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Local spinor structures in V. Fock’s and H. Weyl’s work
on the Dirac equation (1929)

Erhard Scholz, Wuppertal

Abstract

In early 1929, V. Fock (initially in collaboration with D. Iwanenko)
and H. Weyl developed independently from each other a general relativis-
tic generalization of the Dirac equation. In the core, they arrived at the
same theory by the introduction of a local (topologically trivial) spinor
structures and a lifting of the Levi-Civita connection of underlying space-
time. They both observed, in slightly different settings, a characteristic
underdetermination of the spin connection by a complex phase factor,
which gave the symbolical possibility for a reformulation of Weyl’s old
(1918) idea to characterize the electromagnetic potential by a differential
form transforming as a gauge field. Weyl and Fock realized the common
mathematical core of their respective approaches in summer 1929, but
insisted on differences in perspective. An interesting difference was dis-
cussed by Weyl in his Rouse Ball lecture in 1930,. He contrasted the new
type of unification strongly to the earlier geometrically unified field the-
ories (including his own). He was quite explicit that he now considered
his earlier ideas on geometrization of “all of physics” as premature and
declared that the new, more empirically based approach would have to
go a long way before it could be considered as a true "geometrization" of
matter structures.

Introduction

In the early 20th century the most important impact of mathematical physics
on geometry came from relativity theory. Historical and philosophical questions
of this interplay have been discussed at various occasions.! The rise of quantum
physics brought about a second shift, philosophically, technically and concep-
tually much deeper, for the relationship of geometry to physics. It started in
the late 1920s, gained momentum in the second half of the past century and
began to dominate the image of knowledge for the deeper levels of physical ge-
ometry during its last two decades.? Other contributions to these conference
proceedings are evidence for the actuality of this recent and ongoing shift in our
understanding of physical geometry, which is far from completed and continues
to be an open-ended and controversial project.?

An important turn in the relationship between relativity, quantum mechanics
and field theory, which also sheds light on the nature and role of geometry in
this conceptual complex, was initiated by Hermann Weyl and Vladimir Fock in
early 1929. They both started to investigate (generalized) Dirac fields in the
context of general relativity by the introduction of local spinor structures on
Lorentz manifolds. This topic was taken up anew in the 1960s from a global
point of view.*

L Among them (Boi 1992) (Gray 1999).

2For a first historical exploration see (Cao 1999, section V), in particular J. Stachel’s
introductory remarks.

3Cf. contributions of M. Atiyah and A. Connes to this volume.

4Tthe role of the Dirac operator for the interplay between differential geometry and topol-
ogy in the last third of the century is being discussed in J.-P. Bourgignon’s contribution to
this volume.



Up to the end of the 1920s mathematical physicists had essentially two
symbolic tools for the represention of physical fields at their disposal: vec-
tors/tensors (including differential forms) and linear connections (mostly but
not always affine), most important among them, of course, the Levi-Civita
connection of general relativity (GRT). After 1918 H. Weyl tried to convince
physicists and mathematicians for some time to use another type of connection
(length connection) in combination with a conformal (class of) Lorentz metric
in his first, strictly metrical gauge geometry.®> Most physicists who considered
Weyl’s length connection at all referred to it as just another differential 1-form
© =Y pidx’ with a peculiar, perhaps even strange, transformation behaviour.

In the early 1920s A. S. Eddington started to build his attempts towards a
unified field theory of electromagnetism, gravitation and matter using general
affine connections (not necessarily derived from a metric); and Einstein joined
him for a while from 1923 onward. These activities were part of a broader move
towards unified field theories (UFT’s) with a first high tide in the 20s of the
last century, which has been studied historically, among others, by Vladimir
Vizigin (Vizgin 1994) and, more recently and in a different methodological ap-
proach, by Catherine Goldstein and Jim Ritter (Goldstein/Ritter 2000).6 V.
Vizgin presents the relationship of UFT and quantum physics (QP) as one of
competing research programs mutually influencing each other. The introduction
of local spinor structures by Fock and Weyl in 1929 is a beautiful example for
his case. Both, Weyl and Fock, were struck by the early successes of the Dirac
equation for the explanation of the motion of the electron and attempted an in-
tegration of GRT and the Dirac field. In such an attempt they were not alone.
Other authors, like Wiener and Vallarta, attempted a similar integration along
different lines, building upon Einstein’s recent theory of “distant parallelism”.
They attempted to adapt the Dirac field to a framework of classical UFT’s that
soon turned out to be too restrictive.

Weyl and Fock, the latter after an initial phase of sympathizing with distant
parallelism, pursued an approach of a covariant differentation of spinor fields
derived from the underlying Levi-Civita connection, in contrast to the distant
parallelism program. Both realized that, in doing so, an underdetermination
of the ensuing spinor connection led naturally to an additional U(1)-symmetry.
They used the latter for a representation of the electromagnetic field compara-
ble to, although slightly different from, Weyl’s earlier approach using a length
connection. Thus they arrived at a geometric-analytical structure in which the
actual knowledge of gravitation, electromagnetism and the basics of the quan-
tum theory of the moving electron could be represented in an integrated form.”
Both authors posed the question how geometry might be brought into agree-
ment with quantum physical knowledge of their time. They arrived at strongly
diverging evaluations as to what they had achieved in this respect and what
geometrization of quantum physics might mean at all (last section).

Before I discuss Weyl’s and Fock’s respective approaches and differences with

5This approach is discussed, from a more recent point of view, by P. Cartier’s in his
contribution to this volume.

6 Another high tide, in a different historical/scientific context and with changed concep-
tual/symbolical approaches, started in the 1970s. Tt has not yet found the detailed and critical
historical investigation it deserves, although work has started (Cao 1997), (Morrison 1995),
(Galison 1995), (O’Raifeartaigh/Straumann 2000).

"For a discussion of Weyl’s 1929 work on gravitation and the electron see also (Straumann
2001).



respect to “quantum geometry”, I want to sketch the background of common
knowledge from which they started and outline their 1929 work.

Setting the stage in the later 1920’s for Weyl and Fock

During the 1920s the constitutive conditions for the mathematization of geome-
try and matter changed deeply. In the middle of the decade (1925/26) the “new”
quantum mechanics took shape, with its different versions, in central aspects
compatible, although at least historically and conceptually not completely equiv-
alent, put forward by Heisenberg/Born/Pauli, Schrédinger and Dirac.® Contin-
uing this turn in late 1926, W. Heisenberg started to investigate the symmetry of
atomic electrons using surprisingly old-fashioned mathematics, Serret’s Algébre
supérieure from 1879. But already in the following year the two young Hungar-
ians, E. Wigner and J. von Neumann, working in Berlin and Gé6ttingen, applied
group representation methods for this goal, as did H. Weyl in a lecture course
devoted to this subject in the winter semester 1927/28 at the ETH Ziirich.’

