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Lo
al spinor stru
tures in V. Fo
k's and H. Weyl's workon the Dira
 equation (1929)Erhard S
holz, WuppertalAbstra
tIn early 1929, V. Fo
k (initially in 
ollaboration with D. Iwanenko)and H. Weyl developed independently from ea
h other a general relativis-ti
 generalization of the Dira
 equation. In the 
ore, they arrived at thesame theory by the introdu
tion of a lo
al (topologi
ally trivial) spinorstru
tures and a lifting of the Levi-Civita 
onne
tion of underlying spa
e-time. They both observed, in slightly di�erent settings, a 
hara
teristi
underdetermination of the spin 
onne
tion by a 
omplex phase fa
tor,whi
h gave the symboli
al possibility for a reformulation of Weyl's old(1918) idea to 
hara
terize the ele
tromagneti
 potential by a di�erentialform transforming as a gauge �eld. Weyl and Fo
k realized the 
ommonmathemati
al 
ore of their respe
tive approa
hes in summer 1929, butinsisted on di�eren
es in perspe
tive. An interesting di�eren
e was dis-
ussed by Weyl in his Rouse Ball le
ture in 1930,. He 
ontrasted the newtype of uni�
ation strongly to the earlier geometri
ally uni�ed �eld the-ories (in
luding his own). He was quite expli
it that he now 
onsideredhis earlier ideas on geometrization of �all of physi
s� as premature andde
lared that the new, more empiri
ally based approa
h would have togo a long way before it 
ould be 
onsidered as a true "geometrization" ofmatter stru
tures.Introdu
tionIn the early 20th 
entury the most important impa
t of mathemati
al physi
son geometry 
ame from relativity theory. Histori
al and philosophi
al questionsof this interplay have been dis
ussed at various o

asions.1 The rise of quantumphysi
s brought about a se
ond shift, philosophi
ally, te
hni
ally and 
on
ep-tually mu
h deeper, for the relationship of geometry to physi
s. It started inthe late 1920s, gained momentum in the se
ond half of the past 
entury andbegan to dominate the image of knowledge for the deeper levels of physi
al ge-ometry during its last two de
ades.2 Other 
ontributions to these 
onferen
epro
eedings are eviden
e for the a
tuality of this re
ent and ongoing shift in ourunderstanding of physi
al geometry, whi
h is far from 
ompleted and 
ontinuesto be an open-ended and 
ontroversial proje
t.3An important turn in the relationship between relativity, quantumme
hani
sand �eld theory, whi
h also sheds light on the nature and role of geometry inthis 
on
eptual 
omplex, was initiated by Hermann Weyl and Vladimir Fo
k inearly 1929. They both started to investigate (generalized) Dira
 �elds in the
ontext of general relativity by the introdu
tion of lo
al spinor stru
tures onLorentz manifolds. This topi
 was taken up anew in the 1960s from a globalpoint of view.41Among them (Boi 1992) (Gray 1999).2For a �rst histori
al exploration see (Cao 1999, se
tion V), in parti
ular J. Sta
hel'sintrodu
tory remarks.3Cf. 
ontributions of M. Atiyah and A. Connes to this volume.4Tthe role of the Dira
 operator for the interplay between di�erential geometry and topol-ogy in the last third of the 
entury is being dis
ussed in J.-P. Bourgignon's 
ontribution tothis volume. 1



Up to the end of the 1920s mathemati
al physi
ists had essentially twosymboli
 tools for the represention of physi
al �elds at their disposal: ve
-tors/tensors (in
luding di�erential forms) and linear 
onne
tions (mostly butnot always a�ne), most important among them, of 
ourse, the Levi-Civita
onne
tion of general relativity (GRT). After 1918 H. Weyl tried to 
onvin
ephysi
ists and mathemati
ians for some time to use another type of 
onne
tion(length 
onne
tion) in 
ombination with a 
onformal (
lass of) Lorentz metri
in his �rst, stri
tly metri
al gauge geometry.5 Most physi
ists who 
onsideredWeyl's length 
onne
tion at all referred to it as just another di�erential 1-form
ϕ =

∑

ϕidx
i with a pe
uliar, perhaps even strange, transformation behaviour.In the early 1920s A. S. Eddington started to build his attempts towards auni�ed �eld theory of ele
tromagnetism, gravitation and matter using generala�ne 
onne
tions (not ne
essarily derived from a metri
); and Einstein joinedhim for a while from 1923 onward. These a
tivities were part of a broader movetowards uni�ed �eld theories (UFT's) with a �rst high tide in the 20s of thelast 
entury, whi
h has been studied histori
ally, among others, by VladimirVizigin (Vizgin 1994) and, more re
ently and in a di�erent methodologi
al ap-proa
h, by Catherine Goldstein and Jim Ritter (Goldstein/Ritter 2000).6 V.Vizgin presents the relationship of UFT and quantum physi
s (QP) as one of
ompeting resear
h programs mutually in�uen
ing ea
h other. The introdu
tionof lo
al spinor stru
tures by Fo
k and Weyl in 1929 is a beautiful example forhis 
ase. Both, Weyl and Fo
k, were stru
k by the early su

esses of the Dira
equation for the explanation of the motion of the ele
tron and attempted an in-tegration of GRT and the Dira
 �eld. In su
h an attempt they were not alone.Other authors, like Wiener and Vallarta, attempted a similar integration alongdi�erent lines, building upon Einstein's re
ent theory of �distant parallelism�.They attempted to adapt the Dira
 �eld to a framework of 
lassi
al UFT's thatsoon turned out to be too restri
tive.Weyl and Fo
k, the latter after an initial phase of sympathizing with distantparallelism, pursued an approa
h of a 
ovariant di�erentation of spinor �eldsderived from the underlying Levi-Civita 
onne
tion, in 
ontrast to the distantparallelism program. Both realized that, in doing so, an underdeterminationof the ensuing spinor 
onne
tion led naturally to an additional U(1)-symmetry.They used the latter for a representation of the ele
tromagneti
 �eld 
ompara-ble to, although slightly di�erent from, Weyl's earlier approa
h using a length
onne
tion. Thus they arrived at a geometri
-analyti
al stru
ture in whi
h thea
tual knowledge of gravitation, ele
tromagnetism and the basi
s of the quan-tum theory of the moving ele
tron 
ould be represented in an integrated form.7Both authors posed the question how geometry might be brought into agree-ment with quantum physi
al knowledge of their time. They arrived at stronglydiverging evaluations as to what they had a
hieved in this respe
t and whatgeometrization of quantum physi
s might mean at all (last se
tion).Before I dis
uss Weyl's and Fo
k's respe
tive approa
hes and di�eren
es with5This approa
h is dis
ussed, from a more re
ent point of view, by P. Cartier's in his
ontribution to this volume.6Another high tide, in a di�erent histori
al/s
ienti�
 
ontext and with 
hanged 
on
ep-tual/symboli
al approa
hes, started in the 1970s. It has not yet found the detailed and 
riti
alhistori
al investigation it deserves, although work has started (Cao 1997), (Morrison 1995),(Galison 1995), (O'Raifeartaigh/Straumann 2000).7For a dis
ussion of Weyl's 1929 work on gravitation and the ele
tron see also (Straumann2001). 2



respe
t to �quantum geometry�, I want to sket
h the ba
kground of 
ommonknowledge from whi
h they started and outline their 1929 work.Setting the stage in the later 1920's for Weyl and Fo
kDuring the 1920s the 
onstitutive 
onditions for the mathematization of geome-try and matter 
hanged deeply. In the middle of the de
ade (1925/26) the �new�quantum me
hani
s took shape, with its di�erent versions, in 
entral aspe
ts
ompatible, although at least histori
ally and 
on
eptually not 
ompletely equiv-alent, put forward by Heisenberg/Born/Pauli, S
hrödinger and Dira
.8 Contin-uing this turn in late 1926, W. Heisenberg started to investigate the symmetry ofatomi
 ele
trons using surprisingly old-fashioned mathemati
s, Serret's Algèbresupérieure from 1879. But already in the following year the two young Hungar-ians, E. Wigner and J. von Neumann, working in Berlin and Göttingen, appliedgroup representation methods for this goal, as did H. Weyl in a le
ture 
oursedevoted to this subje
t in the winter semester 1927/28 at the ETH Züri
h.9Still in 1926, W. Pauli attempted to 
hara
terize the new hypotheti
al ele
-tron �spin� in terms of quantum me
hani
al symbolism and introdu
ed a pair of�wave� fun
tions (ψ1(x), ψ2(x)), x ∈ IR3, and Hermitian matri
es, whi
h laterwere given his name,
σ1 =

