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Introdu
ing Groups into Quantum Theory(1926 � 1930)Erhard S
holz, WuppertalAbstra
tIn the se
ond half of the 1920s, physi
ists and mathemati
ians in-trodu
ed group theoreti
 methods into the re
ently invented �new�quantum me
hani
s. Group representations turned out to be a highlyuseful tool in spe
tros
opy and in giving quantum me
hani
al expla-nations of 
hemi
al bonds. H. Weyl explored the possibilities of agroup theoreti
 approa
h towards quantization. In his se
ond versionof a gauge theory for ele
tromagnetism, he even started to build abridge between quantum theoreti
 symmetries and di�erential geome-try. Until the early 1930s, an a
tive group of young quantum physi
istsand mathemati
ians 
ontributed to this new 
hallenging �eld. Butaround the turn to the 1930s, opposition against the new methods inphysi
s grew. This arti
le fo
usses on the work of those physi
ists andmathemati
ians who introdu
ed group theoreti
 methods into quan-tum physi
s.Introdu
tionIn the middle of the 1920s, understanding of the representations of Lie groupsand understanding of the quantum me
hani
al stru
ture of matter madegreat advan
es, almost simultaneously. Certain members of both dis
iplinessaw the potential for building new and deep 
onne
tions between mathemat-i
s and theoreti
al physi
s. Thus a 
ooperative development highly 
onse-quential for theoreti
al physi
s began in the se
ond half of the 1920s, with themain protagonists being W. Heisenberg, E. Wigner, F. London, W. Heitlerand, to a lesser degree, P.A.M. Dira
 on the one side, H. Weyl, J. von Neu-mann, and B.L. van der Waerden on the other. The �rst introdu
tion and useof the new method in theoreti
al physi
s met soon with opposition (�grouppest�). But it turned out to be su

essful in the long run, and to be just the�rst wave of a pro
ess of restru
turing mathemati
al 
on
epts and te
hniquesin the theory of the basi
 stru
tures of matter. After an intermediate periodof about two de
ades with a slow and nearly unnoti
ed 
ontinuation of workin this dire
tion, another wave of using group-theoreti
al methods in physi
sgained momentum in the se
ond half of the 
entury. This development hasre
ently attra
ted interest from the side of history and philosophy of s
i-en
e.1 It should be quite as interesting from the point of view of the historyof mathemati
s, be
ause it established broad and 
onsequential semanti
alrelations for an important �eld of modern mathemati
s.1(Mehra/Re
henberg 2000/2001, Gavroglu/Simóes 1994, Kara
halios 2003, Brading2003)



The following arti
le explores the �rst wave of introdu
tion of new math-emati
al methods into quantum physi
s and 
hemistry. It starts with theearly realization of the usefulness of group theoreti
 methods for the studyof spe
tros
opy and 
hemi
al bonds, and stops short of the 
onsolidation ofwhat was a
hieved in the �rst wave in three textbooks on the subje
t pub-lished in the early 1930s, (Weyl 1928, 21931), (Wigner 1931) and (van derWaerden 1932), whi
h have now be
ome 
lassi
s of the �eld. Unlike theother two, Weyl's book had an earlier �rst edition at the end of the 1920. Ittherefore enters the period of investigation of our investigation.This arti
le is a �rst step into this interdisplinary terrain from the sideof history of mathemati
s. It relies heavily on the solid ba
kground laidout by T. Hawkins' study (Hawkins 2000) and H. Re
henberg's 
hapter ongroup theory and quantum me
hani
s in (Mehra/Re
henberg 2000/2001, VI1, 
haps. III.4, III.5).1. Heisenberg and WignerShortly after the invention of the new quantum me
hani
s, P.A.M. Dira
, W.Heisenberg, and E. Wigner started to 
onsider 
onsequen
es of symmetry inmulti-parti
le systems for the stru
ture of energy terms in atomi
 spe
tra.2Dira
 studied the role of antisymmetry in multi-ele
tron systems in summer1926. Important as that was for the growing understanding of quantumme
hani
s, it did not employ group theory beyond the distin
tion of thesignum of permutations. Group theoreti
 questions proper started to beaddressed by Heisenberg and Wigner in late 1926 and early 1927.The newly established paradigm of quantum me
hani
s demanded to
hara
terize a (quantum) physi
al system, at the time typi
ally an ele
tronsystem in the shell of an atom or of a mole
ule, by a set of Hermitian (ormore generally, symmetri
) operators, one for any observable quantity of thesystem, in a state spa
e S assumed to be a Hilberts spa
e in order to havesu�
ient symboli
al stru
ture. In S
hrödinger's perspe
tive, S was viewed asa spa
e of 
omplex �wave� fun
tions. Then the tool of di�erential operators
ould be used.3 Most important was the operator 
hara
terizing the energyof the system (or a 
onstitutive part of it, like an ele
tron in a multiparti
le2For the emergen
e of matrix, wave, and �q-number� me
hani
s see, among others,(Hendry 1984, Beller 1999, Pais 1986, Re
henberg 1995, Cassidy 1992, Kragh 1990, Moore1994). A multi-volume en
y
lopedi
 report is (Mehra/Re
henberg 1982�2001, vols, II,III, IV, V). A six-page 
ompression of the 
ru
ial period 1923 � 1926 
an be found inthe introdu
tion to volume VI (Mehra/Re
henberg 2000/2001, VI 1, xxv�xxxi). For asplendid bibliography see (Mehra/Re
henberg 2000/2001, VI 2, 1253�1439); indexes ofthe whole series at the end of the same volume VI 2.3Questions how the fun
tion spa
e was to be 
ompleted, or how domains of the opera-tors should be understood and, perhaps, extended, were generously negle
ted by the earlyquantum physi
ists. Su
h questions were �rst addressed by J. von Neumann in the later1920s and at the turn to the 1930s. 2



system), the Hamilton operator H. Other operators 
ould 
hara
terize linearmomenta Pi or 
oordinatized spatial positions Qi (1 ≤ i ≤ 3), rotational(orbital) momenta Li, the square of the total momentum L2, and, a littlelater, the spin J of a parti
le (
onsidered to express the �parti
le's� properrotation) et
..For an atom, the eigenspa
es of the Hamilton operator H 
ould 
hara
-terize the stationary states of a system of ele
trons, or of an outward ele
tron,depending on the situation. The eigenvalues E1, E2, . . . of H represented theenergy values obtained in these states. Often su
h eigenstates turned out tobe degenerate, i.e., they belonged to an eigenvalue of multipli
ity > 1. Thiswas the 
ase for atoms or mole
ules with rotational symmetry. Of 
ourse,spe
tros
opy did not allow to measure the energy of ea
h eigenstate dire
tly.Only di�eren
es between two energy values, say E1 and E2, were observ-able by the frequen
y ν of the radiation emitted during the transition of anele
tron from one energy state to the other,
hν = E1 − E2 .In early 1925, Pauli 
onje
tured that bound ele
tron states in a mole
ulehave an intrinsi
 two-valuedness and that ele
trons obey an ex
lusion prin-
iple forbidding di�erent ele
trons (a littler later also other �fermions�) too

upy the same state of a system. Later in the year, S. Goudsmit and E.Uhlenbe
k established the hypothesis of ele
tron spin whi
h they assumed toarise from a �proper rotation� of the ele
tron. Di�erent empiri
al eviden
eindi
ated that this intrinsi
 spin was quantized with respe
t to any spe
i-�ed spatial dire
tion in exa
tly two possible states u and d (spin �up� andspin �down�). Early in 1927, W. Pauli mathematized the idea by a spin statespa
e C2 extending the 
omplex phase of the S
hrödinger wave fun
tion ψ(x)(Pauli 1927). In group theoreti
 language, whi
h was not yet in Pauli's mindin early 1927, he impli
itly worked inside the natural representation of SU2,the 
overing group of the spatial rotations SO3. He proposed to des
ribe aspinning parti
le by a two valued wave fun
tion ψ̃ = (ψ1, ψ2), later 
alleda Pauli spinor.4 It 
ould be 
onstru
ted from S
hrödinger wave fun
tionsby forming (tensor) produ
ts with the 
omplex two-dimensional spa
e 
har-a
terizing the 
omplex superpositions of the two possible pure spin statesC2 ∼=< u, d > (here < > denotes the linear span). The total wave fun
-tion of a 
olle
tion of n ele
trons was expressed formally as a �produ
t�(in later terminology as an element of the n-fold tensor produ
t ⊗n S). Insummer 1926 P.A.M. Dira
 realized that Pauli's ex
lusion prin
iple impliedthat multi-ele
tron (more generally fermion) states had to be represented by4Pauli drew upon the symboli
 ressour
es of the Klein-Sommerfeld theory of the spin-ning top, whi
h 
ontained the natural representation of SU3 impli
itly. For a review of theunderstanding of the rise of spin see (van der Waerden 1960) or (Mehra/Re
henberg 1982,
hap. VI.4). 3



alternating produ
ts (Dira
 1926).5An ad-ho
 usage of permutations (W. Heisenberg)Already before Pauli's mathematization of spin was known, Heisenberg startedto 
onsider the 
onsequen
es of the new phenomenon for multi-ele
tron sys-tems. In June 1926 he submitted his �rst paper on this topi
 to Zeits
hriftfür Physik (Heisenberg 1926). He looked for reasons for the separation ofenergy terms in the spe
trum of higher atoms into di�erent subsets betweenwhi
h apparently no ex
hange of ele
trons took pla
e (term systems withoutinter
ombination). Su
h an e�e
t 
ould be seen by �missing� lines when one
ompared the observed spe
tral lines with the 
ombinatori
s of all the arisingenergy levels in a higher atom. Heisenberg guessed that the intera
tion ofthe orbital magneti
 momentum of ele
trons (i.e., the magneti
 momentumresulting from what was left from Bohr's ele
tron orbits in the new quantumme
hani
s) with the still hypotheti
al spin might play a 
ru
ial role for thisphenomenon (Heisenberg 1926).In a se
ond part of the paper, submitted in De
ember 1926, he 
ontinuedto explore the hypothesis further. He proposed the view that the distin
tionof term systems might result from a kind of �resonan
e phenomenon� betweenthe spin states of the di�erent ele
trons and, perhaps, their orbital momenta.He made 
lear that here the word �resonan
e� was not to be understood inthe sense of 
lassi
al physi
s, but as an expression of a physi
al intuition ofthe �more subtle interplay of the ele
trons in an atom� (Heisenberg 1927,556, 578). Thus Heisenberg's �quantum me
hani
al resonan
es� referred tospin 
oupling e�e
ts for whi
h at that time no adequate mathemati
al repre-sentation was known.6 He therefore looked for new tools to deal with themand hoped to �nd them in the theory of permutation groups.In his investigation, Heisenberg studied states of n-ele
tron systems inan atom or mole
ule. Abstra
ting at �rst from spin, he started from neigenfun
tions l,m, . . . p (Heisenberg's notation) of the Hamilton operator,whi
h des
ribed possible states of single ele
trons without spin, possibledegenera
ies in
luded. As usual he des
ribed a 
omposite system by a kindof non
ommutative produ
t of the eigenfun
tions. He 
onsidered the resultas a state of the �unperturbed� 
omposite system, while the spin 
oupling(�resonan
e�) had to be taken into a

ount as a perturbation due to the �moresubtle interplay of the ele
trons�. Be
ause ele
trons are indistinguishable, he
on
luded:In the unperturbed 
ase, the eigenfun
tion of the total system
an be written as produ
t of all fun
tions of the single ele
trons,5Cf. (Kragh 1990)6In early quantum 
hemistry the term �resonan
e� was used in a 
omparable metaphor-i
al way; see (Mosini 2000). 4



e.g., l1m2 . . . pn. The unperturbed problem is n!-fold degener-ate, be
ause a permutation of the ele
trons leads to equal energyvalues of the total system. (Heisenberg 1927, 557)For an element u of the (tensor) produ
t spa
e, written by our authoras u = l1m2 . . . pn with an index 1 ≤ i ≤ n for the di�erent ele
trons,Heisenberg 
onsidered the result of an ele
tron permutation S ∈ Sn, thesymmetri
 group of n elements, and wrote it as
Su = lS(1)mS(2) . . . pS(n).If we denote the state spa
e of a single ele
tron by V =< l,m, . . . , p >,

dimV = n, the (n!-fold degenerate) total state spa
e of the quotation above
orresponds to the span of ve
tors arising from permutation of the 
ompo-nents of any one produ
t state u.7 We we want to denote it here as V (n)

V (n) := 〈Su |S ∈ Sn〉 ⊂ ⊗nV.

V (n) was 
onstru
ted to 
hara
terize the state spa
e of an �unperturbed�system of n ele
trons distributed a

ording to Pauli's prin
iple (i.e., mappedbije
tively) on the n states m, l, . . . , p. Without spin the energy was totallydegenerate (all eigenvalues identi
al), while the 
onsideration of spin split itup into di�erent �non-
ombining� terms. The physi
al model of the ele
tronsystem had to a

ount for the impossibility of transitions of ele
trons betweenthe respe
tive states or subspa
es. Mathemati
ally the question was whetherthe 
orresponding ve
tors (wave fun
tions) or subspa
es in Hilbert spa
e wereorthogonal.Heisenberg looked for a de
omposition of V (n) into �non
ombining� (or-thogonal) subsystems if spin resonan
e was 
onsidered as a kind of perturba-tion. As we will see in a moment, he had good arguments that orthogonalityof subspa
es should not be a�e
ted by the spin perturbation. Its basi
 stru
-ture 
ould thus be analyzed already on the level of the unperturbed systemwithout spin.In order to address this question, Heisenberg 
onsidered a 
y
li
 subgroupof Sn generated by a �substitution� (permutation) S of highest possible order7We may prefer to distinguish Heisenberg's basi
 state ve
tors by a lower index i,
ψ1 = l, ψ2 = m, . . . , ψn = p, and to 
hara
terize the bije
tion between states and ele
-trons by adding an upper index j, ψ(j)

i (1 ≤, i, j ≤ n). Then it is advisable to orderthe tensor produ
t a

ording to ele
tron indexes, ψ(1)
i1

⊗ ψ
(2)
i2

⊗ . . . ψ
(n)
in

(
omparable toWigner's notation, see below). That makes the upper (ele
tron) index redundant, andthe lower (state) index i en
odes the di�erent possibilities for bije
tions 
ompletely. Be-
ause Heisenberg ordered a

ording to states and used the ele
tron indexes to indi
atethe bije
tion between ele
trons and individual states, his permutation S operated on thestate ve
tors of the (�our�) tensor produ
t V (n) by inversion S−1 =: σ, i.e. from the right:
(ψ1 ⊗ψ2 ⊗ . . .⊗ ψn).σ = ψσ(1) ⊗ . . .⊗ψσ(n) = ψS−1(1) ⊗ . . .⊗ ψS−1(n). As this detail hasno 
onsequen
es for the orthogonality questions, we follow Heisenberg's des
ription in thesequel without further retranslations. 5



ν, and an orbit in V (n) of an eigenstate u under su
h a subgroup. He thenformed di�erent superpositions of the elements of su
h an orbit. For a per-mutation S of order ν he 
hoose 
oe�
ients formed by powers of a primitive
ν-th root of unity ω, ων = 1, in the following way:

U0 =
1√
ν
(u+ Su+ S2u+ . . . Sν−1u)

U1 =
1√
ν
(u+ ωSu+ ω2S2u+ . . . ων−1Sν−1u)

. . .

Uν−1 =
1√
ν
(u+ ων−1Su+ ω2(ν−1)S2u+ . . . ω(ν−1)2Sν−1u).These linear 
ombinations were formed in analogy to the 
onstru
tion ofthe roots of resolvents in the theory of algebrai
 equations. In fa
t, Heisen-berg referred to a textbook of higher algebra, a �fty year old German transla-tion of a 
lassi
al book by Serret (Serret 1868), whi
h had been written origi-nally in 1866 (third edition), as one of the �rst books 
ontaining a passage onthe re
ently revived theory of E. Galois.8 For dimensional reasons (ν < n!)there were elements w = Tu, T ∈ Sn, of the de�ning basis of V (n) (Heisen-berg: �eigenfun
tions�) whi
h were linearly independent of the U0, . . . , Uν−1.They lead to analogously formed linear superpositions W0, . . . ,Wν−1. Heapplied the same pro
edure, step by step, until the whole spa
e V (n) wasspanned by elements of su
h a form: U0, . . . , Uν−1,W0, . . . ,Wν−1 . . ..9Now, Heisenberg 
olle
ted all fun
tions Uj,Wj , . . . starting with the sameexponent j of the unitary root ω into one 
olle
tion,

Γωj := {Uj ,Wj , . . .} ,and proposed that the 
orresponding subspa
es 
ould be taken as symboli
alrepresentatives for the di�erent term systems. He argued that the span of
Γωj and Γωk ought to be orthogonal (for di�erent j and k)

∫

f̄jgk = 0 , fj ∈ Γωj , gk ∈ Γωk , j 6= k . (1)His argument for this 
laim depended 
ru
ially on an invarian
e argumentof the transition integral under any permutation:If under the integral (. . . ) the ele
tron numbers are somehowpermuted, the value of the integral 
annot 
hange. (Heisenberg1927, 559)The physi
al 
ontext of the 
al
ulation demanded su
h an invarian
e. Al-though Heisenberg's 
onstru
tion of the �term systems� Γωj did not ensure8(Kiernan 1971, 110�.)9Cf. (Mehra/Re
henberg 2000/2001, 489�.).6



su
h an invarian
e, his argument held for similar 
onstru
tions in whi
h theinvarian
e 
ondition was satis�ed.10 The form of his argument was 
lose toone used in early Galois theory (�as the whole 
onstellation does not dependon the 
hoi
e of the ordering of the roots of the equation, . . . su
h and su
hinferen
e 
an be drawn . . . �) and may have been prompted by the latter.Heisenberg agreed with Dira
 that an �eigenfun
tion� of the total systemshould be antisymmetri
 under permutation of the ele
trons. It seemed im-possible, at the moment, to draw 
onsequen
es of this postulate.11 On theother hand, he plausibly assumed that any perturbation of transition proba-bilities, arising from spin 
oupling, should be symmetri
 under transpositionof two ele
trons. That was su�
ient, in his 
ontext, to show that the de-
omposition of the total spa
e of n ele
trons V (n) into orthogonal subspa
eswas not a�e
ted by spin resonan
e. Thus, so he 
on
luded, the subspa
esspanned by the Γωj ought to 
hara
terize the de
ompositions of energy termsinto non-
ombining partial systems in
luding spin (Heisenberg 1927, 559).12Although the argument did not work in his own ad-ho
 
onstru
tion, it wouldbe
ome important (and 
orre
t) on
e it was transferred to a de
ompositioninto truely invariant subspa
es.All in all, Heisenberg's paper gave an inventive treatment of the termsystem problem, although it must have apppeared surprising for mathe-mati
al readers of the time (like J. von Neumann or H. Weyl). For the
onstru
tion of non-
ombining term systems, Heisenberg relied on a ratherold-fashioned algebrai
 ba
kground (Serret 1868). Neither H. Weber's text-book (Weber 1895/96) nor any other more re
ent algebrai
 text was evenmentioned. Su
h a negle
tion of more re
ent methods may not ne
essarilybe of great disadvantage for a new appli
ation of mathemati
s by a physi
ist.But in this 
ase, the negle
tion of younger algebrai
 developments in
ludedthe methods of representation theory of �nite groups, whi
h dealt with stru
-tures mu
h 
loser to Heisenberg's problem than algebrai
 equation theory.In his �rst step into the new terrain, Heisenberg had to rely on formal ex-pressions originally introdu
ed in a 
ompletely di�erent 
ontext. Thus hishypothesis for the identi�
ation of non-
ombining term systems by his Γ-
olle
tions was quite daring and would surely have led to di�
ulties, had itbeen used in future investigations without major modi�
ations.From hindsight it is easy to see that Heisenberg's de
omposition did notlead to irredu
ible representations of the permutation group. Worse than10We will see in a moment (equation (2)) that Heisenbergs Γωj , respe
tively their linearspans, are no invariant subspa
es under the full permutation group . Heisenberg's ownargument shows that therefore his model was physi
ally unreliable. Wigner's approa
hsolved the problem. It was di�erent to Heisenberg's, 
ontrary to what the latter believed.11A stru
tural answer to this question was given later by Weyl and a more pragmati
one by von Neumann and Wigner, see below.12I thank an anonymous referee for having made me aware of this important passage inHeisenberg's argument. 7



that, Heisenberg's hypotheti
al �non-
ombining term systems� Γωj were noteven invariant subspa
es under the full permutation group. His 
onstru
tionmade sure that a subspa
e Γωj is an eigenspa
e with eigenvalue ωj of the
y
li
 subgroup generated by the permutation S. But this does not hold forother permutations. Already for n = 3, ω = e
2πi
3 and any 3-
y
le S, e.g.