Still in 1926, W. Pauli attempted to characterize the new hypothetical elec-
tron “spin” in terms of quantum mechanical symbolism and introduced a pair of
“wave” functions (11(z), ¥ (x)), € IR, and Hermitian matrices, which later
were given his name,

(i )omn(c )eme (1 4)

Pauli proposed to represent the electron spin by the three component operator

h

1
o= 55(01,02,03), h= e

Like Heisenberg, Pauli did not think in terms of group representations at that
time; he constructed his two-valued wave functions from the Klein-Sommerfeld
theory of the spinning top and the complex representation of rotations by
Cayley-angles. That was an ingenious and mathematically momentous move
towards what little later turned into (Euclidean or relativistic) spinors, al-
though Pauli’s hopes to come to a direct explanation of the fine structure
of the hydrogen spectrum were not fullfilled at the time.!® Even the first
attempts in 1926 and 1927 to take relativistic effects into account, spinless
(Klein-Gordon) or with spin (Darwin), were no more successful in this re-
spect.!! The situation changed completely in January and February 1928 when
Dirac proposed to use 4-component complex-valued “wave” functions i (z) =
(V1 (), Y2(x), ¥3(x),v4(x)) (z in Minkowski-space IM) in two successive publi-
cations 2. The - function had to obey the (Dirac) equation

3
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8For a general picture see (Rechenberg 1995), (Pais 1986) and (Hendry 1984).
9(Mehra/Rechenberg 2000, 488fF.).

10(Pais 1986, 289fF.).

1 (Kragh 1981, 44ff.), (Mehra/Rechenberg 2000, 280fF.).

12(Dirac 1928).




with (Dirac) matrices v* satisfying the relations 777 +~v*47 = §;;, and express-
ible, e.g., in the form

1 ; oj
O: J = J <3<
Y ( —]1>’7 <_Uj >,1337

with (2 x 2)-unity matrix T and Pauli matrices ¢;."®

Thus things looked quite different for Weyl in the late 1920s from what they
had been at the end of his first phase of activity in mathematical physics early in
the decade. Already in late 1920 he had lost confidence in theories of matter by
unification of classical fields according to the Hilbert/Mie approach, including
his own one built upon the length gauge.'* While expecting new insights from
the rising quantum mechanics, he concentrated on more conceptual or purely
mathematical research fields: the analysis of the space problem about 1922/23
and representation theory of Lie groups during the years 1924 to 1926.'® Weyl
kept well informed on the ongoing development during the crucial years for
quantum mechanics in the middle of the decade, drawing upon his close scien-
tific relationship with Pauli (1924 — 1928 at Hamburg university), dating from
their cooperation on unified geometrical field theories in the early 1920s. More-
over he had contacts with E. Schrédinger who taught at the university in Ziirich
between 1921 and 1927. He appararently felt challenged to contribute to the
conceptual and mathematical clarification of the framework of the “new” quan-
tum mechanics, in particular from the point of view of unitary geometry (Weyl’s
title for the first part of his lecture in 1927/28) and the use of representation
theory of (Euclidean) rotations and permutation for atomic line spectra, Pauli’s
non-relativistic spin, and mechanism of molecular binding forces.

In winter 1927/28 Weyl had a chance to take up the challenge. Both theo-
retical physicists working at Ziirich had accepted outside calls and had left: P.
Debye changed from the ETH to the university Leipzig and E. Schrédinger from
the local university to Berlin. Weyl decided to change the subject of a lecture
course initially planned and announced on (pure) group theory to one on Grup-
pentheorie und Quantenmechanik (Theory of Groups and Quantum Mechanics.
Notes were taken by his assistant F. Bohnenblust and published, after revision
and extension, in August 1928 as a book (Weyl 1928), which in the sequel will
be abbreviated as GQM. In this second book on mathematical physics, Weyl
was more cautious than he was in Raum - Zeit - Materie (Weyl 1918) in his
expectations of how his contributions might be received by the workers in the
field. In the preface to the new book, he remarked:

It is the second time that I dare to turn up with a book which
belongs only partly to my own speciality, mathematics, and partly
to physics. ...I just cannot avoid to play the role of a messenger
(often undesired, as I have experienced sufficiently clearly) in this
drama of mathematics and physics - fertilizing each other in the
dark, although from face to face preferring not to recognize and even
renouncing each other. (Weyl 1928, Vf., my translation, E.S.)!6

I3Dirac used a slightly different presentation of the matrices than the one given in the text.
For a detailed investigation of Dirac’s work see (Kragh 1981) or (Kragh 1990).

14Gee (Sigurdsson 1991, chap. V) or (Scholz 2001a).

15 (Hawkins 2000, Part IV).

16Not translated in the English edition by H.P.Robertson.



Weyl was not alone in this "role of a messenger" as he realized during the
preparation of the lecture notes for publication. Other authors started in 1927
and 1928 to use group representations in quantum mechanics, among them,
most importantly from the mathematical point of view, J. von Neumann and
E. Wigner. Also on the physical side, things changed rapidly. Dirac published
his papers on the relativistic theory of the electron at the end of the winter
semester, in January and February 1928. The impact was enormous and were
sufficient reason for Weyl to add to his book a whole new passage on Dirac’s
equation (Weyl 1928, 1st ed., §§39 41).

Another remark in his lectures of 1927/28 leads directly to our geometrical
topic.'” Weyl’s gauge idea from 1918, originally linked to a length calibration
and “ infinitesimal length transport” characterized by a 1-form ¢ = 3 ¢;dx? was
rephrased in a quantum mechanical setting by E. Schrédinger, still in a length
calibration interpretation (Schrodinger 1922), and after the rise of the “new”
quantum mechanics by V. Fock and F. London in the context of Kaluza-Klein
theory of quantum mechanics (Fock 1926, London 1927). The core of their
respective arguments dealt with “gauging” a wave function ¢ (x) by a point-
dependent phase factor ¢*(®) (with A € R) to ¢(z) = e*@ip(z). The dif-
ferential of the purely imaginary phase factor, used in Weyl’s 1918 theory to
“gauge-transform” length connections, could now be used to transform electro-
magnetic potentials ¢; a little more convincingly

Weyl endorsed this recontextualization of his original gauge idea when he
discussed the Schrodinger equation in 1927/28. Probably he had read only the
papers by Schrédinger and London, which he cited, not Fock’s; but London
was aware of and built upon (Fock 1926).18 He remarked that the Schrodinger
equation

N
th— = Hv, 2
=y 2)
containing the Hamilton operator
1 2
H:%ij+V(x) (3)
with potential V' and momentum operator p; = %% for a chargeless particle,

is adequately modified by using the covariant derivative d, with respect to a
potential connection ¢ = (p;), if a charged particle in field of potential ¢ is
considered. Then the momentum operator becomes

h( 0 ie .

pj:;<@+ﬁ@j>a i=v-1l, (4)
and the Hamiltonian of the Schrodinger theory for the motion of a particle of
charge e in an electromagnetic field of potential ¢ results. Weyl observed that
now:

The field laws satisfied by the potentials ¢ and ¢ of the material and
the electromagnetic waves are invariant under simultaneous substi-

tution of .
¢ by ei)‘% Spa by Spa - _a—
e 0xq

17This passage was published only in the first edition of (Weyl 1928), no longer in the second
edition of 1931 and the English translation.
18(Vizgin 1994, 293).