(

1
1

)

, σ2 =

(

−i
i

)

, σ3 =

(

1
−1

)

.Pauli proposed to represent the ele
tron spin by the three 
omponent operator
σ =

1

2
h̄(σ1, σ2, σ3), h̄ =

h

2π
.Like Heisenberg, Pauli did not think in terms of group representations at thattime; he 
onstru
ted his two-valued wave fun
tions from the Klein-Sommerfeldtheory of the spinning top and the 
omplex representation of rotations byCayley-angles. That was an ingenious and mathemati
ally momentous movetowards what little later turned into (Eu
lidean or relativisti
) spinors, al-though Pauli's hopes to 
ome to a dire
t explanation of the �ne stru
tureof the hydrogen spe
trum were not full�lled at the time.10 Even the �rstattempts in 1926 and 1927 to take relativisti
 e�e
ts into a

ount, spinless(Klein-Gordon) or with spin (Darwin), were no more su

essful in this re-spe
t.11 The situation 
hanged 
ompletely in January and February 1928 whenDira
 proposed to use 4-
omponent 
omplex-valued �wave� fun
tions ψ(x) =

(ψ1(x), ψ2(x), ψ3(x), ψ4(x)) (x in Minkowski-spa
e IM) in two su

essive publi-
ations 12. The ψ- fun
tion had to obey the (Dira
) equation
ih̄

3
∑

α=0

γα
∂

∂xα
ψ = m0cψ (1)8For a general pi
ture see (Re
henberg 1995), (Pais 1986) and (Hendry 1984).9(Mehra/Re
henberg 2000, 488�.).10(Pais 1986, 289�.).11(Kragh 1981, 44�.), (Mehra/Re
henberg 2000, 280�.).12(Dira
 1928). 3



with (Dira
) matri
es γµ satisfying the relations γjγk+γkγj = δjk and express-ible, e.g., in the form
γ0 =

( 1I
−1I )

, γj =

(

σj
−σj

)

, 1 ≤ j ≤ 3,with (2 × 2)-unity matrix 1I and Pauli matri
es σj .13Thus things looked quite di�erent for Weyl in the late 1920s from what theyhad been at the end of his �rst phase of a
tivity in mathemati
al physi
s early inthe de
ade. Already in late 1920 he had lost 
on�den
e in theories of matter byuni�
ation of 
lassi
al �elds a

ording to the Hilbert/Mie approa
h, in
ludinghis own one built upon the length gauge.14 While expe
ting new insights fromthe rising quantum me
hani
s, he 
on
entrated on more 
on
eptual or purelymathemati
al resear
h �elds: the analysis of the spa
e problem about 1922/23and representation theory of Lie groups during the years 1924 to 1926.15 Weylkept well informed on the ongoing development during the 
ru
ial years forquantum me
hani
s in the middle of the de
ade, drawing upon his 
lose s
ien-ti�
 relationship with Pauli (1924 � 1928 at Hamburg university), dating fromtheir 
ooperation on uni�ed geometri
al �eld theories in the early 1920s. More-over he had 
onta
ts with E. S
hrödinger who taught at the university in Züri
hbetween 1921 and 1927. He appararently felt 
hallenged to 
ontribute to the
on
eptual and mathemati
al 
lari�
ation of the framework of the �new� quan-tum me
hani
s, in parti
ular from the point of view of unitary geometry (Weyl'stitle for the �rst part of his le
ture in 1927/28) and the use of representationtheory of (Eu
lidean) rotations and permutation for atomi
 line spe
tra, Pauli'snon-relativisti
 spin, and me
hanism of mole
ular binding for
es.In winter 1927/28 Weyl had a 
han
e to take up the 
hallenge. Both theo-reti
al physi
ists working at Züri
h had a

epted outside 
alls and had left: P.Debye 
hanged from the ETH to the university Leipzig and E. S
hrödinger fromthe lo
al university to Berlin. Weyl de
ided to 
hange the subje
t of a le
ture
ourse initially planned and announ
ed on (pure) group theory to one on Grup-pentheorie und Quantenme
hanik (Theory of Groups and Quantum Me
hani
s.Notes were taken by his assistant F. Bohnenblust and published, after revisionand extension, in August 1928 as a book (Weyl 1928), whi
h in the sequel willbe abbreviated as GQM. In this se
ond book on mathemati
al physi
s, Weylwas more 
autious than he was in Raum - Zeit - Materie (Weyl 1918) in hisexpe
tations of how his 
ontributions might be re
eived by the workers in the�eld. In the prefa
e to the new book, he remarked:It is the se
ond time that I dare to turn up with a book whi
hbelongs only partly to my own spe
iality, mathemati
s, and partlyto physi
s. . . . I just 
annot avoid to play the role of a messenger(often undesired, as I have experien
ed su�
iently 
learly) in thisdrama of mathemati
s and physi
s - fertilizing ea
h other in thedark, although from fa
e to fa
e preferring not to re
ognize and evenrenoun
ing ea
h other. (Weyl 1928, Vf., my translation, E.S.)1613Dira
 used a slightly di�erent presentation of the matri
es than the one given in the text.For a detailed investigation of Dira
's work see (Kragh 1981) or (Kragh 1990).14See (Sigurdsson 1991, 
hap. V) or (S
holz 2001a).15(Hawkins 2000, Part IV).16Not translated in the English edition by H.P.Robertson.4



Weyl was not alone in this "role of a messenger" as he realized during thepreparation of the le
ture notes for publi
ation. Other authors started in 1927and 1928 to use group representations in quantum me
hani
s, among them,most importantly from the mathemati
al point of view, J. von Neumann andE. Wigner. Also on the physi
al side, things 
hanged rapidly. Dira
 publishedhis papers on the relativisti
 theory of the ele
tron at the end of the wintersemester, in January and February 1928. The impa
t was enormous and weresu�
ient reason for Weyl to add to his book a whole new passage on Dira
'sequation (Weyl 1928, 1st ed., ��39�41).Another remark in his le
tures of 1927/28 leads dire
tly to our geometri
altopi
.17 Weyl's gauge idea from 1918, originally linked to a length 
alibrationand � in�nitesimal length transport� 
hara
terized by a 1-form ϕ =
∑

ϕidx
i wasrephrased in a quantum me
hani
al setting by E. S
hrödinger, still in a length
alibration interpretation (S
hrödinger 1922), and after the rise of the �new�quantum me
hani
s by V. Fo
k and F. London in the 
ontext of Kaluza-Kleintheory of quantum me
hani
s (Fo
k 1926, London 1927). The 
ore of theirrespe
tive arguments dealt with �gauging� a wave fun
tion ψ(x) by a point-dependent phase fa
tor eiλ(x) (with λ ∈ IR) to ψ̃(x) = eiλ(x)ψ(x). The dif-ferential of the purely imaginary phase fa
tor, used in Weyl's 1918 theory to�gauge-transform� length 
onne
tions, 
ould now be used to transform ele
tro-magneti
 potentials ϕj a little more 
onvin
inglyWeyl endorsed this re
ontextualization of his original gauge idea when hedis
ussed the S
hrödinger equation in 1927/28. Probably he had read only thepapers by S
hrödinger and London, whi
h he 
ited, not Fo
k's; but Londonwas aware of and built upon (Fo
k 1926).18 He remarked that the S
hrödingerequation

ih̄
∂ψ

∂t
= Hψ , (2)
ontaining the Hamilton operator

H =
1

2m

∑

p2
j + V (x) (3)with potential V and momentum operator pj = h̄

i
∂
∂xj for a 
hargeless parti
le,is adequately modi�ed by using the 
ovariant derivative ∂ϕ with respe
t to apotential 
onne
tion ϕ = (ϕj), if a 
harged parti
le in �eld of potential ϕ is
onsidered. Then the momentum operator be
omes

pj =
h̄

i

(

∂

∂xj
+
ie

h̄
ϕj

)

