arXiv:math.HO/0409571 v2 24 Aug 2005
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Abstract

In the second half of the 1920s, physicists and mathematicians in-
troduced group theoretic methods into the recently invented “new”
quantum mechanics. Group representations turned out to be a highly
useful tool in spectroscopy and in giving quantum mechanical expla-
nations of chemical bonds. H. Weyl explored the possibilities of a
group theoretic approach towards quantization. In his second version
of a gauge theory for electromagnetism, he even started to build a
bridge between quantum theoretic symmetries and differential geome-
try. Until the early 1930s, an active group of young quantum physicists
and mathematicians contributed to this new challenging field. But
around the turn to the 1930s, opposition against the new methods in
physics grew. This article focusses on the work of those physicists and
mathematicians who introduced group theoretic methods into quan-
tum physics.

Introduction

In the middle of the 1920s, understanding of the representations of Lie groups
and understanding of the quantum mechanical structure of matter made
great advances, almost simultaneously. Certain members of both disciplines
saw the potential for building new and deep connections between mathemat-
ics and theoretical physics. Thus a cooperative development highly conse-
quential for theoretical physics began in the second half of the 1920s, with the
main protagonists being W. Heisenberg, E. Wigner, F. London, W. Heitler
and, to a lesser degree, P.A.M. Dirac on the one side, H. Weyl, J. von Neu-
mann, and B.L. van der Waerden on the other. The first introduction and use
of the new method in theoretical physics met soon with opposition (“group
pest”). But it turned out to be successful in the long run, and to be just the
first wave of a process of restructuring mathematical concepts and techniques
in the theory of the basic structures of matter. After an intermediate period
of about two decades with a slow and nearly unnoticed continuation of work
in this direction, another wave of using group-theoretical methods in physics
gained momentum in the second half of the century. This development has
recently attracted interest from the side of history and philosophy of sci-
ence.! It should be quite as interesting from the point of view of the history
of mathematics, because it established broad and consequential semantical
relations for an important field of modern mathematics.

!(Mehra/Rechenberg 2000/2001, Gavroglu/Simées 1994, Karachalios 2003, Brading
2003)



The following article explores the first wave of introduction of new math-
ematical methods into quantum physics and chemistry. It starts with the
early realization of the usefulness of group theoretic methods for the study
of spectroscopy and chemical bonds, and stops short of the consolidation of
what was achieved in the first wave in three textbooks on the subject pub-
lished in the early 1930s, (Weyl 1928, 21931), (Wigner 1931) and (van der

Y

Waerden 1932), which have now become classics of the field. Unlike the
other two, Weyl’s book had an earlier first edition at the end of the 1920. It
therefore enters the period of investigation of our investigation.

This article is a first step into this interdisplinary terrain from the side
of history of mathematics. It relies heavily on the solid background laid
out by T. Hawkins’ study (Hawkins 2000) and H. Rechenberg’s chapter on
group theory and quantum mechanics in (Mehra/Rechenberg 2000,/2001, VI

1, chaps. II1.4, IIL.5).

1. Heisenberg and Wigner

Shortly after the invention of the new quantum mechanics, P.A.M. Dirac, W.
Heisenberg, and E. Wigner started to consider consequences of symmetry in
multi-particle systems for the structure of energy terms in atomic spectra.?
Dirac studied the role of antisymmetry in multi-electron systems in summer
1926. Important as that was for the growing understanding of quantum
mechanics, it did not employ group theory beyond the distinction of the
signum of permutations. Group theoretic questions proper started to be
addressed by Heisenberg and Wigner in late 1926 and early 1927.

The newly established paradigm of quantum mechanics demanded to
characterize a (quantum) physical system, at the time typically an electron
system in the shell of an atom or of a molecule, by a set of Hermitian (or
more generally, symmetric) operators, one for any observable quantity of the
system, in a state space § assumed to be a Hilberts space in order to have
sufficient symbolical structure. In Schrédinger’s perspective, S was viewed as
a space of complex “wave” functions. Then the tool of differential operators
could be used.? Most important was the operator characterizing the energy
of the system (or a constitutive part of it, like an electron in a multiparticle

2For the emergence of matrix, wave, and “q-number” mechanics see, among others,
(Hendry 1984, Beller 1999, Pais 1986, Rechenberg 1995, Cassidy 1992, Kragh 1990, Moore
1994). A multi-volume encyclopedic report is (Mehra/Rechenberg 1982-2001, vols, II,
I11, TV, V). A six-page compression of the crucial period 1923 — 1926 can be found in
the introduction to volume VI (Mehra/Rechenberg 2000/2001, VI 1, xxv xxxi). For a
splendid bibliography see (Mehra/Rechenberg 2000/2001, VI 2, 1253-1439); indexes of
the whole series at the end of the same volume VI 2.

#Questions how the function space was to be completed, or how domains of the opera-
tors should be understood and, perhaps, extended, were generously neglected by the early
quantum physicists. Such questions were first addressed by J. von Neumann in the later
1920s and at the turn to the 1930s.



system), the Hamilton operator H. Other operators could characterize linear
momenta P; or coordinatized spatial positions @; (1 < i < 3), rotational
(orbital) momenta L;, the square of the total momentum L2, and, a little
later, the spin J of a particle (considered to express the “particle’s” proper
rotation) etc..

For an atom, the eigenspaces of the Hamilton operator H could charac-
terize the stationary states of a system of electrons, or of an outward electron,
depending on the situation. The eigenvalues E1, Fo, ... of H represented the
energy values obtained in these states. Often such eigenstates turned out to
be degenerate, i.e., they belonged to an eigenvalue of multiplicity > 1. This
was the case for atoms or molecules with rotational symmetry. Of course,
spectroscopy did not allow to measure the energy of each eigenstate directly.
Only differences between two energy values, say E; and Es, were observ-
able by the frequency v of the radiation emitted during the transition of an
electron from one energy state to the other,

hV:El—EQ.

In early 1925, Pauli conjectured that bound electron states in a molecule
have an intrinsic two-valuedness and that electrons obey an exclusion prin-
ciple forbidding different electrons (a littler later also other “fermions”) to
occupy the same state of a system. Later in the year, S. Goudsmit and E.
Uhlenbeck established the hypothesis of electron spin which they assumed to
arise from a “proper rotation” of the electron. Different empirical evidence
indicated that this intrinsic spin was quantized with respect to any speci-
fied spatial direction in exactly two possible states u and d (spin “up” and
spin “down”). Early in 1927, W. Pauli mathematized the idea by a spin state
space €2 extending the complex phase of the Schrédinger wave function t(z)
(Pauli 1927). In group theoretic language, which was not yet in Pauli’s mind
in early 1927, he implicitly worked inside the natural representation of SUs,
the covering group of the spatial rotations SOs. He proposed to describe a
spinning particle by a two valued wave function ¢ = (11,12), later called
a Pauli spinor.* It could be constructed from Schrodinger wave functions
by forming (tensor) products with the complex two-dimensional space char-
acterizing the complex superpositions of the two possible pure spin states
C? =< u,d > (here < > denotes the linear span). The total wave func-
tion of a collection of n electrons was expressed formally as a “product”
(in later terminology as an element of the n-fold tensor product @™ S). In
summer 1926 P.A.M. Dirac realized that Pauli’s exclusion principle implied
that multi-electron (more generally fermion) states had to be represented by

*Pauli drew upon the symbolic ressources of the Klein-Sommerfeld theory of the spin-
ning top, which contained the natural representation of SUs implicitly. For a review of the
understanding of the rise of spin see (van der Waerden 1960) or (Mehra/Rechenberg 1982,
chap. VL.4).



alternating products (Dirac 1926).°

An ad-hoc usage of permutations (W. Heisenberg)

Already before Pauli’s mathematization of spin was known, Heisenberg started
to consider the consequences of the new phenomenon for multi-electron sys-
tems. In June 1926 he submitted his first paper on this topic to Zeitschrift
fiir Physik (Heisenberg 1926). He looked for reasons for the separation of
energy terms in the spectrum of higher atoms into different subsets between
which apparently no exchange of electrons took place (term systems without
intercombination). Such an effect could be seen by “missing” lines when one
compared the observed spectral lines with the combinatorics of all the arising
energy levels in a higher atom. Heisenberg guessed that the interaction of
the orbital magnetic momentum of electrons (i.e., the magnetic momentum
resulting from what was left from Bohr’s electron orbits in the new quantum
mechanics) with the still hypothetical spin might play a crucial role for this
phenomenon (Heisenberg 1926).

In a second part of the paper, submitted in December 1926, he continued
to explore the hypothesis further. He proposed the view that the distinction
of term systems might result from a kind of “resonance phenomenon” between
the spin states of the different electrons and, perhaps, their orbital momenta.
He made clear that here the word “resonance” was not to be understood in
the sense of classical physics, but as an expression of a physical intuition of
the “more subtle interplay of the electrons in an atom” (Heisenberg 1927,
556, 578). Thus Heisenberg’s “quantum mechanical resonances” referred to
spin coupling effects for which at that time no adequate mathematical repre-
sentation was known.% He therefore looked for new tools to deal with them
and hoped to find them in the theory of permutation groups.

In his investigation, Heisenberg studied states of m-electron systems in
an atom or molecule. Abstracting at first from spin, he started from n
eigenfunctions [, m,...p (Heisenberg’s notation) of the Hamilton operator,
which described possible states of single electrons without spin, possible
degeneracies included. As usual he described a composite system by a kind
of noncommutative product of the eigenfunctions. He considered the result
as a state of the “unperturbed” composite system, while the spin coupling
(“resonance”) had to be taken into account as a perturbation due to the “more
subtle interplay of the electrons”. Because electrons are indistinguishable, he
concluded:

In the unperturbed case, the eigenfunction of the total system
can be written as product of all functions of the single electrons,

5Cf. (Kragh 1990)
SIn early quantum chemistry the term “resonance” was used in a comparable metaphor-
ical way; see (Mosini 2000).



e.g., limg...p,. The unperturbed problem is n!-fold degener-
ate, because a permutation of the electrons leads to equal energy
values of the total system. (Heisenberg 1927, 557)

For an element u of the (tensor) product space, written by our author
as u = lymg...p, with an index 1 < i < n for the different electrons,
Heisenberg considered the result of an electron permutation S € §,, the
symmetric group of n elements, and wrote it as

Su = ls(l)mg(2) -+ -PS(n)-

If we denote the state space of a single electron by V =< {,m,...,p >,
dimV = n, the (n!-fold degenerate) total state space of the quotation above
corresponds to the span of vectors arising from permutation of the compo-
nents of any one product state v.” We we want to denote it here as V(")

v = (Su|S e S,) c V.

V() was constructed to characterize the state space of an “unperturbed”
system of n electrons distributed according to Pauli’s principle (i.e., mapped
bijectively) on the n states m,[,...,p. Without spin the energy was totally
degenerate (all eigenvalues identical), while the consideration of spin split it
up into different “non-combining” terms. The physical model of the electron
system had to account for the impossibility of transitions of electrons between
the respective states or subspaces. Mathematically the question was whether
the corresponding vectors (wave functions) or subspaces in Hilbert space were
orthogonal.

Heisenberg looked for a decomposition of V™ into “noncombining” (or-
thogonal) subsystems if spin resonance was considered as a kind of perturba-
tion. As we will see in a moment, he had good arguments that orthogonality
of subspaces should not be affected by the spin perturbation. Its basic struc-
ture could thus be analyzed already on the level of the unperturbed system
without spin.

In order to address this question, Heisenberg considered a cyclic subgroup
of S, generated by a “substitution” (permutation) S of highest possible order

"We may prefer to distinguish Heisenberg’s basic state vectors by a lower index i,
Y1 = l,92 = m,...,¥n = p, and to characterize the bijection between states and elec-
trons by adding an upper index 7, 1/;5]) (1 <,i,7 < n). Then it is advisable to order

the tensor product according to electron indexes, 77[11(11) ® ¢S) ® 77/11(:) (comparable to
Wigner’s notation, see below). That makes the upper (electron) index redundant, and
the lower (state) index i encodes the different possibilities for bijections completely. Be-
cause Heisenberg ordered according to states and used the electron indexes to indicate
the bijection between electrons and individual states, his permutation S operated on the
state vectors of the (“our”) tensor product V™ by inversion S~ =: ¢, i.e. from the right:
(V1 ®@Y2®...@Yn).0 =Vo(1) @ ... @WPo(n) = Yg-1(1) ® .. @ g—1(n). As this detail has
no consequences for the orthogonality questions, we follow Heisenberg’s description in the
sequel without further retranslations.



v, and an orbit in V(™ of an eigenstate u under such a subgroup. He then
formed different superpositions of the elements of such an orbit. For a per-
mutation S of order v he choose coefficients formed by powers of a primitive
v-th root of unity w, w” =1, in the following way:

= 1 2 v—1
Uy = W(U+Su+5u+...s )
= L 2¢q2 v—1quv—1
U = \/;(U‘l-wsu—l-wSu—k,”w S u)
UI/—I = L(u_{_wV_lSu_'_wQ(V—l)SQu_{_.“W(V_1)2SV_1U)'

9

These linear combinations were formed in analogy to the construction of
the roots of resolvents in the theory of algebraic equations. In fact, Heisen-
berg referred to a textbook of higher algebra, a fifty year old German transla-
tion of a classical book by Serret (Serret 1868), which had been written origi-
nally in 1866 (third edition), as one of the first books containing a passage on
the recently revived theory of E. Galois.® For dimensional reasons (v < n!)
there were elements w = Tu, T € S,, of the defining basis of V(") (Heisen-
berg: “eigenfunctions”) which were linearly independent of the Uy, ...,U,_1.
They lead to analogously formed linear superpositions Wy,..., W, _1. He
applied the same procedure, step by step, until the whole space V(™ was
spanned by elements of such a form: Uy, ...,U,_1,Wo,...,Wy_1 ...

Now, Heisenberg collected all functions U;, W, ... starting with the same
exponent j of the unitary root w into one collection,

ij = {Uj,Wj,. . .},

and proposed that the corresponding subspaces could be taken as symbolical
representatives for the different term systems. He argued that the span of
I'; and T'» ought to be orthogonal (for different j and k)

/fjgk:o’ fjerwj?gkerwk’ ]#k (1)

His argument for this claim depended crucially on an invariance argument
of the transition integral under any permutation:

If under the integral (...) the electron numbers are somehow
permuted, the value of the integral cannot change. (Heisenberg
1927, 559)

The physical context of the calculation demanded such an invariance. Al-
though Heisenberg’s construction of the “term systems” I'; did not ensure

¥(Kiernan 1971, 110ff.)
9Cf. (Mehra/Rechenberg 2000/2001, 489ff.).



such an invariance, his argument held for similar constructions in which the
invariance condition was satisfied.'® The form of his argument was close to
one used in early Galois theory (“as the whole constellation does not depend
on the choice of the ordering of the roots of the equation, ...such and such
inference can be drawn ...”) and may have been prompted by the latter.

Heisenberg agreed with Dirac that an “eigenfunction” of the total system
should be antisymmetric under permutation of the electrons. It seemed im-
possible, at the moment, to draw consequences of this postulate.!’ On the
other hand, he plausibly assumed that any perturbation of transition proba-
bilities, arising from spin coupling, should be symmetric under transposition
of two electrons. That was sufficient, in his context, to show that the de-
composition of the total space of n electrons V(™ into orthogonal subspaces
was not affected by spin resonance. Thus, so he concluded, the subspaces
spanned by the ' ; ought to characterize the decompositions of energy terms
into non-combining partial systems including spin (Heisenberg 1927, 559).12
Although the argument did not work in his own ad-hoc construction, it would
become important (and correct) once it was transferred to a decomposition
into truely invariant subspaces.