... (Weyl 1928, 1st ed. 87f.)

He commented that this “principle of gauge invariance” was quite analogous
to the one he had postulated in 1918 “by speculative reasons to gain a unified
theory of gravitation and electromagnetism” and continued:

... But now I believe that the gauge invariance does not couple elec-
tricity and gravitation, but rather electricity and matterin the mode
presented here. How gravitation according to the general theory of
relativity can be included is still uncertain. (Weyl 1928, 1st ed. 88)

Thus Weyl proposed more than a technical adaptation of his old gauge idea to
the new framework of QP. In classical UFT the goal was to unify force fields as
such in a coherently geometrized, often highly speculative, “a priori” manner,
and to derive matter structures from them; here Weyl indicated a new paradigm
centering around the search for conceptual and mathematical structures which
link forces to matter fields, without reduction of one to the other and with
strong input from experimental evidence.

Classical UFT was, of course, still quite alive at that time. In 1928 A. Ein-
stein turned towards “distant parallelism” for his latest approach to unification.
He assumed or postulated, that, in addition to the Levi-Civita connection of
the Lorentz metric, an integrable, curvature free, orthogonal connection A}y
with torsion (A?;, = —A;) is given, which he usually described by a globally
parallel system of orthogonal frames. With respect to such an additional struc-
ture it was meaningful to consider constant, i.e. point independent, rotations.
Although Einstein did not intend so, his additional structure allowed a formu-
lation of the Dirac equation in the framework of GRT with distant parallelism
and stimulated other physicists to do so.

V. Fock and his Leningrad colleague D. Ivanenko started to explore such
an approach in a joint paper submitted to Zeitschrift fiir Physik in March
1929.'® They hoped to find some “bridge” between gravitation and quantum
theory.?® They started with a formal construct of a linear expression in the
Dirac matrices, ds = Zj vjdz?, which they tried to interpret as a matrix val-
ued metric form of some new “linear quantum geometry”. From that point of
view they hoped to find a kinship between Einstein’s field of distant parallelism
and the new “linear geometry” (Fock/Ivanenko 1929¢, 801). During the following
months Ivanenko and Fock realized that the linear structure of the new geometry
could better be understood as a covariant derivative of the 4-component com-
plex wave functions which they called “semi-vectors”, the later spinors.2! Still
they called the geometry they were heading for “géométrie quantique linéaire”
(Fock /Tvanenko 19295, Fock 1929a).?> V. Fock continued to explore the terrain
and realized soon that the new covariant derivation of spinors had a much closer
kinship with a Weylian phase gauge than with Einstein’s distant parallelism.
He presented his findings in two articles (no longer co-authored by Ivanenko)
to Physikalische Zeitschrift and Comptes Rendus (Fock 1929a, Fock 1929b).23

9March 25, 1929.

20For the group of young relativists in Leningrad see (Gorelik/Vizgin 1987), for the early
involvement in QP (Frenkel/Gorelik 1994). More on Fock in (Gorelik 1993).

21The terminology of “semi-vectors” was proposed by L. Landau.

22(Fock/Ivanenko 1929b) was submitted May 22, 1929.

23(Fock 1929a) dated June 24, (Fock 1929b) July 5, 1929.




He thus arrived at a theory combining gravitation, Dirac field, and electromag-
netism, which overlapped in large parts with what Weyl achieved in early 1929
when he continued research along the lines indicated in GQM.

Weyl’s and Fock’s local spinor structure

Weyl left Ziirich in September 1928 for Bologna (ICM) and Princeton where he
spent a year as reseach professor in mathematical physics.2* There he could
continue, among other things, his research on the Dirac equation in general
relativity. The approach of distant parallelism did not appear at all convincing
to him. He considered it to be a completely “artificial” device and looked for
a combined structure of GR and the Dirac equation from the point of view
of “purely infinitesimal” geometry, which now had to be refined and extended
in the light of new physical knowledge. In February 1929 Weyl submitted a
first sketch of methods and results under the title Gravitation and the electron
to the Proceedings of the National Academy of Sciences (Weyl 1929a). Three
months later he delivered a more extended exposition to Physikalische Zeitschrift
(Weyl 19295).25 At that time he could not know of Fock’s parallel work, nor
did he know of it when he wrote his third paper on the topic in early summer
(Weyl 1929¢).

Fock, on the other hand, got to know of Weyl’s new researches (Weyl 1929a)
only after he finished his own article for Physikalische Zeitschrift. He accepted
the common mathematical core of their respective approaches, but emphasized
the differences from the physical point of view in a postscript (Fock 19295, 276f.).
Weyl apparently got to know Fock’s work in summer 1929 and was so fond of the
common features of their work that he considered it as establishing essentially
one and the same theory. He thus referred to it in the preface to the second
edition of GQM as the “general relativistic formulation of the quantum laws,
which have been developped by Mr. V. Fock and the author [Weyl himself]”
(Weyl 1928, vii, 2nd edition 1930).26

Fock and Weyl applied the method of (pseudo-) orthogonal moving frames
in Lorentzian space-time M, i.e. they supposed an

orthonormal frame of tangent vectors (ONF): e(a,z), 0<a <3,

in each point P € M with coordinates z = (2°,...,2%) (depending differen-
tiably on the point). Tangent vectors v at x € M could thus be represented
in components referring to the coordinate basis (£7), or in components with

respect to the ONF (£(a) in Weyl’s notation):
3.9 3
=380 = 3" tla)e(o,). (5)
=0

Besides (differentiable) change of coordinates, changes of the ONF from e(a, x)
to €'(3,z) (0 < a, B < 3) had also to be taken into account. The latter were

24(Frei 1992, 107F.).

25Submitted, May 8, 1929.

26Weyl saw no chance to give an exposition of this theory in the book GQM. In the second
edition he rephrased, however, his discussion of the representation of the Lorentz group and
of the special relativistic Dirac equation, in particular the decomposition of the 4-dimensional
spinors into irreducible 2-dimensional representations.




given by point-dependent Lorentz-rotations ¥(x) represented by matrices (as the
ONF’s were given in components with respect to a local coordinate system):

I(x) = (93) € SO(1,3).