, i =
√
−1 , (4)and the Hamiltonian of the S
hrödinger theory for the motion of a parti
le of
harge e in an ele
tromagneti
 �eld of potential ϕ results. Weyl observed thatnow: The �eld laws satis�ed by the potentials ψ and ϕ of the material andthe ele
tromagneti
 waves are invariant under simultaneous substi-tution of

ψ by eiλψ, ϕα by ϕα − h̄

e

∂λ

∂xα17This passage was published only in the �rst edition of (Weyl 1928), no longer in the se
ondedition of 1931 and the English translation.18(Vizgin 1994, 293). 5



. . . (Weyl 1928, 1st ed. 87f.)He 
ommented that this �prin
iple of gauge invarian
e� was quite analogousto the one he had postulated in 1918 �by spe
ulative reasons to gain a uni�edtheory of gravitation and ele
tromagnetism� and 
ontinued:. . . But now I believe that the gauge invarian
e does not 
ouple ele
-tri
ity and gravitation, but rather ele
tri
ity and matter in the modepresented here. How gravitation a

ording to the general theory ofrelativity 
an be in
luded is still un
ertain. (Weyl 1928, 1st ed. 88)Thus Weyl proposed more than a te
hni
al adaptation of his old gauge idea tothe new framework of QP. In 
lassi
al UFT the goal was to unify for
e �elds assu
h in a 
oherently geometrized, often highly spe
ulative, �a priori� manner,and to derive matter stru
tures from them; here Weyl indi
ated a new paradigm
entering around the sear
h for 
on
eptual and mathemati
al stru
tures whi
hlink for
es to matter �elds, without redu
tion of one to the other and withstrong input from experimental eviden
e.Classi
al UFT was, of 
ourse, still quite alive at that time. In 1928 A. Ein-stein turned towards �distant parallelism� for his latest approa
h to uni�
ation.He assumed or postulated, that, in addition to the Levi-Civita 
onne
tion ofthe Lorentz metri
, an integrable, 
urvature free, orthogonal 
onne
tion ∆i
jkwith torsion (∆i

jk = −∆i
kj) is given, whi
h he usually des
ribed by a globallyparallel system of orthogonal frames. With respe
t to su
h an additional stru
-ture it was meaningful to 
onsider 
onstant, i.e. point independent, rotations.Although Einstein did not intend so, his additional stru
ture allowed a formu-lation of the Dira
 equation in the framework of GRT with distant parallelismand stimulated other physi
ists to do so.V. Fo
k and his Leningrad 
olleague D. Ivanenko started to explore su
han approa
h in a joint paper submitted to Zeits
hrift für Physik in Mar
h1929.19 They hoped to �nd some �bridge� between gravitation and quantumtheory.20 They started with a formal 
onstru
t of a linear expression in theDira
 matri
es, ds =

∑

j γjdx
j , whi
h they tried to interpret as a matrix val-ued metri
 form of some new �linear quantum geometry�. From that point ofview they hoped to �nd a kinship between Einstein's �eld of distant parallelismand the new �linear geometry� (Fo
k/Ivanenko 1929
, 801). During the followingmonths Ivanenko and Fo
k realized that the linear stru
ture of the new geometry
ould better be understood as a 
ovariant derivative of the 4-
omponent 
om-plex wave fun
tions whi
h they 
alled �semi-ve
tors�, the later spinors.21 Stillthey 
alled the geometry they were heading for �géométrie quantique linéaire�(Fo
k/Ivanenko 1929b, Fo
k 1929a).22 V. Fo
k 
ontinued to explore the terrainand realized soon that the new 
ovariant derivation of spinors had a mu
h 
loserkinship with a Weylian phase gauge than with Einstein's distant parallelism.He presented his �ndings in two arti
les (no longer 
o-authored by Ivanenko)to Physikalis
he Zeits
hrift and Comptes Rendus (Fo
k 1929a, Fo
k 1929b).2319Mar
h 25, 1929.20For the group of young relativists in Leningrad see (Gorelik/Vizgin 1987), for the earlyinvolvement in QP (Frenkel/Gorelik 1994). More on Fo
k in (Gorelik 1993).21The terminology of �semi-ve
tors� was proposed by L. Landau.22(Fo
k/Ivanenko 1929b) was submitted May 22, 1929.23(Fo
k 1929a) dated June 24, (Fo
k 1929b) July 5, 1929.6



He thus arrived at a theory 
ombining gravitation, Dira
 �eld, and ele
tromag-netism, whi
h overlapped in large parts with what Weyl a
hieved in early 1929when he 
ontinued resear
h along the lines indi
ated in GQM.Weyl's and Fo
k's lo
al spinor stru
tureWeyl left Züri
h in September 1928 for Bologna (ICM) and Prin
eton where hespent a year as resea
h professor in mathemati
al physi
s.24 There he 
ould
ontinue, among other things, his resear
h on the Dira
 equation in generalrelativity. The approa
h of distant parallelism did not appear at all 
onvin
ingto him. He 
onsidered it to be a 
ompletely �arti�
ial� devi
e and looked fora 
ombined stru
ture of GR and the Dira
 equation from the point of viewof �purely in�nitesimal� geometry, whi
h now had to be re�ned and extendedin the light of new physi
al knowledge. In February 1929 Weyl submitted a�rst sket
h of methods and results under the title Gravitation and the ele
tronto the Pro
eedings of the National A
ademy of S
ien
es (Weyl 1929a). Threemonths later he delivered a more extended exposition to Physikalis
he Zeits
hrift(Weyl 1929b).25 At that time he 
ould not know of Fo
k's parallel work, nordid he know of it when he wrote his third paper on the topi
 in early summer(Weyl 1929
).Fo
k, on the other hand, got to know of Weyl's new resear
hes (Weyl 1929a)only after he �nished his own arti
le for Physikalis
he Zeits
hrift. He a

eptedthe 
ommon mathemati
al 
ore of their respe
tive approa
hes, but emphasizedthe di�eren
es from the physi
al point of view in a posts
ript (Fo
k 1929b, 276f.).Weyl apparently got to know Fo
k's work in summer 1929 and was so fond of the
ommon features of their work that he 
onsidered it as establishing essentiallyone and the same theory. He thus referred to it in the prefa
e to the se
ondedition of GQM as the �general relativisti
 formulation of the quantum laws,whi
h have been developped by Mr. V. Fo
k and the author [Weyl himself℄�(Weyl 1928, vii, 2nd edition 1930).26Fo
k and Weyl applied the method of (pseudo-) orthogonal moving framesin Lorentzian spa
e-time M , i.e. they supposed anorthonormal frame of tangent ve
tors (ONF): e(α, x), 0 ≤ α ≤ 3,in ea
h point P ∈ M with 
oordinates x = (x0, . . . , x3) (depending di�eren-tiably on the point). Tangent ve
tors v at x ∈ M 
ould thus be representedin 
omponents referring to the 
oordinate basis (ξj), or in 
omponents withrespe
t to the ONF (ξ(α) in Weyl's notation):
v =

3
∑

j=0

ξj
∂

∂xj
=

3
∑

α=0

ξ(α)e(α, x) . (5)Besides (di�erentiable) 
hange of 
oordinates, 
hanges of the ONF from e(α, x)to e′(β, x) (0 ≤ α, β ≤ 3) had also to be taken into a

ount. The latter were24(Frei 1992, 107�.).25Submitted, May 8, 1929.26Weyl saw no 
han
e to give an exposition of this theory in the book GQM. In the se
ondedition he rephrased, however, his dis
ussion of the representation of the Lorentz group andof the spe
ial relativisti
 Dira
 equation, in parti
ular the de
omposition of the 4-dimensionalspinors into irredu
ible 2-dimensional representations.7



given by point-dependent Lorentz-rotations ϑ(x) represented by matri
es (as theONF's were given in 
omponents with respe
t to a lo
al 
oordinate system):
ϑ(x) = (ϑαβ ) ∈ SO(1, 3) .The parallel transport of a frame by the Levi-Civita 
onne
tion Γijk 
ould be ex-pressed in terms of �in�nitesimal rotations� o depending linearly on in�nitesimaldispla
ements dx = (dxj) in spa
e-time