S = (123), a transposition T with TST = S2, e.g. T = (12), maps U1 ∈ Γωto U2 ∈ Γω2 ,
SU1 = ωU1 , STU1 = TS2U1 = ω2TU1 . (2)In fa
t, the linear spans of {U1, U2} and {W1,W2}, in Heisenberg's nota-tion, are 
opies of the two-dimensional irredu
ible representation of S3.13 Inother words, the irredu
ible spa
es are transversal to the subspa
es o�eredby Heisenberg as �non-
ombining term systems�. But before su
h dis
repan-
ies 
ould start to irritate other 
ontributors to the program, Heisenberg'smethod was outdated by an approa
h to the problem proposed by his 
ol-league E. Wigner.So it was good news, and even better ones than Heisenberg knew, thathe 
ould refer to Wigner's investigations already in a footnote added in proofto his De
ember paper. He erroneously believed that his approa
h agreedwith Wigner's (Heisenberg 1927, 561, footnote (1)). In fa
t, a rash view
ould support this belief, as in the 
ase of 3-ele
trons, e.g. a Lithium atom,both methods led to equal numbers and dimensions of the respe
tive termsystems: two one-dimensional term systems (symmetri
 and antisymmetri
)and two equivalent two-dimensional term systems (standard representationin Wigner's approa
h), 6 = 1+1+2+2. But while Wigner 
hara
terized thenon-
ombining term systems by subspa
es whi
h a
tually were irredu
iblesubrepresentations, we have seen that Heisenberg's de
omposition was dif-ferent, even in this 
ase.In the end, it appears as a lu
ky sequen
e of events that Wigner's papersthrew new light on the question so fast. His approa
h superseded Heisen-berg's group theoreti
ally ad-ho
 method, before the latter 
ould lead intoa dead end. Wigner's papers opened the path towards an introdu
tion ofgroup representation into the study of multi-parti
le systems and establisheda sound mathemati
al frame into whi
h Heisenberg's perturbation 
al
ula-tion 
ould be integrated without 
ontradi
tions.14Turn towards group representations (E. Wigner)Eugene Wigner had studied 
hemi
al engineering at Budapest and Berlin(TH) during the years 1920 to 1925 and had gained a

ess to the physi
al
ommunity organized around the 
olloquia of the Deuts
he Physikalis
he13Cf. (Fulton/Harris 1991, 8�.).14In the literature on history of quantum me
hani
s this essential di�eren
e be-tween Heisenberg's and Wigner's approa
hes is often passed over in silen
e; 
f. e.g.,(Mehra/Re
henberg 2000/2001, 489�.). 8



Gesells
haft and the lo
al Kaiser-Wilhelm Institutes.15 After he had �nishedhis diploma degree, he went ba
k to Budapest and worked as a 
hemi
alengineer in a leather tannery (his father's 
raft), but he 
ontinued to readthe Zeits
hrift für Physik with the interest of an a�
ionado. Thus he was wellinformed about the breakthroughs in quantum me
hani
s, a
hieved during1925. He immediately a

epted the 
han
e to go ba
k to Berlin, when hewas invited by Karl Weissenberg to be
ome his assistant at the Kaiser-Wilhelm Institute for �bre resear
h. Weissenberg himself had studied appliedmathemati
s with R. von Mises and had then turned towards 
ondensedmatter physi
s. He needed support in his X-ray investigations of 
rystalstru
tures. At Weissenberg's suggestion, Wigner started to read the grouptheoreti
 parts of Weber's textbook (Weber 1895/96) and to explore thesymmetry 
hara
ters of 
rystals in the new setting.16 Be
ause of this interestin a
tual X-ray 
rystallography, he was mu
h better a
quainted with grouptheory than Heisenberg in 1926.In late 1926, Wigner started to study the question of how n-parti
lesystems 
an be built from n given, pairwise di�erent, single parti
le states
ψ1, . . . , ψj , . . . ψn, initially without 
onsidering spin e�e
ts. Like Heisenberg,he wanted to know how the n-parti
le state spa
e de
omposes under permu-tations of the ele
trons. Ea
h ele
tron was (in the stationary 
ase) identi�edmathemati
ally by its hypotheti
al �spa
e 
oordinates� ri = (xi, yi, zi) ∈ IR3,where i served as an index to 
hara
terize di�erent ele
trons.In his �rst paper on the topi
 (Wigner 1926), submitted on November 12,1926, he 
onsidered a produ
t of n �eigenfun
tions� ψ1, . . . , ψn. Any state ψk
an be �o

upied� by any (the i-th) ele
tron, whi
h was denoted by Wignerby ψk(ri). He then 
onsidered permutation states of the form

ψσ1(r1)ψσ2(r2) . . . ψσn(rn) =: vσ,where σ is any permutation of n elements, (the notation vσ is ours). ThusWigner studied essentially the same subspa
e V (n) of the n-fold tensor prod-u
t of V =< ψ1, . . . , ψn > as Heisenberg. In his �rst paper he 
onsideredonly the spe
ial 
ase n = 3 and 
al
ulated the de
omposition of V (3) intoirredu
ible 
omponents under permutations �by hand�. No wonder, that hefound Dira
's symmetri
 and antisymmetri
 representations among them andin addition two 2-dimensional �systems�.17 He 
on
luded similar to Heisen-berg:15For the following passage on Wigner 
ompare (Chayut 2001) and (Ma
key 1993).16See (Chayut 2001) and Wigner's autobiographi
al report in (Wigner 1992, 105).17The regular representation of S3 (
f. next footnote), R3
∼= V (3), de
omposes into thetrivial representation U , the antisymmetri
 representation U ′ (both 1-dimensional) andtwo 
opies of the twodimensional irredu
ible subspa
e S2 := {(z1, z2, z3) | z1 +z2 +z3 = 0}of the natural representation on C3 arising from permutations of the basis ve
tors: R3 =

U ⊕ U ′ ⊕ S2 ⊕ S2. 9



The additional systems are all degenerate, this degeneration issu
h that it 
annot be broken by any perturbation symmetri
 inthe single parti
les whi
h are assumed to be equivalent. (Wigner1926, 34)The state spa
e V (3) was spanned by ve
tors vσ identi�ed by permuta-tions σ ∈ S3. The operation of S3 on V (3) was multipli
ation of permutations(in Wigner's 
ase from the left), just like in the regular representation.18 Inthis way Wigner hit, at �rst unknowingly, upon the problem of a de
ompo-sition of the regular representation of the symmetri
 group S3. His approa
hto the problem made it apparent that, more generally, V (n) was by its very
onstru
tion just another version of the regular representation of the sym-metri
 group. It had been studied by Frobenius, S
hur, Burnside, Youngand others in their works on the representation theory of �nite groups.19WhenWigner dis
ussed this question with J. von Neumann, a good friendof his sin
e their 
ommon s
hool days at Budapest, his friend immediatelyre
ognized what Wigner was doing from a mathemati
al point of view andexplained the problem in terms of a de
omposition of the regular represen-tation. Thus Wigner started the se
ond part of his 
ontribution (submittedNovember 26, 1926) with a general observation whi
h introdu
ed the rep-resentation theory of the symmetri
 group. Noting the rising 
al
ulational
omplexity, when one wanted to extend the results from n = 3 to higher
ases, he remarked:There is a well prepared mathemati
al theory, however, whi
hone 
an use here, the theory of transformation groups isomorphi
to the symmetri
 group (. . . ), whi
h has been founded at the endof the last 
entury by Frobenius and has been elaborated later byW. Burnside and J. (si
!) S
hur, among others. J. von Neumannwas so kind to make me aware of these works, and predi
ted thegeneral result 
orre
tly, after I told him the result for the 
ase
n = 3. (Wigner 1927b, 43)Therefore Wigner 
onsidered it worthwhile introdu
ing the basi
 fa
ts of therepresentation theory of the symmetri
 group to the readers of the Zeits
hriftfür Physik.20 In parti
ular, he explained in his arti
le how on 
an 
al
ulatethe dimension N(λ) of a representation of Sn 
hara
terized by a partition18The regular representation RG of a �nite group G is given by the operation of G on thegroup algebra C[G] := {

∑

h
zhh|zh ∈ C} (summation of h over G) by operation from theleft. It 
ontains all �nite dimensional irredu
ible representations of G. More pre
isely, inea
h representation of the symmetri
 group of n elements ea
h irredu
ible 
omponent Xappears in the regular representation with multipli
ity dimX. Cf. (Fulton/Harris 1991)or any other book on representation theory.19See (Hawkins 1972, Hawkins 1974) and the overview in (Hawkins 2000, 373�384).20For a more re
ent introdu
tion to the subje
t, see (Sternberg 1994).10



(λ) := (λ1, . . . , λk) of n,21
n = λ1 + λ2 + . . .+ λk, λi ≥ λi+1.After Wigner be
ame aware of the de
omposition of the regular represen-tation, he 
ould adapt Heisenberg's perturbation argument for spin 
ouplingto the modi�ed 
ontext:In a system with n equal mass points, between whi
h initiallythere is no ex
hange of energy, ea
h eigenvalue is n! degenerate(if the 
orresponding state does not 
ontain equivalent orbits).If one 
reates an ex
hange of energy, ea
h eigenvalue splits intoseveral. (Wigner 1927b, 44)He proposed to 
al
ulate the degenera
y of the 
orresponding term by thedimension N(λ) as above. The basi
 stru
ture for the splitting of energyterms in an atom with n (peripheral) ele
trons, whi
h had been translatedby Heisenberg into the problem of de
omposing V (n) into minimal invariantsubspa
es, was now elu
idated by applying standard methods of represen-tation theory for the symmetri
 group. To Wigner and von Neumann thisturn may have appeared like some kind of �pre-established harmony� be-tween physi
s and mathemati
s, stipulated in the 
ontemporary Göttingenmilieu of mathemati
s and mathemati
al physi
s. For other parti
ipants itmay have looked more like a kind of magi
 of mathemati
al symbolism.On the other hand, many questions were still open. Among them mostimportantly the question whi
h of the irredu
ible representations of the per-mutation group on the spa
e of S
hrödinger wave fun
tions were 
ompatiblewith the Pauli-Dira
 prin
iple of antisymmetry for the total (Pauli-) wavefun
tion. In order to address this question, the spin phenomenon and itsrelation to rotational symmetries had to be understood better.2. Wigner and von NeumannEarly in 1927, Wigner made 
onsiderable advan
es. He enri
hed the study ofinvarian
e by in
luding rotations of the state spa
e of ele
trons in an outeratomi
 shell. In his third paper in spe
tros
opy, he started to derive thebasi
 stru
tural data of spe
tros
opi
 terms from the rotational symmetryof the ele
tron state spa
es (Wigner 1927a).22 Already in the introdu
tionto the paper he stated:The simple form of the S
hrödinger di�erential equation allowsus to apply 
ertain group methods, more pre
isely, representation21The dimension of N(λ) is the quotient of n! by the produ
t of all �hook lenghts� of the
orresponding Young diagram. For details see (Sternberg 1994, 89�.).22Re
ieved May 5, 1927. 11



theory. These methods have the advantage that by their help onegets results nearly without 
al
ulation, whi
h do not only holdexa
tly for the one-parti
le problem (hydrogen atom), but also forarbitrarily 
omplex systems. The disadvantage of the method isthat it does not allow us to derive approximative formulas. Inthis way it is possible to explain a large part of our qualitativespe
tros
opi
al experien
e. (Wigner 1927a, 53)Representations of the rotation groupAgain it was J. von Neumann who advised Wigner what to read in order tounderstand the representation theory of the spe
ial orthogonal group SO3,in parti
ular the re
ent papers by I. S
hur and H. Weyl (S
hur 1924, Weyl1924b).23 Thus Wigner dis
ussed, among others, the irredu
ible representa-tions of the rotations in the plane, SO2, whi
h are (
omplex) 1-dimensional.They are 
hara
terized by an integer parameter m, su
h that any plane ro-tation δα by an angle α has the representation as the (one by one) �matrix�
eimα. Let us denote, for brevity, this representation of the plane rotationgroup as dm. Then, of 
ourse, the representation matrix of the rotation δαis the 1 × 1 matrix

dm(δα) = eimα;in other words, the representation of the rotation by the angle α has theeigenvalue eimα.Wigner then introdu
ed the (2l+ 1)-dimensional representations of SO3(of highest weight l ∈ IN0), whi
h we denote here as Dl, a

ording to present
onventions, and indi
ated how to 
al
ulate the representation matri
es
Dl(A) = (Dl

jk(α, β, γ))1≤j,k≤2l+1for any rotation A ∈ SO3, 
hara
terized by its three Euler angles α, β, γ(Wigner 1927a, 68�.). Moreover, he dis
ussed the de
omposition of Dl underrestri
tion to the subgroup SO2 of rotations about the z-axis into 2l+1 one-dimensional subspa
es. This leads to representations dm in our notationabove, where m may assume the 2l + 1 pairwise di�erent values
−l ≤ m ≤ l.That �tted stru
turally so well with the observed 
lassi�
ation of spe
-tra and their dis
rete parameters, the quantum numbers, that Wigner 
ouldimmediately pro
eed to a spe
tros
opi
al interpretation of these representa-tion theoreti
 quantities. The highest weight l 
ould be identi�ed with theazimuthal quantum number of the Bohr-Sommerfeld theory (Wigner 1927a,23See (Wigner 1927a, 63, fn. (1)). 12



71) (later often 
alled orbital angular momentum quantum number).24 More-over, the weight m of the spe
i�ed abelian subgroup SO2 appeared as a grouptheoreti
 
hara
terization of the magneti
 quantum number of the ele
tron.The latter had been introdu
ed in order to explain the split of spe
tral lines(indexed by the prin
ipal quantum number n of the so-
alled Balmer-seriesand by l) into di�erent terms (�multipletts�) under the in�uen
e of a strongmagneti
 �eld, the so-
alled normal Zeeman e�e
t.25 A similar e�e
t hadbeen observed under the in�uen
e of a homogeneous ele
tri
 �eld (Starke�e
t).26 Thus the basi
 features of the dynami
s of the ele
tron were ap-parently 
losely related to the basi
 parameters of representations of thesymmetry group of its orbit.After a short dis
ussion of the fa
t that transitions of ele
trons o

urredin nature only between neighbouring azimuthal (orbital angular momentum)quantum numbers l, 
orresponding to a 
hange △l = ±1, Wigner turned tothe 
onsequen
es of the introdu
tion of a homogeneous ele
tri
 �eld:By means of an ele
tri
 �eld along the Z-axis the substitutiongroup of our di�erential equation is diminished (verkleinert).Thus we have to pro
eed [as above℄ and redu
e the three-dimensionalrotation group to a 
olle
tion of representations of the two-dimensionalgroup (about the Z-axis). (Wigner 1927a, 72)As a result, under the in�uen
e of an external homogeneous �eld, a termwith azimuthal quantum number l splits into 2l + 1 lines, indexed by themagneti
 quantum number m.27For atoms with more than one ele
tron involved in radiation pro
esses,the situation was, of 
ourse, mu
h more 
ompli
ated. Here Wigner 
ouldonly vaguely indi
ate, how the representation of the rotation group and ofpermutations might work together to form the the total state spa
e of an
n-ele
tron system and how they determine the 
ombined quantum numbers(Wigner 1927a, 77f.).The spin group SU3For a detailed investigation, a more subtle study of the interplay between ro-tational symmetry, its relation to spin properties, and the ex
hange symme-tries (permutations) of multi-parti
le systems be
ame ne
essary. At almost24In spe
tros
opy, an alphabeti
al 
ode is used for l: S for l = 0, P for l = 1, D for
l = 2 et
..25With a magneti
 �eld in dire
tion of the observation, P. Zeeman had observed su
han e�e
t in 1896, while perpendi
ular to the �eld a �third� (undispla
ed) line appeared.H.A. Lorentz had explained it a year later in terms of a 
lassi
 theory of the ele
tron inthe magneti
 �eld, 
f. (Re
henberg 1995, 161), (Darrigol 2001) or (Pais 1986, 76f., 268�.).26The Stark e�e
t had been observed in 1913.27In this 
ontext (Stark e�e
t), Wigner 
alledm the �ele
tri
 quantum number� (Wigner1927a, 73). 13