All in all, Heisenberg’s paper gave an inventive treatment of the term
system problem, although it must have apppeared surprising for mathe-
matical readers of the time (like J. von Neumann or H. Weyl). For the
construction of non-combining term systems, Heisenberg relied on a rather
old-fashioned algebraic background (Serret 1868). Neither H. Weber’s text-
book (Weber 1895/96) nor any other more recent algebraic text was even
mentioned. Such a neglection of more recent methods may not necessarily
be of great disadvantage for a new application of mathematics by a physicist.
But in this case, the neglection of younger algebraic developments included
the methods of representation theory of finite groups, which dealt with struc-
tures much closer to Heisenberg’s problem than algebraic equation theory.
In his first step into the new terrain, Heisenberg had to rely on formal ex-
pressions originally introduced in a completely different context. Thus his
hypothesis for the identification of non-combining term systems by his I'-
collections was quite daring and would surely have led to difficulties, had it
been used in future investigations without major modifications.

From hindsight it is easy to see that Heisenberg’s decomposition did not
lead to irreducible representations of the permutation group. Worse than

0We will see in a moment (equation () that Heisenbergs I',,;, respectively their linear
spans, are no invariant subspaces under the full permutation group . Heisenberg’s own
argument shows that therefore his model was physically unreliable. Wigner’s approach
solved the problem. It was different to Heisenberg’s, contrary to what the latter believed.

1 A structural answer to this question was given later by Weyl and a more pragmatic
one by von Neumann and Wigner, see below.

21 thank an anonymous referee for having made me aware of this important passage in
Heisenberg’s argument.



that, Heisenberg’s hypothetical “non-combining term systems” I' ; were not
even invariant subspaces under the full permutation group. His construction
made sure that a subspace I'; is an eigenspace with eigenvalue w’ of the
cyclic subgroup generated by the permutation S. But this does not hold for
other permutations. Already for n = 3, w = e’ and any 3-cycle S, e.g.
S = (123), a transposition T' with TST = S? e.g. T = (12), maps U; € I,
to Uz €Tz,

SUl :wUl, STUl :TS2U1 :w2TU1 . (2)

In fact, the linear spans of {Uy,Us} and {W7, W5}, in Heisenberg’s nota-
tion, are copies of the two-dimensional irreducible representation of Sz.'* In
other words, the irreducible spaces are transversal to the subspaces offered
by Heisenberg as “non-combining term systems”. But before such discrepan-
cies could start to irritate other contributors to the program, Heisenberg'’s
method was outdated by an approach to the problem proposed by his col-
league E. Wigner.

So it was good news, and even better ones than Heisenberg knew, that
he could refer to Wigner’s investigations already in a footnote added in proof
to his December paper. He erroneously believed that his approach agreed
with Wigner’s (Heisenberg 1927, 561, footnote (1)). In fact, a rash view
could support this belief, as in the case of 3-electrons, e.g. a Lithium atom,
both methods led to equal numbers and dimensions of the respective term
systems: two one-dimensional term systems (symmetric and antisymmetric)
and two equivalent two-dimensional term systems (standard representation
in Wigner’s approach), 6 = 14+1+42+2. But while Wigner characterized the
non-combining term systems by subspaces which actually were irreducible
subrepresentations, we have seen that Heisenberg’s decomposition was dif-
ferent, even in this case.

In the end, it appears as a lucky sequence of events that Wigner’s papers
threw new light on the question so fast. His approach superseded Heisen-
berg’s group theoretically ad-hoc method, before the latter could lead into
a dead end. Wigner’s papers opened the path towards an introduction of
group representation into the study of multi-particle systems and established
a sound mathematical frame into which Heisenberg’s perturbation calcula-
tion could be integrated without contradictions.

Turn towards group representations (E. Wigner)

Eugene Wigner had studied chemical engineering at Budapest and Berlin
(TH) during the years 1920 to 1925 and had gained access to the physical
community organized around the colloquia of the Deutsche Physikalische

13Cf. (Fulton/Harris 1991, 8ff.).

"In the literature on history of quantum mechanics this essential difference be-
tween Heisenberg’s and Wigner’s approaches is often passed over in silence; cf. e.g.,
(Mehra/Rechenberg 2000/2001, 4891ff.).



Gesellschaft and the local Kaiser- Wilhelm Institutes.'® After he had finished
his diploma degree, he went back to Budapest and worked as a chemical
engineer in a leather tannery (his father’s craft), but he continued to read
the Zeitschrift fir Physik with the interest of an aficionado. Thus he was well
informed about the breakthroughs in quantum mechanics, achieved during
1925. He immediately accepted the chance to go back to Berlin, when he
was invited by Karl Weissenberg to become his assistant at the Kaiser-
Wilhelm Institute for fibre research. Weissenberg himself had studied applied
mathematics with R. von Mises and had then turned towards condensed
matter physics. He needed support in his X-ray investigations of crystal
structures. At Weissenberg’s suggestion, Wigner started to read the group
theoretic parts of Weber’s textbook (Weber 1895/96) and to explore the
symmetry characters of crystals in the new setting.'® Because of this interest
in actual X-ray crystallography, he was much better acquainted with group
theory than Heisenberg in 1926.

In late 1926, Wigner started to study the question of how n-particle
systems can be built from n given, pairwise different, single particle states
Vi, .., ...y, initially without considering spin effects. Like Heisenberg,
he wanted to know how the n-particle state space decomposes under permu-
tations of the electrons. Each electron was (in the stationary case) identified
mathematically by its hypothetical “space coordinates” r; = (z;,v;, 2;) € R?,
where ¢ served as an index to characterize different electrons.

In his first paper on the topic (Wigner 1926), submitted on November 12,
1926, he considered a product of n “eigenfunctions” 1, ...,1¥,. Any state ¥y
can be “occupied” by any (the i-th) electron, which was denoted by Wigner
by ¥ (r;). He then considered permutation states of the form

1/}01 (T1)¢02(T2) cee wan(rn) =: Vg,

where o is any permutation of n elements, (the notation v, is ours). Thus
Wigner studied essentially the same subspace V(™ of the n-fold tensor prod-
uct of V. =< 41,...,%,, > as Heisenberg. In his first paper he considered
only the special case n = 3 and calculated the decomposition of V) into
irreducible components under permutations “by hand”. No wonder, that he
found Dirac’s symmetric and antisymmetric representations among them and
in addition two 2-dimensional “systems”.!” He concluded similar to Heisen-
berg:

5For the following passage on Wigner compare (Chayut 2001) and (Mackey 1993).

16See (Chayut 2001) and Wigner’s autobiographical report in (Wigner 1992, 105).

'"The regular representation of Sz (cf. next footnote), Rz = V®), decomposes into the
trivial representation U, the antisymmetric representation U’ (both 1-dimensional) and
two copies of the twodimensional irreducible subspace Sz := {(z1, 22, 23) | 21 + 22 + 23 = 0}
of the natural representation on C? arising from permutations of the basis vectors: Rz =
UaU &S ® Ss.



The additional systems are all degenerate, this degeneration is
such that it cannot be broken by any perturbation symmetric in
the single particles which are assumed to be equivalent. (Wigner
1926, 34)

The state space V) was spanned by vectors v, identified by permuta-
tions o € S3. The operation of S3 on V¥ was multiplication of permutations
(in Wigner’s case from the left), just like in the regular representation.'® In
this way Wigner hit, at first unknowingly, upon the problem of a decompo-
sition of the regular representation of the symmetric group S3. His approach
to the problem made it apparent that, more generally, V() was by its very
construction just another version of the regular representation of the sym-
metric group. It had been studied by Frobenius, Schur, Burnside, Young
and others in their works on the representation theory of finite groups.'’

When Wigner discussed this question with J. von Neumann, a good friend
of his since their common school days at Budapest, his friend immediately
recognized what Wigner was doing from a mathematical point of view and
explained the problem in terms of a decomposition of the regular represen-
tation. Thus Wigner started the second part of his contribution (submitted
November 26, 1926) with a general observation which introduced the rep-
resentation theory of the symmetric group. Noting the rising calculational
complexity, when one wanted to extend the results from n = 3 to higher
cases, he remarked:

There is a well prepared mathematical theory, however, which
one can use here, the theory of transformation groups isomorphic
to the symmetric group (... ), which has been founded at the end
of the last century by Frobenius and has been elaborated later by
W. Burnside and J. (sic!) Schur, among others. J. von Neumann
was so kind to make me aware of these works, and predicted the
general result correctly, after I told him the result for the case
n = 3. (Wigner 19275, 43)

Therefore Wigner considered it worthwhile introducing the basic facts of the
representation theory of the symmetric group to the readers of the Zeitschrift
fiir Physik.?° In particular, he explained in his article how on can calculate
the dimension N(y) of a representation of S, characterized by a partition

'8The regular representation R of a finite group G is given by the operation of G on the
group algebra C[G] := {}_, znh|zn € C} (summation of h over G) by operation from the
left. It contains all finite dimensional irreducible representations of G. More precisely, in
each representation of the symmetric group of n elements each irreducible component X
appears in the regular representation with multiplicity dim X. Cf. (Fulton/Harris 1991)
or any other book on representation theory.

19See (Hawkins 1972, Hawkins 1974) and the overview in (Hawkins 2000, 373-384).

*0For a more recent introduction to the subject, see (Sternberg 1994).
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(A) := (A1,..., \) of n,2!
n=MA-+X+...+ A, >\12>\z+1

After Wigner became aware of the decomposition of the regular represen-
tation, he could adapt Heisenberg’s perturbation argument for spin coupling
to the modified context:

In a system with n equal mass points, between which initially
there is no exchange of energy, each eigenvalue is n! degenerate
(if the corresponding state does not contain equivalent orbits).
If one creates an exchange of energy, each eigenvalue splits into
several. (Wigner 19270, 44)

He proposed to calculate the degeneracy of the corresponding term by the
dimension N(y) as above. The basic structure for the splitting of energy
terms in an atom with n (peripheral) electrons, which had been translated
by Heisenberg into the problem of decomposing V(™ into minimal invariant
subspaces, was now elucidated by applying standard methods of represen-
tation theory for the symmetric group. To Wigner and von Neumann this
turn may have appeared like some kind of “pre-established harmony” be-
tween physics and mathematics, stipulated in the contemporary Gottingen
milieu of mathematics and mathematical physics. For other participants it
may have looked more like a kind of magic of mathematical symbolism.

On the other hand, many questions were still open. Among them most
importantly the question which of the irreducible representations of the per-
mutation group on the space of Schrodinger wave functions were compatible
with the Pauli-Dirac principle of antisymmetry for the total (Pauli-) wave
function. In order to address this question, the spin phenomenon and its
relation to rotational symmetries had to be understood better.

2. Wigner and von Neumann

Early in 1927, Wigner made considerable advances. He enriched the study of
invariance by including rotations of the state space of electrons in an outer
atomic shell. In his third paper in spectroscopy, he started to derive the
basic structural data of spectroscopic terms from the rotational symmetry
of the electron state spaces (Wigner 1927a).?? Already in the introduction
to the paper he stated:

The simple form of the Schrodinger differential equation allows
us to apply certain group methods, more precisely, representation

2''The dimension of Ny is the quotient of n! by the product of all “hook lenghts” of the
corresponding Young diagram. For details see (Sternberg 1994, 89ff.).
*2Recieved May 5, 1927.
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theory. These methods have the advantage that by their help one
gets results nearly without calculation, which do not only hold
ezactly for the one-particle problem (hydrogen atom), but also for
arbitrarily complex systems. The disadvantage of the method is
that it does not allow us to derive approximative formulas. In
this way it is possible to explain a large part of our qualitative
spectroscopical experience. (Wigner 1927a, 53)

Representations of the rotation group

Again it was J. von Neumann who advised Wigner what to read in order to
understand the representation theory of the special orthogonal group SOs,
in particular the recent papers by I. Schur and H. Weyl (Schur 1924, Weyl
1924b6).22 Thus Wigner discussed, among others, the irreducible representa-
tions of the rotations in the plane, SOo, which are (complex) 1-dimensional.
They are characterized by an integer parameter m, such that any plane ro-
tation d, by an angle a has the representation as the (one by one) “matrix”
e Let us denote, for brevity, this representation of the plane rotation
group as d". Then, of course, the representation matrix of the rotation J,
is the 1 x 1 matrix
dm(aa) = eimQS

in other words, the representation of the rotation by the angle o has the
eigenvalue e,

Wigner then introduced the (2] + 1)-dimensional representations of SO3
(of highest weight I € INg), which we denote here as D!, according to present
conventions, and indicated how to calculate the representation matrices

D'(A) = (Dhi(a, B,7))1<j k<1

for any rotation A € SOg, characterized by its three Euler angles «, 3,~
(Wigner 19274, 68ff.). Moreover, he discussed the decomposition of D! under
restriction to the subgroup SOs of rotations about the z-axis into 2/ + 1 one-
dimensional subspaces. This leads to representations d" in our notation
above, where m may assume the 2] 4+ 1 pairwise different values

-1 <m<I.

That fitted structurally so well with the observed classification of spec-
tra and their discrete parameters, the quantum numbers, that Wigner could
immediately proceed to a spectroscopical interpretation of these representa-
tion theoretic quantities. The highest weight [ could be identified with the
azimuthal quantum number of the Bohr-Sommerfeld theory (Wigner 1927a,

*3See (Wigner 19274, 63, fn. (1)).
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71) (later often called orbital angular momentum quantum number).2* More-
over, the weight m of the specified abelian subgroup SO, appeared as a group
theoretic characterization of the magnetic quantum number of the electron.
The latter had been introduced in order to explain the split of spectral lines
(indexed by the principal quantum number n of the so-called Balmer-series
and by () into different terms (“multipletts”) under the influence of a strong
magnetic field, the so-called normal Zeeman effect.?> A similar effect had
been observed under the influence of a homogeneous electric field (Stark
effect).?6 Thus the basic features of the dynamics of the electron were ap-
parently closely related to the basic parameters of representations of the
symmetry group of its orbit.

After a short discussion of the fact that transitions of electrons occurred
in nature only between neighbouring azimuthal (orbital angular momentum)
quantum numbers [, corresponding to a change Al = +1, Wigner turned to
the consequences of the introduction of a homogeneous electric field:

By means of an electric field along the Z-axis the substitution
group of our differential equation is diminished (verkleinert).
Thus we have to proceed [as above| and reduce the three-dimensional
rotation group to a collection of representations of the two-dimensional
group (about the Z-axis). (Wigner 1927a, 72)

As a result, under the influence of an external homogeneous field, a term
with azimuthal quantum number [ splits into 2] + 1 lines, indexed by the
magnetic quantum number m.%7

For atoms with more than one electron involved in radiation processes,
the situation was, of course, much more complicated. Here Wigner could
only vaguely indicate, how the representation of the rotation group and of
permutations might work together to form the the total state space of an
n-electron system and how they determine the combined quantum numbers
(Wigner 1927a, 77f.).

The spin group SU;

For a detailed investigation, a more subtle study of the interplay between ro-
tational symmetry, its relation to spin properties, and the exchange symme-
tries (permutations) of multi-particle systems became necessary. At almost

241n spectroscopy, an alphabetical code is used for I: S for [ = 0, P for [ = 1, D for
l =2 etc..

ZWith a magnetic field in direction of the observation, P. Zeeman had observed such
an effect in 1896, while perpendicular to the field a “third” (undisplaced) line appeared.
H.A. Lorentz had explained it a year later in terms of a classic theory of the electron in
the magnetic field, cf. (Rechenberg 1995, 161), (Darrigol 2001) or (Pais 1986, 76f., 268ff.).

