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Zusammenfassung

In unserer Arbeit haben wir einen Ansatz von Giddiegigl. [1] aufgegriffen, um Observablen in effek-
tiven Quantengravitationstheorien zu definieren und zersaothen. In der oben genannten Arbeit wurde
gezeigt, dass die lokalen Observablen der Feldtheorieek&@imvollen Grofl3en in Quantengravitations-
theorien sind, man aber durch Integration Uber die ges&mateanzeit sinnvolle Observablen konstru-
ieren kann. Diese integrierten Observablen sind zwar iamaunter den Eichsymmetrien der Gravitation,
d.h. den lokalen Koordinatentransformationen, aber sié sffensichtlich nicht lokal.

Der zweite Schritt ist es nun, geeignete Variablen des 8ystals Uhr- und MaRstabvariablen zu
verwenden, um relativ zu ihnen Lokalitat beschreiben aarien. Diese Variablen missen ebenfalls in
geeigneten Zustanden vorliegen, damit man sie zur Lakalisg verwenden kann. Durch diesen Begriff
der relationalen Lokalitat erkennt man, dass die Lokalisig von Observablen ein dynamisches Problem
darstellt, und somit unverweigerlich Uber die Gravitaiwechselwirkung auf die Geometrie zurtickwirkt.
Je praziser wir die Observablen auf der Raumzeit auflogeintan, desto hohere Energien sind notwendig,
und desto mehr Ruckwirkung entsteht.

Wir werden in dieser Arbeit im Rahmen der perturbativen Qeiagravitation die Ruckwirkung der dy-
namischen Lokalisierung auf die Geometrie untersucheaséT heorien liefern eine intrinsische Grenze
an die Lokalitat, welche durch den Zusammenbruch deugtisreihe gegeben ist. Diese Untersuchungen
geben zwar keine Auskunft Uber die Lokalisierung in nietprbativen Quantengravitationstheorien, sie
geben jedoch Aufschliisse Uber die sogenannte semidassiokalitat. Doch genau diese semiklassische
Interpretation der Lokalitat Uber eine fixierte Hintargdgeometrie ist zur Zeit notwendig, da die meis-
ten Hochenergieexperimente Streuexperimente sind di@ndinterpretation durch heutige Theorien man
noch einen fixierten Hintergrund bendotigt. Somit ist diemgdassische Lokalitat auch die Grenze, bis zu
welcher wir heute die lokale Physik verstehen kdnnen.

Wir werden im folgenden zuerst kurz in die Grundlagen degléifen Quantengravitation und deren
Beschreibung auf fixierten Hintergrinden eingehen. Edamerdie Konzepte von relationalen Dirac-
Observablen und den damit zusammenhangenden Uhr-und&baBgablen eingefiihrt. Danach werden
wir zwei explizite quantenfeldtheoretische Modelle ustethen, welche solche integrierten Observablen
beinhalten, die in geeigneten lokalisierten Wellenpakettanden von skalaren Uhr- und Mal3stabvariablen
dynamisch lokalisiert werden kdnnen. Diese Observableren als pseudo-lokal bezeichnet, da sie aus
nichtlokalen Operatoren unter der Anwendung geeignetalikierter Zustande entspringen. Es werden
die Grenzen der Lokalisierung mithilfe dieser beiden Mélehtersucht und diese miteinander verglichen.

Am Ende widmen wir uns der Frage, welche Effekte starker desammenbruch der perturbativen
Quantengravitation beeinflussen, die klassischen odeyudiatentheoretischen Geometrieeffekte. Hierzu
werden wir die pseudo-lokale Selbstgravitation zweien &gieuzender skalarer Wellenpakete sowohl klas-
sisch als auch quantenfeldtheoretisch bestimmen undnaitder vergleichen.
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Chapter 1

Introduction

The understanding of space and time was revolutionized bgté&in with the development of the general
theory of relativity. This theory is different from most did others, since it does not only give some
new dynamics or interactions, but also posits the naturewalsade to be invariant under a new kind of
spacetime symmetry, the diffeomorphisms of the spacetimeifiosid. Because of this symmetry, nature
has to be described in a background independent way, whiehsitbat we do not introduce a background
on which we describe dynamics, but we have to describe geprugtether with its matter content as a
whole.

The assumption of diffeomorphism invariance of the wholstey has striking consequences. For
example every dynamical degree of freedom introduced tosyiséem will interact with the geometry
through gravitational interactions, since any kind of gyés a source of gravity. Moreover this interaction
can not be screened, such that it is always present.

Another effect which directly follows from diffeomorphisimvariance is that parameterizing the theory,
that is using parameter coordinates, does not work anyreimes the diffeomorphisms are a gauged sym-
metry and hence these parameter coordinates are unphyBazduse of this we can not use the “local”
observables we know from local field theory any longer ancehtavthink about other observables, which
are gauge invariant under the symmetries of the system.

In particular, if we want to construct a diffeomorphism ineat framework based on local field theory,
we have somehow to “remove” the dependence on the pararpeisstsne from “local” observables. One
way to achieve this is to integrate over the whole paramgiacetime and therefore mapping “local”
observables to nonlocal onés [1]. This technique can berstod® as a kind of group averaging over the
group of spacetime diffeomorphisms, with the natural ir@rmeasurdy = d*z,/—g.