the same time as Wigner's paper on rotational symmetries, Pauli submittedhis path-breaking proposal to mathematize Uhlenbe
k's and Goudsmit's hy-pothesis of an intrinsi
 �spin� of the ele
tron by the use of �two-
omponent�wave fun
tions (Pauli 1927).28 Charles G. Darwin stepped in with a seriesof papers on the �ele
tron as a ve
tor wave�.29 That made it possible forWigner to extend the investigations of symmetries to spin e�e
ts.For su
h studies von Neumann's advi
e be
ame even more importantthan before. The publi
ations dis
ussed above were written by E. Wignerwhen he was still an assistant for theoreti
al 
hemistry at the te
hni
al uni-versity Berlin. In spring 1927 he moved to Göttingen for one year, as anassistant of Hilbert's. At that time, Hilbert su�ered strongly from perni-
ious anemia and was nearly ina

essible to his new assistant. Nevertheless,Wigner 
ame into 
lose 
onta
t with other young physi
ists working at Göt-tingen, among them in parti
ular L. Northeim, P. Jordan, and W. Heitler.Moreover, von Neumann visited Göttingen regularly (Mehra 1993). Thusthere were good 
onditions for Wigner and von Neumann to establish thebasi
 representation theoreti
 features of atomi
 spe
tra, in
luding spin ef-fe
ts, during late 1927 and the �rst half of 1928, simultaneously with H.Weyl's work on the same topi
 and independently of it.Between De
ember 1927 and June 1928, E. Wigner and von Neumannsubmitted a series of three papers on spe
tra and the �quantum me
hani
sof the spinning ele
tron (Drehelektron)� to the Zeits
hrift für Physik.30 AsWigner later reported, he wrote the papers after intense dis
ussions withhis 
olleague and friend whom he therefore 
onsidered to be a 
oauthor(Mehra/Re
henberg 2000/2001, 496). In this series, the authors emphasizedthe 
on
eptual role of representation theory for quantum me
hani
s in an ex-pli
it and programmati
 manner and parallelized it to the invarian
e methodof general relativity.. . . It may not be idle to 
all the strong heuristi
al value (Spürkraft)to attention, whi
h dwells in these and similar prin
iples of sym-metry, i.e. invarian
e, in the sear
h for the laws of nature: In our
ase it will lead us, in a unique and 
ompelling way, from Pauli'squalitative pi
ture of the spinning ele
tron to the regularities ofthe atomi
 spe
tra. That is similar to the general theory of rel-ativity, where an invarian
e prin
iple made it possible to unveilthe universal laws of nature. (Wigner/v.Neumann 1928a, 92)In their paper, Wigner and von Neumann took up Pauli's 
hara
terizationof spin by a (
ommutative) produ
t of a S
hrödinger wave fun
tion
ψ(x), x = (x1, x2, x3) ∈ IR3,28Re
eived May 8, 1927, by Physikalis
he Zeitrs
hrift, three days after the submissionof Wigner's paper (Wigner 1927a).29(Darwin 1927, Darwin 1928)30Dates of re
eption: De
ember 28, 1927; Mar
h 2, 1928; June 19, 1928.14



and a 
omplex fun
tion ζ(s) depending on variable in a dis
rete two-point�internal� spin spa
e, s ∈ {±1}. The 
ombined fun
tion
ϕ(x, s) = ψ(x)ζ(s) (3)had been introdu
ed by as Pauli as (spin-) wave fun
tion. The dependen
eon s 
ould just as well be written in index form

ϕs(x) := ϕ(x, s), with s ∈ {±1}.Then the Pauli wave fun
tion was given by two 
omponents,
ϕ̃(x) := (ϕ−1(x), ϕ1(x)) ,and ϕ̃ 
ould be 
onsidered as a modi�ed wave fun
tion (on IR3) with valuesin C2, a �hyperfun
tion� in Wigner's terminology (later 
alled a Pauli spinor�eld on IR3).For an n-parti
le system the wave fun
tion a
quired the form

ϕ̃(x1, . . . , xn) := (ϕs1...sn(x1, . . . , xn)) , xj ∈ IR3, sj ∈ {±1} . (4)Then the values of ϕ̃ were in C2n (Wigner/v.Neumann 1928a, 94)Wigner and von Neumann studied how to express the operation of therotation group SO3 on the Pauli wave-fun
tions by a unitary operator. Theyintrodu
ed an expli
it expression for the 
omplexi�ed version Ã of a rotation
A = A(α, β, γ) given in terms of the Euler angles α, β, γ (Wigner/v.Neumann1928a, 98),̃

A :=

(

e−i α
2 0

0 ei
α
2

)(

cos β
2 sin β

2

− sin β
2 cos β

2

)(

e−i
γ
2 0

0 ei
γ

2

)

. (5)
A 7→ Ã ∈ SU2,su
h that a rotation A−1 ∈ SO3 operated on the wave-fun
tions by

ϕ(x) 7→ Ãϕ(A−1x). (6)That agreed well with what Pauli had done; but while Pauli had madeuse of the 
omplex des
ription of the spinning top, well known in the Som-merfeld s
hool, Wigner and von Neumann embedded the formula into arepresentation theoreti
 perspe
tive. In parti
ular they referred to the se
-ond paper of Weyl's great series on the representation theory of the 
lassi
alLie groups (Wigner/v.Neumann 1928a, 98, footnote). Here Weyl had dis-
ussed the universal 
overings of the spe
ial orthogonal groups (later to be15




alled spin groups), had proved the full redu
ibility and derived the 
har-a
ters and dimensions of all irredu
ible representations (Weyl 1925/1926).31Von Neumann and Wigner stated 
learly that they needed only 
ertain as-pe
ts of the general theory.32 But they made quite 
lear that now one hadto take into a

ount �two-valued� representations of the SO3, in addition tothe (one-valued) ones studied by Wigner in his last paper (
alled above Dl,
l ∈ IN0). That gave an additional series whi
h will be denoted here by D k

2(dim(D k
2 ) = k + 1), k odd, a

ording to more re
ent 
onventions.33For the goal of their paper, they 
onsidered the most basi
 two-valuedrepresentation, in fa
t a lo
al inverse of the 
overing map

SU2 −→ SO3,given by equation (5) up to sign. Then D 1
2 was given by the standardrepresentation of the 
overing group SU2; more pre
isely

D 1
2A = ±Ã.In the perspe
tive of their paper, this representation arose naturally fromthe operation of SO3 on the 1-parti
le state as des
ribed in equation (6). Itwas essential to �nd the 
onsequen
es for the n-parti
le state.They indi
ated how to �nd the matrix expressions of a representationmatrix D k

2A for a rotation A ∈ SO3, 
hara
terized by its Euler angles α, β, γ,in analogy to Wigner's formulas in the 
lassi
al (one-valued) 
ase. In doingso, they relied on Weyl's result and stated that for ea
h dimension n ∈ INthere exists exa
tly one representation of SO3 (or its universal 
over) indexedby j := n−1
2 . In the sequel we use the slightly more re
ent unifying notationfor the two series:

Dj = D(j,0), of dimension n = 2j + 1, j ∈ {0, 1
2
, 1,

3

2
, 2, . . .} (7)Here n odd (respe
tively j integer valued) 
orresponds to one-valued repre-sentations, and n even (j half-integer) to �two-valued� representations of theorthogonal group.With the ma
hinery of representation theory at their disposal, it was
lear how to pro
eed to the des
ription of the n-parti
le states des
ribedby n-fold tensor produ
ts. They ended the �rst paper of the series with anobservation on how to de
ompose the tensor produ
t spa
es into irredu
ible
omponents:31See (Hawkins 2000).32�Of 
ourse, mu
h less than Weyl's deep rooted results are ne
essary for our presentgoals.� (Wigner/v.Neumann 1928a, 98, footnote)33Cf. (Sternberg 1994, 181�.). 16



In the appli
ations it will be important to know the irredu
iblerepresentations of the rotation group in {na
(R)
s,t } [Wigner/vonNeumann's symbol for ⊗nD 1

2 , E.S. ℄; that is easily a
hieved, asits tra
e is additively 
omposed from the tra
es of the former.(Wigner/v.Neumann 1928a, 108)They gave an expli
it result, des
ribed verbally, but without any ambiguity.Written in more re
ent symbolism, it was
⊗n D 1

2 = D n
2 ⊕ (n− 1)D n−2

2 ⊕ n

2
(n− 3)D n−4

2 ⊕ . . . . (8)Permutations, spin, and anomalous Zeeman e�e
tIn the se
ond paper of their series, Wigner and von Neumann 
ombinedthe rotational and spin symmetries with the permutation aspe
t from whi
hWigner had started. Wigner's basi
 physi
al intuition was that in atomi
spe
tros
opy the energy operator H will be 
omposed,
H = H1 +H2,by a part H1 resulting from the spatial motion of the ele
tron only (themotion of the �
enter of gravity� of the ele
tron, as he said) and the ensuinggross e�e
t of the ele
tromagneti
 intera
tion with the �eld of the atomi

ore. The se
ond part, H2, should model other aspe
ts, most importantamong them the ele
tron spin (Wigner/v. Neumann 1928b, 133). Thus one
ould start from the eigenvalue problem of the �spin-less� wave fun
tion ψ(S
hrödinger wave fun
tion),
H1ψ = λψ ,and re�ne the result by passing to the �hyperfun
tions� ϕ in
luding spin (i.e.,the Pauli spinors).For the investigation of symmetry properties with respe
t to permuta-tions, it was therefore natural to distinguish di�erent types of operations fora permutation α ∈ Sn, an operation P on spa
e variables only and an oper-ation O on both, spin and spa
e variables (Pα and Oα in Wigner's notation):

P−1
α ϕ(x1, . . . , xn; s1, . . . , sn) := ϕ(xα1 , . . . , xαn ; s1, . . . , sn)

O−1
α ϕ(x1, . . . , xn; s1, . . . , sn) := ϕ(xα1 , . . . , xαn ; sα1 , . . . , sαn).The operation Q of permutations on spin variables only 
ould be 
onstru
tedfrom these (Wigner/v. Neumann 1928b, 133) by

Qα := P−1
α Oα.Obviously �spin-less� wave fun
tions transformed under Pα, while the trans-formation Oα of �hyperfun
tions� 
ould be built from P and Q, Oα = PαQα.17



Wigner then 
onsidered a slow 
ontinuous 
hange from an energy statein whi
h the spin 
ontribution 
ould be negle
ted (H = H1) to one, in whi
hthis was no longer the 
ase (Wigner/v. Neumann 1928b, 133). He made thefollowing observation:While the original state with H = H1 is invariant under O and P , anin
reasing spin perturbation H2 may redu
e the original symmetry to O only.In this 
ase, the formerly irredu
ible subspa
es for H1 are de
omposed intosmaller irredu
ible 
omponents of H1 +H2.That was a 
onvin
ing group theoreti
 view of the split of spe
tral termsby a perturbation bringing spin di�eren
es into the game. Empiri
ally su
ha phenomenon had been observed long ago in the anomalous Zeeman e�e
t:If a weak magneti
 �eld was swit
hed on, spe
tral lines belonging to thesame magneti
 number m 
ould split into di�erent terms.34But it was still to 
larify how to deal with the antisymmetry prin
iplefor the total wave fun
tion of an n-ele
tron system. A

ording to Dira
�. . . only those states o

ur in nature, the eigenfun
tions of whi
h are anti-symmetri
� (Wigner/v. Neumann 1928b, 133). Wigner and von Neumanntherefore 
ontinued with the study of the irredu
ible representations of thesymmetri
 group Sn in the antisymmetri
 part of the total �hyperfun
tion�representation, i.e., in
∧nṼ ⊂ ⊗nṼ ,where Ṽ denotes a state spa
e of single-parti
le �hyper-fun
tions� (Pauli-spinor �elds). Of 
ourse, su
h irredu
ible antisymmetri
 representations areone-dimensional, and the question was, under whi
h 
onditions su
h an-tisymmetri
 representations in the �hyperfun
tion� spa
e 
ould be derivedfrom an irredu
ible representation of the spin-free wave fun
tions. To sim-plify language, we denote the representation of Sn in V (n) 
orresponding toa partition (λ) = (λ1, . . . , λk) by V (n)

(λ) .If one starts from a degenerate energy term with multipli
ity m of thespin-less S
hrödinger equation of an n-ele
tron system
H1ψ = E0ψ , (9)one 
an form a basis of m 2n 
orresponding �hyperfun
tions�, by allowingfor the 
ombinatori
s of possible spin values for the n 
onstituents. If anal-ogously m denotes the dimension of an irredu
ible representation V (n)

(λ) likeabove, the m 2n-dimensional spa
e of spin extended hyperfun
tions may be
alled Ṽ (n)
(λ) . Obviously it forms an invariant subspa
e of ⊗nṼ (under permu-tations). Our authors now looked for irredu
ible 
omponents of Ṽ (n)

(λ) , and inparti
ular one-dimensional antisymmetri
 ones.34The �anomalous Zeeman e�e
t� had been observed by A.A. Mi
helson and T. Pre-ston in 1898, and 
ould not be explained in the Bohr-Sommerfeld theory of the atom; 
f(Re
henberg 1995, 161f.) or (Pais 1986). 18



Using a result of A. Speiser's book on group theory (Speiser 1923), they
ame to the 
on
lusion that a partition (λ) allows to form a (non-trivial,one-dimensional) antisymmetri
 extension in Ṽ (n)
(λ) , if and only if (λ) is of theform

(λ) = (2, 2, . . . , 2, 1, 1, . . . , 1) . (10)That was an important result for the group theoreti
al program in spe
-tros
opy. It showed 
learly, why (and under whi
h 
onditions) irredu
iblerepresentations of the symmetri
 group 
ould 
hara
terize a term system ofhigher atoms.Still the question had to be answered, in how many �ne stru
ture terms aspe
tral line of an n-ele
tron system, 
orresponding to an azimuthal (orbitalmomentum) quantum number l and partition (λ), 
ould split. Thus Wignerand von Neumann �nally studied the 
ombinatori
al possibilities, by whi
hthe total magneti
 quantum number m = m1+ . . .mn of su
h a system 
ouldbe built from the quantum numbers mj of the individual ele
trons and whi
he�e
ts 
ould be expe
ted from swit
hing on a spin perturbations H2. They
ame to the 
on
lusion that the momentum (in
luding spin) of an n-ele
tronsystem in su
h a state 
an be 
hara
terized by a (integer or half-integer)value j, 
alled internal quantum number, with
|n− 2z

2
− l| ≤ j ≤ n− 2z

2
+ l(with di�eren
e 1 betweeen two values of j). For ea
h j the total magneti
momentum in
luding spin m̃ then may a
quire values in −j ≤ m̃ ≤ j. Thenumber t of di�erent values for m̃, i.e., the number of possible terms intowhi
h the n-ele
tron state (λ) with azimuthal quantum number l 
ould split,was then, a

ording to Wigner/v. Neumann (1928b, 140�143):

t = min { n− 2z + 1
2l + 1This result agreed beautifully with empiri
al �ndings and with the rulesderived in other theoreti
al approa
hes.35 Wigner was proud about what hehad a
hieved 
ooperatively with von Neumann:Thus the, probably, most important qualitative spe
tros
opi
alrule has been derived. Independent of the immense e�e
tiveness(Leistungsfähigkeit) of quantum me
hani
s (. . . ), one will be sur-prised that all this was �plu
ked out of the air�, as one might say(daÿ alles, wie man sagt �dur
h die Luft� ging ), i.e., withouttaking into a

ount the spe
ial form of the Hamiltonian fun
-tion, only on the basis of symmetry assumptions and of Pauli'squalitative idea. (Wigner/v. Neumann 1928b, 143)35Like Hund's �Aufbauprinzip� (Wigner/v. Neumann 1928b, 140).19



Although de�nite values of the energy di�eren
es 
ould not be derived bygroup theoreti
 methods alone, Wigner's and von Neumann's approa
h gavea 
onvin
ing explanation for the splitting of a spe
tral line under a magneti
�eld (Zeeman e�e
t) of any kind into �multiplett� terms of the �ne stru
ture.3. London and HeitlerIn quantum 
hemistry, representations of permutation groups made their�rst appearan
e about the same time as they did in spe
tros
opy. The topi
was opened up by a joint publi
ation of two young physi
ists, Walter Heitlerand Fritz London, who had 
ome to Züri
h on Ro
kefeller grants in 1926(F. London), respe
tively 1927 (W. Heitler), to work with E. S
hrödinger.36While a 
loser s
ienti�
 
ooperation with their professor turned out to bemore di�
ult than expe
ted, they used the opportunity to ex
hange anddevelop ideas with ea
h other. In June 1927 they submitted a paper onthe quantum me
hani
al explanation of so-
alled 
ovalent bonds (those dueto valen
e ele
tron pairs), whi
h arose from an idea of W. Heitler. It soonwas 
onsidered as the entry point for quantum me
hani
al model building in
hemistry (Heitler/London 1927). A

ording to L. Pauling, one of the great�gures of the �rst generation in quantum 
hemistry, Heitler's and London'spaper 
an be 
onsidered as. . . the greatest single 
ontribution to the 
lari�
ation of the 
hemist's
on
eption whi
h has been made sin
e G. Lewis's suggestion in1916 that the 
hemi
al bond between two atoms 
onsists of apair of ele
trons held jointly by two atoms (Pauling 1935, 340)(quoted from (Mehra/Re
henberg 2000/2001, 542)).The story of this invention leads deep into the history of quantum theoryand of 
hemistry and is 
overed as su
h in the respe
tive histori
al litera-ture.37 We want to 
on
entrate here on a spe
i�
 aspe
t, whi
h is at the
enter of our investigation of the use of modern mathemati
al methods inphysi
al 
hemistry: the 
ontexts, reasons and mode for the appearan
e anduse of group theoreti
 methods. Su
h methods were �rst applied in two pa-pers by W. Heitler, published in 1928 (Heitler 1928a, Heitler 1928b). Theybuilt upon a joint paper with F. London, published during their 
ommonsummer in Züri
h (Heitler/London 1927).In their joint paper, Heitler and London started from an investigationof two hydrogen atoms and their ele
trons, initially modelled separately, ata distan
e d = ∞ between the nu
lei, by identi
al S
hrödinger fun
tionswith energy eigenvalue E0. Using a perturbative approa
h, they studied36(Gavroglu 1995)37See (Gavroglu/Simóes 1994, Kara
halios 2000, Kara
halios 2003, Nye 1993, Simões2003) and (Mehra/Re
henberg 2000/2001, 540�.).20



what happened to the ele
trons and their added energies when the atomi
distan
e d was redu
ed. They showed the existen
e of two solutions, ψ1 and
ψ2 for the 
ombined system, with respe
tive total energies E1 and E2, andinterpreted the energy di�eren
e