26The Stark effect had been observed in 1913.

2"In this context (Stark effect), Wigner called m the “electric quantum number” (Wigner
1927a, 73).
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the same time as Wigner’s paper on rotational symmetries, Pauli submitted
his path-breaking proposal to mathematize Uhlenbeck’s and Goudsmit’s hy-
pothesis of an intrinsic “spin” of the electron by the use of “two-component”
wave functions (Pauli 1927).28 Charles G. Darwin stepped in with a series
of papers on the “electron as a vector wave’.?? That made it possible for
Wigner to extend the investigations of symmetries to spin effects.

For such studies von Neumann’s advice became even more important
than before. The publications discussed above were written by E. Wigner
when he was still an assistant for theoretical chemistry at the technical uni-
versity Berlin. In spring 1927 he moved to Gottingen for one year, as an
assistant of Hilbert’s. At that time, Hilbert suffered strongly from perni-
cious anemia and was nearly inaccessible to his new assistant. Nevertheless,
Wigner came into close contact with other young physicists working at Got-
tingen, among them in particular L. Northeim, P. Jordan, and W. Heitler.
Moreover, von Neumann visited Gottingen regularly (Mehra 1993). Thus
there were good conditions for Wigner and von Neumann to establish the
basic representation theoretic features of atomic spectra, including spin ef-
fects, during late 1927 and the first half of 1928, simultaneously with H.
Weyl’s work on the same topic and independently of it.

Between December 1927 and June 1928, E. Wigner and von Neumann
submitted a series of three papers on spectra and the “quantum mechanics
of the spinning electron (Drehelektron)” to the Zeitschrift fiir Physik.>® As
Wigner later reported, he wrote the papers after intense discussions with
his colleague and friend whom he therefore considered to be a coauthor
(Mehra/Rechenberg 2000/2001, 496). In this series, the authors emphasized
the conceptual role of representation theory for quantum mechanics in an ex-
plicit and programmatic manner and parallelized it to the invariance method
of general relativity.

... It may not be idle to call the strong heuristical value (Spiirkraft)
to attention, which dwells in these and similar principles of sym-

metry, i.e. invariance, in the search for the laws of nature: In our

case it will lead us, in a unique and compelling way, from Pauli’s

qualitative picture of the spinning electron to the regularities of

the atomic spectra. That is similar to the general theory of rel-

ativity, where an invariance principle made it possible to unveil

the universal laws of nature. (Wigner/v.Neumann 19284, 92)

In their paper, Wigner and von Neumann took up Pauli’s characterization
of spin by a (commutative) product of a Schréodinger wave function

¢(x)7 T = ($17x27x3) S IR'37

2 Received May 8, 1927, by Physikalische Zeitrschrift, three days after the submission
of Wigner’s paper (Wigner 1927a).

9 (Darwin 1927, Darwin 1928)

3%Dates of reception: December 28, 1927; March 2, 1928; June 19, 1928.
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and a complex function ((s) depending on variable in a discrete two-point
“internal” spin space, s € {£1}. The combined function

p(x,s) = (x)C(s) (3)

had been introduced by as Pauli as (spin-) wave function. The dependence
on s could just as well be written in index form

vs(z) :=p(x,s), with s € {+1}.
Then the Pauli wave function was given by two components,

¢(x) = (p-1(x), p1(2))

and ¢ could be considered as a modified wave function (on IR?) with values
in C?, a “hyperfunction” in Wigner’s terminology (later called a Pauli spinor
field on IR3).

For an n-particle system the wave function acquired the form

P(x1,. .y n) = (Psy.sn (T15- -, 20)) , X € R?, sj € {£1}. (4)

Then the values of ¢ were in € (Wigner/v.Neumann 1928a, 94)

Wigner and von Neumann studied how to express the operation of the
rotation group SOs3 on the Pauli wave-functions by a unitary operator. They
introduced an explicit expression for the complexified version A of a rotation
A = A(a, 3,7) given in terms of the Euler angles a, 3, (Wigner/v.Neumann
1928aq, 98),

A— e i 0 cosg sing e i3 0 (5)
T 0 €2 —sing cosg 0 e |-

A Ae SU,,
such that a rotation A~! € SO3 operated on the wave-functions by
p(x) = Ap(A™x). (6)

That agreed well with what Pauli had done; but while Pauli had made
use of the complex description of the spinning top, well known in the Som-
merfeld school, Wigner and von Neumann embedded the formula into a
representation theoretic perspective. In particular they referred to the sec-
ond paper of Weyl’s great series on the representation theory of the classical
Lie groups (Wigner/v.Neumann 1928a, 98, footnote). Here Weyl had dis-
cussed the universal coverings of the special orthogonal groups (later to be
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called spin groups), had proved the full reducibility and derived the char-
acters and dimensions of all irreducible representations (Weyl 1925/1926).3!
Von Neumann and Wigner stated clearly that they needed only certain as-
pects of the general theory.3? But they made quite clear that now one had
to take into account “two-valued” representations of the SOs, in addition to
the (one-valued) ones studied by Wigner in his last paper (called above D!,
[ € INg). That gave an additional series which will be denoted here by D3

(dim(Dg) =k +1), k odd, according to more recent conventions.??

For the goal of their paper, they considered the most basic two-valued
representation, in fact a local inverse of the covering map

SUy — 8Os,

given by equation (@) up to sign. Then D3 was given by the standard
representation of the covering group SUs; more precisely

DiA = +A.

In the perspective of their paper, this representation arose naturally from
the operation of SO3 on the 1-particle state as described in equation (f). It
was essential to find the consequences for the n-particle state.

They indicated how to find the matrix expressions of a representation
matrix D5 A for a rotation A € SO3, characterized by its Euler angles «, G, 7,
in analogy to Wigner’s formulas in the classical (one-valued) case. In doing
so, they relied on Weyl’s result and stated that for each dimension n € IN
there exists exactly one representation of SOs (or its universal cover) indexed
by j := ”T_l In the sequel we use the slightly more recent unifying notation
for the two series:

D/ = DU of dimension n =2j +1, j € {0, % 1, 2,2, RSN
Here n odd (respectively j integer valued) corresponds to one-valued repre-
sentations, and n even (j half-integer) to “two-valued” representations of the
orthogonal group.

With the machinery of representation theory at their disposal, it was
clear how to proceed to the description of the m-particle states described
by n-fold tensor products. They ended the first paper of the series with an
observation on how to decompose the tensor product spaces into irreducible
components:

31See (Hawkins 2000).

32¢0f course, much less than Weyl’s deep rooted results are necessary for our present
goals.” (Wigner/v.Neumann 19284, 98, footnote)

33Cf. (Sternberg 1994, 181fF.).
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In the applications it will be important to know the irreducible
representations of the rotation group in {"ag?} [Wigner/von

Neumann’s symbol for ®”D%, E.S. |; that is easily achieved, as
its trace is additively composed from the traces of the former.
(Wigner/v.Neumann 1928q, 108)

They gave an explicit result, described verbally, but without any ambiguity.
Written in more recent symbolism, it was

n—4

®”D%:D%@(n—1)2>"7’2@g(n—3)2>7@.... 8)

Permutations, spin, and anomalous Zeeman effect

In the second paper of their series, Wigner and von Neumann combined
the rotational and spin symmetries with the permutation aspect from which
Wigner had started. Wigner’s basic physical intuition was that in atomic
spectroscopy the energy operator H will be composed,

H:Hl—{—HQ,

by a part Hp resulting from the spatial motion of the electron only (the
motion of the “center of gravity” of the electron, as he said) and the ensuing
gross effect of the electromagnetic interaction with the field of the atomic
core. The second part, Hsy, should model other aspects, most important
among them the electron spin (Wigner/v. Neumann 1928b, 133). Thus one
could start from the eigenvalue problem of the “spin-less” wave function
(Schrédinger wave function)

Y

Hﬂb:)ﬂ/}y

and refine the result by passing to the “hyperfunctions” ¢ including spin (i.e.,
the Pauli spinors).

For the investigation of symmetry properties with respect to permuta-
tions, it was therefore natural to distinguish different types of operations for
a permutation « € S, an operation P on space variables only and an oper-
ation O on both, spin and space variables (P, and O, in Wigner’s notation):

Pa_lgo(:z:l,...,xn;sl,...,sn) = @©(Tay, -y Tay; Sl Sn)

O;lgo(azl,...,xn;sl,...,sn) = O(Tagy---sTay;Sars---sSan)-

The operation @ of permutations on spin variables only could be constructed
from these (Wigner/v. Neumann 1928b, 133) by

Qo = Pa_lOa.

Obviously “spin-less” wave functions transformed under P, , while the trans-
formation O, of “hyperfunctions” could be built from P and @, O, = P,Q4-
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Wigner then considered a slow continuous change from an energy state
in which the spin contribution could be neglected (H = Hy) to one, in which
this was no longer the case (Wigner/v. Neumann 19280, 133). He made the
following observation:

While the original state with H = Hj is invariant under O and P, an
increasing spin perturbation Hs may reduce the original symmetry to O only.
In this case, the formerly irreducible subspaces for H; are decomposed into
smaller irreducible components of Hy + Hs.

That was a convincing group theoretic view of the split of spectral terms
by a perturbation bringing spin differences into the game. Empirically such
a phenomenon had been observed long ago in the anomalous Zeeman effect:
If a weak magnetic field was switched on, spectral lines belonging to the
same magnetic number m could split into different terms.?*

But it was still to clarify how to deal with the antisymmetry principle
for the total wave function of an n-electron system. According to Dirac
“...only those states occur in nature, the eigenfunctions of which are anti-
symmetric” (Wigner/v. Neumann 19285, 133). Wigner and von Neumann
therefore continued with the study of the irreducible representations of the
symmetric group S, in the antisymmetric part of the total “hyperfunction”
representation, i.e., in

A"V C Q"V,

where V denotes a state space of single-particle “hyper-functions” (Pauli-
spinor fields). Of course, such irreducible antisymmetric representations are
one-dimensional, and the question was, under which conditions such an-
tisymmetric representations in the “hyperfunction” space could be derived
from an irreducible representation of the spin-free wave functions. To sim-
plify language, we denote the representation of S,, in v corresponding to
a partition (A) = (M1,...,\t) by V).

If one starts from a degenerate energy term with multiplicity m of the
spin-less Schrédinger equation of an n-electron system

le - EO'l)b ) (9)

one can form a basis of m 2™ corresponding “hyperfunctions”, by allowing
for the combinatorics of possible spin values for the n constituents. If anal-
ogously m denotes the dimension of an irreducible representation V((;;) like
above, the m 2™-dimensional space of spin extended hyperfunctions may be
called f/((;;) Obviously it forms an invariant subspace of @V (under permu-

tations). Our authors now looked for irreducible components of ‘N/'(()\T;), and in

particular one-dimensional antisymmetric ones.

3"The “anomalous Zeeman effect” had been observed by A.A. Michelson and T. Pre-
ston in 1898, and could not be explained in the Bohr-Sommerfeld theory of the atom; cf
(Rechenberg 1995, 161f.) or (Pais 1986).
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Using a result of A. Speiser’s book on group theory (Speiser 1923), they
came to the conclusion that a partition (\) allows to form a (non-trivial,

one-dimensional) antisymmetric extension in f/((;;), if and only if ()A) is of the
form

(A)=(2,2,...,2,1,1,...,1). (10)

That was an important result for the group theoretical program in spec-
troscopy. It showed clearly, why (and under which conditions) irreducible
representations of the symmetric group could characterize a term system of
higher atoms.

Still the question had to be answered, in how many fine structure terms a
spectral line of an n-electron system, corresponding to an azimuthal (orbital
momentum) quantum number [ and partition (A), could split. Thus Wigner
and von Neumann finally studied the combinatorical possibilities, by which
the total magnetic quantum number m = m1+...m,, of such a system could
be built from the quantum numbers m; of the individual electrons and which
effects could be expected from switching on a spin perturbations Hy. They
came to the conclusion that the momentum (including spin) of an n-electron
system in such a state can be characterized by a (integer or half-integer)
value j, called internal quantum number, with

n—2z . .on—2z
—<j<

(with difference 1 betweeen two values of j). For each j the total magnetic
momentum including spin /m then may acquire values in —j < m < j. The
number t of different values for m, i.e., the number of possible terms into
which the n-electron state (A) with azimuthal quantum number [ could split,
was then, according to Wigner/v. Neumann (1928b, 140-143):

¢ — min n—2z+1
B 20+1

This result agreed beautifully with empirical findings and with the rules
derived in other theoretical approaches.?® Wigner was proud about what he
had achieved cooperatively with von Neumann:

Thus the, probably, most important qualitative spectroscopical
rule has been derived. Independent of the immense effectiveness
(Leistungsfiahigkeit) of quantum mechanics (... ), one will be sur-
prised that all this was “plucked out of the air”, as one might say
(dafs alles, wie man sagt “durch die Luft” ging ), i.e., without
taking into account the special form of the Hamiltonian func-
tion, only on the basis of symmetry assumptions and of Pauli’s
qualitative idea. (Wigner/v. Neumann 19280, 143)

35Like Hund’s “Aufbauprinzip” (Wigner/v. Neumann 19285, 140).
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Although definite values of the energy differences could not be derived by
group theoretic methods alone, Wigner’s and von Neumann’s approach gave
a convincing explanation for the splitting of a spectral line under a magnetic
field (Zeeman effect) of any kind into “multiplett” terms of the fine structure.

3. London and Heitler

In quantum chemistry, representations of permutation groups made their
first appearance about the same time as they did in spectroscopy. The topic
was opened up by a joint publication of two young physicists, Walter Heitler
and Fritz London, who had come to Ziirich on Rockefeller grants in 1926
(F. London), respectively 1927 (W. Heitler), to work with E. Schrédinger.36
While a closer scientific cooperation with their professor turned out to be
more difficult than expected, they used the opportunity to exchange and
develop ideas with each other. In June 1927 they submitted a paper on
the quantum mechanical explanation of so-called covalent bonds (those due
to valence electron pairs), which arose from an idea of W. Heitler. It soon
was considered as the entry point for quantum mechanical model building in
chemistry (Heitler/London 1927). According to L. Pauling, one of the great
figures of the first generation in quantum chemistry, Heitler’s and London’s
paper can be considered as

... the greatest single contribution to the clarification of the chemist’s
conception which has been made since G. Lewis’s suggestion in
1916 that the chemical bond between two atoms consists of a
pair of electrons held jointly by two atoms (Pauling 1935, 340)
(quoted from (Mehra/Rechenberg 2000/2001, 542)).

The story of this invention leads deep into the history of quantum theory
and of chemistry and is covered as such in the respective historical litera-
ture.3” We want to concentrate here on a specific aspect, which is at the
center of our investigation of the use of modern mathematical methods in
physical chemistry: the contexts, reasons and mode for the appearance and
use of group theoretic methods. Such methods were first applied in two pa-
pers by W. Heitler, published in 1928 (Heitler 1928a, Heitler 1928b5). They
built upon a joint paper with F. London, published during their common
summer in Ziirich (Heitler/London 1927).