oαβ =
∑

k

ωαβkdx
k . (6)In more re
ent terminology: By means of the ONF's Fo
k and Weyl redu
ed thegroup of the a�ne 
onne
tion Γijk to the orthogonal group, and 
hara
terizedparallel transport in M by the resulting orthogonal 
onne
tion ωαβk.In the late 1920s this was standard knowledge. The idea of ONFs had alreadybeen introdu
ed by Ri

i and Levi-Civita in 1900; it had been worked out bydi�erential geometers in the 1920s, most prominent among them E. Cartan (inle
tures from 1926/27 published as (Cartan 1928)), J.A. S
houten, R. Weitzen-bö
k, L.P. Eisenhart (in monographs 1926 and 1927). Moreover, orthonormalframes played a 
entral role in Einstein's theory of �distant parallelism�, fromwhi
h Fo
k (and Ivanenko) took the idea.27 Fo
k (still in his 
ooperation withIvanenko) and Weyl realized that redu
tion of the Levi-Civita 
onne
tion to theorthogonal group by the ONF method allowed one to introdu
e 
ovariant dif-ferentiation of spinors.28 Weyl explained 
learly that the orthogonal redu
tionof the 
onne
tion was ne
essary in this 
ontext, be
ause �Dira
's quantity� ψ. . . 
orresponds to a representation of the orthogonal group whi
h
annot be extended to the group of all linear transformations. Thetensor 
al
ulus is 
onsequently an unusuable instrument for 
onsid-erations involving ψ. (Weyl 1929a, 219)For Weyl, this group-theoreti
 
onsideration was of great importan
e. In theearly 1920s he had analyzed the role of tensors from the point of view of grouprepresentions and found out that all irredu
ible representations of GL(n, IR)with a spe
i�ed permutation symmetry 
an be 
hara
terized by tensors overIRn.29 In a language 
loser to physi
ists he explained more in detail:Ve
tors and [tensors℄ are so 
onstru
ted that the law whi
h de�nesthe transformation of their 
omponents from one Cartesian set ofaxes [ONF℄ to another 
an be extended to the most general lineartransformation, to an a�ne set of axes. That is not the 
ase for [the℄quantity ψ, however; this kind of quantity belongs to a representa-tion of the rotation group whi
h 
annot be extended to the a�negroup. (Weyl 1929a, 234)He admitted that the ONF method used by him resembled Einstein's lat-est appproa
h in formal aspe
ts, but insisted that this was only a super�
ial
oin
iden
e.27In his main arti
le Fo
k referred, however, also to (Eisenhart 1926) (Fo
k 1929b, 263,footnote).28For simpli
ity, I will no longer always add in the sequel Ivanenko to Fo
k, even in 
asethat 
on
epts appeared already in their joint work.29See (Hawkins 2000, 440�.). 8



But here there is no talk of �distant parallelism�; there is no indi
a-tion that Nature has availed herself of su
h an arti�
ial geometry. Iam 
onvin
ed that if there is a physi
al 
ontent in Einstein's latestformal development it must 
ome to light in the present 
onne
tion.And he added a reason that went beyond purely mathemati
al 
onsiderations:It seems to me that it is now hopeless to seek a uni�
ation of grav-itation and ele
tri
ity without taking material waves into a

ount.(Weyl 1929a, 219)Dira
 had shown that the equation of the free ele
tron expressed in ψ is invari-ant under Lorentz transformations without asking for the underlying reprenta-tion of the Lorentz group,30 but other authors did so immediately later. F.Mögli
h 
al
ulated the 
omplex 4 × 4-matri
es for the �Dira
-quantity� 
orre-sponding to a given Lorentz transformation (Mögli
h 1928), and J. von Neu-mann dis
ussed the resulting relation
Λ : SO+(1, 3) −→ GL(4,C)

o 7−→ Λ(o)as a �(multivalued!) 4-dimensional representation of the Lorentz group� (vonNeumann 1929, 867). Von Neumann emphasized, very mu
h like Weyl, thatsomething essentially new was introdu
ed into mathemati
al physi
s:The 
ase of a quantity of 4 
omponents whi
h is no 4-ve
tor hasnever o

urred in relativity theory, the Dira
 ψ-ve
tor is the �rstexample of this kind. (ibid.)31Thus, immediately after Dira
's publi
ations on the �spinning� ele
tron, the-oreti
ally minded authors realized that the new �Dira
 quantity� (Weyl), the�ψ-ve
tor� (von Neumann), or the �semi-ve
tor� (Fo
k, Landau e.a.) was morethan just another te
hni
al devi
e, but led to a 
on
eptual innovation for math-emati
al physi
s. Change of referen
e systems in spe
ial relativity (�Cartesiansystems of axes� as Weyl would say) by a Lorentz transformation had to berepresented by Λ(o) in the ψ-spa
e in a way that 
ould not be extended to gen-eral linear transformations and thus 
ould not, in a straight-forward manner,be transferred to general relativity.At the time when Fo
k and Weyl approa
hed the problem of a general rel-ativisti
 formulation of the Dira
 equation, the young algebraist B.L. van derWaerden established an algebrai
 
al
ulus for all possible quantities appearingin any representation of the Lorentz group. His 
ontribution was meant as asort of servi
e to the physi
ists, stimulated by a question of P. Ehrenfest whohad posed the question to design su
h an algebrai
 
al
ulus. Van der Waerdenpi
ked up the terminology�spinor� from Ehrenfest and gave him a broad audi-en
e (van der Waerden 1929, 100). In this work he built upon Weyl's expositionof the representation theory of the Lorentz group in GQM.Distin
t from other work about 1929, Fo
k andWeyl admitted point-dependent(Lorentz-) rotations of ONF in spa
e-time, o(x) ∈ SO+(1, 3), di�erentiably de-pending on x, indu
ing point-dependent transformations Λ(o(x)) of the spinor30(Dira
 1928, 310�.), dis
ussed in (Kragh 1981, 57f.).31Translation E.S. 9



spa
e. While Fo
k immediately headed for the 
ovariant derivation of a spinor(�semi-ve
tor�), Weyl made the underlying invarian
e idea expli
it. He stated forthe �laws� that would be 
hara
terized by an a
tion prin
iple and by di�erentialequations derived from it:The laws shall remain invariant when the axes in the various points Pare subje
ted to arbitrary and independent rotations. (Weyl 1929a,219)Variational equations were thus required to be invariant under simultaneoustransformations� of ve
tors/tensors by Lorentz rotations o(x)� and of the spinors under Λ(o(x)).In this way, Weyl and Fo
k introdu
ed and started to study a lo
al spinorstru
ture on the underlying spa
e-time manifold M . Both authors used lo
al
hange of 
oordinates in the spinor spa
e Λ(o(x)) (the 
hange of trivializationin later language) a

ompanying a 
hange of ONF's o(x), and Weyl dis
ussed its
on
eptual role quite 
learly, although of 
ourse not yet applying the terminologyof lo
al bundles trivialization.Weyl did not mention, however, that for a globalization of the pro
edurethe topology of the M might play a role. Su
h questions of global existen
e ofan ONF (presupposing parallelizability of M), were posed and answered onlyin the 1930s by the young generation of topologists (E. Stiefel, H. Whitney),apparently stimulated by Einstein's use of (lo
al) �distant parallelism�, not bylo
al spinor stru
tures of Fo
k and Weyl. Global questions for spinor stru
tureswere taken up still another generation later and be
ame a resear
h topi
 only inthe 1960s.32 Weyl, in his 1929 arti
les, did not even indi
ate that there might bean open and 
hallenging question in the relationship between spinor stru
tureson M and its topology.Of immediate interest, for our authors, was the introdu
tion of an �in�nites-imal displa
ement of semi-ve
tors� (Fo
k) or the �invariant 
hange δψ on goingfrom the point P to a neighbouring point P ′� (Weyl 1929a, 221), i.e. in mod-ern terminology the introdu
tion of a 
onne
tion and parallel transport in alo
al spinor stru
ture, lifted from the Levi-Civita 
onne
tion in the underlyingLorentz manifold. On this point the two authors applied slightly di�erent ap-proa
hes; Weyl's approa
h was, as one may expe
t, more 
on
eptual and Fo
k'smore 
al
ulational.Considering two (in�nitesimally) �neighbouring� points P, P ′ with 
oor-dinates x = (x0, . . . , x3) and x′ = (x′
0
, . . . , x′