The parallel transport of a frame by the Levi-Civita connection I'*j; could be ex-
pressed in terms of “infinitesimal rotations” o depending linearly on infinitesimal
displacements dz = (dz?) in space-time

05 = ngkdxk . (6)
k

In more recent terminology: By means of the ONF’s Fock and Weyl reduced the
group of the affine connection I‘ijk to the orthogonal group, and characterized
parallel transport in M by the resulting orthogonal connection W

In the late 1920s this was standard knowledge. The idea of ONFs had already
been introduced by Ricci and Levi-Civita in 1900; it had been worked out by
differential geometers in the 1920s, most prominent among them E. Cartan (in
lectures from 1926/27 published as (Cartan 1928)), J.A. Schouten, R. Weitzen-
bock, L.P. Eisenhart (in monographs 1926 and 1927). Moreover, orthonormal
frames played a central role in Einstein’s theory of “distant parallelism”, from
which Fock (and Ivanenko) took the idea.?” Fock (still in his cooperation with
Ivanenko) and Weyl realized that reduction of the Levi-Civita connection to the
orthogonal group by the ONF method allowed one to introduce covariant dif-
ferentiation of spinors.2® Weyl explained clearly that the orthogonal reduction
of the connection was necessary in this context, because “Dirac’s quantity”

...corresponds to a representation of the orthogonal group which
cannot be extended to the group of all linear transformations. The
tensor calculus is consequently an unusuable instrument for consid-
erations involving . (Weyl 1929a, 219)

For Weyl, this group-theoretic consideration was of great importance. In the
early 1920s he had analyzed the role of tensors from the point of view of group
representions and found out that all irreducible representations of GL(n,IR)
with a specified permutation symmetry can be characterized by tensors over
IR™.2% In a language closer to physicists he explained more in detail:

Vectors and [tensors] are so constructed that the law which defines
the transformation of their components from one Cartesian set of
axes [ONF] to another can be extended to the most general linear
transformation, to an affine set of axes. That is not the case for [the]
quantity 1, however; this kind of quantity belongs to a representa-
tion of the rotation group which cannot be extended to the affine
group. (Weyl 1929aq, 234)

He admitted that the ONF method used by him resembled Einstein’s lat-
est appproach in formal aspects, but insisted that this was only a superficial
coincidence.

27Tn his main article Fock referred, however, also to (Eisenhart 1926) (Fock 19295, 263,
footnote).

28For simplicity, T will no longer always add in the sequel Ivanenko to Fock, even in case
that concepts appeared already in their joint work.

29See (Hawkins 2000, 440fF.).



But here there is no talk of “distant parallelism”; there is no indica-
tion that Nature has availed herself of such an artificial geometry. I
am convinced that if there is a physical content in Einstein’s latest
formal development it must come to light in the present connection.

And he added a reason that went beyond purely mathematical considerations:

It seems to me that it is now hopeless to seek a unification of grav-
itation and electricity without taking material waves into account.
(Weyl 19294, 219)

Dirac had shown that the equation of the free electron expressed in v is invari-
ant under Lorentz transformations without asking for the underlying reprenta-
tion of the Lorentz group,’® but other authors did so immediately later. F.
Moglich calculated the complex 4 x 4-matrices for the “Dirac-quantity” corre-
sponding to a given Lorentz transformation (Mo6glich 1928), and J. von Neu-
mann discussed the resulting relation

A: SO*(1,3) — GL(4,C)

o — A(o)

as a “(multivalued!) 4-dimensional representation of the Lorentz group” (von
Neumann 1929, 867). Von Neumann emphasized, very much like Weyl, that
something essentially new was introduced into mathematical physics:

The case of a quantity of 4 components which is no 4-vector has
never occurred in relativity theory, the Dirac iy-vector is the first
example of this kind. (ibid.)3!

Thus, immediately after Dirac’s publications on the “spinning” electron, the-
oretically minded authors realized that the new “Dirac quantity” (Weyl), the
“4p-vector” (von Neumann), or the “semi-vector” (Fock, Landau e.a.) was more
than just another technical device, but led to a conceptual innovation for math-
ematical physics. Change of reference systems in special relativity (“Cartesian
systems of axes” as Weyl would say) by a Lorentz transformation had to be
represented by A(o) in the ¢-space in a way that could not be extended to gen-
eral linear transformations and thus could not, in a straight-forward manner,
be transferred to general relativity.

At the time when Fock and Weyl approached the problem of a general rel-
ativistic formulation of the Dirac equation, the young algebraist B.L. van der
Waerden established an algebraic calculus for all possible quantities appearing
in any representation of the Lorentz group. His contribution was meant as a
sort of service to the physicists, stimulated by a question of P. Ehrenfest who
had posed the question to design such an algebraic calculus. Van der Waerden
picked up the terminology“spinor” from Ehrenfest and gave him a broad audi-
ence (van der Waerden 1929, 100). In this work he built upon Weyl’s exposition
of the representation theory of the Lorentz group in GQM.

Distinct from other work about 1929, Fock and Weyl admitted point-dependent
(Lorentz-) rotations of ONF in space-time, o(z) € SOT (1, 3), differentiably de-
pending on z, inducing point-dependent transformations A(o(z)) of the spinor

30(Dirac 1928, 310ff.), discussed in (Kragh 1981, 57f.).
31 Translation E.S.



space. While Fock immediately headed for the covariant derivation of a spinor
(“semi-vector”), Weyl made the underlying invariance idea explicit. He stated for
the “laws” that would be characterized by an action principle and by differential
equations derived from it:

The laws shall remain invariant when the axes in the various points P
are subjected to arbitrary and independent rotations. (Weyl 1929aq,
219)

Variational equations were thus required to be invariant under simultaneous
transformations

— of vectors/tensors by Lorentz rotations o(x)

— and of the spinors under A(o(z)).

In this way, Weyl and Fock introduced and started to study a local spinor
structure on the underlying space-time manifold M. Both authors used local
change of coordinates in the spinor space A(o(z)) (the change of trivialization
in later language) accompanying a change of ONF’s o(z), and Weyl discussed its
conceptual role quite clearly, although of course not yet applying the terminology
of local bundles trivialization.

Weyl did not mention, however, that for a globalization of the procedure
the topology of the M might play a role. Such questions of global existence of
an ONF (presupposing parallelizability of M), were posed and answered only
in the 1930s by the young generation of topologists (E. Stiefel, H. Whitney),
apparently stimulated by Einstein’s use of (local) “distant parallelism”, not by
local spinor structures of Fock and Weyl. Global questions for spinor structures
were taken up still another generation later and became a research topic only in
the 1960s.%2 Weyl, in his 1929 articles, did not even indicate that there might be
an open and challenging question in the relationship between spinor structures
on M and its topology.

Of immediate interest, for our authors, was the introduction of an “infinites-
imal displacement of semi-vectors” (Fock) or the “invariant change 41 on going
from the point P to a neighbouring point P (Weyl 19294, 221), i.e. in mod-
ern terminology the introduction of a connection and parallel transport in a
local spinor structure, lifted from the Levi-Civita connection in the underlying
Lorentz manifold. On this point the two authors applied slightly different ap-
proaches; Weyl’s approach was, as one may expect, more conceptual and Fock’s
more calculational.