In their joint paper, Heitler and London started from an investigation
of two hydrogen atoms and their electrons, initially modelled separately, at
a distance d = oo between the nuclei, by identical Schrodinger functions
with energy eigenvalue FEy. Using a perturbative approach, they studied

36(Gavroglu 1995)
37See (Gavroglu/Simoes 1994, Karachalios 2000, Karachalios 2003, Nye 1993, Simdes
2003) and (Mehra/Rechenberg 2000/2001, 540ft.).
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what happened to the electrons and their added energies when the atomic
distance d was reduced. They showed the existence of two solutions, 1 and
1o for the combined system, with respective total energies Fy and Fs, and
interpreted the energy difference

AE; == E; —2E,, i=1,2,

as a kind of exzchange energy of the electrons.?® With their choice of sign,
negative exchange energy expressed that the compound system had a lower
energy state than the two single systems. Moreover, the exchange energies
were dependent on the distance parameter d. Their analysis showed that,
with d increasing from a little above 0 to some value dy, F; fell to a minimum,
rising again for increasing d from d; to oo, while Es fell monotonously for
d > 0 with increasing d (d — o0). Thus 9 represented a bound state
for d = di, while 19 characterized a repulsive force for any value of the
atomic distance (the van der Waals repulsion between the two hydrogen
atoms)(Heitler /London 1927, 460).

A continuation of the calculation for two helium atoms, each containing
two electrons, showed that only the case of a repulsive interaction could be
obtained, if electron spin and the Pauli exclusion principle were taken into
account (i.e., if both electrons of one atom were assumed to be in different
spin states). In this sense, the “exchange energy” of Heitler and London
appeared as an effect of spin coupling and was positive in this case. It
explained why helium did not form two-atomic molecules and behaved as
noble gas. The principles of non-relativistic quantum mechanics seemed to
open the possibility of understanding the structure (graph-like combinatorics
of atomic “valences”) and the quantity (energies) of chemical bonds.

Heitler’s theory of valence bonds

In summer 1928, E. Schrodinger went from Ziirich to Berlin, as a successor
on M. Planck’s chair; in October F. London joined him there as an assistant.
W. Heitler, whose Rockefeller grant had run out more or less at the same
time, accepted an offer from Max Born to become an assistant at Go6ttin-
gen. There he got to know E. Wigner whose group theoretic works he had
started to read with great interest when in Ziirich.?? Now Heitler explored
what the representation theory of the symmetric group could achieve for the
determination of quantum mechanical bond states.

% The quantum physical idea behind this terminology was the following: If one joined
two probability “clouds” about two nuclei to one (of the combined system) some kind of
“exchange” of particles between two “partial clouds” related to the nuclei, although fused
to represent one state, seemed now possible (i.e., had positive probability). The language
of “exchange energy” has to be taken, again, as a classical metaphor for a quantum effect.
For a more detailed discussion see (Schweber 1990, 380f.).

39(Mehra/Rechenberg 2000/2001, V1.1, 502, 547)
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Already in January 28, 1928, he submitted his first article on the topic
(Heitler 1928a). His goal was to extend the approach of his joint work
with London to “higher” molecules. For the time being, that did not mean
more than two-atomic molecules with n > 2 outer electrons. He stated his
methodological preferences clearly at the beginning of the paper:

Among all methods, the group theoretic is the one which defi-
nitely achieves most for the multi-particle problem: it was brought
in by E. Wigner |Heitler referred to (Wigner 1927b, Wigner 1927q),
E.S.] to achieve a qualitative overview of all existing terms. (Heitler
1928a, 836)

Heitler came to the conclusion that already at large distances the ex-
change forces between valence electrons of opposite spin resulted in a re-
duction and even a relative minimum of bond energy, which expressed an
attractive force between the two atoms. Here he defined wvalence electrons as
such electrons of quantum numbers (I,m) in the outer “shell”® which had
no partner of equal quantum numbers [, m with opposite spin in the same
atom. Heitler hinted at certain restrictions of his approach:

We still have to warn of an overestimation of the implications
(Tragweite) of our results in two respects. The simple formulas
for the interaction energy ...can only be considered as a very
rough approximation, because the perturbative calculation ne-
glects several points and holds only for large distances. Secondly,
the “exchange molecules” considered by us represent only a part
of the chemical molecules. although of the most prominent and
most stable ones (Na, Oy, NHs, CHy etc.). A large part of the
homopolar compounds, however, relies on perturbations of a dif-
ferent kind ....4*" (Heitler 19285, 837)

Thus Heitler distinguished clearly between different kinds of chemical
bonds only some of which could be explained, in his opinion, by spin coupling
accessible to group theoretic methods. He called them exchange molecules.
We have to keep this in mind when we look at the extension of Heitler’s
theory of valence bonds from a more structural, mathematical point of view
(e.g., by Weyl) and its reception by physicists and chemists.

Here, Heitler investigated two electron systems A and B, each of which
consisted of n (valence) electrons, initially without interaction. All in all,
he studied a system of 2n electrons. Following Wigner, he characterized a

“04Quter shell” now referred to electrons of highest azimuthal (orbital momentum) quan-
tum number [ with respect to its spherical symmetry D' in the atom, and with a compatible
magnetic quantum number m (=20 < m < 2I).

“UHeitler referred to the neglection of “polarization” which he estimated for Hz2 to be
about 25 % and guessed that it should be much higher for higher molecules.
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term system by an irreducible representation of the permutation group of 2n
elements Sy,,. Let us call it R.

Under the assumption of no interaction, R could also be considered as a
representation of each of the n electrons A and B and thus of two subgroups
isomorphic to S, let us say R4 and Rp. The latter were no longer irre-
ducible. Thus Heitler studied the decomposition of R into subspaces which
were simultanously irreducible in R4 and in Rp. This work was facilitated
by the assumption (unproved but considered as self-evident by Heitler) that
the Pauli principle implies that

... the representations appearing in nature |are| those which con-
tain only 2 and 1 in their partition (Heitler 19284, 846).42

He concluded that only those representations could appear, in which for
both partial systems A and B the respective n valence electrons are charac-
terized by a completely “antisymmetric term system” and have antiparallel
spin (Heitler 19284, 848). On this basis he was able to give an approximative
calculation of the exchange energies.

This result established a quantum mechanical explanation of certain non-
ionic bonds which could not be explained in terms of Coulomb forces. Tra-
ditionally, chemists had used walence dashes to represent such molecules. In
1916, G. Lewis had proposed a qualitative interpretation of a valence dash as
a pair of electrons shared by two atoms. But the underlying physical forces
remained a mystery. Now it seemed promising to look for an explanation of
such “valences” by the pairing of electrons with opposite spin, but otherwise
equal quantum numbers. Heitler’s proposal was thus to investigate the range
of the hypothesis that spin coupling of valence electron pairs lay at the base
of molecule formation.

In a second article on the topic, submitted September 13, 1928, Heitler
extended his investigations to molecules with more than 2 atoms (Heitler
1928b). Here Heitler was less cautious than in January. He now described
the result of his first article as having established a “complete equivalence”
of the quantum mechanical explanation of homopolar chemical bonds for
two-atomic molecules and the traditional explanation of chemical valences
by electron pairs (Lewis). He introduced an integral expression Jg derived
by Heisenberg for the exchange energy between two systems @, constituted
by the partial systems A and B (Heisenberg 1928), and resumed:

Each such exchange energy Jg between two atoms can be in-
terpreted as a walence bond symbolically denoted by a valence
dash (Valenzstrich). Nearly all typical and stable two-atomic
molecules of chemistry rely on such an exchange bond; and vice

*2This condition was proved a little later by Wigner in his joint work with von Neumann,
as we have seen. It may have been orally communicated knowledge in Gottingen already
in winter 1927/28.
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versa: if the valence theory permits the existence of a two-atomic
molecule then it is possible quantum mechanically. (Heitler 19285,
805, emphasis in original)

Although his theory did not predict new or different effects in comparison
to classical chemical knowledge, it claimed to explain the empirical knowl-
edge of valence bonds structurally, for the case of two-atomic molecules.
Moreover, it should lead to a quantitative determination of bond energies,
even if only in the sense of a rough, first estimation (see quotation above).

Other approaches

Competing approaches to the quantum mechanics of chemical bonds were
developed by F. Hund and a little later by L. Pauling, R. Mulliken, and oth-
ers. They shed doubt on the range of Heitler’'s and London’s theory and on
its quantitative reliability. They did not rely on the exchange energy of spin
coupling, but concentrated on the spatial distribution of the Schrédinger
function. During the next decade it turned out that for more complicated
molecules Heitler’s method led to unrealistic predictions. The alternative
approaches were necessary, even on the structural level, to achieve a satis-
factory agreement with experimental knowledge.

In summer 1928 these consequences were not yet clear, although chemists
like Mulliken and Pauling already thought along different lines.*> For a short
while Max Delbriick who became well known for his later researches on the
molecular basis of genetics considered Heitler’s and London’s approach worth
following. He studied perturbative formulas for the determination of ex-
change energies based on group theoretical methods (Delbriick 1928). Thus
Heitler could see his position strengthened and contributed to further ex-
plorations of his method in (Heitler 19285). Here he posed the fundamental
question as to the ezistence of multi-atomic molecules, on the basis of ex-
change energies of valence pairs of electrons.

This type of question was highly interesting from a mathematical point
of view, but may have appeared useless to most chemists. Heitler considered
his investigation as nothing more than a “preliminary study (Vorstudie)”.
In the course of it, he came to admit that in the calculations of exchange
energies, it might happen that permutations of more than two electrons
contribute essentially to the interaction. That had already been conjectured
by F. London. Heitler remarked that, in his opinion, bonds which rely on
such higher exchanges could not be considered as “valence bonds in the sense
of Lewis”. They would constitute a different type of bond. Nevertheless he
thought it justified to study, how far one could come with valence bonds
proper (“in the sense of Lewis”) (Heitler 19285, 815). At the time, he still

“3See (Gavroglu/Simées 1994, Nye 1993) or (Mehra/Rechenberg 2000/2001, 552fF.).
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hoped that chain molecules of organic chemistry and lattice structures might
belong to “our bond category” (Heitler 19285, 806).

This hope did not come true. During the 1930s, L. Pauling’s and R.
Mulliken’s approach of constructing “molecular orbitals”, i.e., Schrodinger
functions of multi-electron systems about a complex of atoms (molecular
core), built much less on structural principles such as permutations. They
drew upon previously unformalized chemical knowledge on hypothetical spa-
tial constellations of the atoms for the modelling of Schrodinger functions
of a system of electrons. The striking successes of this approach turned
out to be crucial for the acceptance of quantum mechanics among chemists
(Gavroglu/Simoes 1994). It became the core mathematical technique dur-
ing the next few decades for a fruitful elaboration of quantum mechanical
models for more complicated molecules, in particular in organic chemistry.*

3. Weyl at the backstage

Taking the results of Wigner, von Neumann, and Heitler into account, it
might look as if not much was left for Hermann Weyl when he entered the
field. But such an impression would be completely wrong; Weyl took up a
whole range of questions pertaining to the challenging new field and entered
into second phase of active involvement in mathematical physics between
1927 and 1931. This second phase was a natural follow up to his first phase
of activity in theoretical physics between 1917 and 1923, in which he had
made crucial contributions to general relativity, unified field theory, and
cosmology.*> When he entered the terrain of quantum mechanics, he was
particularly interested in the role of group representation and contributed to
the introduction of gauge methods into the quantum physical setting.

The background of Weyl’s intervention in the field was one of the surpris-
ing conjunctions in the history of science, which turned out to be tremen-
dously fruitful. During the years 1925/26 the Miinchen-Gottingen-Copen-
hagen group of Heisenberg, Born, Jordan, and Pauli, closely communicating
with Bohr, invented quantum mechanics; Schrédinger, at that time work-
ing at Ziirich, complemented it with his “wave mechanics”, P.A.M. Dirac,
in Cambridge, developed his perspective of “g-numbers” (a formal operator
symbolism, particularly well adapted to the physicists way of thinking) and
crowned the whole development by an overarching view — called “transfor-
mation theory” by physicists.

At the beginning of this period, in April 1925, Weyl had just finished his
great work on the representation theory of classical (Lie-) groups.*® For him,

“Up to our days, it continues to be the basis for the semi-classical approximations
used as building blocks for the computer simulations of molecular structures, cf. (Le
Bris/Lions 2005).

*5See (Sigurdsson 1991, Coleman /Korté 2001, Scholz 2001 ¢, Mackey 1988, Speiser 1988).

“6Weyl delivered the three parts of the series (Weyl 1925/1926) in January, February,
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it was not only the attraction of the fascinatingly rich mathematical struc-
tures of covering groups, decomposition of representations into irreducible
spaces, calculation of characters, classification of root systems, weight vec-
tors, and reflection groups etc., which made him turn towards this work, but
rather its intriguing interplay with conceptual questions lying at the basis of
physical theory building. Weyl had met classical groups and Cartan’s classi-
fication of their infinitesimal versions (Lie algebras) on two occasions during
his first phase of active involvement in mathematical physics. He found them
to be crucial for answering two questions in this context:

— Why are tensors such a good and, in fact, universal tool in general
relativity and, more general, in differential geometry?

— What are group theoretic reasons for the “pythagorean” (Weyl’s termi-
nology for what later was called semi-Riemannian) nature of the metric
in general relativity?

The first question was answered by Weyl in 1925 with the insight, and its
proof, that all irreducible representations of the general linear group GL,IR
can be constructed as invariant subspaces of tensor powers of the underlying
standard representation (for differential geometry, V' = T,M = IR", the
tangent space at a point p to the underlying manifold M). In this sense,
tensors and tensor spaces were universal objects for the representation of the
general linear group. For the proof he could build upon methods developed
by I. Schur in his dissertation from 1901, complemented by an idea of Hurwitz
(the so-called unitarian restriction) to prove complete reducibility. All the
irreducible representations could then be characterized by some symmetry
condition inside some tensor power ®*V. Thus an intriguing correspondence
between the representations of the symmetric group S and the irreducible
representations of GL,(IR) inside ®*V (representations of “order k") played
an important role in the answer to his first question.*” During the next
two years, this correspondence turned out to be intimately related to the
construction of state spaces for k “indistinguishable particles” (often electrons
bound in an atom) from the state spaces of the single particles.

This result appeared all the more important to Weyl, as already before
the advent of quantum mechanics he had formed the conviction that exactly
such irreducible subspaces of @™V form the proper mathematical domain of
the classical physical field quantities. He considered the relativistic electro-
magnetic field tensor F; with its antisymmetry property (n = 2),

Fi+F/ =0,

and April 1925. For this part of the story see (Hawkins 2000, Borel 2001, Slodowy 1999).
4T(Hawkins 2000, 455fF.)
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as an outstanding example for this principle. The methods developed in the
study of the general linear group became the clue to his general theory of
representation of the classical groups.

The second question had been answered by Weyl already a little earlier
in his investigations of the “mathematical analysis of the problem of space”.
It had given him reason to absorb more of E. Cartan’s classification of the
infinitesimal Lie groups than before.*®

During the crucial years 1925 and 1926, Weyl was busy in other fields.
Immediately after he had finished his researches in representation theory of
Lie groups, he started intense reading for a book-length article on philos-
ophy of mathematics and natural sciences, which he had promised to the
editors of a handbook of philosophy.*® In winter semester 1926/27 he lec-
tured on the theory of continous groups and their representation as a guest
at the Gottingen mathematical institute.’® Nevertheless he was well aware
what was going on in quantum mechanics. Even more than that, he ac-
tively participated in the internal discourse of the protagonists. He was in
regular communication with E. Schrodinger who taught at the university of
Ziirich in direct neighbourhood to the ETH where Weyl was teaching. And
he continued to be a kind of external “corresponding member” of the Géttin-
gen mathematical science milieu — notwithstanding his differences with D.
Hilbert on the foundations of mathematics.

Communication with M. Born and P. Jordan

In the fall of 1925, Weyl corresponded with M. Born and P. Jordan on their
actual progress in clarifying Heisenberg’s idea of non-commuting “physical
quantities” in quantum mechanics, which was initially stated in a mathemat-
ically rather incomprehensible form.?! Heisenberg’s idea was ingenious and
opened new perspectives for theoretical physics, but it was very difficult to
understand. It became a comprehensible piece of mathematical physics only
after the clarification brought about by joint work with Born and Jordan on
the one side and by Dirac’s contributions on the other.??