3
) di�ering by an �in�nitesi-mal displa
ement� dx = (dx0, . . . , dx3) Weyl argued that parallel displa
ementof a frame {e(α, P )} from P to P ′ leads to an in�nitesimally rotated frame

{e′(α, P ′)} des
ribed by an in�nitesimal rotation o = ω(dx) with respe
t to theONF-system {e(α, P ′)} in P ′, in slightly metaphori
al notation
{e′(α, P ′)} − {e(α, P )} = ω · {e(α, P ′)} (7)(
ompare equation (6) ). The representation Λ indu
es an in�nitesimal tranfor-mation dE (Weyl's notation) in gl(n,C), whi
h depends linearly on dx

dE = Λ(o) = Λω(dx)32See P. Bourgignon's 
ontribution, this volume.10



The �di�erential ψ(P ′) − ψ(P )�, i.e. dψ =
∑

j
∂ψ
∂xj dx

j , had to be modi�eda

ordingly to give the 
ovariant di�erential δψ of ψ (Weyl 1929a, 221) (Weyl1929b, 253f):
δψ = dψ + dE · ψ . (8)This 
on
eptually 
lear des
ription of the 
ovariant di�erential, had the ad-vantage that in Weyl's dis
ussion Λ 
ould stand for any representation of theLorentz group, not just Dira
's original 4-dimensional one.Weyl realized of 
ourse, as did von Neumann in 1928, that Dira
's represen-tation 
an be de
omposed into two irredu
ible representations ρ and ρ+ (whi
hgenerate all �nite dimensional representations of SL(2,C) by tensor produ
tsand dire
t sums). He gave a beautiful geometri
al des
ription of the 2-valuedinverse of the 
overing map33

SL(2,C) −→ SO+(1, 3)and took ρ as the identi
al representation of SL(2,C) and ρ+ = tρ̄ its ad-joint. Then he 
ould write Dira
's representation (up to a permutation of ψ-
oordinates) as
Λ ∼= ρ⊕ ρ+, (9)and wrote the 4-spinors (after a linear transformation) as (ψ+

1 , ψ
+
2 , ψ

−

1 , ψ
−

2 ).Fo
k analyzed the 
ondition (in
orporated by Dira
 into his new symboli
game) that the ψ-fun
tions get their physi
al meaning from the 
ondition thatthe evaluation map
ψ 7−→ (a0, . . . , a3) with aj =< γjψ, ψ > , 0 ≤ j ≤ 3,leads to a ve
tor (aj). Therefore it was natural to postulate that �
hanges ofa semi-ve
tor ψ under an in�nitesimal parallel displa
ement� are 
ompatiblewith parallel displa
ement of ve
tors. This allowed him to 
ompute matri
es

Cl ∈ GL(4,C) whi
h des
ribe su
h 
ompatible �in�nitesimal 
hanges of semi-ve
tors� (the parallel displa
ement in the lo
al spinor stru
ture). In his ownrepresentation γ̃j of the Dira
 matri
es Fo
k derived the 
ondition
Cl =

1

4

∑

j,k,l

γ̃j γ̃
kωjkl + iφl , with γ̃j =

∑

k

ǫjkγ̃
k, (10)

ǫ = diag(1,−1,−1,−1) the signature diagonal matrix, ω the orthogonally re-du
ed Levi-Civita 
onne
tion, and φl any matrix �proportional� to unity
φl = fl1I with fl real-valued fun
tion (11)(Fo
k 1929b, 264f.). Fo
k thus arrrived at an expli
it form of Weyl's in�nites-imal spinor transformation dE, at least for the 
ase of the (original) Dira
representation,

dE · ψ =
∑

l

Cldx
lψ .On that basis Fo
k easily expressed 
ovariant di�erentiation of a spinor withrespe
t to a ve
tor dire
tion of a the frame {e(α)}

D′

αψ =
∂

∂e(α)
ψ − Cαψ (12)33(Weyl 1929b, 247f.). 11



or a 
oordinate dire
tion xj
Djψ =

∂

∂xj
ψ − C̃jψ (13)where C̃j are slightly di�erent matri
es 
al
ulated from the Cj 's. For Weyl,both versions of 
ovariant di�erentiation 
ould be derived from his �
ovariantdi�erential� δψ of equation (8).An additional U(1)-gaugeUp to this point I omitted an important observation made by both authors,whi
h led ba
k to Weyl's gauge idea. The �lifting� of the Levi-Civita 
onne
tionto the spinor stru
ture was not uniquely determined, even if we negle
t thedouble valuedness of the SL(2,C) 
overing of the Lorentz group.Fo
k's 
al
ulation of the the matri
es (equation (10)) showed that the 
om-patibility 
ondition determines the Cl only up to addition of purely imaginarymatri
es ifl1I. Covariant di�erentiation of spinors (equations (12), (13)) is thena�e
ted by an additive term −ifαψ . In a kind of déja vu Fo
k realized thatthe additional term 
ould be per
eived as derived from a phase-gauge fa
tor ofthe ψ-�eld:The appearan
e of the Weylian di�erential form in the law of paralleldispla
ement stands in 
lose relation to the fa
t remarked by theauthor [Fo
k℄ and also by Weyl (. . . ) that the addition of a gradientto the 4-potential 
orresponds to a multipli
ation of the ψ-fun
tionby a fa
tor of absolute value 1. (Fo
k 1929b, 266)On that basis, Fo
k formulated the Dira
 equation for the general relativisti
ele
tron by 
ovariant derivation in his lo
al spinor stru
ture, in
luding a Weylian

U(1)-gauge term as an integrated part of the 
ovariant derivation (13) (ibid.)
Fψ = 0 with F = ih̄

3
∑

j=0

γjDj +mcγ4 . (14)Weyl dis
ussed the question similarly, although slightly more general. Heargued that any semanti
ally relevant information derived from a spinor �eldhad to be invariant under U(1)-symmetries of the spinor representation, be
ausethe SO+(1, 3)-
ovariants used to represent physi
al quantities were given byHermitian forms < ψ,Aψ > and thus were invariant under multipli
ation by aphase fa
tor eiλ of ψ. Therefore the spinor 
onne
tion (�the in�nitesimal lineartransformation dE of the ψ�) is determined by the �in�nitesimal rotations� ωof the redu
ed Levi-Civita 
onne
tion only up to �a purely imaginary multiple
i · df of the unit matrix�. In other words, with dE

dE′ = dE + idf1Iis also 
ompatible with the underlying metri
 of GRT. Weyl 
on
luded:For the unique determination of the 
ovariant di�erential δψ of ψsu
h a df for ea
h line element ~PP ′ = (dx) starting from P is needed.(Weyl 1929b, 263) 12



The sele
tion among the spinor 
onne
tions 
ompatible with the Levi-Civita
onne
tion 
ould justly be 
onsidered as a �gauge�, in strong analogy to thelength gauge of 1918. Morover Weyl used, just like Fo
k, the possibility toexpress the Dira
 equation of the ele
tron in an ele
tromagneti
 �eld by meansof 
ovariant di�erentiation of spinors in
luding a U(1)-gauge potential (�su
h a
df �).For a
tion fun
tions applying to spinor �elds he felt it legitimate to postulate:If one (. . . ) substitutes