Considering two (infinitesimally) “neighbouring” points P, P’ with coor-
dinates = (2°,...,2%) and o/ = (2/°,...,2’%) differing by an “infinitesi-
mal displacement” dx = (dzV, ..., dz3) Weyl argued that parallel displacement
of a frame {e(a, P)} from P to P’ leads to an infinitesimally rotated frame
{e/(a, P’)} described by an infinitesimal rotation o = w(dz) with respect to the
ONF-system {e(«, P')} in P’, in slightly metaphorical notation

{¢'(a, P")} — {e(a, P)} = w - {e(a, P')} (7)

(compare equation (6) ). The representation A induces an infinitesimal tranfor-
mation dE (Weyl’s notation) in gl(n,C), which depends linearly on dx

dE = A(o) = Aw(dx)

32Gee P. Bourgignon’s contribution, this volume.

10



The “differential ¢(P’) — ¢(P)”, ie. dy = >, %dxj, had to be modified
accordingly to give the covariant differential 61 of ¢ (Weyl 19294, 221) (Weyl
19295, 2531):

Y =dy+dE - 1. (8)

This conceptually clear description of the covariant differential, had the ad-
vantage that in Weyl’s discussion A could stand for any representation of the
Lorentz group, not just Dirac’s original 4-dimensional one.

Weyl realized of course, as did von Neumann in 1928, that Dirac’s represen-
tation can be decomposed into two irreducible representations p and p™ (which
generate all finite dimensional representations of SL(2,C) by tensor products
and direct sums). He gave a beautiful geometrical description of the 2-valued
inverse of the covering map??

SL(2,€) — SO*(1,3)

and took p as the identical representation of SL(2,C) and p* = !p its ad-
joint. Then he could write Dirac’s representation (up to a permutation of -
coordinates) as

A=papt, (9)

and wrote the 4-spinors (after a linear transformation) as (¥], 15,97, ¥y ).

Fock analyzed the condition (incorporated by Dirac into his new symbolic
game) that the 1-functions get their physical meaning from the condition that
the evaluation map

Y (a%,...,a%) with af =<~ >, 0<4<3,

leads to a vector (a’). Therefore it was natural to postulate that “changes of
a semi-vector ¥ under an infinitesimal parallel displacement” are compatible
with parallel displacement of vectors. This allowed him to compute matrices
C; € GL(4,C) which describe such compatible “infinitesimal changes of semi-
vectors” (the parallel displacement in the local spinor structure). In his own
representation 47 of the Dirac matrices Fock derived the condition

1 ok , . - -
C, = 1 Z ARl g + g, with 35 = Z A", (10)
.kl k
e = diag(1l,—1,—1, —1) the signature diagonal matrix, w the orthogonally re-

duced Levi-Civita connection, and ¢; any matrix “proportional” to unity

¢ = f1ll  with f; real-valued function (11)

(Fock 19295, 264f.). Fock thus arrrived at an explicit form of Weyl’s infinites-
imal spinor transformation dE, at least for the case of the (original) Dirac
representation,

dE - =Y Cida'p.
l

On that basis Fock easily expressed covariant differentiation of a spinor with
respect to a vector direction of a the frame {e(a)}

;0
Doy = —8e(a)w = Cot) (12)

33 (Weyl 19298, 247f.).
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or a coordinate direction z7
0

o7~ Civ (13)

Dy =
where C'j are slightly different matrices calculated from the Cj’s. For Weyl,
both versions of covariant differentiation could be derived from his “covariant
differential” §¢ of equation (8).

An additional U(1)-gauge

Up to this point I omitted an important observation made by both authors,
which led back to Weyl’s gauge idea. The “lifting” of the Levi-Civita connection
to the spinor structure was not uniquely determined, even if we neglect the
double valuedness of the SL(2,C) covering of the Lorentz group.

Fock’s calculation of the the matrices (equation (10)) showed that the com-
patibility condition determines the Cj only up to addition of purely imaginary
matrices i f;I. Covariant differentiation of spinors (equations (12), (13)) is then
affected by an additive term —if,e . In a kind of déja vu Fock realized that
the additional term could be perceived as derived from a phase-gauge factor of

the y-field:

The appearance of the Weylian differential form in the law of parallel
displacement stands in close relation to the fact remarked by the
author [Fock] and also by Weyl (...) that the addition of a gradient
to the 4-potential corresponds to a multiplication of the ¥-function
by a factor of absolute value 1. (Fock 19295, 266)

On that basis, Fock formulated the Dirac equation for the general relativistic
electron by covariant derivation in his local spinor structure, including a Weylian
U(1)-gauge term as an integrated part of the covariant derivation (13) (ibid.)

3
Fip=0 with F=ih» 47D;+mey. (14)
j=0

Weyl discussed the question similarly, although slightly more general. He
argued that any semantically relevant information derived from a spinor field
had to be invariant under U (1)-symmetries of the spinor representation, because
the SO™(1,3)-covariants used to represent physical quantities were given by
Hermitian forms < 1, A1) > and thus were invariant under multiplication by a
phase factor e** of 1. Therefore the spinor connection (“the infinitesimal linear
transformation dE of the ") is determined by the “infinitesimal rotations” w
of the reduced Levi-Civita connection only up to “a purely imaginary multiple
i - df of the unit matrix”. In other words, with dE

dE' = dE + idf 1
is also compatible with the underlying metric of GRT. Weyl concluded:

For the unique determination of the covariant differential d¢ of ¥
such a df for each line element PP’ = (dz) starting from P is needed.
(Weyl 19295, 263)
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The selection among the spinor connections compatible with the Levi-Civita
connection could justly be considered as a “gauge”, in strong analogy to the
length gauge of 1918. Morover Weyl used, just like Fock, the possibility to
express the Dirac equation of the electron in an electromagnetic field by means
of covariant differentiation of spinors including a U(1)-gauge potential (“such a
af).

For action functions applying to spinor fields he felt it legitimate to postulate:
If one (...) substitutes

) o\
by e - b - =
¢ by (0 fp Yy fp axp

with A an arbitrary function of the position, gauge invariance neces-
sarily holds, in the sense that the action principle remains invariant.
(Weyl 19295, 263)

From the point of view of infinitesimal symmetries, the new gauge structure
resembled in certain features Weyl’s study of the Raumproblem early in the
1920s. In the analysis of the space problem he had characterized “congruences”
by a subgroup G of SL(n,IR), contained in a larger group H of “similarities”, in
which G was normal (in fact, H was the normalizer of G in GL(n,IR)). One of
his postulates was a uniqueness condition for an affine connection equivalent (in
a certain sense) to a given linear connection in the larger group. In 1929 he again
dealt with a pair of groups, now given by physical considerations, the smaller
one being the Lorentz group or its universal convering, G = SL(2,C), and the
larger one was H = SL(2,C) x U(1) in which G was normal by construction.
Again a uniqueness condition for a connection, compatible to another given
one, played a crucial role for the analysis. The uniqueness condition was now
formulated “bottom up”, i.e. from a given (Levi-Civita) connection in the smaller
group to the larger one, and uniqueness of the (spinor) connection with respect
to the larger group was achieved only by adding a connection in the quotient
group U(1) (respectively bundle, from the later point of view). In this sense
there was a structural analogy considering group extensions for infinitesimal
symmetries, although the methodology had changed considerably. In 1929 Weyl
no longer tried to found his approach on a priori principles, but rather analyzed
symbolic forms worked out (“constructed”) by mathematical physicists in close
communication with experimental knowledge of the rising quantum physics.