Weyl was well informed about the work done by the Goéttingen physicists
and even contributed actively to the research discussion among Born, Jordan,

*8GQee (Hawkins 2000), (Scholz 20015, Scholz 2004b). The order of the questions is here
given according to their relative importance identified by Tom Hawkins for Weyl’s turn
towards the new research project in representation theory of Lie groups.

“9Published as (Weyl 1927a).

0Tn this lecture Weyl did not yet touch the application of group theory to quantum
mechanics (Weyl Ms 1926/27). I thank M. Schneider who found H. Grell’s Ausarbeitung
of Weyl’s guest lecture in the Nachlass Herglotz.

5! (Heisenberg 1925) submitted July 29, 1925.

"2The first paper of Born and Jordan (Born/Jordan 1925) was received on Septem-
ber 27, 1925, by the Physikalische Zeitschrift and a succeeding one by all the three
(Born/Heisenberg/Jordan 1926) on November 16, 1925. Dirac joined on November 5,
(date of reception) (Dirac 1925).
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and Heisenberg in the crucial months of mid and late 1925. In September
1925 Born visited Weyl at Ziirich and reported him about the latest progress
in quantum mechanics. Weyl immediately started to “calculate a bit to
clarify things” for himself, as he wrote to Jordan a little later.?® He informed
Born about his insights with great admiration for the work of the Géttingen
physicists:

Dear Herr Born!

Your Ansatz for quantum theory has impressed me tremendously.
I have figured out the mathematical side of it for myself, perhaps
it may be useful for your further progress . ...(Weyl Ms1925a)

Weyl proposed to consider the relationship between unitary one-parameter
groups P(J) and Q(e) with their anti-hermitean infinitesimal generators p,
and ¢

PO)=1+dp+... and Q(e)=1+eq+... (0<4,¢).

He argued that the properties of the (Lie) algebra generated by pairs of
conjugate infinitesimal operators,

pq — qp = hl,

with 1 the identity and “A a number”, as Weyl wrote (he omitted the imagi-
nary factor i), could be related to a commutation relation among the integral
operators like

PQ=aQP, a=14+hée+....

Typical relations among the infinitesimal operators could then be derived
from this approach.®?

About a week after the submission of his joint article with Jordan, Born
gave a friendly answer, but with a certain reserve. He wrote:

It was a great pleasure for me to see that our new quantum
mechanics attracts your interest. In the meantime, we have made
considerable progress and are now sure that our approach covers
the most important aspects of the atomic structure. It is very
fine (sehr schon) that you have thought about our formulas; we
have derived these formulas in our way, even if not as elegant as
you, and intend to publish the subject in this form, because your
method is difficult for physicists to access. ... (Born Ms 1925)

The communication went on. Weyl received a page proof of the submitted
paper directly from the Zeitschrift fir Physik and wrote a supportive letter

53 (Weyl Ms1925b)
" As an example Weyl presented the characterization of the formal derivative f, :=

m n—1

np™q of a monomial f = p™q™ used by Born and Jordan: f, = A~ (pf — fp).
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to the younger colleague, P. Jordan, in which he apparently referred to his
alternative approach to the commutation relations once more.?

Jordan thanked Weyl for his comments on November 25, 1925, shortly
after submission of the second paper jointly written with Heisenberg. He
remarked that he had read Weyl’s letter to Born at the time “with great
interest”. He emphasized that Born and he had come close to a derivation of
the canonical commutation relation from the definition of the derivative %A
of an operator valued function A = A(t) of a real variable ¢. In a footnote

he added:

When Born talked to you, we still believed that pg — qp = S

27i
is an independent assumption. (emphasis in original)

Already in this early correspondence with his colleagues, Weyl looked
for unitary groups lying at the base of the quantization procedures used
by Heisenberg, Born and Jordan. His proposal of his letter to Born was
apparently a first step into the direction of using unitary one-parameter
groups obeying a weakened commutativity relation (see below, equ. ([[2)) as
a a clue to derive the Heisenberg relations from basic properties of projective
unitary representations.

In two postcards to Jordan, written in late November 1925, Weyl indi-
cated how in his approach an observable H = H(p, q) given in terms of the
conjugate observables p and ¢ could be characterized.

I arrive at a characterization of the domain of reasonable func-
tions H by the Ansatz

/ / P (&, m)dédn |

which is less formal than > p™q™. (Weyl Ms1925¢)

This was the first indication of what in his publication two years later
(Weyl 1927h) became the proposal to use inverse Fourier transforms for quan-
tization, the now so-called Weyl-quantization (equations ([4]) and (IH) be-
low). Born and his assistant Jordan decided, however, that Weyl’s approach
was too cumbersome for the introduction of the new quantum mechanics to
the physics community, and relied on their own approach. The long delayed
and selective reception of Weyl’s idea shows that Born may have been right

% 0n November 25, 1925, Jordan wrote to Weyl that the latter could “of course keep
the proofs”. In a footnote he added an excuse: “I do not know, why they [the page proofs,
E.S.] have been sent to you in such a complicated and demanding form (umstindlich
und anspruchsvoller Form). Born and I are innocent of that (sind unschuldig daran).”
(Jordan 1925). We can guess that the printer of the Zeitschrift had sent the proofs
against acknowledgement of receipt, and that Weyl was a bit perplexed by this proce-
dure wondering, perhaps, whether his Gé6ttingen colleagues wanted to make sure their
(undisputed) priority.
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in this estimation. On the other hand, his decision may have contributed to
the long delay for a recognition of Weyl-quantization as a useful approach in
mathematical physics.

Abelian ray representations

Weyl came back to his early proposals nearly two years later in his first
article dealing with quantum mechanics (Weyl 19276).°6 He clearly dis-
tinguished between pure states and of miztures. Pure states were mathe-
matically represented by eigenvectors (or more precisely by corresponding
complex unit rays) of the typical observables which described the defining
properties of a particle or dynamical state. Mixtures, on the other hand,
were described contextually as composed from pure states in “any mixing ra-
tio” (Weyl 1927b, 97). In this way Weyl indicated that a mixed state might
be characterized by a probability measure on the state space, although he
did not spell out details. A little later, and originally without knowledge
of Weyl’s manuscript, von Neumann proposed to formalize both mixed and
pure systems by (positive) hermitian operators A. Pure states were those
given by projection operators onto one-dimensional subspaces and mixtures
by more general positive hermitian operators (von Neumann 1927, 215ff.).57

Weyl’s main point was, however, the discussion of what he considered the
“more profound” question of the “essence (Wesen) and the correct definition
of canonical variables”(Weyl 1927b, 91) P and @, satisfying the canonical or
Heisenberg commutation relation:

Q=" (1)

He proposed to relate any hermitian operator A to the unitary 1-parameter
group generated by its skew hermitian relative ¢A

£ eltA
and to consider the quantum mechanical observables from an “integral” point
of view, in the sense of the generated 1-parameter groups. That was a
conceptual move similar to the one in Weyl’s work on representation theory,
where he found intriguing new aspects by passing from the infinitesimal point

%Received October 13, 1927.

®"Von Neumann presented his paper on November 11, 1927, to the Géttinger
Gesellschaft. In the page proofs he added a reference to Weyl’s paper (von Neumann 1927,
219, footnote) and vice versa (Weyl 1927h, 90, footnote); compare (Mehra/Rechenberg
2000/2001, 431ff.). In later terms, von Neumann’s positive hermitian operator A can be
related to a trace class operator T by A = (T*T)%7 where T is of unit trace norm T7 = 1.
Here |T|y :=TrT = ), (T'ux,ux) = 1 with respect to any complete orthonormal set {us}.
Moreover, the trace of T' can be calculated by the sum of the (positive) eigenvalues a, of
A, TrT = ZV ay.
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of view (the Lie-algebras in later terminology) to the integral perspective (the
groups themselves).

Turning the perspective round, he considered a classical state space de-
scribed by pairs of n conjugate observable quantities (p, ¢), such as the spatial
displacement g with respect to a frame and its conjugate momentum p. Then
the state space could be considered as an abelian group G of two continuous
parameters (t,5) € IR? = G (in the case of n = 1 pairs). For the quantization
it was natural to look at a unitary ray representation, i.e. a representation
up to multiplication by a complex number of unit norm.

Then it was clear that in the quantum context the commutation relation
for the generating 1-parameter groups e’ and €**% have to be weakened.
Commutativity had to hold only up to a unitary factor,

ezsPeth — el stethezsP’ (12)

where ¢ is a real constant normalized to ¢ = 1 or ¢ = h. Let us refer
to equation () as the Weyl-commutation relation for conjugate pairs of
1-parameter groups in unitary projective (quantum) representations.

Weyl showed that for the corresponding skew-hermitian infinitesimal gen-
erators i P, i@ the deviation ([[Z) from strict commutativity implies

PQ — QP = —icl,

i.e., the Heisenberg commutation rule ([[T]) for a pair of conjugate observables.

Weyl generalized this procedure to n-tuples of pairs of observables Py, @1,
..., Py, Q,. Then a representation on quantum rays®® allowed to modify the
strict commutation relation of an abelian group (¢1,...,tn,S1,...5,) € G =
IR?" to slightly deformed Weyl-commutation relations of the form

oi5uPu eit,,Q,, _ eicdff suty eit,,Q,,eisuPu’
with 02 the Kronecker delta and ¢ = 1, or ¢ = h. For the infinitesimal

generators that corresponded to a normalized form of the skew symmetric
system of coefficients ¢y, in the system of relations (Weyl 1927b, 114)

P,Q, - Q,P, = —icy 1. (13)

That led to intriguing relations for the addition rule for the 2n-parameter
unitary ray representation. If we use the denotation (s,t) € IR?" and

W, = eisrPigisaP | pisnbnoitiQ1 | oitnQn

the addition becomes

__—ic<s' t>
Ws—i—s’,t—i—t’ =€ ’ Ws,tWS’,t’ )

"8«Quantum ray” signifies that from the one-dimensional subspace, the classical projec-
tive ray, only the norm 1 representatives play a role in the quantum mechanical context.
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where < §',t >:= > slt, and, as above, ¢ = 1 or ¢ = h. The resulting
structure was an irreducible projective unitary representation of the abelian
group G = IR?"; Weyl called it an “irreducible abelian rotation group operat-
ing on a the field of rays (Strahlenkorper) of pure states ” (Weyl 19275, 118).
He restricted his investigation to the case of everywhere defined, bounded
(skew-) hermitian generators and the resulting unitary transformations and
gave a sketchy argument that these were the only irreducible projective rep-
resentations for each n.

For a serious application to quantum mechanics, the generalization to the
case of unbounded operators was, of course, important. It was solved inde-
pendently by Marshall Stone and von Neumann (Stone 1930, von Neurnann
1931). Von Neumann showed, in addition, that the Weyl commutation rela-
tions ((2), ([[3)) characterize irreducible unitary projective representations
of continuous abelian groups up to unitary isomorphism.

Weyl quantization

Weyl, on the other hand, continued his article by looking for a procedure
which could give operator companions to (classical) physical quantities in
a systematic way, i.e., he looked for a systematic approach to quantization
(Weyl 1927b, 116). If a classical quantity is expressed by a function f(p,q)
of the canonical variables p, q (f € £L2IR? for n = 1), he looked at the Fourier
transform & of f. Then f can be gained back from & by

Sp.a) = [ e (s, dst,. (14)

Weyl proposed to use the analogously formed operator-valued integral
F = /ei(P8+Qt)£(s,t)dsdt = /£Ws7t dsdt (15)

as the quantum mechanical version of the physical quantity related to f.
In case of periodic variables, pairs (p,q) represent elements on the torus
G =T?:= 8" x 8! 2 R?/T, where I is the lattice generated by the periods.
Then the integration reduces to a summation over integer numbers s and ¢
in Z, because the Fourier transform & lives on the discrete domain G=1u
Moreover, f is an element of the function algebra on the abelian group
G =1R?, or T? in case of periodic variables. For a real valued function f, in
particular, the corresponding £ satisfies

6(_57 _t) = 2(87 t)

and leads to a hermitian operator F'.
In the methods introduced and used by physicists at the time for the
quantization of classical observables, p — P, g — @ , the non-commutativity
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of P and @ led to a fundamental difficulty for an observable given as a func-
tion f(p,q) of the basic dynamical variables p and g. Already in the simple
cases of a polynomial function, it was not clear which operator one should
choose for the formal expression f(P,Q). For example for f(p,q) = p?q
one could choose any of P2Q, PQP or QP2, etc.. Weyl’s unitary ray rep-
resentation approach resolved (or avoided) this difficulty from the outset.
The operator inverse of the Fourier transform ([0)) gave a unique and struc-
turally well determined assignment f +— F' of hermitian operators to real
valued quantities. Weyl was therefore convinced that “our group theoretic
approach shows immediately the right way” towards the quantization prob-
lem (Weyl 19270, 1171.).

Of course, the whole approach worked only for non-relativistic mechan-
ical systems in which time is “the only independent variable”, whereas field
theory deals with quantities extended over time and space, which relate
observations and measurements among each other. Weyl considered the in-
dependent variables as “projected into the world” by arbitrary conventions
in such a manner that the dependence of physical quantities on them could
not be measured (Weyl 19275, 124). In this sense, the independent variables
played for him the role of some kind of a-priori component in theory con-
struction. They were necessary for the conceptual architecture of the whole
symbolic construction, although they were not directly related to observ-
able quantities. In non-relativistic quantum mechanics time was the only
“independent variable” left. He added:

If one wants to resolve the criticized omission of the time concept
of the old pre-relativistic mechanics, the observable quantities
time ¢ and energy F have to be considered as another canonically
conjugate pair, as is indicated already by the action principle
of classical mechanics. The dynamical law [of the Schrodinger
equation, E.S] will then completely disappear. (Weyl 19275, 127)

He referred to Schrédinger’s first attempts to obtain a relativistic theory of
the electron in a centrally symmetric field, but neither here, nor in any later
publications, did he start to work out this idea of how one might proceed to
build a relativistic quantum field theory. A good occasion would have been
his contributions to Dirac’s electron theory, two years later; but by then he
had already accepted that the physicists working on this question Dirac,
Jordan, Heisenberg, and Pauli — had chosen a completely different approach.
They developed the method of so-called second quantization, which seemed
easier “to access for physicists”, to take up Born’s words from his letter of
October 2, 1925 to Weyl.

The problems sketched in Weyl’s 1927 paper, the method of unitary
ray representations of commutative groups, and the ensuing quantization
method proposed were soon reconsidered in Weyl’s book (Weyl 1928) and
made more accessible to an international audience by its English translation
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in 1931. The only traces it left on contemporary work was that of von
Neumann and Stone, mentioned above. But it turned out to be of long range
inspiration. In the next generation, G. Mackey took up Weyl’s representation
theoretic perspective and developed it into a broader program for the study of
irreducible projective representations as a starting point for a more structural
understanding of quantum physical systems (Mackey 1949).

In the 1960s, Weyl’s quantization started to be revitalized. In this decade,
the torus case, G = T2, was reconsidered as a special, and the historically
earliest, way to introduce a deformed product on the Fourier dual group,
G = %Z?. For two elements f, h of the function algebra on G with Fourier
transforms £ = f, n= iz, &n e G, let the Weyl quantization be written as
f+— F, h— H. Then the composition of the Weyl quantized operators

F-H

could be transported back to the original functions f,h or their Fourier
transforms &£,7n. That led to a deformed product depending on a parameter
¢ (typically ¢ =1 or ¢ = h),

f*cg, respectively &ken,

with properties which attracted a new generation of researchers.’