△Ei := Ei − 2E0 , i = 1, 2,as a kind of ex
hange energy of the ele
trons.38 With their 
hoi
e of sign,negative ex
hange energy expressed that the 
ompound system had a lowerenergy state than the two single systems. Moreover, the ex
hange energieswere dependent on the distan
e parameter d. Their analysis showed that,with d in
reasing from a little above 0 to some value d1, E1 fell to a minimum,rising again for in
reasing d from d1 to ∞, while E2 fell monotonously for
d > 0 with in
reasing d (d → ∞). Thus ψ1 represented a bound statefor d = d1, while ψ2 
hara
terized a repulsive for
e for any value of theatomi
 distan
e (the van der Waals repulsion between the two hydrogenatoms)(Heitler/London 1927, 460).A 
ontinuation of the 
al
ulation for two helium atoms, ea
h 
ontainingtwo ele
trons, showed that only the 
ase of a repulsive intera
tion 
ould beobtained, if ele
tron spin and the Pauli ex
lusion prin
iple were taken intoa

ount (i.e., if both ele
trons of one atom were assumed to be in di�erentspin states). In this sense, the �ex
hange energy� of Heitler and Londonappeared as an e�e
t of spin 
oupling and was positive in this 
ase. Itexplained why helium did not form two-atomi
 mole
ules and behaved asnoble gas. The prin
iples of non-relativisti
 quantum me
hani
s seemed toopen the possibility of understanding the stru
ture (graph-like 
ombinatori
sof atomi
 �valen
es�) and the quantity (energies) of 
hemi
al bonds.Heitler's theory of valen
e bondsIn summer 1928, E. S
hrödinger went from Züri
h to Berlin, as a su

essoron M. Plan
k's 
hair; in O
tober F. London joined him there as an assistant.W. Heitler, whose Ro
kefeller grant had run out more or less at the sametime, a

epted an o�er from Max Born to be
ome an assistant at Göttin-gen. There he got to know E. Wigner whose group theoreti
 works he hadstarted to read with great interest when in Züri
h.39 Now Heitler exploredwhat the representation theory of the symmetri
 group 
ould a
hieve for thedetermination of quantum me
hani
al bond states.38The quantum physi
al idea behind this terminology was the following: If one joinedtwo probability �
louds� about two nu
lei to one (of the 
ombined system) some kind of�ex
hange� of parti
les between two �partial 
louds� related to the nu
lei, although fusedto represent one state, seemed now possible (i.e., had positive probability). The languageof �ex
hange energy� has to be taken, again, as a 
lassi
al metaphor for a quantum e�e
t.For a more detailed dis
ussion see (S
hweber 1990, 380f.).39(Mehra/Re
henberg 2000/2001, VI.1, 502, 547)21



Already in January 28, 1928, he submitted his �rst arti
le on the topi
(Heitler 1928a). His goal was to extend the approa
h of his joint workwith London to �higher� mole
ules. For the time being, that did not meanmore than two-atomi
 mole
ules with n > 2 outer ele
trons. He stated hismethodologi
al preferen
es 
learly at the beginning of the paper:Among all methods, the group theoreti
 is the one whi
h de�-nitely a
hieves most for the multi-parti
le problem: it was broughtin by E. Wigner [Heitler referred to (Wigner 1927b, Wigner 1927a),E.S.℄ to a
hieve a qualitative overview of all existing terms. (Heitler1928a, 836)Heitler 
ame to the 
on
lusion that already at large distan
es the ex-
hange for
es between valen
e ele
trons of opposite spin resulted in a re-du
tion and even a relative minimum of bond energy, whi
h expressed anattra
tive for
e between the two atoms. Here he de�ned valen
e ele
trons assu
h ele
trons of quantum numbers (l,m) in the outer �shell�40 whi
h hadno partner of equal quantum numbers l, m with opposite spin in the sameatom. Heitler hinted at 
ertain restri
tions of his approa
h:We still have to warn of an overestimation of the impli
ations(Tragweite) of our results in two respe
ts. The simple formulasfor the intera
tion energy . . . 
an only be 
onsidered as a veryrough approximation, be
ause the perturbative 
al
ulation ne-gle
ts several points and holds only for large distan
es. Se
ondly,the �ex
hange mole
ules� 
onsidered by us represent only a partof the 
hemi
al mole
ules. although of the most prominent andmost stable ones (N2, O2, NH3, CH4 et
.). A large part of thehomopolar 
ompounds, however, relies on perturbations of a dif-ferent kind . . . .41 (Heitler 1928b, 837)Thus Heitler distinguished 
learly between di�erent kinds of 
hemi
albonds only some of whi
h 
ould be explained, in his opinion, by spin 
ouplinga

essible to group theoreti
 methods. He 
alled them ex
hange mole
ules.We have to keep this in mind when we look at the extension of Heitler'stheory of valen
e bonds from a more stru
tural, mathemati
al point of view(e.g., by Weyl) and its re
eption by physi
ists and 
hemists.Here, Heitler investigated two ele
tron systems A and B, ea
h of whi
h
onsisted of n (valen
e) ele
trons, initially without intera
tion. All in all,he studied a system of 2n ele
trons. Following Wigner, he 
hara
terized a40�Outer shell� now referred to ele
trons of highest azimuthal (orbital momentum) quan-tum number l with respe
t to its spheri
al symmetryDl in the atom, and with a 
ompatiblemagneti
 quantum number m (−2l ≤ m ≤ 2l).41Heitler referred to the negle
tion of �polarization� whi
h he estimated for H2 to beabout 25 % and guessed that it should be mu
h higher for higher mole
ules.22



term system by an irredu
ible representation of the permutation group of 2nelements S2n. Let us 
all it R.Under the assumption of no intera
tion, R 
ould also be 
onsidered as arepresentation of ea
h of the n ele
trons A and B and thus of two subgroupsisomorphi
 to Sn, let us say RA and RB . The latter were no longer irre-du
ible. Thus Heitler studied the de
omposition of R into subspa
es whi
hwere simultanously irredu
ible in RA and in RB . This work was fa
ilitatedby the assumption (unproved but 
onsidered as self-evident by Heitler) thatthe Pauli prin
iple implies that. . . the representations appearing in nature [are℄ those whi
h 
on-tain only 2 and 1 in their partition (Heitler 1928a, 846).42He 
on
luded that only those representations 
ould appear, in whi
h forboth partial systems A and B the respe
tive n valen
e ele
trons are 
hara
-terized by a 
ompletely �antisymmetri
 term system� and have antiparallelspin (Heitler 1928a, 848). On this basis he was able to give an approximative
al
ulation of the ex
hange energies.This result established a quantum me
hani
al explanation of 
ertain non-ioni
 bonds whi
h 
ould not be explained in terms of Coulomb for
es. Tra-ditionally, 
hemists had used valen
e dashes to represent su
h mole
ules. In1916, G. Lewis had proposed a qualitative interpretation of a valen
e dash asa pair of ele
trons shared by two atoms. But the underlying physi
al for
esremained a mystery. Now it seemed promising to look for an explanation ofsu
h �valen
es� by the pairing of ele
trons with opposite spin, but otherwiseequal quantum numbers. Heitler's proposal was thus to investigate the rangeof the hypothesis that spin 
oupling of valen
e ele
tron pairs lay at the baseof mole
ule formation.In a se
ond arti
le on the topi
, submitted September 13, 1928, Heitlerextended his investigations to mole
ules with more than 2 atoms (Heitler1928b). Here Heitler was less 
autious than in January. He now des
ribedthe result of his �rst arti
le as having established a �
omplete equivalen
e�of the quantum me
hani
al explanation of homopolar 
hemi
al bonds fortwo-atomi
 mole
ules and the traditional explanation of 
hemi
al valen
esby ele
tron pairs (Lewis). He introdu
ed an integral expression JQ derivedby Heisenberg for the ex
hange energy between two systems Q, 
onstitutedby the partial systems A and B (Heisenberg 1928), and resumed:Ea
h su
h ex
hange energy JQ between two atoms 
an be in-terpreted as a valen
e bond symboli
ally denoted by a valen
edash (Valenzstri
h). Nearly all typi
al and stable two-atomi
mole
ules of 
hemistry rely on su
h an ex
hange bond; and vi
e42This 
ondition was proved a little later by Wigner in his joint work with von Neumann,as we have seen. It may have been orally 
ommuni
ated knowledge in Göttingen alreadyin winter 1927/28. 23



versa: if the valen
e theory permits the existen
e of a two-atomi
mole
ule then it is possible quantum me
hani
ally. (Heitler 1928b,805, emphasis in original)Although his theory did not predi
t new or di�erent e�e
ts in 
omparisonto 
lassi
al 
hemi
al knowledge, it 
laimed to explain the empiri
al knowl-edge of valen
e bonds stru
turally, for the 
ase of two-atomi
 mole
ules.Moreover, it should lead to a quantitative determination of bond energies,even if only in the sense of a rough, �rst estimation (see quotation above).Other approa
hesCompeting approa
hes to the quantum me
hani
s of 
hemi
al bonds weredeveloped by F. Hund and a little later by L. Pauling, R. Mulliken, and oth-ers. They shed doubt on the range of Heitler's and London's theory and onits quantitative reliability. They did not rely on the ex
hange energy of spin
oupling, but 
on
entrated on the spatial distribution of the S
hrödingerfun
tion. During the next de
ade it turned out that for more 
ompli
atedmole
ules Heitler's method led to unrealisti
 predi
tions. The alternativeapproa
hes were ne
essary, even on the stru
tural level, to a
hieve a satis-fa
tory agreement with experimental knowledge.In summer 1928 these 
onsequen
es were not yet 
lear, although 
hemistslike Mulliken and Pauling already thought along di�erent lines.43 For a shortwhile Max Delbrü
k who be
ame well known for his later resear
hes on themole
ular basis of geneti
s 
onsidered Heitler's and London's approa
h worthfollowing. He studied perturbative formulas for the determination of ex-
hange energies based on group theoreti
al methods (Delbrü
k 1928). ThusHeitler 
ould see his position strengthened and 
ontributed to further ex-plorations of his method in (Heitler 1928b). Here he posed the fundamentalquestion as to the existen
e of multi-atomi
 mole
ules, on the basis of ex-
hange energies of valen
e pairs of ele
trons.This type of question was highly interesting from a mathemati
al pointof view, but may have appeared useless to most 
hemists. Heitler 
onsideredhis investigation as nothing more than a �preliminary study (Vorstudie)�.In the 
ourse of it, he 
ame to admit that in the 
al
ulations of ex
hangeenergies, it might happen that permutations of more than two ele
trons
ontribute essentially to the intera
tion. That had already been 
onje
turedby F. London. Heitler remarked that, in his opinion, bonds whi
h rely onsu
h higher ex
hanges 
ould not be 
onsidered as �valen
e bonds in the senseof Lewis�. They would 
onstitute a di�erent type of bond. Nevertheless hethought it justi�ed to study, how far one 
ould 
ome with valen
e bondsproper (�in the sense of Lewis�) (Heitler 1928b, 815). At the time, he still43See (Gavroglu/Simóes 1994, Nye 1993) or (Mehra/Re
henberg 2000/2001, 552�.).24



hoped that 
hain mole
ules of organi
 
hemistry and latti
e stru
tures mightbelong to �our bond 
ategory� (Heitler 1928b, 806).This hope did not 
ome true. During the 1930s, L. Pauling's and R.Mulliken's approa
h of 
onstru
ting �mole
ular orbitals�, i.e., S
hrödingerfun
tions of multi-ele
tron systems about a 
omplex of atoms (mole
ular
ore), built mu
h less on stru
tural prin
iples su
h as permutations. Theydrew upon previously unformalized 
hemi
al knowledge on hypotheti
al spa-tial 
onstellations of the atoms for the modelling of S
hrödinger fun
tionsof a system of ele
trons. The striking su

esses of this approa
h turnedout to be 
ru
ial for the a

eptan
e of quantum me
hani
s among 
hemists(Gavroglu/Simóes 1994). It be
ame the 
ore mathemati
al te
hnique dur-ing the next few de
ades for a fruitful elaboration of quantum me
hani
almodels for more 
ompli
ated mole
ules, in parti
ular in organi
 
hemistry.443. Weyl at the ba
kstageTaking the results of Wigner, von Neumann, and Heitler into a

ount, itmight look as if not mu
h was left for Hermann Weyl when he entered the�eld. But su
h an impression would be 
ompletely wrong; Weyl took up awhole range of questions pertaining to the 
hallenging new �eld and enteredinto se
ond phase of a
tive involvement in mathemati
al physi
s between1927 and 1931. This se
ond phase was a natural follow up to his �rst phaseof a
tivity in theoreti
al physi
s between 1917 and 1923, in whi
h he hadmade 
ru
ial 
ontributions to general relativity, uni�ed �eld theory, and
osmology.45 When he entered the terrain of quantum me
hani
s, he wasparti
ularly interested in the role of group representation and 
ontributed tothe introdu
tion of gauge methods into the quantum physi
al setting.The ba
kground of Weyl's intervention in the �eld was one of the surpris-ing 
onjun
tions in the history of s
ien
e, whi
h turned out to be tremen-dously fruitful. During the years 1925/26 the Mün
hen-Göttingen-Copen-hagen group of Heisenberg, Born, Jordan, and Pauli, 
losely 
ommuni
atingwith Bohr, invented quantum me
hani
s; S
hrödinger, at that time work-ing at Züri
h, 
omplemented it with his �wave me
hani
s�, P.A.M. Dira
,in Cambridge, developed his perspe
tive of �q-numbers� (a formal operatorsymbolism, parti
ularly well adapted to the physi
ists way of thinking) and
rowned the whole development by an overar
hing view � 
alled �transfor-mation theory� by physi
ists.At the beginning of this period, in April 1925, Weyl had just �nished hisgreat work on the representation theory of 
lassi
al (Lie-) groups.46 For him,44Up to our days, it 
ontinues to be the basis for the semi-
lassi
al approximationsused as building blo
ks for the 
omputer simulations of mole
ular stru
tures, 
f. (LeBris/Lions 2005).45See (Sigurdsson 1991, Coleman/Korté 2001, S
holz 2001
, Ma
key 1988, Speiser 1988).46Weyl delivered the three parts of the series (Weyl 1925/1926) in January, February,25



it was not only the attra
tion of the fas
inatingly ri
h mathemati
al stru
-tures of 
overing groups, de
omposition of representations into irredu
iblespa
es, 
al
ulation of 
hara
ters, 
lassi�
ation of root systems, weight ve
-tors, and re�e
tion groups et
., whi
h made him turn towards this work, butrather its intriguing interplay with 
on
eptual questions lying at the basis ofphysi
al theory building. Weyl had met 
lassi
al groups and Cartan's 
lassi-�
ation of their in�nitesimal versions (Lie algebras) on two o

asions duringhis �rst phase of a
tive involvement in mathemati
al physi
s. He found themto be 
ru
ial for answering two questions in this 
ontext:� Why are tensors su
h a good and, in fa
t, universal tool in generalrelativity and, more general, in di�erential geometry?� What are group theoreti
 reasons for the �pythagorean� (Weyl's termi-nology for what later was 
alled semi-Riemannian) nature of the metri
in general relativity?The �rst question was answered by Weyl in 1925 with the insight, and itsproof, that all irredu
ible representations of the general linear group GLnIR
an be 
onstru
ted as invariant subspa
es of tensor powers of the underlyingstandard representation (for di�erential geometry, V = TpM ∼= IRn, thetangent spa
e at a point p to the underlying manifold M). In this sense,tensors and tensor spa
es were universal obje
ts for the representation of thegeneral linear group. For the proof he 
ould build upon methods developedby I. S
hur in his dissertation from 1901, 
omplemented by an idea of Hurwitz(the so-
alled unitarian restri
tion) to prove 
omplete redu
ibility. All theirredu
ible representations 
ould then be 
hara
terized by some symmetry
ondition inside some tensor power ⊗kV . Thus an intriguing 
orresponden
ebetween the representations of the symmetri
 group Sk and the irredu
iblerepresentations of GLn(IR) inside ⊗kV (representations of �order k�) playedan important role in the answer to his �rst question.47 During the nexttwo years, this 
orresponden
e turned out to be intimately related to the
onstru
tion of state spa
es for k �indistinguishable parti
les� (often ele
tronsbound in an atom) from the state spa
es of the single parti
les.This result appeared all the more important to Weyl, as already beforethe advent of quantum me
hani
s he had formed the 
onvi
tion that exa
tlysu
h irredu
ible subspa
es of ⊗nV form the proper mathemati
al domain ofthe 
lassi
al physi
al �eld quantities. He 
onsidered the relativisti
 ele
tro-magneti
 �eld tensor F i
j with its antisymmetry property (n = 2),

