terest from the point of view of �entangled� systems. The introdution ofbinary invariants into the study of oupled systems of eletrons in the late1920s and the following deade, may turn out to be another prelude to the89E. Cartan had disussed spinor representations on the in�nitesimal level already in1913; here the integral (global) perspetive stood in the enter.52



development of a symboli game with long lasting importane in a shiftedontext of appliation.90During the deades of slow maturation, it was mainly due to WernerHeisenberg's antiipatory guess of isospin SU2 as a symmetry underlying thenulear interations (Heisenberg 1932) and to Eugene Wigner's ontinuingwork and insistene on the importane of the group theoreti approah forfundamental physis, that this researh tradition in mathematial physiswas never ompletely interrupted.91 Most important for relativisti quantumphysis was Wigner's fundamental work on the representation theory of thePoinaré group (Wigner 1939).. . . to a seond wave of groups in quantum physisWith the exeption of suh �heroi� but for a long time relatively isolatedontributions, it needed a new generation of physiists and a diversi�ationof problems and another problem shift in quantum physis, before grouptheory was stepwise integrated into the ore of quantum physis. Faed withthe rise in omplexity of problems of nulear spetrosopy, G. Raah broughtgroup theoreti methods loser to the ordinary problem solving pratie ofspetrosopists (Raah 1942�1949).92 Finally the proliferation of new �ele-mentary partiles� between 1950 and the 1970s gave material and motivationto look for group theoretial lassi�ations of objet strutures and the orre-sponding internal symmetries of interations. Thus we an see a seond wavein the use of group theoretial methods in quantum physis during the 1950sto the 1970/80s. In this hanged ontext, the two books of the above men-tioned triad, whih formerly were only available in German, were translatedinto English, (Wigner 1957) and (van der Waerden 1974). Mathematiiansof the next generation, among them G. Makey and I.E. Segal, ontinued toontribute, from the side of mathematis, to the researh tradition begun atthe end of the 1920s.In this seond wave of researh, simple antiipatory ideas had to be dif-ferentiated and di�erent strands of using groups in quantum physis grewtogether:� weight systems of representations were turned into a tool for under-standing �multipletts� of basi states of matter, generalizing the mul-tipletts of spetral terms of the 1920s,� isospin was �rst enrihed (�eightfold way�, SU3) and then transformedinto two di�erent forms (weak isospin, SU2, and the �hromo-symmetry�90This �game� has reently gained new interest from the point of view of quantumomputing. In this new ontext the question of energy ontributions, whih hinderedWeyl's proposals from beoming important in quantum hemistry, are subordinate. I owethe hint to the onnetion of Weyl's work with these reent developments to P. Littelmann.91Cf. (Rashe 1971) and (Makey 1993, 265f.).92(Makey 1993, 269) 53



of strong interations, SU3), the basi symmetries of partile physisof the late 20th entury,� onservation laws beame generally onsidered as founded upon under-lying dynamial symmetries,� the study of in�nitesimal symmetries beame standardized in the formof (generalized and non-abelian) gauge �elds or, equivalently, onne-tions in �bre bundles.Groups, their representations, orresponding onserved quantities, andthe use of gauge strutures were �nally broadly aepted. They were usedas an important ingredient of the mathematial forms funtioning as a sym-boli relative a priori in whih theoretial physiists of the late 20th enturywere able to mold an impressive part of the experimental knowledge of fun-damental physis. At the end of the seond wave, group theoretial methodswere well integrated into the mainstream of mathematial physis. Althoughat the end of the entury the gap between general relativity and quantumphysis ontinued to be wide open, groups and their representations haveturned into useful tools and provide oneptually onvining forms for theonstrution of symboli models of material proesses in both domains.Aknowledgements:This paper is the result of an extended period of study and disussions, interruptedby other ativities. I am indebted to the support of the Handshriftenabteilung derETH Bibliothek Zürih and the Staatsbibliothek Berlin for aess to the arhival ma-terial. Dr. Mihael Weyl kindly permitted to use his father's Nahlass at Zürih.The Max Plank Institute for History of Siene, Berlin, gave me the opportu-nity for �rst disussions on the history of quantum mehanis with olleagues fromthe history of physis in November and Deember 1998. I got important hintson diverse aspets of the topi in onversations with many olleagues, most impor-tanly, although now years ago, with Peter Slodowy. More reently Günther Rashe,Jim Ritter, David Rowe, Tilman Sauer, Martina Shneider, Skúli Sigurdsson, UrsStammbah, Christian Wenzel and an anonymous referee of the manusript on-tributed by their omments. Finally the interest and patient support by JeremyGray, inluding a �nal revision of language, was deisive for writing down thisartile.ReferenesBeller, Mara. 1999. Quantum Dialogue: The Making of a Revolution. Chiago: UniversityPress.Borel, Armand. 2001. Essays in the History of Lie Groups and Algebrai Groups. Provi-dene, RI, et.: AMS and London Mathematial Soiety.Born, Max; Jordan, Pasual. 1925. �Zur Quantenmehanik.� Zeitshrift für Physik 34:858�888. (Reeived September 27, 1925, published November 28,1925.) In (Born 1963, II,124�154). 54
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