The resulting non-commutative function algebra on the torus 72 or its
Fourier dual 72 = %2 became the starting point for the study of the non-
commutative torus, one of the first well-known cases of non-commutative
geometry. Weyl-quantization turned out to be just one among a larger class
of deformation quantization procedures.

Thus Weyl’s first paper presented ideas to the public, which he had de-
veloped essentially when he was still “at the backstage” of the quantum
mechanical scene, as we have called it, turned out to have long range impact
in several respects,

— for the study of irreducible projective representations (Stone, von Neu-
mann, Mackey e.a.),

For an overview see (Rieffel 1994). Rieffel refers to (Pool 1966) as the first paper in
which an explicit description of the deformed product on the Fourier transform functions
was given. His claim that already von Neumann had “pointed out that Weyl quantization
induces a new product on functions” (Rieffel 1994, 70) seems, however, to be anachronistic.
The closest approximation to such a view in von Neumann’s paper is, as far as I can
see, a reference to the “Gruppenzahlen” at the end of the paper, where the terminology
“Gruppenzahlen” refers to functions f on G as elements of the group algebra C[G] (von
Neumann 1931, 229). Such a perspective was also discussed in Weyl’s paper (Weyl 19275,
106) (and there even in more detail). In the abelian case considered here the group algebra
is commutative and could at best serve as the starting point for the introduction of the
deformed product. Neither von Neumann nor Weyl mentioned the idea that the Weyl-
quantized operators might be used to introduce a modified (non-commutative) product of
the “Gruppenzahlen” themselves.
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as an inspiration for the search for conceptually founded quantization
procedures such as the Weyl-quantization, as it was called after the
1960s,

— and finally as one of the sources for a non-commutative modification of
the the torus (Pool, Rieffel e.a.).

At the time of their publication, Weyl’s proposals were, however, far too
distant from contemporary quantum mechanical research to be taken up in
the physics community. For several decades the paper (Weyl 19275) remained
a lonely standing monument.

5. Weyl entering the stage

In late 1927, Weyl entered the field of quantum mechanics with full force. He
had announced a lecture course on group theory at the Ziirich Eidgendssische
Technische Hochschule, ETH, for winter semester 1927/28. In the summer of
this year, both Ziirich theoretical physicists accepted calls to other places, E.
Schrodinger left the University of Ziirich and went to Berlin; P. Debye gave
up his chair at the ETH on occasion of a call to Leipzig. Weyl used the op-
portunity to reorient his lecture course originally announced on group theory
only and offered it now as a course on “Group theory and quantum mechan-
ics (Gruppentheorie und Quantenmechanik)", without running the risk of
putting off his local colleagues in physics. Now he had a good opportunity
to present his views on group theoretical methods in quantum mechanics.
His main interest was centered on the intriguing interplay between represen-
tations of the orthogonal group SOs (and SUs) and the permutation group,
which about the same time Wigner and von Neumann hit upon from their
side. Let us remember that in summer or autumn 1927 only Wigner’s own
papers were published. The joint work with von Neumann was still going,
on when Weyl prepared the book manuscript from the lecture notes in the
summer semester 1928. In late August the book was finished and given to
the publisher. In the sequel we will also use the abbreviation GQM for it
(Weyl 1928).50

Weyl’s contributions to the topic and the joint work by Wigner and von
Neumann were developed in parallel and independently of each other, as far
as any direct exchange of ideas is concerned. They nevertheless established
a common theoretical approach to groups in the quantum mechanical expla-
nation of atomic spectra. This is a good case for a comparative study of how

50Tf not otherwise stated, quotations refer to the first edition of GQM. If possible trans-
lations are taken from H.P. Robertson’s English version of the second edition; where
necessary or advisable (because of meaning affecting shifts) direct translations from the
first edition are given by the author (E.S.). The second edition will be quoted by
(Weyl 1928, 21931), the English translation by (Weyl 1931a). For a discussion of the
book see (Speiser 1988).
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Weyl’s perspectives as a mathematician with great expertise in group repre-
sentations influenced his approach to the subject. We can compare it directly
with the Wigner von Neumann “team”, one of them (von Neumann) a bril-
liant mathematician who had assimilated the new results in representation
theory in a speed which later became legendary, the other one a theoretical
physicist of admirable mathematical powers.

Two points of the broader story of group theoretical methods in quantum
physics have to be mentioned, before we come to the discussion of Weyl’s
treatment of the interplay of the symmetric and the orthogonal groups in
spectroscopy and quantum chemistry. Here we can only mentioned them in
passing, although they deserve closer scrutiny in their own contexts.

General relativistic spinor fields

Exactly at the end of Weyl’s course and shortly after it finished, Dirac’s
two path-breaking papers on the relativistic theory of the electron appeared
(Dirac 1928) and found immediate recognition (Kragh 1990). Therefore
Weyl’s book already contained a chapter on Dirac’s theory. Later in the
year 1928 and early the next one, Weyl took up Dirac’s theory, simplified
it from the point of view of group representations and put it into a gen-
eral relativistic framework. For physical reasons, Dirac worked with a re-
ducible representation of the Lorentz group, now written as D(%’%), whereas
Weyl proposed a reduction to irreducible components, characterized by the
standard representation of SLyC in C2, D(%’O), and/or its conjugate D(0:3)
(“Weyl spinors” versus “Dirac spinors”; in later terminology). Weyl’s main
goal in a series of papers in the year 1929 was, of course, of a different nature,
the adaptation of spinor theory to general relativity. In this enterprise he had
again independent parallel workers, V. Fock and D. Ivanenko at Leningrad.
Weyl and Fock/Ivanenko built essentially the same core theory, but differed
in outlook and details. That is an interesting story in itself, which cannot
be told here.5" Weyl did not include this generalized treatment of the Dirac
equation in the second edition of the book, but only referred to it in passing
at various places (Weyl 1928, 21931, VII, 195).

In the second edition he changed and extended, the treatment of the
special relativistic Dirac equation. In the first edition he discussed a non-
relativistic first approach to “second” quantization of the electron and the
electromagnetic field (Weyl 1928, §44). At the end of the passage Weyl
remarked:

We have thus discovered the correct way to quantize the field
equations defining electron waves and matter waves. The exact
realization will be the next task of quantum physics; the main-
tainance of relativistic invariance seems to offer serious difficul-

51 Compare (Vizgin 1994, Goenner 2004, Straumann 2001, Scholz 2001a).
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ties. Here again we find that quantum kinematics is not to be
restricted by the assumption of Heisenberg’s specialized commu-
tation rules. And again it is group theory, which supplies the nat-
urally generalized variant, as is shown by the next section ... [in
which unitary ray representations and the first steps of Weyl-
quantization were presented, E.S.|. (Weyl 1928) (Weyl 1928,
21931, 203)

In summer 1928, he apparently still assumed that his approach to quan-
tization might allow a generalization from the group IR® of non-relativistic
kinematics to the relativistic case. In the second edition he omitted the sec-
ond and the last sentences, after in January 1929 Heisenberg and Pauli had
made decisive progress in their approach to “second quantization”. Weyl still
kept the passage on unitary ray representations and to (Weyl-) quantization,
but no longer recommended his own approach as a a path towards relativis-
tic field quantization. He included two new sections with a discussion of
this new and difficult terrain, following Pauli, Heisenberg and Jordan, al-
though now the obstacle of uncontrollable inifinities appeared at the horizon
(Weyl 1928, 21931, chap.IV, §§12, 13).

Discrete symmetries

In these new passages Weyl started also to explore the role of discrete sym-
metries in the context of early relativistic field theory, parity change P, time
inversionT’, and charge conjugation C'. They ended with a remark which
struck readers of the next generation as surprising and even “prophetic”:

...this means that positive and negative electricity have essen-
tially the same properties in the sense that the laws govern-
ing them are invariant under a certain substitution which inter-
changes the quantum numbers of the electrons with those of the
protons [later readers would functionally rephrase the term by
“positrons”, E.S. |. The dissimilarity of the two kinds of electric-
ity thus seems to hide a secret of Nature which lies yet deeper
than the dissimilarity of past and future. (Weyl 1928, 21931,
English, 264)

We cannot take up the thread of the rise and establishment of the discrete
symmetries in quantum field theory here; readers interested in this topic
may like to have a look at the discussion in (Coleman/Korté 2001, 293) and
(Straumann 2001, 141).

6. Weyl on stage

We come back to comparing the differenct outlooks of Weyl and Wigner/von
Neumann on groups in quantum mechanics. Technically, they agreed com-
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pletely, as Weyl frankly stated when he wrote the preface to his book in
August 1928.52 Discussing the role of group representations in quantum
mechanics, he observed:

The course of events is so inevitable (zwangslaufig) that nearly
everything that was still new at the time when I gave the course
has been published elsewhere in the meantime, in particular by
the work of the colleagues (der Herren) C.G. Darwin, F. London,
J. von Neumann and E. Wigner.

He added:

That is different with Dirac’s wave equation of the electron, which
introduced essential new ideas into the theory during the time
when this book was being written. (Weyl 1928, vi)

The reference to F. London, and at other places to W. Heitler, referred to
the theory of molecular bonds, which Weyl had approached with the tool kit
of representations of the symmetric group, starting from the joint article of
Heitler and London.®® Even more than the other authors, Weyl emphasized
the structural role group representations for the understanding of quantum
physics. He hoped that they would survive future changes of the actual
mathematical models of the atomic or molecular systems:

Recently it turned out that group theory is of fundamental im-
portance for quantum mechanics. In this context it reveals the
most essential features whatever the form of the dynamical law

may be, i.e., without definite assumptions on the forces which are
acting. (Weyl 1928, 2, emphasis E.S.)

The last remark described quantum mechanics as a theory in develop-
ment. Weyl considered it to be in an unfinished state. That differed from
the credo of the Copenhagen — Géttingen group which argued strongly in
favour of having achieved a “completion” of quantum mechanics.%* Weyl did
not share, however, Einstein’s opinion that quantum mechanics had to be
considered as of only provisional character, as long as its purely stochastic
determination was not reduced to a classical field theory lying at its base.
Weyl even had welcomed the stochastical character of natural laws well be-
fore the birht of the “new” quantum mechanics (Weyl 1920). Of course, he
was, well aware of the fundamental problem that quantum mechanics and

52Remember that all three parts of the Wigner/von Neumann series had appeared at
that time, the last one in June 1928.

63 (Weyl 1928, 21931, 300, chap. V, endnote 10). Darwin’s publications dealt with the
spin phenomenon; among them (Darwin 1927, Darwin 1928). It did not involve explicit
group theoretic aspects.

54Compare the title of volume VI of (Mehra/Rechenberg 1982 2001): “The Completion
of Quantum Mechanics 1926 — 1941”.
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relativity had established two theories of basic levels of nature, which were
conceptually and mathematically far apart. Already during his “backstage
period” Weyl had looked for possibilities of reconciliation of relativity theory
and quantum physics (see above). In summer 1928, after Dirac’s break-
through to a first relativistic quantum theory with empirical successes, he
expected further changes to come. In such a period, Weyl thought that the
assumptions on the “form of the dynamical law” might still be subject to
considerable change. The representation theoretical methods, on the other
hand, appeared to him as part of a stable core of quantum mechanical knowl-
edge.

This conviction of a deep structural meaning of group representations was
the central topic in GQM. Similar to his first book on mathematical physics,
Space - Time - Matter, Weyl gave a complete introduction to the mathemat-
ics of the field and wrote one of the first textbook expositions of quantum
mechanics. He started with an introduction to what he called unitary geom-
etry, i.e., the theory of Hilbert spaces and the diagonalization of hermitian
forms, although essentially restricted to the finite dimensional case (chap-
ter I). He continued with an introduction to quantum mechanics integrating
the Schrodinger view of the dynamical law in the non-relativistic case and
the Gottingen (Heisenberg-Born-Jordan) point of view of observables repre-
sented by hermitian operators and their quantum stochastical interpretation
(chapter II). Of course, he emphasized the turn quantum mechanics had
taken with respect to classical natural science. Both had in common to be
“constructive”.

Natural science is of a constructive character. The concepts with
which it deals are not qualities or attributes which can be ob-
tained from the objective world by direct cognition. They can
only be determined by an indirect methodology, by observing
their reaction with other bodies; their implicit definition is con-
sequently conditioned by definite laws of nature governing reac-
tions. (Weyl 1928, 66)

Classical mechanics was able to assume that such “constructive properties”
were attributes of the “things as such (Dingen an sich)”, in the sense of per-
taining to them, even if the manipulations necessary to their determination
were not undertaken. In quantum physics this was no longer possible. In
this point Weyl agreed with N. Bohr.

With quanta we run into a fundamental barrier (Schranke) to this
epistemological position of constructive natural science. (ibid.,
emphasis in original, my translation, ES)

This limitation lay at the basis of Heisenberg’s undeterminacy relation. Weyl
accepted it as a fundamental insight, different from Heisenberg’s mathemat-
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ical characterization of the commutation relation.?

In the third section Weyl introduced the representation theory of finite
groups with some general remarks on continuous groups, their characters and
their infinitesimal groups (chapter ITI). The presentation of concrete exam-
ples, in particular the orthogonal group, Lorentz group, the special unitary
and the symmetric groups were postponed to the later sections on “applica-
tions of group theory to quantum mechanics” (chapters IV and V). Chapter
IV contained the theory of atomic spectra, Dirac’s electron theory, and his
own method of unitary ray representations. The last chapter developed the
combined theory of representations of the unitary group and the symmetric
group, preparing his approach to the theory of valence bonds (chap. V).

His presentation of atomic spectra (Weyl 1928, 157ff.) relied much more
on theoretical arguments and used less explicit calculations of eigenfunctions
than Wigner/von Neumann’s. Nevertheless his discussion went as deep into
the physics context as Wigner’s. It included, among others, a concise group
theoretic discussion of Pauli’s mathematization of spin and of the anomalous
Zeeman effect. Weyl apparently wanted to demonstrate the usefulness of the
structural view of mathematics for a conceptual understanding in physics.

Pauli spinors from the point of view of representation theory

For the characterization of electron spin Weyl could build upon his ob-
servation of 1924, that the special orthogonal groups SO,IR are not sim-
ply connected but possess, for n > 2, a two-fold universal covering group
(Weyl 1924a). He clearly distinguished “two-valued” and one-valued repre-
sentations of these groups (Weyl 1925/1926, II, 602ff.). For the introduction
of electron spin, he nevertheless preferred the more physical approach of ex-
tending Schrodinger wave functions to Pauli spinors. To concentrate ideas,
he started with the discussion of alkali spectra, governed by one external
electron with a state space called &:

We deal with a single electron; the wave function depends only
on t and the three space coordinates x, y, z. It cannot be a scalar,
however, but is a two-component covariant quantity of type Dy.
Then we have D = D3 x &, and the decomposition of £ into iis
irreducible componenth D; with the integer azimuthal quantum
number [ gives the constituents D% x D;. Each of those decom-
poses again into a doublet D; with j =1+ % and j =1 — %
(Weyl 1928, 162)%6

The observation of the last sentence was an immediate consequence of
the decomposition formula for a tensor product of representations of SUs,

55Weyl presented Heisenberg’s undeterminacy in a form due to a communication by W.
Pauli (Weyl 1928, 67, appendix 1).
86Weyl’s D; corresponds, of course, to our DU of equation @.
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given here in Weyl’s notation (Weyl 1928, 166)

l+s
Ds@Di= », Dj.
j=|i—s|

As the old theory without spin characterized the terms very well up to
small effects, Weyl assumed that the two-component wave functions were well
approximated by the “old” Schriodinger wave functions (as did his quantum
physical colleagues). The dimension of the function space was now doubled,
with a corresponding rise in the degree of degeneracy. He introduced the
notation & for an invariant subspace of £, & = D1 ® D; and gave his
interpretation of the appearance of spin doublets: ’

... thus & now possesses all pairs 1) = (¢1, 1) as eigenfunctions

. They obviously form a linear manifold of 2(2/ + 1) dimen-
sions. But now a small perturbation term will be added to the
wave equation, the “spin-perturbation” which couples the com-
ponents 1,19 among each other. Thus the former accidental
degeneracy is broken, the 2(2] 4+ 1)-fold eigenvalue Ej is split
into two values of multiplicities 25 + 1, with j =1 + %, just as
the representation D1 x D; is decomposed into two irreducible
constitutents. This i82 the theory of the doublet phenomenon as
sketched by W. Pauli. (ibid.)