F i
j + F j

i = 0 ,and April 1925. For this part of the story see (Hawkins 2000, Borel 2001, Slodowy 1999).47(Hawkins 2000, 455�.) 26



as an outstanding example for this prin
iple. The methods developed in thestudy of the general linear group be
ame the 
lue to his general theory ofrepresentation of the 
lassi
al groups.The se
ond question had been answered by Weyl already a little earlierin his investigations of the �mathemati
al analysis of the problem of spa
e�.It had given him reason to absorb more of E. Cartan's 
lassi�
ation of thein�nitesimal Lie groups than before.48During the 
ru
ial years 1925 and 1926, Weyl was busy in other �elds.Immediately after he had �nished his resear
hes in representation theory ofLie groups, he started intense reading for a book-length arti
le on philos-ophy of mathemati
s and natural s
ien
es, whi
h he had promised to theeditors of a handbook of philosophy.49 In winter semester 1926/27 he le
-tured on the theory of 
ontinous groups and their representation as a guestat the Göttingen mathemati
al institute.50 Nevertheless he was well awarewhat was going on in quantum me
hani
s. Even more than that, he a
-tively parti
ipated in the internal dis
ourse of the protagonists. He was inregular 
ommuni
ation with E. S
hrödinger who taught at the university ofZüri
h in dire
t neighbourhood to the ETH where Weyl was tea
hing. Andhe 
ontinued to be a kind of external �
orresponding member� of the Göttin-gen mathemati
al s
ien
e milieu � notwithstanding his di�eren
es with D.Hilbert on the foundations of mathemati
s.Communi
ation with M. Born and P. JordanIn the fall of 1925, Weyl 
orresponded with M. Born and P. Jordan on theira
tual progress in 
larifying Heisenberg's idea of non-
ommuting �physi
alquantities� in quantum me
hani
s, whi
h was initially stated in a mathemat-i
ally rather in
omprehensible form.51 Heisenberg's idea was ingenious andopened new perspe
tives for theoreti
al physi
s, but it was very di�
ult tounderstand. It be
ame a 
omprehensible pie
e of mathemati
al physi
s onlyafter the 
lari�
ation brought about by joint work with Born and Jordan onthe one side and by Dira
's 
ontributions on the other.52Weyl was well informed about the work done by the Göttingen physi
istsand even 
ontributed a
tively to the resear
h dis
ussion among Born, Jordan,48See (Hawkins 2000), (S
holz 2001b, S
holz 2004b). The order of the questions is heregiven a

ording to their relative importan
e identi�ed by Tom Hawkins for Weyl's turntowards the new resear
h proje
t in representation theory of Lie groups.49Published as (Weyl 1927a).50In this le
ture Weyl did not yet tou
h the appli
ation of group theory to quantumme
hani
s (Weyl Ms 1926/27). I thank M. S
hneider who found H. Grell's Ausarbeitungof Weyl's guest le
ture in the Na
hlass Herglotz.51(Heisenberg 1925) submitted July 29, 1925.52The �rst paper of Born and Jordan (Born/Jordan 1925) was re
eived on Septem-ber 27, 1925, by the Physikalis
he Zeits
hrift and a su

eeding one by all the three(Born/Heisenberg/Jordan 1926) on November 16, 1925. Dira
 joined on November 5,(date of re
eption) (Dira
 1925). 27



and Heisenberg in the 
ru
ial months of mid and late 1925. In September1925 Born visited Weyl at Züri
h and reported him about the latest progressin quantum me
hani
s. Weyl immediately started to �
al
ulate a bit to
larify things� for himself, as he wrote to Jordan a little later.53 He informedBorn about his insights with great admiration for the work of the Göttingenphysi
ists:Dear Herr Born!Your Ansatz for quantum theory has impressed me tremendously.I have �gured out the mathemati
al side of it for myself, perhapsit may be useful for your further progress . . . . (Weyl Ms1925a)Weyl proposed to 
onsider the relationship between unitary one-parametergroups P (δ) and Q(ǫ) with their anti-hermitean in�nitesimal generators p,and q
P (δ) = 1 + δp+ . . . and Q(ǫ) = 1 + ǫq + . . . (0 ≤ δ, ǫ) .He argued that the properties of the (Lie) algebra generated by pairs of
onjugate in�nitesimal operators,

pq − qp = h̄1,with 1 the identity and � h̄ a number�, as Weyl wrote (he omitted the imagi-nary fa
tor i), 
ould be related to a 
ommutation relation among the integraloperators like
PQ = αQP, α = 1 + h̄δǫ+ . . . .Typi
al relations among the in�nitesimal operators 
ould then be derivedfrom this approa
h.54About a week after the submission of his joint arti
le with Jordan, Borngave a friendly answer, but with a 
ertain reserve. He wrote:It was a great pleasure for me to see that our new quantumme
hani
s attra
ts your interest. In the meantime, we have made
onsiderable progress and are now sure that our approa
h 
oversthe most important aspe
ts of the atomi
 stru
ture. It is very�ne (sehr s
hön) that you have thought about our formulas; wehave derived these formulas in our way, even if not as elegant asyou, and intend to publish the subje
t in this form, be
ause yourmethod is di�
ult for physi
ists to a

ess. . . . (Born Ms 1925)The 
ommuni
ation went on. Weyl re
eived a page proof of the submittedpaper dire
tly from the Zeits
hrift für Physik and wrote a supportive letter53(Weyl Ms1925b)54As an example Weyl presented the 
hara
terization of the formal derivative fq :=

npmqn−1 of a monomial f = pmqn used by Born and Jordan: fq = h̄−1(pf − fp).28



to the younger 
olleague, P. Jordan, in whi
h he apparently referred to hisalternative approa
h to the 
ommutation relations on
e more.55Jordan thanked Weyl for his 
omments on November 25, 1925, shortlyafter submission of the se
ond paper jointly written with Heisenberg. Heremarked that he had read Weyl's letter to Born at the time �with greatinterest�. He emphasized that Born and he had 
ome 
lose to a derivation ofthe 
anoni
al 
ommutation relation from the de�nition of the derivative d
dt
Aof an operator valued fun
tion A = A(t) of a real variable t. In a footnotehe added:When Born talked to you, we still believed that pq − qp = h

2πi
1is an independent assumption. (emphasis in original)Already in this early 
orresponden
e with his 
olleagues, Weyl lookedfor unitary groups lying at the base of the quantization pro
edures usedby Heisenberg, Born and Jordan. His proposal of his letter to Born wasapparently a �rst step into the dire
tion of using unitary one-parametergroups obeying a weakened 
ommutativity relation (see below, equ. (12)) asa a 
lue to derive the Heisenberg relations from basi
 properties of proje
tiveunitary representations.In two post
ards to Jordan, written in late November 1925, Weyl indi-
ated how in his approa
h an observable H = H(p, q) given in terms of the
onjugate observables p and q 
ould be 
hara
terized.I arrive at a 
hara
terization of the domain of reasonable fun
-tions H by the Ansatz

∫ ∫

eξp+ηqϕ(ξ, η)dξdη ,whi
h is less formal than ∑ pmqn. (Weyl Ms1925
)This was the �rst indi
ation of what in his publi
ation two years later(Weyl 1927b) be
ame the proposal to use inverse Fourier transforms for quan-tization, the now so-
alled Weyl-quantization (equations (14) and (15) be-low). Born and his assistant Jordan de
ided, however, that Weyl's approa
hwas too 
umbersome for the introdu
tion of the new quantum me
hani
s tothe physi
s 
ommunity, and relied on their own approa
h. The long delayedand sele
tive re
eption of Weyl's idea shows that Born may have been right55On November 25, 1925, Jordan wrote to Weyl that the latter 
ould �of 
ourse keepthe proofs�. In a footnote he added an ex
use: �I do not know, why they [the page proofs,E.S.℄ have been sent to you in su
h a 
ompli
ated and demanding form (umständli
hund anspru
hsvoller Form). Born and I are inno
ent of that (sind uns
huldig daran).�(Jordan 1925). We 
an guess that the printer of the Zeits
hrift had sent the proofsagainst a
knowledgement of re
eipt, and that Weyl was a bit perplexed by this pro
e-dure wondering, perhaps, whether his Göttingen 
olleagues wanted to make sure their(undisputed) priority. 29



in this estimation. On the other hand, his de
ision may have 
ontributed tothe long delay for a re
ognition of Weyl-quantization as a useful approa
h inmathemati
al physi
s.Abelian ray representationsWeyl 
ame ba
k to his early proposals nearly two years later in his �rstarti
le dealing with quantum me
hani
s (Weyl 1927b).56 He 
learly dis-tinguished between pure states and of mixtures. Pure states were mathe-mati
ally represented by eigenve
tors (or more pre
isely by 
orresponding
omplex unit rays) of the typi
al observables whi
h des
ribed the de�ningproperties of a parti
le or dynami
al state. Mixtures, on the other hand,were des
ribed 
ontextually as 
omposed from pure states in �any mixing ra-tio� (Weyl 1927b, 97). In this way Weyl indi
ated that a mixed state mightbe 
hara
terized by a probability measure on the state spa
e, although hedid not spell out details. A little later, and originally without knowledgeof Weyl's manus
ript, von Neumann proposed to formalize both mixed andpure systems by (positive) hermitian operators A. Pure states were thosegiven by proje
tion operators onto one-dimensional subspa
es and mixturesby more general positive hermitian operators (von Neumann 1927, 215�.).57Weyl's main point was, however, the dis
ussion of what he 
onsidered the�more profound� question of the �essen
e (Wesen) and the 
orre
t de�nitionof 
anoni
al variables�(Weyl 1927b, 91) P and Q, satisfying the 
anoni
al orHeisenberg 
ommutation relation:
[P,Q] =

h̄

i
1. (11)He proposed to relate any hermitian operator A to the unitary 1-parametergroup generated by its skew hermitian relative iA

t 7→ eitAand to 
onsider the quantum me
hani
al observables from an �integral� pointof view, in the sense of the generated 1-parameter groups. That was a
on
eptual move similar to the one in Weyl's work on representation theory,where he found intriguing new aspe
ts by passing from the in�nitesimal point56Re
eived O
tober 13, 1927.57Von Neumann presented his paper on November 11, 1927, to the GöttingerGesells
haft. In the page proofs he added a referen
e to Weyl's paper (von Neumann 1927,219, footnote) and vi
e versa (Weyl 1927b, 90, footnote); 
ompare (Mehra/Re
henberg2000/2001, 431�.). In later terms, von Neumann's positive hermitian operator A 
an berelated to a tra
e 
lass operator T by A = (T ∗T )
1

2 , where T is of unit tra
e norm T1 = 1.Here |T |1 := TrT =
∑

k
(Tuk, uk) = 1 with respe
t to any 
omplete orthonormal set {uk}.Moreover, the tra
e of T 
an be 
al
ulated by the sum of the (positive) eigenvalues aν of

A, TrT =
∑

ν
aν . 30



of view (the Lie-algebras in later terminology) to the integral perspe
tive (thegroups themselves).Turning the perspe
tive round, he 
onsidered a 
lassi
al state spa
e de-s
ribed by pairs of n 
onjugate observable quantities (p, q), su
h as the spatialdispla
ement q with respe
t to a frame and its 
onjugate momentum p. Thenthe state spa
e 
ould be 
onsidered as an abelian group G of two 
ontinuousparameters (t, s) ∈ IR2 = G (in the 
ase of n = 1 pairs). For the quantizationit was natural to look at a unitary ray representation, i.e. a representationup to multipli
ation by a 
omplex number of unit norm.Then it was 
lear that in the quantum 
ontext the 
ommutation relationfor the generating 1-parameter groups eitP and eisQ have to be weakened.Commutativity had to hold only up to a unitary fa
tor,
eisP eitQ = eic steitQeisP , (12)where c is a real 
onstant normalized to c = 1 or c = h̄. Let us referto equation (12) as the Weyl-
ommutation relation for 
onjugate pairs of1-parameter groups in unitary proje
tive (quantum) representations.Weyl showed that for the 
orresponding skew-hermitian in�nitesimal gen-erators iP , iQ the deviation (12) from stri
t 
ommutativity implies
PQ−QP = −ic 1,i.e., the Heisenberg 
ommutation rule (11) for a pair of 
onjugate observables.Weyl generalized this pro
edure to n-tuples of pairs of observables P1, Q1,

. . . , Pn, Qn. Then a representation on quantum rays58 allowed to modify thestri
t 
ommutation relation of an abelian group (t1, . . . , tn, s1, . . . sn) ∈ G =IR2n to slightly deformed Weyl-
ommutation relations of the form
eisµPµeitνQν = eicδ

µ
ν sµtνeitνQνeisµPµ ,with δµ

ν the Krone
ker delta and c = 1, or c = h̄. For the in�nitesimalgenerators that 
orresponded to a normalized form of the skew symmetri
system of 
oe�
ients cµν in the system of relations (Weyl 1927b, 114)
PµQν −QνPµ = −icµν 1. (13)That led to intriguing relations for the addition rule for the 2n-parameterunitary ray representation. If we use the denotation (s, t) ∈ IR2n and

Ws,t := eis1P1eis2P2 . . . eisnPneit1Q1 . . . eitnQn ,the addition be
omes
Ws+s′,t+t′ = e−ic<s′,t>Ws,tWs′,t′ ,58�Quantum ray� signi�es that from the one-dimensional subspa
e, the 
lassi
al proje
-tive ray, only the norm 1 representatives play a role in the quantum me
hani
al 
ontext.31



where < s′, t >:=
∑

ν s
′
νtν and, as above, c = 1 or c = h̄. The resultingstru
ture was an irredu
ible proje
tive unitary representation of the abeliangroup G = IR2n; Weyl 
alled it an �irredu
ible abelian rotation group operat-ing on a the �eld of rays (Strahlenkörper) of pure states � (Weyl 1927b, 118).He restri
ted his investigation to the 
ase of everywhere de�ned, bounded(skew-) hermitian generators and the resulting unitary transformations andgave a sket
hy argument that these were the only irredu
ible proje
tive rep-resentations for ea
h n.For a serious appli
ation to quantum me
hani
s, the generalization to the
ase of unbounded operators was, of 
ourse, important. It was solved inde-pendently by Marshall Stone and von Neumann (Stone 1930, von Neumann1931). Von Neumann showed, in addition, that the Weyl 
ommutation rela-tions ((12), (13)) 
hara
terize irredu
ible unitary proje
tive representationsof 
ontinuous abelian groups up to unitary isomorphism.Weyl quantizationWeyl, on the other hand, 
ontinued his arti
le by looking for a pro
edurewhi
h 
ould give operator 
ompanions to (
lassi
al) physi
al quantities ina systemati
 way, i.e., he looked for a systemati
 approa
h to quantization(Weyl 1927b, 116). If a 
lassi
al quantity is expressed by a fun
tion f(p, q)of the 
anoni
al variables p, q (f ∈ L2IR2 for n = 1), he looked at the Fouriertransform ξ of f . Then f 
an be gained ba
k from ξ by

f(p, q) =

∫

ei(ps+qt)ξ(s, t)dsdt, . (14)Weyl proposed to use the analogously formed operator-valued integral
F :=

∫

ei(Ps+Qt)ξ(s, t)dsdt =

∫

ξ Ws,t dsdt (15)as the quantum me
hani
al version of the physi
al quantity related to f .In 
ase of periodi
 variables, pairs (p, q) represent elements on the torus
G = T 2 := S1×S1 ∼= IR2/Γ, where Γ is the latti
e generated by the periods.Then the integration redu
es to a summation over integer numbers s and tin ZZ, be
ause the Fourier transform ξ lives on the dis
rete domain Ĝ = ZZ2.Moreover, f is an element of the fun
tion algebra on the abelian group
G = IR2, or T 2 in 
ase of periodi
 variables. For a real valued fun
tion f , inparti
ular, the 
orresponding ξ satis�es

ξ(−s,−t) = ξ(s, t)and leads to a hermitian operator F .In the methods introdu
ed and used by physi
ists at the time for thequantization of 
lassi
al observables, p 7→ P , q 7→ Q , the non-
ommutativity32



of P and Q led to a fundamental di�
ulty for an observable given as a fun
-tion f(p, q) of the basi
 dynami
al variables p and q. Already in the simple
ases of a polynomial fun
tion, it was not 
lear whi
h operator one should
hoose for the formal expression f(P,Q). For example for f(p, q) = p2qone 
ould 
hoose any of P 2Q, PQP or QP 2, et
.. Weyl's unitary ray rep-resentation approa
h resolved (or avoided) this di�
ulty from the outset.The operator inverse of the Fourier transform (15) gave a unique and stru
-turally well determined assignment f 7→ F of hermitian operators to realvalued quantities. Weyl was therefore 
onvin
ed that �our group theoreti
approa
h shows immediately the right way� towards the quantization prob-lem (Weyl 1927b, 117f.).Of 
ourse, the whole approa
h worked only for non-relativisti
 me
han-i
al systems in whi
h time is �the only independent variable�, whereas �eldtheory deals with quantities extended over time and spa
e, whi
h relateobservations and measurements among ea
h other. Weyl 
onsidered the in-dependent variables as �proje
ted into the world� by arbitrary 
onventionsin su
h a manner that the dependen
e of physi
al quantities on them 
ouldnot be measured (Weyl 1927b, 124). In this sense, the independent variablesplayed for him the role of some kind of a-priori 
omponent in theory 
on-stru
tion. They were ne
essary for the 
on
eptual ar
hite
ture of the wholesymboli
 
onstru
tion, although they were not dire
tly related to observ-able quantities. In non-relativisti
 quantum me
hani
s time was the only�independent variable� left. He added:If one wants to resolve the 
riti
ized omission of the time 
on
eptof the old pre-relativisti
 me
hani
s, the observable quantitiestime t and energy E have to be 
onsidered as another 
anoni
ally
onjugate pair, as is indi
ated already by the a
tion prin
ipleof 
lassi
al me
hani
s. The dynami
al law [of the S
hrödingerequation, E.S℄ will then 
ompletely disappear. (Weyl 1927b, 127)He referred to S
hrödinger's �rst attempts to obtain a relativisti
 theory ofthe ele
tron in a 
entrally symmetri
 �eld, but neither here, nor in any laterpubli
ations, did he start to work out this idea of how one might pro
eed tobuild a relativisti
 quantum �eld theory. A good o

asion would have beenhis 
ontributions to Dira
's ele
tron theory, two years later; but by then hehad already a

epted that the physi
ists working on this question � Dira
,Jordan, Heisenberg, and Pauli � had 
hosen a 
ompletely di�erent approa
h.They developed the method of so-
alled se
ond quantization, whi
h seemedeasier �to a

ess for physi
ists�, to take up Born's words from his letter ofO
tober 2, 1925 to Weyl.The problems sket
hed in Weyl's 1927 paper, the method of unitaryray representations of 
ommutative groups, and the ensuing quantizationmethod proposed were soon re
onsidered in Weyl's book (Weyl 1928) andmade more a

essible to an international audien
e by its English translation33



in 1931. The only tra
es it left on 
ontemporary work was that of vonNeumann and Stone, mentioned above. But it turned out to be of long rangeinspiration. In the next generation, G. Ma
key took up Weyl's representationtheoreti
 perspe
tive and developed it into a broader program for the study ofirredu
ible proje
tive representations as a starting point for a more stru
turalunderstanding of quantum physi
al systems (Ma
key 1949).In the 1960s, Weyl's quantization started to be revitalized. In this de
ade,the torus 
ase, G = T 2, was re
onsidered as a spe
ial, and the histori
allyearliest, way to introdu
e a deformed produ
t on the Fourier dual group,
Ĝ = ZZ2. For two elements f, h of the fun
tion algebra on G with Fouriertransforms ξ = f̂ , η = ĥ, ξ, η ∈ Ĝ, let the Weyl quantization be written as
f 7→ F , h 7→ H. Then the 
omposition of the Weyl quantized operators