Weyl discussed how one could arrive at physical consequences from his ap-
proach. It would lead us too far to follow this line here.?* I just want to mention
that Weyl drew impressive consequences from the postulate of invariance of the
action integral under infinitesimal symmetries of different kinds:

— infinitesimal rotations of the frames leads to symmetry of the energy-
momentum tensor,

— infinitesimal coordinate translations leads to “quasi’-conservation of en-
ergy and momentum and in the case of special relativity by integration to
invariance of rotational momentum (Weyl 19295, 256ff.),3"

34Cf. (Straumann 2001).
35Weyl spoke of “quasi-conservation” of energy-momentum i3, because of a second term in
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— infinitesimal U(1) gauge transformations leads to conservation of charge
(ibid., 264f.).

He hoped, morover, that his general relativistic approach to the Dirac equa-
tion, together with the separation of the spinor fields into components of ir-
reducible representations p and p™ might lead to a solution of the problem of
negative energies in the original Dirac equation. In late 1929 Dirac proposed
a solution to this problem by some imaginative ad-hoc arguments postulating
the existence of positive electrons (positrons) appearing as constitutive parts of
the solution of the original Dirac equation with non-vanishing mass term, and
surprising “fluctuations” between positive and negative charge contributions to
it. It turned out that neither the positive charge contributions could be sepa-
rated nor the resulting “fluctuations” eliminated from the solution (Kragh 1990,
90ff.).

Weyl, for his part, attempted for a short while in 1929 to avoid such fluc-
tuations by the proposal to study solutions of a modified Dirac equation in the
irreducible components of the representation p and pT separately (Weyl spinors).
He remarked, however, that in this equation no mass term could be included
without losing gauge invariance (Weyl 19294, 242). As a research strategy to
overcome the problem he proposed to neglect at first, on the level of the spinor
equation, the mass of the electron and to reconstruct it, in a second step of
theory development, as an integral invariant that couples to gravitation.

Be bold enough to leave the term involving mass entirely out of
the field equations. But the integral of the total energy density
over space yields an invariant, and at the same time constant, mass;
require of it that its value be an absolute constant of nature m which
cannot vary in value from case to case. This introduction of mass
is born of the idea that the inertia of matter is due to its energy
content. (Weyl 19294, 243)

Such an approach made sense only in a joint theory of gravitation, quantum
physics (in the sense of the modified Dirac equation) and electromagnetism. In
his attempt for an integrated theory Weyl now pursued the concrete goal to
contribute to the solution of the mass problem of the electron.

The proposal to start from a “massless” electron was rejected by physicists
immediately. In the postscript to his article for the Physikalische Zeitschrift
Fock argued strikingly (and presumably also convincingly for Weyl)3® that the
current of the Weyl-spinor field was lying on the light-cone. Thus there remained
no realistic hope for a solution of the electron’s mass problem along the line in-
dicated by Weyl (Fock 19296, 276f.). Similarly Pauli rejected Weyl’s proposal to
circumvent the mass problem for the electron, although from a conceptual point
of view he found the new integration of the gauge idea into quantum physics

the differential equation derived from invariance under infinitesimal translations:

otl del(a

P 4 Atq (@) =0

Ozq Oz
Literal conservation of energy and momentum holds only if the respective terms of the gravi-
tational fields are added or, in special relativity, after specialization of the ONF’s (Weyl 19295,
2571.).

361n the 2nd edition for GQM Weyl no longer insisted on his 1929 proposal and supported

Dirac’s strategy to deal with the problem (Weyl 1928, 2nd. edition, 230, 233).
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most convincing. He contributed essentially to its dissemination and survival
in the physics community. Moreover he revived Weyl spinors in 1956 when he
looked for an adequate mathematical representation of his newest hypothetical
entity, the neutrino. This is a different and historically complicated story which
cannot be dealt with here.?”

Weyl indicated that field quantization was another problem that had to be
solved before one might hope for an answer to the questions raised:

Another difficulty which stands in the way of a comparison with ex-
perience is that the field equations must first be quantized before
they can be applied as a basis for the statistics of quantum tran-
sitions. But our theory is also hopeful in this respect inasmuch as
the anti-symmetric Fermi statistics of the electrons, corresponding
to the Pauli exclusion principle, here necessarily leads to the sym-
metric Bose-Einstein statistics of photons. (Weyl 19294, 244)

Weyl could probably not surmise which tremendous difficulties had to be sur-
mounted on the path indicated here. When he reworked GQM for the second
edition he knew already more about the nature of problems arising from the
infinities of field quantization. He made some striking observations with respect
to symmetries in quantum electrodynamics, but did not contribute to its further
development in the later 1930s and 40s.38

Geometry and physics: interpretations and perspectives

As we have seen, Weyl’s and Fock’s 1929 work contained a strong common
mathematical core. They both established local spinor structures on Lorentz
manifolds with an additional internal U(1) symmetry and proposed to use a
connection in this structure, determined by or determining gravitation and elec-
tromagnetism and governing the motion of the spinor field. But they had strong
differences with respect to the question of how geometry and physics could or
should be related.

Fock proclaimed that his goal was “the geometrization of Dirac’s electron
theory and its subsumption (Einordnung) in general relativity” (Fock 19296,
275). This was a conceptual-methodological task, rather than one of concrete
physical theory building. He hoped, however, that his investigation might “con-
tribute to the solution of the problems” in Dirac’s theory, referring apparently to
the paradox of negative energies and positive probability of fluctuations between
negative and positive energies, respectively charges. He thus expected that his
geometrization of the Dirac operator might lead, in the long run, to progress
of a physical theory in a more technical sense. Fock’s main hope was, however,
to contribute to what he (and Ivanenko) thought to be a challenging goal of
contemporary physics, the development of a common conceptual structure for
relativity and quantum physics.

V. Fock had learned relativity from A. Friedmann and participated promi-
nently in the development of relativity theory in Russia.?® In the later 1920s he
maintained close contact to a group of young physicists in Leningrad around L.

37See (Pais 1986, 313ff.), (Straumann 2001).

38For Weyl’s contribution to the symmetries in early quantum electrodynamics, see
(Coleman 2001, 287ff.); for the history of quantum electrodynamics (Schweber 1994).