This was a beautiful demonstration of how representation theoretic struc-
tures appeared very naturally in the material of basic quantum mechanics.
They were able to elucidate the symbolic constructions and the perturba-
tion arguments introduced by contemporary physicists, including the kind of
structural approximation which led from Schrodinger’s to the Pauli’s wave
functions.

In the discussion of the anomalous Zeeman effect, i.e, the split of spectral
lines of multiplets under the influence of an external magnetic field, Weyl
showed that the representation theoretic view could also lead to quantitative
results; he gave a theoretical derivation of the Landé formula for the split of
spectral terms in an external magnetic field (Weyl 1928, 164ff.).57

67Landé had determined a characteristic factor g, important for the calculation of the
widths of the line split, as g = 3{%, where [ was the old (integer valued) azimuthal
quantum number and j =1+ % an ad-hoc modification which could later be interpreted
as the “internal” quantum number of the representation D% | taking spin into account.
Weyl derived ¢ in very good approximation from the magnetic momenta of the Pauli-
spinors as g—1 = W, which reduces to Land’e’s formula in the cases j = [+ %

Compare (Mehra/Rechenberg 2000/2001, 499).
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A physical role for representations of the symmetric group

In his presentation of molecular bonds and its group theoretic background
(chap. V), Weyl was apparently intrigued by a structural analogy of the spin-
coupling problem of the n-electron system with his general studies of group
representations. In both cases, a strong and deep interplay of a continuous
group (SO3 or SUs in the spin case, more generally any classical group) with
the operation of the symmetric group, or some subgroup (the Weyl-group
in the general case), formed the essential core of his analysis. Thus Weyl
declared that one of the goals of his lecture course and the book was to
give a unified picture of the representation theory of finite and of continuous

groups.

Already from the purely mathematical point of view, it no longer
seems justified to make such a sharp distinction between finite
and continuous groups as is done in the traditional textbooks.
(Weyl 1928, V)

He was very pleased that the study of the spin of an n-particle system
relied on what he called at different occasions a bridge between the discrete
and the continuous group representations (Weyl 1929¢). His goal was to make
this bridge conceptually as clear as possible, not only to use its consequences
in the determination of term systems or in the investigation of chemical
bonds. This does not mean that he contented himself with purely structural
insights. He rather started to elaborate the representation theory of the
symmetric group with the explicit goal to derive calculatory tools. For this
purpose he refined the use of Young diagrams and Young tableaus.

In the last respect he made considerable advances after the publication
of the book. Several articles on this topic followed during the next year,
among it the main research paper (Weyl 1929a4) and some expository ones
(Weyl 19295, Weyl 1929d, Weyl 1929¢). In these papers Weyl achieved a
structural clarity in the study of spin-coupling, comparable to the one he
had gained during the years 1925/26 for the representation theory of the
classical groups. On the basis of these results he completely rewrote the
last part of his book (chapter V) for the second edition (and its English
translation). The revised chapter V became the source for a tradition of a
long, although slow, trickling down of knowledge and of symbolical tools from
the representation theory of the symmetric group to the theory of atomic and
molecular spectroscopy (later even to nuclear spectroscopy) and to quantum
chemistry.

In these considerations Weyl employed similar methods to those he had
developed in his studies of representation theory in 1924/25. Central for both
approaches was the association of a symmetry operator A to each element a
of the group algebra C[S¢] of the symmetric group Sy, operating on a tensor
product space ®' V. Using Weyl’s notation F = F(ki,...,ky) for a tensor
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Fe ®f V58 the symmetry operator A associated to

a= Z a(s)s € C[Sy]
seSy

was given by:

A: F(k)l,... ,kf) — Z a(S)F(ks(l),...,ks(f)) .
SGSf

Using such symmetry operators, Weyl formulated symmetry conditions for
elements in the tensor space ®f V and showed that invariant subspaces of
the regular representation on C[Sy| specify invariant subspaces of GL(V') on

RIV.

Theorem 1 There is a 1 : 1 correspondence between invariant subspaces
of the reqular representation of Sy and invariant subspaces of the operation
of GL(V) on Q7 V. The same holds for its irreducible building blocks (the
corresponding irreducible representations).

(Weyl 19294a), (Weyl 19314, 350)

A comparable correspondence had already been used by I. Schur in his
dissertation (Schur 1901) and, in a modified form again in (Schur 1927). Weyl
gave full credit to these works. Only his method of symmetry operators was
new, and he thought it to be of advantage for the clarification of the overall
structure of the correspondence. In an exchange of letters, which is only
partially preserved, Schur expressed complete consent:

I do not find anything in your interesting paper which I had to
object to. I even accept as not illegitimate the gentle criticism
which you offer to my publication from the year 1927. I am very
glad to see that you emphasize the connection between my old
approach from the year 1901 and your elegant formulation. I
also give preference to this direct method and would go even a
little farther than you on p. 4 of your manuscript. I am not of

the opinion that the later method is the more progressive one.
(Schur Ms.N.d.)%

Any representation of Sy is characterized by a character x, i.e., the
complex valued function on Sy, defined by the trace of the corresponding

%8 This notation takes allows to use a shorthand notation for the operations of C[Sf] on
general tensors F' = Z]. o vgj) ®R...0 v}j), defined by linear extension of the naturally
defined operation on the decomposable tensors vij) ®...8 v}j).

59Gchur’s (undated) letter is an answer to a letter by Weyl, which is not preserved.
The discussion relates well to (Weyl 19294). The only point I cannot identify is the the
reference to the remark “...on p. 4 of your manuscript ...".
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represention matrices. For an irreducible representation it is known that
(x,x) = 1, with respect to the scalar product in the function space on Sy.
In the sequel we shall use the notation py () for the irreducible represen-
tation of GL(V') in Q7 V, corresponding to y by this correspondence and
Weyl’s theorem.”™® Weyl considered a spin-extension of the underlying vec-
tor space of 1-particle states, V' (dimV = n), in the sense of Pauli wave
functions,

W:=VeC?, dimW =2n. (16)

In the case of an f-electron system one has to study the irreducible com-
ponents of the operation of GL(V') induced on the antisymmetric part of
the tensor product, A" W. The decomposition of A™ W according to Weyl’s
main theorem leads to multiplicities m, for the irreducible representations
of type pw(x), such that

N'W =P my pw(x) (17)

For the calculation of the multiplicities m, Weyl established a kind of “dual-
ity” (Weyl’s terminology) among the representations of the symmetric group.

To any representation py of Sy in a vector space U there is an induced
representation p7; on the dual space U*. By contextual reasons, Weyl mod-
ified the sign of this induced operation on U* by the signum function.”*
Then he could use the apparatus of character formulae and found a striking
reciprocity relation (Weyl’s terminology) between the multiplicity of an irre-
ducible representation of the symmetric group and the dimension of its dual
representation:

Theorem 2 The multiplicities m,, in ({IA) are equal to the dimensions of
the corresponding dual representations x*,

my = dim X",
(Weyl 19293, 187),(Weyl 1931a, 352).

A direct consequence was that m, = 0, if the Young diagram correspond-
ing to y has more than 2 columns.” From a pragmatic point of view, this

""Weyl’s notation for our py(x) was A, (x), where n = dim V.
"If py corresponds to a character y, Weyl defined the dual representation x* as the
representation of Sy given by

o — signum(o)py (o)  (Weyl 19294, 187).

"The signum factor in Weyl’s definition of the dual representation implies dim x* = 0
for dual representations with more than 2 rows. The Young diagram of the representation
in the dual space U* is obtained from the diagram in U by transposition. Thus only
representations with Young diagrams of 1 or 2 columns have non-vanishing multiplicities
in the decomposition of the alternating product [ (Weyl 1931a, 350, 352, 370).
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result stated the same condition for the existence of an antisymmetric spin
extension as the one given by Wigner and von Neumann in terms of the
partition (\) (equation ([I{)). But Weyl considered this insight as more than
just a calculational tool. For him it established a kind of reciprocity law of
undoubtedly material importance.

The modification, which is brought about by the existence of
spin under neglection of its dynamical effects and by the Pauli
exclusion principle, consists in nothing more than in a trans-
formation of the multiplicity of the term system corresponding
to x from [my| into [dim x*|. ... The dynamical effect of spin
resolves these multipletts in as many components, as given by
its multiplicity |dim x*|; moreover it induces weak intercombina-
tions between the different classes of terms. [Notation adapted
to ours, emphasis in original, E.S.| (Weyl 1929q, 188)

Spin coupling in general exchange molecules

Weyl even extended the reciprocity theorem to a more general case, W =
V' @ V", At first glance, this generalization may look like a pure mathe-
maticians game, without connections to the physical context, but Weyl was
highly interested in its application to molecular bonds.

He considered two atoms A and B with electron numbers v/ and v”
and symmetry types given by the irreducible representations G,s , G,» (with
characters x’ and x”  Weyl’s notation). If they form a molecule, the bond
would be described by (collective) states of the combined electron system in
the tensor product. The mathematically elementary states would then be
characterized by the irreducible representations in the product. Weyl gener-
alized Heitler’s and London’s theory from exchange molecules with electron
pairs to the many (v = v/ 4+ v/”) electron case. His generalized reciprocity
theorem (Weyl’s terminology) contained the clue for analyzing the possible
bonding constellation of higher atoms.

In one of his presentations of the result to a wider audience, a published
version of talks he gave during his journey through the United States in late
1928 and early 1929, he explained his basic idea:

This reciprocity law governs the fundamental chemical problem
of combining two atoms to obtain a molecule .... The molecule
which is obtained by combining the two atoms will be in one of
the symmetry states ¢ whose corresponding G [Weyl’s symbol
for an irreducible representation of the full permutation group
of all v = v/ + " electrons with character ¢, E.S.| appears in
G, x Gy and the calculation of the associated energy is accom-
plished with the aid of these characteristics |characters, E.S.|.
These circumstances which cannot be represented by a spacial
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(sic!) picture, constitute the basis for the understanding of the
homopolar bond, the attraction (or repulsion) existing between
neutral atoms ... (Weyl 1929a, 290f.)

With respect to the strong conceptual relationship between mathemat-
ics and physics, these words may appear similar to those Weyl had written
a decade earlier, in the years between 1918 and 1920 when he pursued his
program of a geometrically unified field theory. But during the 1920s Weyl
had become much more sensitive to empirical questions. At the end of the
decade he had the impression that ground was touched in the formerly fath-
omless search for a mathematization of the basic structures of matter. This
new viewpoint seemed incompatible with the earlier hopes for a unified field
theory of matter in terms of classical fields, which Weyl now considered to
be illusionary.”™ The role played in his earlier work in general relativity and
unified field by generalized differential geometric structures was now taken
over by group representations in Hilbert spaces (“unitary geometry”) and the
quantum theory of atoms and their bonds.

While in the early 1920s he still thought in terms of a-prior: structures
supported by strong methodological and ontological speculations, he now
only spoke of an “appropriate language” for the expression of the natural
“laws”.

The connections between mathematical theory and physical ap-
plication which are revealed in the work of Wigner, v. Neumann,
Heitler, London and the speaker is here closer and more complete
than in almost any other field. The theory of groups is the ap-
propriate language for the expression of the general qualitative
laws which obtain in the atomic world. (ibid.)

In winter 1928/29 Weyl used a journey to the US to bring the gospel
of group theory to the scientifically rising country. He gave lectures at
Princeton and Berkeley on “Application of group theory to quantum me-
chanics” (Weyl Ms1929), and published three articles on the topic in North-
American journals (Weyl 1929a, Weyl 1929d, Weyl 1929¢).7 After his move
from Ziirich to Gottingen in early 1930, he took part in the seminar on
the structure of matter, which went back to the Hilbert tradition and was
now run by Born. He was thus led to a further elaboration of his method
(Weyl 1930, Weyl 193156). The second of these notes contained an analysis of
determinantal methods used by W. Heitler and G. Rumer in their common
work presented in the seminar.”

Building on his previous analysis, Weyl showed how to express the spin
states of an m-electron system formed from the shells of k£ atoms, with

"Compare (Scholz 2004a).
™ (Weyl 1929a) was published in German in the Annals of Mathematics.
5 (Heitler 1931)
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mq,..., my valence electrons each (m = Zlf m;), and the condition that mq
valences remained free. Admissible spin coupling constellations of the valence
electrons could be constructed from alternating products of the eigenfunc-
tions of pairs of electrons from different atoms. After assigning variables
z1,...,Z to each atom and zq to represent empty valences, Weyl developed
a method to calculate molecular bond energies. The method relied on the
first fundamental theorem of invariant theory according to which it is possible
to express the invariants of any set of vectors {xg,...,xx} C C? under the
operation of SLy(C) by integer polynomials in the “fundamental invariants”
z; j derived from the vectors by determinants

2 j = det(x;, ;) 0<i,7<k.

Weyl used the abbreviated notation z = [z,y] (the fundamental binary in-
variant), for any two vectors z and y.

According to Weyl, a “pure valence state” was characterized by a mono-
mial of total order m and order m; in each component z; (0 < j < k)
formed from binary invariants [z,y]."® Eigenstates of the molecule would
not be pure valence states but superpositions of them, which are eigenstates

of the Hamilton H), operator of the bound and spin perturbed system,

Y

Hy=Ho+ Y Has,

linearized in terms due to the exchange (transposition) of any two of the
valence electrons. Here Hy denotes the Hamilton operator of the electron
system without spin coupling. Weyl developed a method for a calculation
of the perturbation term H, — Hy, if the exchange energies W3 between
two valence electrons (1 < a < m;, 1 < < m;j) of two atoms with index i
and j could be calculated (Weyl 193156, 323f.). The critical point for appli-
cations of the method was then the calculation of all the “exchange energies”
involved. It presupposed the solution of a generalizated version of Heitler’s
and London’s problem for electron pairs. Moreover, the whole method could
be physically relevant only for molecules for which the exchange energy con-
tributes essentially to the total bond energy. Molecules with large Hy, with
respect to the spin perturbation, could be analysed just as well by studying
only the Schrédinger wave component of their Pauli spinors.””

From a theoretical perspective,the structure of the procedure was very
satisfying. Weyl argued that, by assigning formally a “valence dash” (be-
tween atom x and y) to each binary invariant of type [z,y], one arrived at
graphs for pure valence states, which were in striking agreement with an old

"The totality of pure valence states is not algebraically independent, but obeys a rela-
tion, given by the “second fundamental theorem of invariant theory”.