F ·H
ould be transported ba
k to the original fun
tions f, h or their Fouriertransforms ξ, η. That led to a deformed produ
t depending on a parameter
c (typi
ally c = 1 or c = h̄),

f ∗c g, respe
tively ξ∗̂cη ,with properties whi
h attra
ted a new generation of resear
hers.59The resulting non-
ommutative fun
tion algebra on the torus T 2 or itsFourier dual T̂ 2 = ZZ2 be
ame the starting point for the study of the non-
ommutative torus, one of the �rst well-known 
ases of non-
ommutativegeometry. Weyl-quantization turned out to be just one among a larger 
lassof deformation quantization pro
edures.Thus Weyl's �rst paper presented ideas to the publi
, whi
h he had de-veloped essentially when he was still �at the ba
kstage� of the quantumme
hani
al s
ene, as we have 
alled it, turned out to have long range impa
tin several respe
ts,� for the study of irredu
ible proje
tive representations (Stone, von Neu-mann, Ma
key e.a.),59For an overview see (Rie�el 1994). Rie�el refers to (Pool 1966) as the �rst paper inwhi
h an expli
it des
ription of the deformed produ
t on the Fourier transform fun
tionswas given. His 
laim that already von Neumann had �pointed out that Weyl quantizationindu
es a new produ
t on fun
tions� (Rie�el 1994, 70) seems, however, to be ana
hronisti
.The 
losest approximation to su
h a view in von Neumann's paper is, as far as I 
ansee, a referen
e to the �Gruppenzahlen� at the end of the paper, where the terminology�Gruppenzahlen� refers to fun
tions f on G as elements of the group algebra C[G] (vonNeumann 1931, 229). Su
h a perspe
tive was also dis
ussed in Weyl's paper (Weyl 1927b,106) (and there even in more detail). In the abelian 
ase 
onsidered here the group algebrais 
ommutative and 
ould at best serve as the starting point for the introdu
tion of thedeformed produ
t. Neither von Neumann nor Weyl mentioned the idea that the Weyl-quantized operators might be used to introdu
e a modi�ed (non-
ommutative) produ
t ofthe �Gruppenzahlen� themselves. 34



� as an inspiration for the sear
h for 
on
eptually founded quantizationpro
edures su
h as the Weyl-quantization, as it was 
alled after the1960s,� and �nally as one of the sour
es for a non-
ommutative modi�
ation ofthe the torus (Pool, Rie�el e.a.).At the time of their publi
ation, Weyl's proposals were, however, far toodistant from 
ontemporary quantum me
hani
al resear
h to be taken up inthe physi
s 
ommunity. For several de
ades the paper (Weyl 1927b) remaineda lonely standing monument.5. Weyl entering the stageIn late 1927, Weyl entered the �eld of quantum me
hani
s with full for
e. Hehad announ
ed a le
ture 
ourse on group theory at the Züri
h Eidgenössis
heTe
hnis
he Ho
hs
hule, ETH, for winter semester 1927/28. In the summer ofthis year, both Züri
h theoreti
al physi
ists a

epted 
alls to other pla
es, E.S
hrödinger left the University of Züri
h and went to Berlin; P. Debye gaveup his 
hair at the ETH on o

asion of a 
all to Leipzig. Weyl used the op-portunity to reorient his le
ture 
ourse originally announ
ed on group theoryonly and o�ered it now as a 
ourse on �Group theory and quantum me
han-i
s (Gruppentheorie und Quantenme
hanik)", without running the risk ofputting o� his lo
al 
olleagues in physi
s. Now he had a good opportunityto present his views on group theoreti
al methods in quantum me
hani
s.His main interest was 
entered on the intriguing interplay between represen-tations of the orthogonal group SO3 (and SU2) and the permutation group,whi
h about the same time Wigner and von Neumann hit upon from theirside. Let us remember that in summer or autumn 1927 only Wigner's ownpapers were published. The joint work with von Neumann was still going,on when Weyl prepared the book manus
ript from the le
ture notes in thesummer semester 1928. In late August the book was �nished and given tothe publisher. In the sequel we will also use the abbreviation GQM for it(Weyl 1928).60Weyl's 
ontributions to the topi
 and the joint work by Wigner and vonNeumann were developed in parallel and independently of ea
h other, as faras any dire
t ex
hange of ideas is 
on
erned. They nevertheless establisheda 
ommon theoreti
al approa
h to groups in the quantum me
hani
al expla-nation of atomi
 spe
tra. This is a good 
ase for a 
omparative study of how60If not otherwise stated, quotations refer to the �rst edition of GQM. If possible trans-lations are taken from H.P. Robertson's English version of the se
ond edition; wherene
essary or advisable (be
ause of meaning a�e
ting shifts) dire
t translations from the�rst edition are given by the author (E.S.). The se
ond edition will be quoted by(Weyl 1928, 21931), the English translation by (Weyl 1931a). For a dis
ussion of thebook see (Speiser 1988). 35



Weyl's perspe
tives as a mathemati
ian with great expertise in group repre-sentations in�uen
ed his approa
h to the subje
t. We 
an 
ompare it dire
tlywith the Wigner � von Neumann �team�, one of them (von Neumann) a bril-liant mathemati
ian who had assimilated the new results in representationtheory in a speed whi
h later be
ame legendary, the other one a theoreti
alphysi
ist of admirable mathemati
al powers.Two points of the broader story of group theoreti
al methods in quantumphysi
s have to be mentioned, before we 
ome to the dis
ussion of Weyl'streatment of the interplay of the symmetri
 and the orthogonal groups inspe
tros
opy and quantum 
hemistry. Here we 
an only mentioned them inpassing, although they deserve 
loser s
rutiny in their own 
ontexts.General relativisti
 spinor �eldsExa
tly at the end of Weyl's 
ourse and shortly after it �nished, Dira
'stwo path-breaking papers on the relativisti
 theory of the ele
tron appeared(Dira
 1928) and found immediate re
ognition (Kragh 1990). ThereforeWeyl's book already 
ontained a 
hapter on Dira
's theory. Later in theyear 1928 and early the next one, Weyl took up Dira
's theory, simpli�edit from the point of view of group representations and put it into a gen-eral relativisti
 framework. For physi
al reasons, Dira
 worked with a re-du
ible representation of the Lorentz group, now written as D( 1
2
, 1
2
), whereasWeyl proposed a redu
tion to irredu
ible 
omponents, 
hara
terized by thestandard representation of SL2C in C2, D( 1

2
,0), and/or its 
onjugate D(0, 1

2
)(�Weyl spinors� versus �Dira
 spinors�, in later terminology). Weyl's maingoal in a series of papers in the year 1929 was, of 
ourse, of a di�erent nature,the adaptation of spinor theory to general relativity. In this enterprise he hadagain independent parallel workers, V. Fo
k and D. Ivanenko at Leningrad.Weyl and Fo
k/Ivanenko built essentially the same 
ore theory, but di�eredin outlook and details. That is an interesting story in itself, whi
h 
annotbe told here.61 Weyl did not in
lude this generalized treatment of the Dira
equation in the se
ond edition of the book, but only referred to it in passingat various pla
es (Weyl 1928, 21931, VII, 195).In the se
ond edition he 
hanged and extended, the treatment of thespe
ial relativisti
 Dira
 equation. In the �rst edition he dis
ussed a non-relativisti
 �rst approa
h to �se
ond� quantization of the ele
tron and theele
tromagneti
 �eld (Weyl 1928, �44). At the end of the passage Weylremarked:We have thus dis
overed the 
orre
t way to quantize the �eldequations de�ning ele
tron waves and matter waves. The exa
trealization will be the next task of quantum physi
s; the main-tainan
e of relativisti
 invarian
e seems to o�er serious di�
ul-61Compare (Vizgin 1994, Goenner 2004, Straumann 2001, S
holz 2001a).36



ties. Here again we �nd that quantum kinemati
s is not to berestri
ted by the assumption of Heisenberg's spe
ialized 
ommu-tation rules. And again it is group theory, whi
h supplies the nat-urally generalized variant, as is shown by the next se
tion . . . [inwhi
h unitary ray representations and the �rst steps of Weyl-quantization were presented, E.S.℄. (Weyl 1928) (Weyl 1928,
21931, 203)In summer 1928, he apparently still assumed that his approa
h to quan-tization might allow a generalization from the group IR3 of non-relativisti
kinemati
s to the relativisti
 
ase. In the se
ond edition he omitted the se
-ond and the last senten
es, after in January 1929 Heisenberg and Pauli hadmade de
isive progress in their approa
h to �se
ond quantization�. Weyl stillkept the passage on unitary ray representations and to (Weyl-) quantization,but no longer re
ommended his own approa
h as a a path towards relativis-ti
 �eld quantization. He in
luded two new se
tions with a dis
ussion ofthis new and di�
ult terrain, following Pauli, Heisenberg and Jordan, al-though now the obsta
le of un
ontrollable ini�nities appeared at the horizon(Weyl 1928, 21931, 
hap.IV, ��12, 13).Dis
rete symmetriesIn these new passages Weyl started also to explore the role of dis
rete sym-metries in the 
ontext of early relativisti
 �eld theory, parity 
hange P , timeinversionT , and 
harge 
onjugation C. They ended with a remark whi
hstru
k readers of the next generation as surprising and even �propheti
�:. . . this means that positive and negative ele
tri
ity have essen-tially the same properties in the sense that the laws govern-ing them are invariant under a 
ertain substitution whi
h inter-
hanges the quantum numbers of the ele
trons with those of theprotons [later readers would fun
tionally rephrase the term by�positrons�, E.S. ℄. The dissimilarity of the two kinds of ele
tri
-ity thus seems to hide a se
ret of Nature whi
h lies yet deeperthan the dissimilarity of past and future. (Weyl 1928, 21931,English, 264)We 
annot take up the thread of the rise and establishment of the dis
retesymmetries in quantum �eld theory here; readers interested in this topi
may like to have a look at the dis
ussion in (Coleman/Korté 2001, 293) and(Straumann 2001, 141).6. Weyl on stageWe 
ome ba
k to 
omparing the di�eren
t outlooks of Weyl and Wigner/vonNeumann on groups in quantum me
hani
s. Te
hni
ally, they agreed 
om-37



pletely, as Weyl frankly stated when he wrote the prefa
e to his book inAugust 1928.62 Dis
ussing the role of group representations in quantumme
hani
s, he observed:The 
ourse of events is so inevitable (zwangsläu�g) that nearlyeverything that was still new at the time when I gave the 
oursehas been published elsewhere in the meantime, in parti
ular bythe work of the 
olleagues (der Herren) C.G. Darwin, F. London,J. von Neumann and E. Wigner.He added:That is di�erent with Dira
's wave equation of the ele
tron, whi
hintrodu
ed essential new ideas into the theory during the timewhen this book was being written. (Weyl 1928, vi)The referen
e to F. London, and at other pla
es to W. Heitler, referred tothe theory of mole
ular bonds, whi
h Weyl had approa
hed with the tool kitof representations of the symmetri
 group, starting from the joint arti
le ofHeitler and London.63 Even more than the other authors, Weyl emphasizedthe stru
tural role group representations for the understanding of quantumphysi
s. He hoped that they would survive future 
hanges of the a
tualmathemati
al models of the atomi
 or mole
ular systems:Re
ently it turned out that group theory is of fundamental im-portan
e for quantum me
hani
s. In this 
ontext it reveals themost essential features whatever the form of the dynami
al lawmay be, i.e., without de�nite assumptions on the for
es whi
h area
ting. (Weyl 1928, 2, emphasis E.S.)The last remark des
ribed quantum me
hani
s as a theory in develop-ment. Weyl 
onsidered it to be in an un�nished state. That di�ered fromthe 
redo of the Copenhagen � Göttingen group whi
h argued strongly infavour of having a
hieved a �
ompletion� of quantum me
hani
s.64 Weyl didnot share, however, Einstein's opinion that quantum me
hani
s had to be
onsidered as of only provisional 
hara
ter, as long as its purely sto
hasti
determination was not redu
ed to a 
lassi
al �eld theory lying at its base.Weyl even had wel
omed the sto
hasti
al 
hara
ter of natural laws well be-fore the birht of the �new� quantum me
hani
s (Weyl 1920). Of 
ourse, hewas, well aware of the fundamental problem that quantum me
hani
s and62Remember that all three parts of the Wigner/von Neumann series had appeared atthat time, the last one in June 1928.63(Weyl 1928, 21931, 300, 
hap. V, endnote 10). Darwin's publi
ations dealt with thespin phenomenon; among them (Darwin 1927, Darwin 1928). It did not involve expli
itgroup theoreti
 aspe
ts.64Compare the title of volume VI of (Mehra/Re
henberg 1982�2001): �The Completionof Quantum Me
hani
s 1926 � 1941�. 38



relativity had established two theories of basi
 levels of nature, whi
h were
on
eptually and mathemati
ally far apart. Already during his �ba
kstageperiod� Weyl had looked for possibilities of re
on
iliation of relativity theoryand quantum physi
s (see above). In summer 1928, after Dira
's break-through to a �rst relativisti
 quantum theory with empiri
al su

esses, heexpe
ted further 
hanges to 
ome. In su
h a period, Weyl thought that theassumptions on the �form of the dynami
al law� might still be subje
t to
onsiderable 
hange. The representation theoreti
al methods, on the otherhand, appeared to him as part of a stable 
ore of quantum me
hani
al knowl-edge.This 
onvi
tion of a deep stru
tural meaning of group representations wasthe 
entral topi
 in GQM. Similar to his �rst book on mathemati
al physi
s,Spa
e - Time - Matter, Weyl gave a 
omplete introdu
tion to the mathemat-i
s of the �eld and wrote one of the �rst textbook expositions of quantumme
hani
s. He started with an introdu
tion to what he 
alled unitary geom-etry, i.e., the theory of Hilbert spa
es and the diagonalization of hermitianforms, although essentially restri
ted to the �nite dimensional 
ase (
hap-ter I). He 
ontinued with an introdu
tion to quantum me
hani
s integratingthe S
hrödinger view of the dynami
al law in the non-relativisti
 
ase andthe Göttingen (Heisenberg-Born-Jordan) point of view of observables repre-sented by hermitian operators and their quantum sto
hasti
al interpretation(
hapter II). Of 
ourse, he emphasized the turn quantum me
hani
s hadtaken with respe
t to 
lassi
al natural s
ien
e. Both had in 
ommon to be�
onstru
tive�.Natural s
ien
e is of a 
onstru
tive 
hara
ter. The 
on
epts withwhi
h it deals are not qualities or attributes whi
h 
an be ob-tained from the obje
tive world by dire
t 
ognition. They 
anonly be determined by an indire
t methodology, by observingtheir rea
tion with other bodies; their impli
it de�nition is 
on-sequently 
onditioned by de�nite laws of nature governing rea
-tions. (Weyl 1928, 66)Classi
al me
hani
s was able to assume that su
h �
onstru
tive properties�were attributes of the �things as su
h (Dingen an si
h)�, in the sense of per-taining to them, even if the manipulations ne
essary to their determinationwere not undertaken. In quantum physi
s this was no longer possible. Inthis point Weyl agreed with N. Bohr.With quanta we run into a fundamental barrier (S
hranke) to thisepistemologi
al position of 
onstru
tive natural s
ien
e. (ibid.,emphasis in original, my translation, ES)This limitation lay at the basis of Heisenberg's undetermina
y relation. Weyla

epted it as a fundamental insight, di�erent from Heisenberg's mathemat-39



i
al 
hara
terization of the 
ommutation relation.65In the third se
tion Weyl introdu
ed the representation theory of �nitegroups with some general remarks on 
ontinuous groups, their 
hara
ters andtheir in�nitesimal groups (
hapter III). The presentation of 
on
rete exam-ples, in parti
ular the orthogonal group, Lorentz group, the spe
ial unitaryand the symmetri
 groups were postponed to the later se
tions on �appli
a-tions of group theory to quantum me
hani
s� (
hapters IV and V). ChapterIV 
ontained the theory of atomi
 spe
tra, Dira
's ele
tron theory, and hisown method of unitary ray representations. The last 
hapter developed the
ombined theory of representations of the unitary group and the symmetri
group, preparing his approa
h to the theory of valen
e bonds (
hap. V).His presentation of atomi
 spe
tra (Weyl 1928, 157�.) relied mu
h moreon theoreti
al arguments and used less expli
it 
al
ulations of eigenfun
tionsthan Wigner/von Neumann's. Nevertheless his dis
ussion went as deep intothe physi
s 
ontext as Wigner's. It in
luded, among others, a 
on
ise grouptheoreti
 dis
ussion of Pauli's mathematization of spin and of the anomalousZeeman e�e
t. Weyl apparently wanted to demonstrate the usefulness of thestru
tural view of mathemati
s for a 
on
eptual understanding in physi
s.Pauli spinors from the point of view of representation theoryFor the 
hara
terization of ele
tron spin Weyl 
ould build upon his ob-servation of 1924, that the spe
ial orthogonal groups SOnIR are not sim-ply 
onne
ted but possess, for n > 2, a two-fold universal 
overing group(Weyl 1924a). He 
learly distinguished �two-valued� and one-valued repre-sentations of these groups (Weyl 1925/1926, II, 602�.). For the introdu
tionof ele
tron spin, he nevertheless preferred the more physi
al approa
h of ex-tending S
hrödinger wave fun
tions to Pauli spinors. To 
on
entrate ideas,he started with the dis
ussion of alkali spe
tra, governed by one externalele
tron with a state spa
e 
alled E :We deal with a single ele
tron; the wave fun
tion depends onlyon t and the three spa
e 
oordinates x, y, z. It 
annot be a s
alar,however, but is a two-
omponent 
ovariant quantity of type D 1
2
.Then we have D = D 1

2
× E , and the de
omposition of E into itsirredu
ible 
omponents Dl with the integer azimuthal quantumnumber l gives the 
onstituents D 1

2
× Dl. Ea
h of those de
om-poses again into a doublet Dj with j = l + 1

2 and j = l − 1
2 . . . .(Weyl 1928, 162)66The observation of the last senten
e was an immediate 
onsequen
e ofthe de
omposition formula for a tensor produ
t of representations of SU2,65Weyl presented Heisenberg's undetermina
y in a form due to a 
ommuni
ation by W.Pauli (Weyl 1928, 67, appendix 1).66Weyl's Dj 
orresponds, of 
ourse, to our D(j,0) of equation (7).40



given here in Weyl's notation (Weyl 1928, 166)
Ds ⊗Dl =

l+s
∑

j=|l−s|

Dj .As the old theory without spin 
hara
terized the terms very well up tosmall e�e
ts, Weyl assumed that the two-
omponent wave fun
tions were wellapproximated by the �old� S
hrödinger wave fun
tions (as did his quantumphysi
al 
olleagues). The dimension of the fun
tion spa
e was now doubled,with a 
orresponding rise in the degree of degenera
y. He introdu
ed thenotation El for an invariant subspa
e of E , El
∼= D 1