ψ by eiλ · ψ fp by fp −
∂λ

∂xpwith λ an arbitrary fun
tion of the position, gauge invarian
e ne
es-sarily holds, in the sense that the a
tion prin
iple remains invariant.(Weyl 1929b, 263)From the point of view of in�nitesimal symmetries, the new gauge stru
tureresembled in 
ertain features Weyl's study of the Raumproblem early in the1920s. In the analysis of the spa
e problem he had 
hara
terized �
ongruen
es�by a subgroup G of SL(n, IR), 
ontained in a larger group H of �similarities�, inwhi
h G was normal (in fa
t, H was the normalizer of G in GL(n, IR)). One ofhis postulates was a uniqueness 
ondition for an a�ne 
onne
tion equivalent (ina 
ertain sense) to a given linear 
onne
tion in the larger group. In 1929 he againdealt with a pair of groups, now given by physi
al 
onsiderations, the smallerone being the Lorentz group or its universal 
onvering, G = SL(2,C), and thelarger one was H = SL(2,C) × U(1) in whi
h G was normal by 
onstru
tion.Again a uniqueness 
ondition for a 
onne
tion, 
ompatible to another givenone, played a 
ru
ial role for the analysis. The uniqueness 
ondition was nowformulated �bottom up�, i.e. from a given (Levi-Civita) 
onne
tion in the smallergroup to the larger one, and uniqueness of the (spinor) 
onne
tion with respe
tto the larger group was a
hieved only by adding a 
onne
tion in the quotientgroup U(1) (respe
tively bundle, from the later point of view). In this sensethere was a stru
tural analogy 
onsidering group extensions for in�nitesimalsymmetries, although the methodology had 
hanged 
onsiderably. In 1929 Weylno longer tried to found his approa
h on a priori prin
iples, but rather analyzedsymboli
 forms worked out (�
onstru
ted�) by mathemati
al physi
ists in 
lose
ommuni
ation with experimental knowledge of the rising quantum physi
s.Weyl dis
ussed how one 
ould arrive at physi
al 
onsequen
es from his ap-proa
h. It would lead us too far to follow this line here.34 I just want to mentionthat Weyl drew impressive 
onsequen
es from the postulate of invarian
e of thea
tion integral under in�nitesimal symmetries of di�erent kinds:� in�nitesimal rotations of the frames leads to symmetry of the energy-momentum tensor,� in�nitesimal 
oordinate translations leads to �quasi�-
onservation of en-ergy and momentum and in the 
ase of spe
ial relativity by integration toinvarian
e of rotational momentum (Weyl 1929b, 256�.),3534Cf. (Straumann 2001).35Weyl spoke of �quasi-
onservation� of energy-momentum t
q
p, be
ause of a se
ond term in13



� in�nitesimal U(1) gauge transformations leads to 
onservation of 
harge(ibid., 264f.).He hoped, morover, that his general relativisti
 approa
h to the Dira
 equa-tion, together with the separation of the spinor �elds into 
omponents of ir-redu
ible representations ρ and ρ+ might lead to a solution of the problem ofnegative energies in the original Dira
 equation. In late 1929 Dira
 proposeda solution to this problem by some imaginative ad-ho
 arguments postulatingthe existen
e of positive ele
trons (positrons) appearing as 
onstitutive parts ofthe solution of the original Dira
 equation with non-vanishing mass term, andsurprising ��u
tuations� between positive and negative 
harge 
ontributions toit. It turned out that neither the positive 
harge 
ontributions 
ould be sepa-rated nor the resulting ��u
tuations� eliminated from the solution (Kragh 1990,90�.).Weyl, for his part, attempted for a short while in 1929 to avoid su
h �u
-tuations by the proposal to study solutions of a modi�ed Dira
 equation in theirredu
ible 
omponents of the representation ρ and ρ+ separately (Weyl spinors).He remarked, however, that in this equation no mass term 
ould be in
ludedwithout losing gauge invarian
e (Weyl 1929a, 242). As a resear
h strategy toover
ome the problem he proposed to negle
t at �rst, on the level of the spinorequation, the mass of the ele
tron and to re
onstru
t it, in a se
ond step oftheory development, as an integral invariant that 
ouples to gravitation.Be bold enough to leave the term involving mass entirely out ofthe �eld equations. But the integral of the total energy densityover spa
e yields an invariant, and at the same time 
onstant, mass;require of it that its value be an absolute 
onstant of nature m whi
h
annot vary in value from 
ase to 
ase. This introdu
tion of massis born of the idea that the inertia of matter is due to its energy
ontent. (Weyl 1929a, 243)Su
h an approa
h made sense only in a joint theory of gravitation, quantumphysi
s (in the sense of the modi�ed Dira
 equation) and ele
tromagnetism. Inhis attempt for an integrated theory Weyl now pursued the 
on
rete goal to
ontribute to the solution of the mass problem of the ele
tron.The proposal to start from a �massless� ele
tron was reje
ted by physi
istsimmediately. In the posts
ript to his arti
le for the Physikalis
he Zeits
hriftFo
k argued strikingly (and presumably also 
onvin
ingly for Weyl)36 that the
urrent of the Weyl-spinor �eld was lying on the light-
one. Thus there remainedno realisti
 hope for a solution of the ele
tron's mass problem along the line in-di
ated by Weyl (Fo
k 1929b, 276f.). Similarly Pauli reje
ted Weyl's proposal to
ir
umvent the mass problem for the ele
tron, although from a 
on
eptual pointof view he found the new integration of the gauge idea into quantum physi
sthe di�erential equation derived from invarian
e under in�nitesimal translations:
∂t

q
p

∂xq

+
∂eq(α)

∂xp

tq(α) = 0Literal 
onservation of energy and momentum holds only if the respe
tive terms of the gravi-tational �elds are added or, in spe
ial relativity, after spe
ialization of the ONF's (Weyl 1929b,257f.).36In the 2nd edition for GQM Weyl no longer insisted on his 1929 proposal and supportedDira
's strategy to deal with the problem (Weyl 1928, 2nd. edition, 230, 233).14



most 
onvin
ing. He 
ontributed essentially to its dissemination and survivalin the physi
s 
ommunity. Moreover he revived Weyl spinors in 1956 when helooked for an adequate mathemati
al representation of his newest hypotheti
alentity, the neutrino. This is a di�erent and histori
ally 
ompli
ated story whi
h
annot be dealt with here.37Weyl indi
ated that �eld quantization was another problem that had to besolved before one might hope for an answer to the questions raised:Another di�
ulty whi
h stands in the way of a 
omparison with ex-perien
e is that the �eld equations must �rst be quantized beforethey 
an be applied as a basis for the statisti
s of quantum tran-sitions. But our theory is also hopeful in this respe
t inasmu
h asthe anti-symmetri
 Fermi statisti
s of the ele
trons, 
orrespondingto the Pauli ex
lusion prin
iple, here ne
essarily leads to the sym-metri
 Bose-Einstein statisti
s of photons. (Weyl 1929a, 244)Weyl 
ould probably not surmise whi
h tremendous di�
ulties had to be sur-mounted on the path indi
ated here. When he reworked GQM for the se
ondedition he knew already more about the nature of problems arising from thein�nities of �eld quantization. He made some striking observations with respe
tto symmetries in quantum ele
trodynami
s, but did not 
ontribute to its furtherdevelopment in the later 1930s and 40s.38Geometry and physi
s: interpretations and perspe
tivesAs we have seen, Weyl's and Fo
k's 1929 work 
ontained a strong 
ommonmathemati
al 
ore. They both established lo
al spinor stru
tures on Lorentzmanifolds with an additional internal U(1) symmetry and proposed to use a
onne
tion in this stru
ture, determined by or determining gravitation and ele
-tromagnetism and governing the motion of the spinor �eld. But they had strongdi�eren
es with respe
t to the question of how geometry and physi
s 
ould orshould be related.Fo
k pro
laimed that his goal was �the geometrization of Dira
's ele
trontheory and its subsumption (Einordnung) in general relativity� (Fo
k 1929b,275). This was a 
on
eptual-methodologi
al task, rather than one of 
on
retephysi
al theory building. He hoped, however, that his investigation might �
on-tribute to the solution of the problems� in Dira
's theory, referring apparently tothe paradox of negative energies and positive probability of �u
tuations betweennegative and positive energies, respe
tively 
harges. He thus expe
ted that hisgeometrization of the Dira
 operator might lead, in the long run, to progressof a physi
al theory in a more te
hni
al sense. Fo
k's main hope was, however,to 
ontribute to what he (and Ivanenko) thought to be a 
hallenging goal of
ontemporary physi
s, the development of a 
ommon 
on
eptual stru
ture forrelativity and quantum physi
s.V. Fo
k had learned relativity from A. Friedmann and parti
ipated promi-nently in the development of relativity theory in Russia.39 In the later 1920s hemaintained 
lose 
onta
t to a group of young physi
ists in Leningrad around L.37See (Pais 1986, 313�.), (Straumann 2001).38For Weyl's 
ontribution to the symmetries in early quantum ele
trodynami
s, see(Coleman 2001, 287�.); for the history of quantum ele
trodynami
s (S
hweber 1994).39(Gorelik/Vizgin 1987, 286�.). 15