" These are molecules in which the geometry of “molecular orbits” of valence electrons
and the Coulomb potential are the essential determinants of the bond energy.
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proposal by J.J. Sylvester. In 1878, Sylvester had proposed, in a purely spec-
ulative approach, to express chemical valence relations by binary invariants.
Formally his proposal coincided with the algebraic core of Weyl’s construc-
tion. Now Sylvester’s procedure could be understood as an expression of an
algebraic structure underlying the determination of bound states in the new
quantum mechanical theory of valence bonds. No wonder that Weyl and
Heitler were fond of the new quantum chemical underpinning of Sylvester’s
speculative method.™

There remained, of course, several problems. The practical usefulness
of the method could be tested only if the exchange energies of single elec-
tron pairs could somehow be calculated. Even then it remained to be seen,
whether the result would be in agreement with empirical chemical knowledge.
In his first publication, Weyl only indicated the general method (Weyl 19315,
323f.).7 In the 1930s he continued with the calculation of examples. That
is shown by notes in his Nachlass (Weyl Ms.N.d.) and by remarks in a new
appendix written for (Weyl 1949).

But the method was never adopted in the chemical community. Most
of the molecules of organic chemistry turned out to be different from the
bonding class which Heitler had called exchange molecules, even in Weyl’s
generalization. During the years, chemists found overwhelming evidence
that their models of molecular orbits, in which the spatial distribution of the
Schrodinger part of the wave function contributed decisively to the binding
energy and sufficed in most cases to solve their problems. Moreover, the
method of molecular orbits was closer to the imagination of the chemists
and its mathematics was easier to handle for them. The more structural
method of exchange energies of spin coupling remained marginal for the
practice of physical chemistry, even in the extended and refined form which
Weyl had started to develop and to present as a methodological tool to the
community of physicists and physical chemists .

7. Outlook

In spite of its surprising theoretical achievements, the rise of groups in quan-
tum mechanics was far from a straight forward story. With its first successes
at the turn to the 1930s, there arose sceptical reservation, criticism, and
even strong counterforces to the spread of group theoretic methods in the
new field of theoretical physics. Such criticism was not always meant as a real
opposition to the modernizing tendency; sometimes it was just an expres-
sion of uneasiness with the new algebraic methods. Soon after Pauli moved

"For a more detailed discussion see (Parshall 1997) and (Karachalios 2003, section 3.1,
163 177).

™ A graphical method for the construction of a basis of invariants, based on an idea of
G. Rumer, was written down by Rumer, Teller and Weyl in (Rumer e.a. 1932).
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from Hamburg to Ziirich as the successor of Debye, in April 1928, Ehrenfest
asked him for help in the difficult the new matter. Pauli was well-known
for his ability to absorb new mathematics with ease and to adapt it to the
necessities of theoretical physics. Moreover, in his last year at Hamburg he
had participated in a lecture course on algebra and group theory given by
Emil Artin. After his arrival in Ziirich in early 1928, he stood once again in
close communication with Weyl like in the early 1920s.50

Group pest

In September 1928, Ehrenfest turned to Pauli and asked for help in under-
standing the “terribly many papers on the group-pest (Gruppenpest)”, of
which he “could not read any one beyond the first page”, as he wrote to
Pauli on September 22, 1928.8' In parts of the still small commu-
nity, this word became the catchword for opposition to the use of group
theoretic methods in quantum mechanics. Apparently Ehrenfest unwillingly
contributed a verbal battle sign to the emerging anti-group camp. For him
the word expressed nothing more than uneasiness about the rising challenges
of the new mathematical methods in theoretical physics. He was not at all
opposed by principle to the new tendencies. On the contrary, he supported
its development actively. On his initiative, B. L. van der Waerden started to
develop his calculus of spinor representations of the Lorentz group (van der
Waerden 1929); and one of his later doctoral students, H. Casimir, started
to do research work on quantum mechanics, very much influenced by Weyl’s
book. As has been discussed on other occasions,3? Casimir finally even con-
tributed to the refinement of representation theory itself, by proposing an
idea for a purely algebraic proof of the full reducibility of representations of
Lie groups, derived from his research on the problem of rotation in quantum
mechanics.

Real and strong opposition to the group theoretic approach to quantum
mechanics came from another camp led by John Slater, who showed that
already traditional algebraic tools were highly effective in the calculation of
the energy of higher atoms and binding energies of molecules (Slater 1929).
Slater’s background in a more pragmatic tradition of theoretical physics in
the United States surely played a role for his strong rejection of the more the-
oretically minded approaches like representation theory (Schweber 1990).83

80(Meyenn 1987), (Mehra/Rechenberg 2000/2001, 472). A couple of weeks after his
arrival Ziirich, Pauli wrote in a letter to N. Bohr : “I have now learned so much erudite
group theory from Weyl that I am really able to understand the papers of Wigner and
Heitler” (Pauli 1928). Moreover, he read and commented page proofs of Weyl’s GQM in
early summer 1928 (Pauli 1955, 402).

81Quoted from (Mehra/Rechenberg 2000/2001, 473).

82(Meyenn 1989), (Mehra/Rechenberg 2000/2001, 512-514), (Hawkins 2000).

83See also (Sigurdsson 1991), (Mehra/Rechenberg 2000/2001, 499ff.) and for a broader
comparative discussion of German and American physical chemists of the first generation
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Slater’s success in developing determinant methods for quantum mechan-
ical calculations found immediate acceptance among leading protagonists of
the Gottingen milieu. Shortly before Weyl decided to come back to Gottin-
gen as the successor to David Hilbert, Max Born warned him, in an otherwise
very friendly welcome letter, that he supported the “attempt to throw group
theory out of the theory of atomic and molecular structures, as far as possi-
ble” (Born Ms 1930a). At that time, Born was close to finishing an article
in which he attempted to get rid of group theoretic methods in the theory of
chemical bonds (Born 1930). He even was proud of having convinced Heitler,
after the latter’s arrival at Gottingen as Born’s assistant, to give up the idea
that group theoretic considerations might play an important role in stud-
ies of molecular bonds.8* This perspective resulted in a common article by
W. Heitler and G. Rumer on chemical bonds, which only used “traditional”
algebraic methods along the line of Slater and Born (Heitler 1931).8° On
the other hand, group theoretic methods in physics and quantum chemistry
continued to be a topic for lecture courses at the Géttingen mathematical
institute.®

Weyl at Goéttingen

In the meantime, in May 1930, Weyl had accepted the call to Gottingen and
started to teach there in winter semester of the same year. That gave him a
splendid occasion for critical exchanges and collaboration with Born, Heitler,
Rumer, and Teller on group theoretical methods in the nascent quantum
chemical context. Although Born had been highly sceptical of the method
earlier on, he gave critical support to the enterprise after Weyl moved to
Gottingen, in his own way. This exchange of ideas with the theoretical
physicists around Born in the common Go6ttingen seminar led Weyl to a more
detailed elaboration of his use of symmetry operators in the n-fold tensor
space of electron states for the characterization of molecular bond states and
the establishment of the link to binary invariants (Weyl 1930, Weyl 1931b).
In a subsequent review article on the quantum theory of molecular bonds
in the Ergebnisse der exakten Naturwissenschaften, Born finally rephrased
those results of Weyl’s investigation which seemed of importance to him
for physicists and physical chemists. In the introduction to his article he
frankly declared that the proofs of Weyl’s results could not be rephrased
under “complete avoidance of the ‘group pest’ which Slater and the author

(Gavroglu/Simoes 1994).

84 (Born Ms 1930a)

85The article was written after Weyl had arrived at Gottingen, and after a discussion
of the method in the common seminar on the structure of matter.

86W . Heitler gave a course on this subject in winter semester 1929/30 at the mathemat-
ical institute (Heitler Ms 1929/30). He concentrated on the subject matter of Wigner’s
and von Neumann’s theory. Only in the last chapter he gave a short introduction to the
theory of molecular bonds. T owe Martina Schneider the information on this course.
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[Born| had intended”. He therefore restricted the presentation to formulas
and rules, without proofs, such that the results could be understood by
physicists and chemists without being forced to read “the difficult works of
Frobenius and Schur on the representation theory of groups”, as he wrote in
his introduction (Born 1931, 390).

All in all, the first wave of rapid development of group theoretical meth-
ods in quantum mechanics ran into the opposition of a strong, multi-faceted,
anti-group camp; or, at least, it had to face pragmatic scepticism among
physicists and theoretical chemists at the turn to the 1930s.

On the other hand, new forces joined the party of mathematical contrib-
utors to representation theoretic methods for mathematical physics. Most
important, from the side of young mathematicians, was Bartel Leendert van
der Waerden who entered this scene with his spinor paper written with the
explicit goal of serving the physics community (van der Waerden 1929).87 In
personal communications with Weyl he also contributed critical remarks to
the understanding of algebraic structures underlying spin coupling. Van der
Waerden criticised Weyl’s approach from the viewpoint of a young “mod-
ern”, i.e., structurally oriented, algebraist. In a letter from April 4, 1930,
he argued that in Weyl’s derivation of the “reciprocity theorem” it was un-
necessary to build upon the “inessential property that m [Weyl’s symbol for
the permutation group, E.S.| is a permutation group”. Obviously he ab-
horred the “multitude of indices” used by Weyl and claimed that one could
do without them in this investigation(van der Waerden Ms1930). After some
exchanges of letters, of which only the van der Waerden part is preserved,
he argued that the result was essentially a question in the representation
theory of algebras. According to van der Waerden’s analysis, Weyl’s re-
sult depended essentially on the fact that a matrix algebra A induced from
the operation of the group algebra C[Sf]| on ®f V' commutes with a com-
pletely reducible representation of the general linear group GL(V) on the
tensor product (van der Waerden Ms1931).88 Tt seems that Weyl was not
completely convinced that such a level of structural abstraction suited his
purpose. He rather insisted on the use of the “multitude of indices”, because
they were essential for the context of modelling the combined electron sys-
tems of two atoms in a molecule. Nevertheless he accepted the proposal to
straighten the derivation of the reciprocity theorem (Weyl 193154, 310).

In this sense, the interaction between physicists and mathematicians close
to the Gottingen and Ziirich milieu seemed to be a a splendid scientific
environment for a further consolidation of group theoretic methods in physics
and chemistry at the turn to the 1930s. In the next couple of years, the triad
of now classical text books on the use of group theory in quantum mechanics
appeared (Wigner 1931), the second edition of Weyl’s GQM and its English

8TMore details will be discussed in (Schneider 2006).
88See also (van der Waerden 1930a).
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translation by H.P. Robertson (Weyl 1931a), and (van der Waerden 1932).
These books broadened the basis for an extension of the approach, invited
scepticists to take an own look at the question, and enabled newcomers from
different backgrounds to join the enterprise.

From an intermediate period ...

As we know, and most of the participants sensed well, the social stability of
this milieu stood on shaky ground. Only little later, with the Nazi’s rise to
power, the Gottingen mathematical science group was dismantled. As one
of the consequences, the closely knit interaction between pragmatic sceptics
with respect to the group theoretic method, close to Born, and the group of
active protagonists like Weyl, van der Waerden, Heisenberg, Wigner and von
Neumann, which was easily organized around Gottingen, was interrupted.
Although several of the protagonists of the first wave continued to elaborate
and to teach or propagate the new method, no great gains in terms of broader
acceptance could be made during the next two decades .

Weyl continued to argue for the use of the new method, in particular in
the context of chemical bonds, in publications, talks and lecture courses. But
he was very well aware of the reservations of the practitioners of the field felt
in rageard to his proposals of using invariant theory for the characterization
of bond states, and he accepted it. In an undated manuscript of a talk given
in the second part of the 1930s, Weyl remarked that the development in
the field had not been “very favorable to the scheme” which he had laid out.
The recent report (Van Vleck 1935) had nearly passed it over “in silence”. He
realistically added that in his exposition he even intended to “clearly indicate
the boundaries of applicability for our scheme” (Weyl Ms.N.d., 2).

Finally he concentrated his research and publication efforts on the math-
ematical foundation of the theory. In joint work with Richard Brauer he
developed a global characterization of spin representations in any dimension
(and of arbitrary signature) by Clifford algebras (Brauer 1935).89 All this
culminated in his book on The Classical Groups (Weyl 1939). That was no
disillusioned withdrawal to pure mathematics. It rather was an expression
of a realistic evaluation of the actual situation in the field of application.
Even though Weyl’s calculation of binary invariants did not enter the core
of the theory of chemical bonds, his invariant theoretical analysis of spin
constellations turned out, in the long run, to be an important contribution
to the study of spin-coupling, which has recently started to attract new in-
terest from the point of view of “entangled” systems. The introduction of
binary invariants into the study of coupled systems of electrons in the late
1920s and the following decade, may turn out to be another prelude to the

89E. Cartan had discussed spinor representations on the infinitesimal level already in
1913; here the integral (global) perspective stood in the center.
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development of a symbolic game with long lasting importance in a shifted
context of application.”®

During the decades of slow maturation, it was mainly due to Werner
Heisenberg’s anticipatory guess of isospin SUs as a symmetry underlying the
nuclear interactions (Heisenberg 1932) and to Eugene Wigner’s continuing
work and insistence on the importance of the group theoretic approach for
fundamental physics, that this research tradition in mathematical physics
was never completely interrupted.?! Most important for relativistic quantum
physics was Wigner’s fundamental work on the representation theory of the
Poincaré group (Wigner 1939).

...to a second wave of groups in quantum physics

With the exception of such “heroic¢” but for a long time relatively isolated
contributions, it needed a new generation of physicists and a diversification
of problems and another problem shift in quantum physics, before group
theory was stepwise integrated into the core of quantum physics. Faced with
the rise in complexity of problems of nuclear spectroscopy, G. Racah brought
group theoretic methods closer to the ordinary problem solving practice of
spectroscopists (Racah 1942 1949).92 Finally the proliferation of new “ele-
mentary particles” between 1950 and the 1970s gave material and motivation
to look for group theoretical classifications of object structures and the corre-
sponding internal symmetries of interactions. Thus we can see a second wave
in the use of group theoretical methods in quantum physics during the 1950s
to the 1970/80s. In this changed context, the two books of the above men-
tioned triad, which formerly were only available in German, were translated
into English, (Wigner 1957) and (van der Waerden 1974). Mathematicians
of the next generation, among them G. Mackey and I.E. Segal, continued to
contribute, from the side of mathematics, to the research tradition begun at
the end of the 1920s.

In this second wave of research, simple anticipatory ideas had to be dif-
ferentiated and different strands of using groups in quantum physics grew
together:

— weight systems of representations were turned into a tool for under-
standing “multipletts” of basic states of matter, generalizing the mul-
tipletts of spectral terms of the 1920s,

isospin was first enriched (“eightfold way”, SUs) and then transformed
into two different forms (weak isospin, SUs, and the “chromo-symmetry”

9 This “game” has recently gained new interest from the point of view of quantum
computing. In this new context the question of energy contributions, which hindered
Weyl’s proposals from becoming important in quantum chemistry, are subordinate. I owe
the hint to the connection of Weyl’s work with these recent developments to P. Littelmann.

91Cf. (Rasche 1971) and (Mackey 1993, 265f.).

92(Mackey 1993, 269)
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of strong interactions, SUs), the basic symmetries of particle physics
of the late 20th century,

— conservation laws became generally considered as founded upon under-
lying dynamical symmetries,

— the study of infinitesimal symmetries became standardized in the form
of (generalized and non-abelian) gauge fields or, equivalently, connec-
tions in fibre bundles.

Groups, their representations, corresponding conserved quantities, and
the use of gauge structures were finally broadly accepted. They were used
as an important ingredient of the mathematical forms functioning as a sym-
bolic relative a priori in which theoretical physicists of the late 20th century
were able to mold an impressive part of the experimental knowledge of fun-
damental physics. At the end of the second wave, group theoretical methods
were well integrated into the mainstream of mathematical physics. Although
at the end of the century the gap between general relativity and quantum
physics continued to be wide open, groups and their representations have
turned into useful tools and provide conceptually convincing forms for the
construction of symbolic models of material processes in both domains.
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