39(Gorelik/Vizgin 1987, 286ff.).
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Landau, G. Gamow, and M. Bronstein, to which his early 1929 coauthor D. Iva-
nenko belonged. The young physicists enthusiastically supported the cultural
awakening in the early Soviet Union and wanted to contribute to it through
their work in relativity and quantum physics.4? This was apparently part of the
background for Fock’s and Ivanenko’s premature claim to have found a path
towards quantum geometry.

In a letter to Nature, dated March 21, 1929, they announced their first, still
very sketchy ideas on “linear geometry” as a contribution to this challenging
task.*! In the Comptes Rendus note of May 22, 1929, they shifted attention in
their “géométrie quantique linéaire” from the “matrix valued linear metric” to
parallel displacements and covariant differentiation in a local spinor structure.
Once more, they claimed to have found a method to reconcile quantum physics
with geometry

Il importe de signaler un point qui distingue les idées exposées dans
cette Note de celles d’Einstein et de Levi-Civita: c’est I'intervention
des matrices-opérateurs dans les équations pour les quantités pure-
ment géométriques. Grace & cela on peut bien s’imaginer un champ
électromagnétique dans un espace euclidien, ce qui était impossible
dans les autres théories. (Fock/Ivanenko 19295, 1472)

In his later contributions Fock was more cautious and weakened the claim
to the more moderate one of having pursued “the geometrization of Dirac’s
theory of the electron and its subsumption under the general theory of relativity”
(Fock 1929b, 275). He admitted that the “difficulties which are inherent in
Dirac’s theory” had not yet been touched, but added:

Our investigations might perhaps contribute indirectly to the solu-
tion of these difficulties, by showing what the original unchanged
Dirac theory can achieve. (ibid.)

The reference to the “original unchanged Dirac theory” was probably formulated
after Fock got to know Weyl’s proposal and indicated a disassociation from
the latter, the reasons of which were explained in the postscript. Fock thus
proclaimed that the geometrization of the Dirac equation by the spinor structure
with connections and covariant derivation was an important methodological
achievement in itself.

On this point Weyl did not agree at all. He had lost confidence in the
geometrical unification programs which he himself had contributed so effectively
by his gauge unification in 1918. About the end of the 1920s he no longer
expected any deeper understanding of physical reality by the still blossoming
geometrical unification programs.*? He criticized, in particular, Einstein’s latest
attempt at unification by an additional structure of distant parallelism as a turn
towards a physically unmotivated “artificial geometry” (Weyl 19294, 219 quoted

40 (Frenkel /Gorelik 1994, 20fF.).

41With respect to their purely formal “linear form with matrix coefficients” ds = Zk Yiedx
(see above) they proclaimed: “This linear ds is connected with Dirac’s wave equation in the
same way as the Riemannian ds? with the relativistic wave equation of the older theory.
... This linear geometry seems to furnish a basis on which a uniform theory of gravitation,
radiation, and quantum phenomena is to be constructed” (Fock/Ivanenko 1929a). For more
details they referred to their forthcoming paper (Fock/Ivanenko 1929c¢)

420n the “diversity” of these programs see (Goldstein/Ritter 2000).
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above). In his later 1929 paper for Physikalische Zeitschrift he argued in more
detail:

I am unable to believe in distant parallelism for several reasons.
Firstly, a priori, my mathematical sense (mathematisches Gefiihl)
opposes against accepting such an artificial geometry; for me, it is
difficult to conceive of a power which would make the local systems
of axes, in their twisted position in the different world-points, freeze
together in rigid affiliation. Moreover, two important physical rea-
sons have to be added. ...(Weyl 19295, 246)

As “first physical reason”, Weyl mentioned his gauge theory of electromagnetism.
He argued that only the point-dependence of the ONF’s gave rise to a variable
phase factor e** and thus the new principle of gauge invariance. The “second
physical reason” was, to Weyl, the possibility to derive symmetry of the energy-
momentum tensor and the invariance of rotational momentum in special rela-
tivity from infinitesimal rotations of the ONEF’s or of infinitesimal translations
of coordinates (see above). Thus Weyl’s “physical reasons” consisted essentially
of methodological arguments for the superiority of invariance properties in an
infinitesimal symmetry approach, close to those which about three decades later
became central in the rise to prominence of more general “gauge” theories.*?

The 1930 Rouse Ball lecture at Cambridge university gave Weyl the opportu-
nity to explain his view of the unification programs to a wider scientific audience.
He still considered the attempts “to geometrize the whole of physics”, undertaken
after Einstein had so successfully geometrized gravitation, very comprehensible
at its time (Weyl 1931, 338). He explained his own theory of 1918 and sum-
marized its critical reception by physicists. He reviewed Eddington’s approach
to unification by affine connections and Einstein’s later suppport for that sub-
program, always in comparison with his own “metrical” unification of 1918, and
concluded that in hindsight one could see that both theory types were “merely
geometrical dressings (geometrische Einkleidungen) rather than proper geomet-
rical theories of electricity”. He ironically added that the struggle between the
metrical and affine UFT’s (i.e. Weyl 1918 versus Eddington/Einstein) had lost
importance, as in 1930 it could no longer be the question which of the theories
would “prevail in life”, but only “whether the two twin brothers had to be buried
in the same grave or in two different graves” (ibid., 343). He again made clear
that he could not find any argument in favour of Einstein’s distant parallelism
approach, nor could he find good prospects for the Kaluza-Klein approach.**
Weyl even accused Einstein’s new theory of “breaking with the infinitesimal
point of view. (...) The result is to give away nearly all which has been gained
in the transition from special to general relativity. The loss is not compensated
by any concrete gain” (Weyl 1931, 343).

Weyl perceived a nearly complete scientific devaluation of the UFT’s of the
1920s, resulting from developments in the second part of the decade:

In my opinion the whole situation has changed during the last 4 or 5
years by the detection of the matter field. All these geometrical leaps

43Cf. (Morrison 1995).

44T he revival of Kaluza-Klein type theories in the 1980s happened in a completely different
content of theory development. In this conference, moreover, P. Cartier argued that there
are reasons which might lead to a renewed interest in the original form of Weyl’s purely
infinitesimal geometry — again in a modified physical interpretion and theory context.
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(geometrische Luftspriinge) have been premature, we now return to
the solid ground of physical facts. (Weyl 1931, 343)

He continued to sketch the theory of spinor fields, their phase gauge and its
inclusion into the framework of general relativity along the lines of the 1929 ar-
ticles. Weyl emphasized that, in contrast to the principles on which the classical
UFT’s had been built, the new principle of phase gauge “has grown from ex-
perience and resumes a huge treasury of experimental facts from spectroscopy”
(ibid. 344). He still longed for safety, just as much as at the time after the First
World War, when he designed his first gauge unification. Now he no longer
expected to achieve it by geometric speculation, but tried to anchor it in more
solid grounds:

By the new gauge invariance the electromagnetic field now becomes
a necessary appendir of the matter field, as it had been attached to
gravitation in the old theory. (Weyl 1931, 345, emphasis in original)

Weyl made it very clear to his readers that he had changed his perspective.
He no longer saw a chance in attempts to derive matter in highly speculative
approaches from mathematical structures devised to geometrize force fields; he
now set out to search forms for the mathematical represention of matter, which
gave expression to the enduring traces in the “huge treasury” of experimental
knowledge. For him, this was reason enough to prefer the view that the electrical
field "follows the ship of matter as a wake, rather than gravitation” (ibid.).