Landau, G. Gamow, and M. Bronstein, to whi
h his early 1929 
oauthor D. Iva-nenko belonged. The young physi
ists enthusiasti
ally supported the 
ulturalawakening in the early Soviet Union and wanted to 
ontribute to it throughtheir work in relativity and quantum physi
s.40 This was apparently part of theba
kground for Fo
k's and Ivanenko's premature 
laim to have found a pathtowards quantum geometry.In a letter to Nature, dated Mar
h 21, 1929, they announ
ed their �rst, stillvery sket
hy ideas on �linear geometry� as a 
ontribution to this 
hallengingtask.41 In the Comptes Rendus note of May 22, 1929, they shifted attention intheir �géométrie quantique linéaire� from the �matrix valued linear metri
� toparallel displa
ements and 
ovariant di�erentiation in a lo
al spinor stru
ture.On
e more, they 
laimed to have found a method to re
on
ile quantum physi
swith geometryIl importe de signaler un point qui distingue les idées exposées dans
ette Note de 
elles d'Einstein et de Levi-Cività: 
'est l'interventiondes matri
es-opérateurs dans les équations pour les quantités pure-ment géométriques. Grâ
e à 
ela on peut bien s'imaginer un 
hampéle
tromagnétique dans un espa
e eu
lidien, 
e qui était impossibledans les autres théories. (Fo
k/Ivanenko 1929b, 1472)In his later 
ontributions Fo
k was more 
autious and weakened the 
laimto the more moderate one of having pursued �the geometrization of Dira
'stheory of the ele
tron and its subsumption under the general theory of relativity�(Fo
k 1929b, 275). He admitted that the �di�
ulties whi
h are inherent inDira
's theory� had not yet been tou
hed, but added:Our investigations might perhaps 
ontribute indire
tly to the solu-tion of these di�
ulties, by showing what the original un
hangedDira
 theory 
an a
hieve. (ibid.)The referen
e to the �original un
hanged Dira
 theory� was probably formulatedafter Fo
k got to know Weyl's proposal and indi
ated a disasso
iation fromthe latter, the reasons of whi
h were explained in the posts
ript. Fo
k thuspro
laimed that the geometrization of the Dira
 equation by the spinor stru
turewith 
onne
tions and 
ovariant derivation was an important methodologi
ala
hievement in itself.On this point Weyl did not agree at all. He had lost 
on�den
e in thegeometri
al uni�
ation programs whi
h he himself had 
ontributed so e�e
tivelyby his gauge uni�
ation in 1918. About the end of the 1920s he no longerexpe
ted any deeper understanding of physi
al reality by the still blossominggeometri
al uni�
ation programs.42 He 
riti
ized, in parti
ular, Einstein's latestattempt at uni�
ation by an additional stru
ture of distant parallelism as a turntowards a physi
ally unmotivated �arti�
ial geometry� (Weyl 1929a, 219 quoted40(Frenkel/Gorelik 1994, 20�.).41With respe
t to their purely formal �linear form with matrix 
oe�
ients� ds =
∑

k
γkdxk(see above) they pro
laimed: �This linear ds is 
onne
ted with Dira
's wave equation in thesame way as the Riemannian ds2 with the relativisti
 wave equation of the older theory.. . . This linear geometry seems to furnish a basis on whi
h a uniform theory of gravitation,radiation, and quantum phenomena is to be 
onstru
ted� (Fo
k/Ivanenko 1929a). For moredetails they referred to their forth
oming paper (Fo
k/Ivanenko 1929
)42On the �diversity� of these programs see (Goldstein/Ritter 2000).16



above). In his later 1929 paper for Physikalis
he Zeits
hrift he argued in moredetail:I am unable to believe in distant parallelism for several reasons.Firstly, a priori, my mathemati
al sense (mathematis
hes Gefühl)opposes against a

epting su
h an arti�
ial geometry; for me, it isdi�
ult to 
on
eive of a power whi
h would make the lo
al systemsof axes, in their twisted position in the di�erent world-points, freezetogether in rigid a�liation. Moreover, two important physi
al rea-sons have to be added. . . . (Weyl 1929b, 246)As ��rst physi
al reason�, Weyl mentioned his gauge theory of ele
tromagnetism.He argued that only the point-dependen
e of the ONF's gave rise to a variablephase fa
tor eiλ and thus the new prin
iple of gauge invarian
e. The �se
ondphysi
al reason� was, to Weyl, the possibility to derive symmetry of the energy-momentum tensor and the invarian
e of rotational momentum in spe
ial rela-tivity from in�nitesimal rotations of the ONF's or of in�nitesimal translationsof 
oordinates (see above). Thus Weyl's �physi
al reasons� 
onsisted essentiallyof methodologi
al arguments for the superiority of invarian
e properties in anin�nitesimal symmetry approa
h, 
lose to those whi
h about three de
ades laterbe
ame 
entral in the rise to prominen
e of more general �gauge� theories.43The 1930 Rouse Ball le
ture at Cambridge university gave Weyl the opportu-nity to explain his view of the uni�
ation programs to a wider s
ienti�
 audien
e.He still 
onsidered the attempts �to geometrize the whole of physi
s�, undertakenafter Einstein had so su

essfully geometrized gravitation, very 
omprehensibleat its time (Weyl 1931, 338). He explained his own theory of 1918 and sum-marized its 
riti
al re
eption by physi
ists. He reviewed Eddington's approa
hto uni�
ation by a�ne 
onne
tions and Einstein's later suppport for that sub-program, always in 
omparison with his own �metri
al� uni�
ation of 1918, and
on
luded that in hindsight one 
ould see that both theory types were �merelygeometri
al dressings (geometris
he Einkleidungen) rather than proper geomet-ri
al theories of ele
tri
ity�. He ironi
ally added that the struggle between themetri
al and a�ne UFT's (i.e. Weyl 1918 versus Eddington/Einstein) had lostimportan
e, as in 1930 it 
ould no longer be the question whi
h of the theorieswould �prevail in life�, but only �whether the two twin brothers had to be buriedin the same grave or in two di�erent graves� (ibid., 343). He again made 
learthat he 
ould not �nd any argument in favour of Einstein's distant parallelismapproa
h, nor 
ould he �nd good prospe
ts for the Kaluza-Klein approa
h.44Weyl even a

used Einstein's new theory of �breaking with the in�nitesimalpoint of view. (. . . ) The result is to give away nearly all whi
h has been gainedin the transition from spe
ial to general relativity. The loss is not 
ompensatedby any 
on
rete gain� (Weyl 1931, 343).Weyl per
eived a nearly 
omplete s
ienti�
 devaluation of the UFT's of the1920s, resulting from developments in the se
ond part of the de
ade:In my opinion the whole situation has 
hanged during the last 4 or 5years by the dete
tion of the matter �eld. All these geometri
al leaps43Cf. (Morrison 1995).44The revival of Kaluza-Klein type theories in the 1980s happened in a 
ompletely di�erent
ontent of theory development. In this 
onferen
e, moreover, P. Cartier argued that thereare reasons whi
h might lead to a renewed interest in the original form of Weyl's purelyin�nitesimal geometry � again in a modi�ed physi
al interpretion and theory 
ontext.17