2
⊗ Dl and gave hisinterpretation of the appearan
e of spin doublets:. . . thus El now possesses all pairs ψ = (ψ1, ψ2) as eigenfun
tions. . . . They obviously form a linear manifold of 2(2l + 1) dimen-sions. But now a small perturbation term will be added to thewave equation, the �spin-perturbation� whi
h 
ouples the 
om-ponents ψ1, ψ2 among ea
h other. Thus the former a

identaldegenera
y is broken, the 2(2l + 1)-fold eigenvalue El is splitinto two values of multipli
ities 2j + 1, with j = l ± 1

2 , just asthe representation D 1
2
× Dl is de
omposed into two irredu
ible
onstitutents. This is the theory of the doublet phenomenon assket
hed by W. Pauli. (ibid.)This was a beautiful demonstration of how representation theoreti
 stru
-tures appeared very naturally in the material of basi
 quantum me
hani
s.They were able to elu
idate the symboli
 
onstru
tions and the perturba-tion arguments introdu
ed by 
ontemporary physi
ists, in
luding the kind ofstru
tural approximation whi
h led from S
hrödinger's to the Pauli's wavefun
tions.In the dis
ussion of the anomalous Zeeman e�e
t, i.e, the split of spe
trallines of multiplets under the in�uen
e of an external magneti
 �eld, Weylshowed that the representation theoreti
 view 
ould also lead to quantitativeresults; he gave a theoreti
al derivation of the Landé formula for the split ofspe
tral terms in an external magneti
 �eld (Weyl 1928, 164�.).6767Landé had determined a 
hara
teristi
 fa
tor g, important for the 
al
ulation of thewidths of the line split, as g = 2j+1
2l+1

, where l was the old (integer valued) azimuthalquantum number and j = l ± 1
2
an ad-ho
 modi�
ation whi
h 
ould later be interpretedas the �internal� quantum number of the representation D(j,0) , taking spin into a

ount.Weyl derived g in very good approximation from the magneti
 momenta of the Pauli-spinors as g−1 =

j(j+1)−l(l+1)+ 3

4

2j(j+1)
, whi
h redu
es to Land'e's formula in the 
ases j = l± 1

2
.Compare (Mehra/Re
henberg 2000/2001, 499).
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A physi
al role for representations of the symmetri
 groupIn his presentation of mole
ular bonds and its group theoreti
 ba
kground(
hap. V), Weyl was apparently intrigued by a stru
tural analogy of the spin-
oupling problem of the n-ele
tron system with his general studies of grouprepresentations. In both 
ases, a strong and deep interplay of a 
ontinuousgroup (SO3 or SU2 in the spin 
ase, more generally any 
lassi
al group) withthe operation of the symmetri
 group, or some subgroup (the Weyl-groupin the general 
ase), formed the essential 
ore of his analysis. Thus Weylde
lared that one of the goals of his le
ture 
ourse and the book was togive a uni�ed pi
ture of the representation theory of �nite and of 
ontinuousgroups.Already from the purely mathemati
al point of view, it no longerseems justi�ed to make su
h a sharp distin
tion between �niteand 
ontinuous groups as is done in the traditional textbooks.(Weyl 1928, V)He was very pleased that the study of the spin of an n-parti
le systemrelied on what he 
alled at di�erent o

asions a bridge between the dis
reteand the 
ontinuous group representations (Weyl 1929
). His goal was to makethis bridge 
on
eptually as 
lear as possible, not only to use its 
onsequen
esin the determination of term systems or in the investigation of 
hemi
albonds. This does not mean that he 
ontented himself with purely stru
turalinsights. He rather started to elaborate the representation theory of thesymmetri
 group with the expli
it goal to derive 
al
ulatory tools. For thispurpose he re�ned the use of Young diagrams and Young tableaus.In the last respe
t he made 
onsiderable advan
es after the publi
ationof the book. Several arti
les on this topi
 followed during the next year,among it the main resear
h paper (Weyl 1929a) and some expository ones(Weyl 1929b, Weyl 1929d, Weyl 1929
). In these papers Weyl a
hieved astru
tural 
larity in the study of spin-
oupling, 
omparable to the one hehad gained during the years 1925/26 for the representation theory of the
lassi
al groups. On the basis of these results he 
ompletely rewrote thelast part of his book (
hapter V) for the se
ond edition (and its Englishtranslation). The revised 
hapter V be
ame the sour
e for a tradition of along, although slow, tri
kling down of knowledge and of symboli
al tools fromthe representation theory of the symmetri
 group to the theory of atomi
 andmole
ular spe
tros
opy (later even to nu
lear spe
tros
opy) and to quantum
hemistry.In these 
onsiderations Weyl employed similar methods to those he haddeveloped in his studies of representation theory in 1924/25. Central for bothapproa
hes was the asso
iation of a symmetry operator A to ea
h element aof the group algebra C[Sf ] of the symmetri
 group Sf , operating on a tensorprodu
t spa
e ⊗f V . Using Weyl's notation F = F (k1, . . . , kf ) for a tensor42



F ∈⊗f V ,68 the symmetry operator A asso
iated to
a =

∑

s∈Sf

a(s)s ∈ C[Sf ]was given by:
A : F (k1, . . . , kf ) 7→

∑

s∈Sf

a(s)F (ks(1), . . . , ks(f)) .Using su
h symmetry operators, Weyl formulated symmetry 
onditions forelements in the tensor spa
e ⊗f V and showed that invariant subspa
es ofthe regular representation on C[Sf ] spe
ify invariant subspa
es of GL(V ) on
⊗f V .Theorem 1 There is a 1 : 1 
orresponden
e between invariant subspa
esof the regular representation of Sf and invariant subspa
es of the operationof GL(V ) on ⊗f V . The same holds for its irredu
ible building blo
ks (the
orresponding irredu
ible representations).(Weyl 1929a), (Weyl 1931a, 350)A 
omparable 
orresponden
e had already been used by I. S
hur in hisdissertation (S
hur 1901) and, in a modi�ed form again in (S
hur 1927). Weylgave full 
redit to these works. Only his method of symmetry operators wasnew, and he thought it to be of advantage for the 
lari�
ation of the overallstru
ture of the 
orresponden
e. In an ex
hange of letters, whi
h is onlypartially preserved, S
hur expressed 
omplete 
onsent:I do not �nd anything in your interesting paper whi
h I had toobje
t to. I even a

ept as not illegitimate the gentle 
riti
ismwhi
h you o�er to my publi
ation from the year 1927. I am veryglad to see that you emphasize the 
onne
tion between my oldapproa
h from the year 1901 and your elegant formulation. Ialso give preferen
e to this dire
t method and would go even alittle farther than you on p. 4 of your manus
ript. I am not ofthe opinion that the later method is the more progressive one.(S
hur Ms.N.d.)69Any representation of Sf is 
hara
terized by a 
hara
ter χ, i.e., the
omplex valued fun
tion on Sf , de�ned by the tra
e of the 
orresponding68This notation takes allows to use a shorthand notation for the operations of C[Sf ] ongeneral tensors F =

∑

j
αj v

(j)
1 ⊗ . . . ⊗ v

(j)
f , de�ned by linear extension of the naturallyde�ned operation on the de
omposable tensors v(j)

1 ⊗ . . .⊗ v
(j)
f .69S
hur's (undated) letter is an answer to a letter by Weyl, whi
h is not preserved.The dis
ussion relates well to (Weyl 1929a). The only point I 
annot identify is the thereferen
e to the remark �. . . on p. 4 of your manus
ript . . . �.43



represention matri
es. For an irredu
ible representation it is known that
(χ, χ) = 1, with respe
t to the s
alar produ
t in the fun
tion spa
e on Sf .In the sequel we shall use the notation ρV (χ) for the irredu
ible represen-tation of GL(V ) in ⊗f V , 
orresponding to χ by this 
orresponden
e andWeyl's theorem.70 Weyl 
onsidered a spin-extension of the underlying ve
-tor spa
e of 1-parti
le states, V (dimV = n), in the sense of Pauli wavefun
tions,

W := V ⊗C2 , dimW = 2n . (16)In the 
ase of an f -ele
tron system one has to study the irredu
ible 
om-ponents of the operation of GL(V ) indu
ed on the antisymmetri
 part ofthe tensor produ
t, ∧nW . The de
omposition of ∧nW a

ording to Weyl'smain theorem leads to multipli
ities mχ for the irredu
ible representationsof type ρW (χ), su
h that
∧n

W =
⊕

mχ ρW (χ) (17)For the 
al
ulation of the multipli
ities mχ Weyl established a kind of �dual-ity� (Weyl's terminology) among the representations of the symmetri
 group.To any representation ρU of Sf in a ve
tor spa
e U there is an indu
edrepresentation ρ∗U on the dual spa
e U∗. By 
ontextual reasons, Weyl mod-i�ed the sign of this indu
ed operation on U∗ by the signum fun
tion.71Then he 
ould use the apparatus of 
hara
ter formulae and found a strikingre
ipro
ity relation (Weyl's terminology) between the multipli
ity of an irre-du
ible representation of the symmetri
 group and the dimension of its dualrepresentation:Theorem 2 The multipli
ities mχ in (17) are equal to the dimensions ofthe 
orresponding dual representations χ∗,
mχ = dimχ∗ ,(Weyl 1929a, 187),(Weyl 1931a, 352).A dire
t 
onsequen
e was that mχ = 0, if the Young diagram 
orrespond-ing to χ has more than 2 
olumns.72 From a pragmati
 point of view, this70Weyl's notation for our ρV (χ) was Λn(χ), where n = dimV .71If ρU 
orresponds to a 
hara
ter χ, Weyl de�ned the dual representation χ∗ as therepresentation of Sf given by

σ 7→ signum(σ)ρ∗U(σ) (Weyl 1929a, 187).72The signum fa
tor in Weyl's de�nition of the dual representation implies dimχ∗ = 0for dual representations with more than 2 rows. The Young diagram of the representationin the dual spa
e U∗ is obtained from the diagram in U by transposition. Thus onlyrepresentations with Young diagrams of 1 or 2 
olumns have non-vanishing multipli
itiesin the de
omposition of the alternating produ
t (17) (Weyl 1931a, 350, 352, 370).44



result stated the same 
ondition for the existen
e of an antisymmetri
 spinextension as the one given by Wigner and von Neumann in terms of thepartition (λ) (equation (10)). But Weyl 
onsidered this insight as more thanjust a 
al
ulational tool. For him it established a kind of re
ipro
ity law ofundoubtedly material importan
e.The modi�
ation, whi
h is brought about by the existen
e ofspin under negle
tion of its dynami
al e�e
ts and by the Pauliex
lusion prin
iple, 
onsists in nothing more than in a trans-formation of the multipli
ity of the term system 
orrespondingto χ from [mχ℄ into [dimχ∗℄. . . . The dynami
al e�e
t of spinresolves these multipletts in as many 
omponents, as given byits multipli
ity [dimχ∗℄; moreover it indu
es weak inter
ombina-tions between the di�erent 
lasses of terms. [Notation adaptedto ours, emphasis in original, E.S.℄ (Weyl 1929a, 188)Spin 
oupling in general ex
hange mole
ulesWeyl even extended the re
ipro
ity theorem to a more general 
ase, W =
V ′ ⊗ V ′′. At �rst glan
e, this generalization may look like a pure mathe-mati
ians game, without 
onne
tions to the physi
al 
ontext, but Weyl washighly interested in its appli
ation to mole
ular bonds.He 
onsidered two atoms A and B with ele
tron numbers ν ′ and ν ′′and symmetry types given by the irredu
ible representations Gχ′ , Gχ′′ (with
hara
ters χ′ and χ′′ � Weyl's notation). If they form a mole
ule, the bondwould be des
ribed by (
olle
tive) states of the 
ombined ele
tron system inthe tensor produ
t. The mathemati
ally elementary states would then be
hara
terized by the irredu
ible representations in the produ
t. Weyl gener-alized Heitler's and London's theory from ex
hange mole
ules with ele
tronpairs to the many (ν = ν ′ + ν ′′) ele
tron 
ase. His generalized re
ipro
itytheorem (Weyl's terminology) 
ontained the 
lue for analyzing the possiblebonding 
onstellation of higher atoms.In one of his presentations of the result to a wider audien
e, a publishedversion of talks he gave during his journey through the United States in late1928 and early 1929, he explained his basi
 idea:This re
ipro
ity law governs the fundamental 
hemi
al problemof 
ombining two atoms to obtain a mole
ule . . . . The mole
ulewhi
h is obtained by 
ombining the two atoms will be in one ofthe symmetry states ζ whose 
orresponding Gζ [Weyl's symbolfor an irredu
ible representation of the full permutation groupof all ν = ν ′ + ν ′′ ele
trons with 
hara
ter ζ, E.S.℄ appears in

Gχ′ ×Gχ′′ and the 
al
ulation of the asso
iated energy is a

om-plished with the aid of these 
hara
teristi
s [
hara
ters, E.S.℄.These 
ir
umstan
es whi
h 
annot be represented by a spa
ial45



(si
!) pi
ture, 
onstitute the basis for the understanding of thehomopolar bond, the attra
tion (or repulsion) existing betweenneutral atoms . . . (Weyl 1929a, 290f.)With respe
t to the strong 
on
eptual relationship between mathemat-i
s and physi
s, these words may appear similar to those Weyl had writtena de
ade earlier, in the years between 1918 and 1920 when he pursued hisprogram of a geometri
ally uni�ed �eld theory. But during the 1920s Weylhad be
ome mu
h more sensitive to empiri
al questions. At the end of thede
ade he had the impression that ground was tou
hed in the formerly fath-omless sear
h for a mathematization of the basi
 stru
tures of matter. Thisnew viewpoint seemed in
ompatible with the earlier hopes for a uni�ed �eldtheory of matter in terms of 
lassi
al �elds, whi
h Weyl now 
onsidered tobe illusionary.73 The role played in his earlier work in general relativity anduni�ed �eld by generalized di�erential geometri
 stru
tures was now takenover by group representations in Hilbert spa
es (�unitary geometry�) and thequantum theory of atoms and their bonds.While in the early 1920s he still thought in terms of a-priori stru
turessupported by strong methodologi
al and ontologi
al spe
ulations, he nowonly spoke of an �appropriate language� for the expression of the natural�laws�.The 
onne
tions between mathemati
al theory and physi
al ap-pli
ation whi
h are revealed in the work of Wigner, v. Neumann,Heitler, London and the speaker is here 
loser and more 
ompletethan in almost any other �eld. The theory of groups is the ap-propriate language for the expression of the general qualitativelaws whi
h obtain in the atomi
 world. (ibid.)In winter 1928/29 Weyl used a journey to the US to bring the gospelof group theory to the s
ienti�
ally rising 
ountry. He gave le
tures atPrin
eton and Berkeley on �Appli
ation of group theory to quantum me-
hani
s� (Weyl Ms1929), and published three arti
les on the topi
 in North-Ameri
an journals (Weyl 1929a, Weyl 1929d, Weyl 1929
).74 After his movefrom Züri
h to Göttingen in early 1930, he took part in the seminar onthe stru
ture of matter, whi
h went ba
k to the Hilbert tradition and wasnow run by Born. He was thus led to a further elaboration of his method(Weyl 1930, Weyl 1931b). The se
ond of these notes 
ontained an analysis ofdeterminantal methods used by W. Heitler and G. Rumer in their 
ommonwork presented in the seminar.75Building on his previous analysis, Weyl showed how to express the spinstates of an m-ele
tron system formed from the shells of k atoms, with73Compare (S
holz 2004a).74(Weyl 1929a) was published in German in the Annals of Mathemati
s.75(Heitler 1931) 46



m1, . . . ,mk valen
e ele
trons ea
h (m =
∑k

1 mj), and the 
ondition that m0valen
es remained free. Admissible spin 
oupling 
onstellations of the valen
eele
trons 
ould be 
onstru
ted from alternating produ
ts of the eigenfun
-tions of pairs of ele
trons from di�erent atoms. After assigning variables
x1, . . . , xk to ea
h atom and x0 to represent empty valen
es, Weyl developeda method to 
al
ulate mole
ular bond energies. The method relied on the�rst fundamental theorem of invariant theory a

ording to whi
h it is possibleto express the invariants of any set of ve
tors {x0, . . . , xk} ⊂ C2 under theoperation of SL2(C) by integer polynomials in the �fundamental invariants�
zi,j derived from the ve
tors by determinants

zi,j := det(xi, xj) 0 ≤ i, j ≤ k .Weyl used the abbreviated notation z = [x, y] (the fundamental binary in-variant), for any two ve
tors x and y.A

ording to Weyl, a �pure valen
e state� was 
hara
terized by a mono-mial of total order m and order mj in ea
h 
omponent xj (0 ≤ j ≤ k),formed from binary invariants [x, y].76 Eigenstates of the mole
ule wouldnot be pure valen
e states but superpositions of them, whi
h are eigenstatesof the Hamilton Hp operator of the bound and spin perturbed system,
Hp = H0 +