In short, Weyl had turned from his idealist approach to matter, pursued at the
turn to the 1920s, to a symbolic realist one at the end of the decade. This change
of perspective had consequences for his views on geometrization. With reference
to Fock’s interpretation of the role of geometry in the general relativistic Dirac
equation Weyl continued:

Mr. Fock calls the derivation of the new gauge invariance from gen-
eral relativity, which he arrived at nearly simultaneously with me,
a geometrization of Dirac’s theory of the electron. In this respect I
cannot agree with him. My impression is that we have abandoned
geometrization by linking electricity to matter rather than to gravi-
tation. I fear that the geometrizing tendency, which seized gravita-
tion in full right and supported by the most intuitive arguments, was
misled when it was extended to other physical entities. (Weyl 1931,
345)

Weyl did not, on the other hand, completely negate any possibility to find a
geometrical quantum theory. He only warned that, if one wanted to continue
with the geometrizing tendency, one had to invent a “natural geometry” leading
to a spinor type field ¢ for the characterization of its structure, in addition to
the ONF. Whereas Fock claimed to have achieved this already, Weyl remained
agnostic:

One had to set out in search of a geometrization of the matter field;
if one succeeds here, the electromagnetic field is added as a premium
to the bargain. I have no idea what kind of geometry this might be.
(ibid.)

18



From the perspective of late 20th century developments in differential geometry
and the tremendous role of gauge field theories, Weyl’s evaluation is highly
surprising and even seems paradoxical: Why did he not percieve his own and
Focks’s invention of local spinor structures with additional U(1)-gauge as a
sufficiently rich extension of geometry to deal with matter structures?4?

Our own perspective has been shaped by the development of differential
geometry and topology in the second half of the last century, which was deeply
influenced by Elie Cartan’s work, the work of his students and other researchers.
In the late 1950s and 1960s bundle structures with their inbuilt transformation
behaviour have become central concepts in geometry and topology. In this sense,
Weyl'’s first desideratum of a “natural geometry” which includes spinor type field
in its core structure seems to be satisfied, and it becomes difficult to grasp why
Weyl, unlike Fock, did not accept their common contribution as a valuable step
in this direction.

We may assume that Weyl over-emphasized his scepticism with respect to
geometrization of physics at the turn to the 1930s, because he still wanted to
correct his earlier exuberance in this respect. Moreover he wanted to disassociate
himself strongly from the “old” unification programs which where still alive in
the latest attempts of Einstein, or Kaluza and Klein, and wanted to counteract
them in the scientific discourse as clearly as possible.

For a proper historical understanding we have to take another aspect into
account. Weyl’s attempts to integrate geometry with physics had, from their
very beginnings after the First World War, a strong intentional reference to the
quantum stochastical aspects of matter as a a “dynamical agens”, even at a time
when these were not understood at all. In the early 1920s Weyl had dared to
speculate in wide leaps about a possible relationship between the intuitive, the
mathematical and the physical understanding of the continuum, some inbuilt
discrete “free-choice” structures and the end of classical determinism in natural
science.*® In 1925, in his manuscript for the Lobachevsky centenary volume
(published only posthumously (Weyl 1988)), Weyl indicated that the vagueness
of physical determination of space-time localization has to be taken seriously for
the basic theoretical structure of geometry. This vagueness ought to be consid-
ered a principal feature for the mathematical characterization of geometry and
to be dealt with, in principle, in some stochastical approach informed by “the
actual state of physics”, i.e. quantum physics. But then, so Weyl remarked, at
a time when the “new” quantum mechanics was just being shaped, the question,
how such a quantum stochastical foundation for geometry relates to the differ-
entiable structure of classical geometry, turned into a completely open problem.
He ended the passage by the honest remark:

One has to admit that until now nearly nothing has been achieved for
the question what it means to apply differential calculus to [physical]
reality. (Weyl 1988, 12)

With such questions Weyl was not completely alone. But they were far from
what most physicists or mathematicians considered useful at the time, or even
later in the 1930, when Fock’s young colleague M. Bronstein explored the ques-
tions of a necessary revision of time-space concepts from the point of view of

45T thank Jim Ritter who indicated this point to me and insisted on a closer historical
perspective.
46Most prominent and controversially discussed in this respect is (Weyl 1920).
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quantum physics (Frenkel/Gorelik 1994, 83ff.). Fock’s hope of 1929 to leave
classical geometry behind and to turn towards geometrical quantum structures
was comparably innocent. With such a point of view he was content with an ex-
tension of differential geometry which would appear, at most, as a semi-classical
enrichment.

In his 1930 talk at Cambridge (and its later publication) Weyl expressed
clearly that from a proper geometry of matter he expected a deep break with
the classical tendency of geometrization prevailing in the UFT’s. He was less
clear, to say the least, what should be substituted for it; but there were strong
reasons for such vagueness. His own approach to the mass problem of the
electron had turned out to be unsatisfactory; Dirac’s alternative appeared more
promising, but still had a long way to go before a technically valid solution of
the quantization problem was in sight*” — not to speak about the extensions
of later quantum gauge field theories and the still unanswerable question of
the mass spectrum of basic constituents of matter. Therefore Weyl’s remark “I
have no idea what kind of geometry this might be”, was just as honest as his
comment in 1925 that “nearly nothing had been achieved” for a semantically
reliable relation of the differentiable structure of geometry to the “actual state
of physics”.

Other contributions to this conference explore the much broader and deeper
mathematical knowledge at the turn to the 21st century. Notwithstanding a
whole range of new open questions and desiderata, including the one for a his-
torical evaluation of recent developments, we now see several candidate programs
for a quantum geometry aiming at (or preparing) a unification of quantum field
theories.*® It is not yet clear, whether one of them (or perhaps several) will
“prevail in life”. Weyl’s proposal to look for a “geometry of matter” informed
by the treasury of experimental knowledge could still be taken as an advice for
a critical discourse in and among the different research programs.*® Perhaps
future developments will show whether Weyl’s guess that the geometrization of
interaction and metrical fields is “added as a bonus” once a proper geometry of
matter has been achieved is just another speculative dream. It still may turn
out that it indicates a hint for an appropriate theory development.

47See (Schweber 1994).

48Two, at least, were presented to the conference (M. Atiyah and A. Connes), another one
was planned (C. Rovelli).

49 At the turn of the century we may add that, in addition to recent and coming results in
high-energy spectroscopy, geometrical aspects of low energy EPR-type experiments constitute
a valuable novel part of the “treasury” of experimental knowledge, which ought to be taken
into account in a future “geometry of matter”.
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