(geometris
he Luftsprünge) have been premature, we now return tothe solid ground of physi
al fa
ts. (Weyl 1931, 343)He 
ontinued to sket
h the theory of spinor �elds, their phase gauge and itsin
lusion into the framework of general relativity along the lines of the 1929 ar-ti
les. Weyl emphasized that, in 
ontrast to the prin
iples on whi
h the 
lassi
alUFT's had been built, the new prin
iple of phase gauge �has grown from ex-perien
e and resumes a huge treasury of experimental fa
ts from spe
tros
opy�(ibid. 344). He still longed for safety, just as mu
h as at the time after the FirstWorld War, when he designed his �rst gauge uni�
ation. Now he no longerexpe
ted to a
hieve it by geometri
 spe
ulation, but tried to an
hor it in moresolid grounds:By the new gauge invarian
e the ele
tromagneti
 �eld now be
omesa ne
essary appendix of the matter �eld, as it had been atta
hed togravitation in the old theory. (Weyl 1931, 345, emphasis in original)Weyl made it very 
lear to his readers that he had 
hanged his perspe
tive.He no longer saw a 
han
e in attempts to derive matter in highly spe
ulativeapproa
hes from mathemati
al stru
tures devised to geometrize for
e �elds; henow set out to sear
h forms for the mathemati
al represention of matter, whi
hgave expression to the enduring tra
es in the �huge treasury� of experimentalknowledge. For him, this was reason enough to prefer the view that the ele
tri
al�eld �follows the ship of matter as a wake, rather than gravitation� (ibid.).In short,Weyl had turned from his idealist approa
h to matter, pursued at theturn to the 1920s, to a symboli
 realist one at the end of the de
ade. This 
hangeof perspe
tive had 
onsequen
es for his views on geometrization. With referen
eto Fo
k's interpretation of the role of geometry in the general relativisti
 Dira
equation Weyl 
ontinued:Mr. Fo
k 
alls the derivation of the new gauge invarian
e from gen-eral relativity, whi
h he arrived at nearly simultaneously with me,a geometrization of Dira
's theory of the ele
tron. In this respe
t I
annot agree with him. My impression is that we have abandonedgeometrization by linking ele
tri
ity to matter rather than to gravi-tation. I fear that the geometrizing tenden
y, whi
h seized gravita-tion in full right and supported by the most intuitive arguments, wasmisled when it was extended to other physi
al entities. (Weyl 1931,345)Weyl did not, on the other hand, 
ompletely negate any possibility to �nd ageometri
al quantum theory. He only warned that, if one wanted to 
ontinuewith the geometrizing tenden
y, one had to invent a �natural geometry� leadingto a spinor type �eld ψ for the 
hara
terization of its stru
ture, in addition tothe ONF. Whereas Fo
k 
laimed to have a
hieved this already, Weyl remainedagnosti
:One had to set out in sear
h of a geometrization of the matter �eld;if one su

eeds here, the ele
tromagneti
 �eld is added as a premiumto the bargain. I have no idea what kind of geometry this might be.(ibid.) 18



From the perspe
tive of late 20th 
entury developments in di�erential geometryand the tremendous role of gauge �eld theories, Weyl's evaluation is highlysurprising and even seems paradoxi
al: Why did he not per
ieve his own andFo
ks's invention of lo
al spinor stru
tures with additional U(1)-gauge as asu�
iently ri
h extension of geometry to deal with matter stru
tures?45Our own perspe
tive has been shaped by the development of di�erentialgeometry and topology in the se
ond half of the last 
entury, whi
h was deeplyin�uen
ed by Elie Cartan's work, the work of his students and other resear
hers.In the late 1950s and 1960s bundle stru
tures with their inbuilt transformationbehaviour have be
ome 
entral 
on
epts in geometry and topology. In this sense,Weyl's �rst desideratum of a �natural geometry� whi
h in
ludes spinor type �eldin its 
ore stru
ture seems to be satis�ed, and it be
omes di�
ult to grasp whyWeyl, unlike Fo
k, did not a

ept their 
ommon 
ontribution as a valuable stepin this dire
tion.We may assume that Weyl over-emphasized his s
epti
ism with respe
t togeometrization of physi
s at the turn to the 1930s, be
ause he still wanted to
orre
t his earlier exuberan
e in this respe
t. Moreover he wanted to disasso
iatehimself strongly from the �old� uni�
ation programs whi
h where still alive inthe latest attempts of Einstein, or Kaluza and Klein, and wanted to 
ountera
tthem in the s
ienti�
 dis
ourse as 
learly as possible.For a proper histori
al understanding we have to take another aspe
t intoa

ount. Weyl's attempts to integrate geometry with physi
s had, from theirvery beginnings after the First World War, a strong intentional referen
e to thequantum sto
hasti
al aspe
ts of matter as a a �dynami
al agens�, even at a timewhen these were not understood at all. In the early 1920s Weyl had dared tospe
ulate in wide leaps about a possible relationship between the intuitive, themathemati
al and the physi
al understanding of the 
ontinuum, some inbuiltdis
rete �free-
hoi
e� stru
tures and the end of 
lassi
al determinism in naturals
ien
e.46 In 1925, in his manus
ript for the Loba
hevsky 
entenary volume(published only posthumously (Weyl 1988)), Weyl indi
ated that the vaguenessof physi
al determination of spa
e-time lo
alization has to be taken seriously forthe basi
 theoreti
al stru
ture of geometry. This vagueness ought to be 
onsid-ered a prin
ipal feature for the mathemati
al 
hara
terization of geometry andto be dealt with, in prin
iple, in some sto
hasti
al approa
h informed by �thea
tual state of physi
s�, i.e. quantum physi
s. But then, so Weyl remarked, ata time when the �new� quantum me
hani
s was just being shaped, the question,how su
h a quantum sto
hasti
al foundation for geometry relates to the di�er-entiable stru
ture of 
lassi
al geometry, turned into a 
ompletely open problem.He ended the passage by the honest remark:One has to admit that until now nearly nothing has been a
hieved forthe question what it means to apply di�erential 
al
ulus to [physi
al℄reality. (Weyl 1988, 12)With su
h questions Weyl was not 
ompletely alone. But they were far fromwhat most physi
ists or mathemati
ians 
onsidered useful at the time, or evenlater in the 1930, when Fo
k's young 
olleague M. Bronstein explored the ques-tions of a ne
essary revision of time-spa
e 
on
epts from the point of view of45I thank Jim Ritter who indi
ated this point to me and insisted on a 
loser histori
alperspe
tive.46Most prominent and 
ontroversially dis
ussed in this respe
t is (Weyl 1920).19



quantum physi
s (Frenkel/Gorelik 1994, 83�.). Fo
k's hope of 1929 to leave
lassi
al geometry behind and to turn towards geometri
al quantum stru
tureswas 
omparably inno
ent. With su
h a point of view he was 
ontent with an ex-tension of di�erential geometry whi
h would appear, at most, as a semi-
lassi
alenri
hment.In his 1930 talk at Cambridge (and its later publi
ation) Weyl expressed
learly that from a proper geometry of matter he expe
ted a deep break withthe 
lassi
al tenden
y of geometrization prevailing in the UFT's. He was less
lear, to say the least, what should be substituted for it; but there were strongreasons for su
h vagueness. His own approa
h to the mass problem of theele
tron had turned out to be unsatisfa
tory; Dira
's alternative appeared morepromising, but still had a long way to go before a te
hni
ally valid solution ofthe quantization problem was in sight47 � not to speak about the extensionsof later quantum gauge �eld theories and the still unanswerable question ofthe mass spe
trum of basi
 
onstituents of matter. Therefore Weyl's remark �Ihave no idea what kind of geometry this might be�, was just as honest as his
omment in 1925 that �nearly nothing had been a
hieved� for a semanti
allyreliable relation of the di�erentiable stru
ture of geometry to the �a
tual stateof physi
s�.Other 
ontributions to this 
onferen
e explore the mu
h broader and deepermathemati
al knowledge at the turn to the 21st 
entury. Notwithstanding awhole range of new open questions and desiderata, in
luding the one for a his-tori
al evaluation of re
ent developments, we now see several 
andidate programsfor a quantum geometry aiming at (or preparing) a uni�
ation of quantum �eldtheories.48 It is not yet 
lear, whether one of them (or perhaps several) will�prevail in life�. Weyl's proposal to look for a �geometry of matter� informedby the treasury of experimental knowledge 
ould still be taken as an advi
e fora 
riti
al dis
ourse in and among the di�erent resear
h programs.49 Perhapsfuture developments will show whether Weyl's guess that the geometrization ofintera
tion and metri
al �elds is �added as a bonus� on
e a proper geometry ofmatter has been a
hieved is just another spe
ulative dream. It still may turnout that it indi
ates a hint for an appropriate theory development.
47See (S
hweber 1994).48Two, at least, were presented to the 
onferen
e (M. Atiyah and A. Connes), another onewas planned (C. Rovelli).49At the turn of the 
entury we may add that, in addition to re
ent and 
oming results inhigh-energy spe
tros
opy, geometri
al aspe
ts of low energy EPR-type experiments 
onstitutea valuable novel part of the �treasury� of experimental knowledge, whi
h ought to be takeninto a

ount in a future �geometry of matter�.
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