∑

Hαβ ,linearized in terms due to the ex
hange (transposition) of any two of thevalen
e ele
trons. Here H0 denotes the Hamilton operator of the ele
tronsystem without spin 
oupling. Weyl developed a method for a 
al
ulationof the perturbation term Hp − H0, if the ex
hange energies Wαβ betweentwo valen
e ele
trons (1 ≤ α ≤ mi, 1 ≤ β ≤ mj) of two atoms with index iand j 
ould be 
al
ulated (Weyl 1931b, 323f.). The 
riti
al point for appli-
ations of the method was then the 
al
ulation of all the �ex
hange energies�involved. It presupposed the solution of a generalizated version of Heitler'sand London's problem for ele
tron pairs. Moreover, the whole method 
ouldbe physi
ally relevant only for mole
ules for whi
h the ex
hange energy 
on-tributes essentially to the total bond energy. Mole
ules with large H0, withrespe
t to the spin perturbation, 
ould be analysed just as well by studyingonly the S
hrödinger wave 
omponent of their Pauli spinors.77From a theoreti
al perspe
tive,the stru
ture of the pro
edure was verysatisfying. Weyl argued that, by assigning formally a �valen
e dash� (be-tween atom x and y) to ea
h binary invariant of type [x, y], one arrived atgraphs for pure valen
e states, whi
h were in striking agreement with an old76The totality of pure valen
e states is not algebrai
ally independent, but obeys a rela-tion, given by the �se
ond fundamental theorem of invariant theory�.77These are mole
ules in whi
h the geometry of �mole
ular orbits� of valen
e ele
tronsand the Coulomb potential are the essential determinants of the bond energy.47



proposal by J.J. Sylvester. In 1878, Sylvester had proposed, in a purely spe
-ulative approa
h, to express 
hemi
al valen
e relations by binary invariants.Formally his proposal 
oin
ided with the algebrai
 
ore of Weyl's 
onstru
-tion. Now Sylvester's pro
edure 
ould be understood as an expression of analgebrai
 stru
ture underlying the determination of bound states in the newquantum me
hani
al theory of valen
e bonds. No wonder that Weyl andHeitler were fond of the new quantum 
hemi
al underpinning of Sylvester'sspe
ulative method.78There remained, of 
ourse, several problems. The pra
ti
al usefulnessof the method 
ould be tested only if the ex
hange energies of single ele
-tron pairs 
ould somehow be 
al
ulated. Even then it remained to be seen,whether the result would be in agreement with empiri
al 
hemi
al knowledge.In his �rst publi
ation, Weyl only indi
ated the general method (Weyl 1931b,323f.).79 In the 1930s he 
ontinued with the 
al
ulation of examples. Thatis shown by notes in his Na
hlass (Weyl Ms.N.d.) and by remarks in a newappendix written for (Weyl 1949).But the method was never adopted in the 
hemi
al 
ommunity. Mostof the mole
ules of organi
 
hemistry turned out to be di�erent from thebonding 
lass whi
h Heitler had 
alled ex
hange mole
ules, even in Weyl'sgeneralization. During the years, 
hemists found overwhelming eviden
ethat their models of mole
ular orbits, in whi
h the spatial distribution of theS
hrödinger part of the wave fun
tion 
ontributed de
isively to the bindingenergy and su�
ed in most 
ases to solve their problems. Moreover, themethod of mole
ular orbits was 
loser to the imagination of the 
hemistsand its mathemati
s was easier to handle for them. The more stru
turalmethod of ex
hange energies of spin 
oupling remained marginal for thepra
ti
e of physi
al 
hemistry, even in the extended and re�ned form whi
hWeyl had started to develop and to present as a methodologi
al tool to the
ommunity of physi
ists and physi
al 
hemists .7. OutlookIn spite of its surprising theoreti
al a
hievements, the rise of groups in quan-tum me
hani
s was far from a straight forward story. With its �rst su

essesat the turn to the 1930s, there arose s
epti
al reservation, 
riti
ism, andeven strong 
ounterfor
es to the spread of group theoreti
 methods in thenew �eld of theoreti
al physi
s. Su
h 
riti
ism was not always meant as a realopposition to the modernizing tenden
y; sometimes it was just an expres-sion of uneasiness with the new algebrai
 methods. Soon after Pauli moved78For a more detailed dis
ussion see (Parshall 1997) and (Kara
halios 2003, se
tion 3.1,163�177).79A graphi
al method for the 
onstru
tion of a basis of invariants, based on an idea ofG. Rumer, was written down by Rumer, Teller and Weyl in (Rumer e.a. 1932).48



from Hamburg to Züri
h as the su

essor of Debye, in April 1928, Ehrenfestasked him for help in the di�
ult the new matter. Pauli was well-knownfor his ability to absorb new mathemati
s with ease and to adapt it to thene
essities of theoreti
al physi
s. Moreover, in his last year at Hamburg hehad parti
ipated in a le
ture 
ourse on algebra and group theory given byEmil Artin. After his arrival in Züri
h in early 1928, he stood on
e again in
lose 
ommuni
ation with Weyl like in the early 1920s.80Group pestIn September 1928, Ehrenfest turned to Pauli and asked for help in under-standing the �terribly many papers on the group-pest (Gruppenpest)�, ofwhi
h he �
ould not read any one beyond the �rst page�, as he wrote toPauli on September 22, 1928.81 In parts of the � still small � 
ommu-nity, this word be
ame the 
at
hword for opposition to the use of grouptheoreti
 methods in quantum me
hani
s. Apparently Ehrenfest unwillingly
ontributed a verbal battle sign to the emerging anti-group 
amp. For himthe word expressed nothing more than uneasiness about the rising 
hallengesof the new mathemati
al methods in theoreti
al physi
s. He was not at allopposed by prin
iple to the new tenden
ies. On the 
ontrary, he supportedits development a
tively. On his initiative, B. L. van der Waerden started todevelop his 
al
ulus of spinor representations of the Lorentz group (van derWaerden 1929); and one of his later do
toral students, H. Casimir, startedto do resear
h work on quantum me
hani
s, very mu
h in�uen
ed by Weyl'sbook. As has been dis
ussed on other o

asions,82 Casimir �nally even 
on-tributed to the re�nement of representation theory itself, by proposing anidea for a purely algebrai
 proof of the full redu
ibility of representations ofLie groups, derived from his resear
h on the problem of rotation in quantumme
hani
s.Real and strong opposition to the group theoreti
 approa
h to quantumme
hani
s 
ame from another 
amp led by John Slater, who showed thatalready traditional algebrai
 tools were highly e�e
tive in the 
al
ulation ofthe energy of higher atoms and binding energies of mole
ules (Slater 1929).Slater's ba
kground in a more pragmati
 tradition of theoreti
al physi
s inthe United States surely played a role for his strong reje
tion of the more the-oreti
ally minded approa
hes like representation theory (S
hweber 1990).8380(Meyenn 1987), (Mehra/Re
henberg 2000/2001, 472). A 
ouple of weeks after hisarrival Züri
h, Pauli wrote in a letter to N. Bohr : �I have now learned so mu
h eruditegroup theory from Weyl that I am really able to understand the papers of Wigner andHeitler� (Pauli 1928). Moreover, he read and 
ommented page proofs of Weyl's GQM inearly summer 1928 (Pauli 1955, 402).81Quoted from (Mehra/Re
henberg 2000/2001, 473).82(Meyenn 1989), (Mehra/Re
henberg 2000/2001, 512�514), (Hawkins 2000).83See also (Sigurdsson 1991), (Mehra/Re
henberg 2000/2001, 499�.) and for a broader
omparative dis
ussion of German and Ameri
an physi
al 
hemists of the �rst generation49



Slater's su

ess in developing determinant methods for quantum me
han-i
al 
al
ulations found immediate a

eptan
e among leading protagonists ofthe Göttingen milieu. Shortly before Weyl de
ided to 
ome ba
k to Göttin-gen as the su

essor to David Hilbert, Max Born warned him, in an otherwisevery friendly wel
ome letter, that he supported the �attempt to throw grouptheory out of the theory of atomi
 and mole
ular stru
tures, as far as possi-ble� (Born Ms 1930a). At that time, Born was 
lose to �nishing an arti
lein whi
h he attempted to get rid of group theoreti
 methods in the theory of
hemi
al bonds (Born 1930). He even was proud of having 
onvin
ed Heitler,after the latter's arrival at Göttingen as Born's assistant, to give up the ideathat group theoreti
 
onsiderations might play an important role in stud-ies of mole
ular bonds.84 This perspe
tive resulted in a 
ommon arti
le byW. Heitler and G. Rumer on 
hemi
al bonds, whi
h only used �traditional�algebrai
 methods along the line of Slater and Born (Heitler 1931).85 Onthe other hand, group theoreti
 methods in physi
s and quantum 
hemistry
ontinued to be a topi
 for le
ture 
ourses at the Göttingen mathemati
alinstitute.86Weyl at GöttingenIn the meantime, in May 1930, Weyl had a

epted the 
all to Göttingen andstarted to tea
h there in winter semester of the same year. That gave him asplendid o

asion for 
riti
al ex
hanges and 
ollaboration with Born, Heitler,Rumer, and Teller on group theoreti
al methods in the nas
ent quantum
hemi
al 
ontext. Although Born had been highly s
epti
al of the methodearlier on, he gave 
riti
al support to the enterprise after Weyl moved toGöttingen, in his own way. This ex
hange of ideas with the theoreti
alphysi
ists around Born in the 
ommon Göttingen seminar led Weyl to a moredetailed elaboration of his use of symmetry operators in the n-fold tensorspa
e of ele
tron states for the 
hara
terization of mole
ular bond states andthe establishment of the link to binary invariants (Weyl 1930, Weyl 1931b).In a subsequent review arti
le on the quantum theory of mole
ular bondsin the Ergebnisse der exakten Naturwissens
haften, Born �nally rephrasedthose results of Weyl's investigation whi
h seemed of importan
e to himfor physi
ists and physi
al 
hemists. In the introdu
tion to his arti
le hefrankly de
lared that the proofs of Weyl's results 
ould not be rephrasedunder �
omplete avoidan
e of the `group pest' whi
h Slater and the author(Gavroglu/Simóes 1994).84(Born Ms 1930a)85The arti
le was written after Weyl had arrived at Göttingen, and after a dis
ussionof the method in the 
ommon seminar on the stru
ture of matter.86W. Heitler gave a 
ourse on this subje
t in winter semester 1929/30 at the mathemat-i
al institute (Heitler Ms 1929/30). He 
on
entrated on the subje
t matter of Wigner'sand von Neumann's theory. Only in the last 
hapter he gave a short introdu
tion to thetheory of mole
ular bonds. I owe Martina S
hneider the information on this 
ourse.50



[Born℄ had intended�. He therefore restri
ted the presentation to formulasand rules, without proofs, su
h that the results 
ould be understood byphysi
ists and 
hemists without being for
ed to read �the di�
ult works ofFrobenius and S
hur on the representation theory of groups�, as he wrote inhis introdu
tion (Born 1931, 390).All in all, the �rst wave of rapid development of group theoreti
al meth-ods in quantum me
hani
s ran into the opposition of a strong, multi-fa
eted,anti-group 
amp; or, at least, it had to fa
e pragmati
 s
epti
ism amongphysi
ists and theoreti
al 
hemists at the turn to the 1930s.On the other hand, new for
es joined the party of mathemati
al 
ontrib-utors to representation theoreti
 methods for mathemati
al physi
s. Mostimportant, from the side of young mathemati
ians, was Bartel Leendert vander Waerden who entered this s
ene with his spinor paper written with theexpli
it goal of serving the physi
s 
ommunity (van der Waerden 1929).87 Inpersonal 
ommuni
ations with Weyl he also 
ontributed 
riti
al remarks tothe understanding of algebrai
 stru
tures underlying spin 
oupling. Van derWaerden 
riti
ised Weyl's approa
h from the viewpoint of a young �mod-ern�, i.e., stru
turally oriented, algebraist. In a letter from April 4, 1930,he argued that in Weyl's derivation of the �re
ipro
ity theorem� it was un-ne
essary to build upon the �inessential property that π [Weyl's symbol forthe permutation group, E.S.℄ is a permutation group�. Obviously he ab-horred the �multitude of indi
es� used by Weyl and 
laimed that one 
oulddo without them in this investigation(van der Waerden Ms1930). After someex
hanges of letters, of whi
h only the van der Waerden part is preserved,he argued that the result was essentially a question in the representationtheory of algebras. A

ording to van der Waerden's analysis, Weyl's re-sult depended essentially on the fa
t that a matrix algebra A indu
ed fromthe operation of the group algebra C[Sf ] on ⊗f V 
ommutes with a 
om-pletely redu
ible representation of the general linear group GL(V ) on thetensor produ
t (van der Waerden Ms1931).88 It seems that Weyl was not
ompletely 
onvin
ed that su
h a level of stru
tural abstra
tion suited hispurpose. He rather insisted on the use of the �multitude of indi
es�, be
ausethey were essential for the 
ontext of modelling the 
ombined ele
tron sys-tems of two atoms in a mole
ule. Nevertheless he a

epted the proposal tostraighten the derivation of the re
ipro
ity theorem (Weyl 1931b, 310).In this sense, the intera
tion between physi
ists and mathemati
ians 
loseto the Göttingen and Züri
h milieu seemed to be a a splendid s
ienti�
environment for a further 
onsolidation of group theoreti
 methods in physi
sand 
hemistry at the turn to the 1930s. In the next 
ouple of years, the triadof now 
lassi
al text books on the use of group theory in quantum me
hani
sappeared (Wigner 1931), the se
ond edition of Weyl's GQM and its English87More details will be dis
ussed in (S
hneider 2006).88See also (van der Waerden 1930a). 51



translation by H.P. Robertson (Weyl 1931a), and (van der Waerden 1932).These books broadened the basis for an extension of the approa
h, inviteds
epti
ists to take an own look at the question, and enabled new
omers fromdi�erent ba
kgrounds to join the enterprise.From an intermediate period . . .As we know, and most of the parti
ipants sensed well, the so
ial stability ofthis milieu stood on shaky ground. Only little later, with the Nazi's rise topower, the Göttingen mathemati
al s
ien
e group was dismantled. As oneof the 
onsequen
es, the 
losely knit intera
tion between pragmati
 s
epti
swith respe
t to the group theoreti
 method, 
lose to Born, and the group ofa
tive protagonists like Weyl, van der Waerden, Heisenberg, Wigner and vonNeumann, whi
h was easily organized around Göttingen, was interrupted.Although several of the protagonists of the �rst wave 
ontinued to elaborateand to tea
h or propagate the new method, no great gains in terms of broadera

eptan
e 
ould be made during the next two de
ades .Weyl 
ontinued to argue for the use of the new method, in parti
ular inthe 
ontext of 
hemi
al bonds, in publi
ations, talks and le
ture 
ourses. Buthe was very well aware of the reservations of the pra
titioners of the �eld feltin rageard to his proposals of using invariant theory for the 
hara
terizationof bond states, and he a

epted it. In an undated manus
ript of a talk givenin the se
ond part of the 1930s, Weyl remarked that the development inthe �eld had not been �very favorable to the s
heme� whi
h he had laid out.The re
ent report (Van Vle
k 1935) had nearly passed it over �in silen
e�. Herealisti
ally added that in his exposition he even intended to �
learly indi
atethe boundaries of appli
ability for our s
heme� (Weyl Ms.N.d., 2).Finally he 
on
entrated his resear
h and publi
ation e�orts on the math-emati
al foundation of the theory. In joint work with Ri
hard Brauer hedeveloped a global 
hara
terization of spin representations in any dimension(and of arbitrary signature) by Cli�ord algebras (Brauer 1935).89 All this
ulminated in his book on The Classi
al Groups (Weyl 1939). That was nodisillusioned withdrawal to pure mathemati
s. It rather was an expressionof a realisti
 evaluation of the a
tual situation in the �eld of appli
ation.Even though Weyl's 
al
ulation of binary invariants did not enter the 
oreof the theory of 
hemi
al bonds, his invariant theoreti
al analysis of spin
onstellations turned out, in the long run, to be an important 
ontributionto the study of spin-
oupling, whi
h has re
ently started to attra
t new in-terest from the point of view of �entangled� systems. The introdu
tion ofbinary invariants into the study of 
oupled systems of ele
trons in the late1920s and the following de
ade, may turn out to be another prelude to the89E. Cartan had dis
ussed spinor representations on the in�nitesimal level already in1913; here the integral (global) perspe
tive stood in the 
enter.52



development of a symboli
 game with long lasting importan
e in a shifted
ontext of appli
ation.90During the de
ades of slow maturation, it was mainly due to WernerHeisenberg's anti
ipatory guess of isospin SU2 as a symmetry underlying thenu
lear intera
tions (Heisenberg 1932) and to Eugene Wigner's 
ontinuingwork and insisten
e on the importan
e of the group theoreti
 approa
h forfundamental physi
s, that this resear
h tradition in mathemati
al physi
swas never 
ompletely interrupted.91 Most important for relativisti
 quantumphysi
s was Wigner's fundamental work on the representation theory of thePoin
aré group (Wigner 1939).. . . to a se
ond wave of groups in quantum physi
sWith the ex
eption of su
h �heroi
� but for a long time relatively isolated
ontributions, it needed a new generation of physi
ists and a diversi�
ationof problems and another problem shift in quantum physi
s, before grouptheory was stepwise integrated into the 
ore of quantum physi
s. Fa
ed withthe rise in 
omplexity of problems of nu
lear spe
tros
opy, G. Ra
ah broughtgroup theoreti
 methods 
loser to the ordinary problem solving pra
ti
e ofspe
tros
opists (Ra
ah 1942�1949).92 Finally the proliferation of new �ele-mentary parti
les� between 1950 and the 1970s gave material and motivationto look for group theoreti
al 
lassi�
ations of obje
t stru
tures and the 
orre-sponding internal symmetries of intera
tions. Thus we 
an see a se
ond wavein the use of group theoreti
al methods in quantum physi
s during the 1950sto the 1970/80s. In this 
hanged 
ontext, the two books of the above men-tioned triad, whi
h formerly were only available in German, were translatedinto English, (Wigner 1957) and (van der Waerden 1974). Mathemati
iansof the next generation, among them G. Ma
key and I.E. Segal, 
ontinued to
ontribute, from the side of mathemati
s, to the resear
h tradition begun atthe end of the 1920s.In this se
ond wave of resear
h, simple anti
ipatory ideas had to be dif-ferentiated and di�erent strands of using groups in quantum physi
s grewtogether:� weight systems of representations were turned into a tool for under-standing �multipletts� of basi
 states of matter, generalizing the mul-tipletts of spe
tral terms of the 1920s,� isospin was �rst enri
hed (�eightfold way�, SU3) and then transformedinto two di�erent forms (weak isospin, SU2, and the �
hromo-symmetry�90This �game� has re
ently gained new interest from the point of view of quantum
omputing. In this new 
ontext the question of energy 
ontributions, whi
h hinderedWeyl's proposals from be
oming important in quantum 
hemistry, are subordinate. I owethe hint to the 
onne
tion of Weyl's work with these re
ent developments to P. Littelmann.91Cf. (Ras
he 1971) and (Ma
key 1993, 265f.).92(Ma
key 1993, 269) 53



of strong intera
tions, SU3), the basi
 symmetries of parti
le physi
sof the late 20th 
entury,� 
onservation laws be
ame generally 
onsidered as founded upon under-lying dynami
al symmetries,� the study of in�nitesimal symmetries be
ame standardized in the formof (generalized and non-abelian) gauge �elds or, equivalently, 
onne
-tions in �bre bundles.Groups, their representations, 
orresponding 
onserved quantities, andthe use of gauge stru
tures were �nally broadly a

epted. They were usedas an important ingredient of the mathemati
al forms fun
tioning as a sym-boli
 relative a priori in whi
h theoreti
al physi
ists of the late 20th 
enturywere able to mold an impressive part of the experimental knowledge of fun-damental physi
s. At the end of the se
ond wave, group theoreti
al methodswere well integrated into the mainstream of mathemati
al physi
s. Althoughat the end of the 
entury the gap between general relativity and quantumphysi
s 
ontinued to be wide open, groups and their representations haveturned into useful tools and provide 
on
eptually 
onvin
ing forms for the
onstru
tion of symboli
 models of material pro
esses in both domains.A
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