At this point a very serious problem occurs. Since one cawghat every diffeomorphism invariant
observable must not depend on parameter spacetime [1] veeeither observables constant over spacetime
or integrated ones, which includes tRematrix, if it exists. With none of them the description ot
physics is possible at a first sight. This fact would haveoserconsequences since we are definitely local
observers and measure local quantities in experiments. tliednain purpose of a theory is to predict
measurable quantities. Is therefore general relativitpimgsical theory?

The answer is no, since there is an elegant and very natuyadutaf this problem by defining relational
observables]1]. The main idea of this approach is to chomse glynamical variables as clocks and rods
and measure space and time with respect to them. This appiaeen very natural in classical general
relativity, since there one always talks about space anglith respect to some ideal clock located at some
preferred position, e.g. an ideal clock at the desk in my effi’e now just have to specify the measurement
of “reading the clock” in order to talk about time. It was a@dy Einstein and later also DeWitt who have
noticed the fact thatthe description of the flow of time requires a self-consisiteciusion of the actual
dynamical degrees of freedom that register this flfly, which means that time has to emerge from the
dynamical theory itself and is no external parameter.

In the case of quantum general relativity the definition dditienal observables is a sensible approach
too, see e.g[]1,12] and references therein. For relationahtyim observables it is also very important
that only the interplay between specially prepared quargtates and specially chosen operators leads



to a sensible definition of “locality”. These special operat which in specially prepared states can be
interpreted as “local” ones are from now on called pseudailo

Since the clock and rod variables are dynamical variablessome matter fields or part of the metric
field, the localization of pseudo-local observables is aatyical problem. If we take the clock and rod
variables to be some matter fields, we could for example thimbut localizing some observables with
particle excitations of these fields. More specifically welldolocalize some spacetime pointif we
generate a two particle wave packet state with wave packétoeerlapping in a region aroungd

It now becomes clear that any kind of localization has to bexaitation of the ground state and there-
fore will cause backreaction on the geometry through theigitgonal interaction. This fact has dramatic
consequences on the limits on localization, since the yheitirhave some “internal cutoff” to localization,
which is an effect quite natural in quantum gravity.

In order to interpret locality we will assume that the statehe universe is sufficiently semiclassical
to separate off a background geometry. In this case the poiddocality is understood. If we now
localize with a higher and higher precision the state wiltdree more and more non-semiclassical, for
example a black hole, because backreaction will be verygtrld the state is so far from semiclassicality
that a background can not be extracted anymore, we loosetémpietation of locality. We interpret this
transition from a semiclassical to a non-semiclassica sta the limit on localization, since at this stage
we loose our conceptional understanding of locality.

The framework in which we will study the dynamical procesdaufalization will be quantum field
theory on a fixed background. Here the assumption of a sessickl quantum state is used in order to
separate off the background and describe only the fluchugta it dynamically. This effective approach
to quantum gravity has the advantage that we can descritaytte@mics with methods from perturbative
quantum field theory on fixed backgrounds. In this formalism breakdown of the theory can come
from two different sources. First, quantum geometry effectuld enter such that no classical background
can be extracted any longer. But second, also classicahtureveffects would lead to the breakdown of
the theory defined on a fixed background, since we do not iedlue classical dynamics of the classical
background and neglect classical geometry changes. Thatiguevhich effects will be stronger will be
further discussed at the end of this work.

Another totally different point of view on the breakdown arfurbative gravity is the following. Since
most present small scale experiments are performed byesoatof particles, our understanding of small
scale physics relies on scattering theory, which today sesr@y requires a fixed background. Hence the
breakdown of the perturbation theory including gravitoefects the breakdown of the understanding of
locality in today’s picture. In other words, a full theory giantum gravity with the possibility to enter
smaller scales does not necessarily improve our undeiataatiocality, because we do not know yet how
to interpret the scattering experiments testing theselswoales. This motivates the investigation of the
perturbative limits on locality.

This work is devoted to the investigation of the localizatad a certain class of pseudo-local observables
on a flat background. We will restrict ourselves to bosonittendields, where by matter we mean every
nongravitational field, including photons for example. Taason for that is that fermions would require a
reformulation of metric variable gravity into vielbein andnnection variables, which would unnecessarily
complicate the technical part of our work. We assume thab#séc features of dynamical localization can
also be studied in bosonic theories.

In chaptef®2 we will introduce the necessary mathematicsicbdan geometry and (constraint) quan-
tization. We will keep this chapter rather short because sgime the reader to be familiar with these
topics.

In chaptef B we give a short introduction to effective quamtgravity and possible Dirac observables
in it. In particular we will describe how in situations whédretuniverse is in a suitable semiclassical state
we can separate off a background and describe only metriuélitions dynamically. Furthermore we will
show that even if a background is fixed there remains a relsidwaye symmetry for the gravitons.

In chaptef# we perform the canonical quantization of liresat gravity using BRST methods in Fock
space. We will work out the physical Hilbert space for thevgoms using cohomology methods and
determine the physical graviton polarizations.

In chaptefb we investigate a definite model on Minkowski lgiokind which gives rise to pseudo-local
observables of a scalar field which are localized with relspeother scalar fields through matter three



point interactions1]. For a suitable localization we haverepare tight wave packets for the clock and
rod field, which include high energy and momentum states héfignergies will lead to more and more
graviton loop contributions to the process of localizatisach that at a certain ratio of loop corrections
the theory breaks down. This energy scale where the theegkbrdown will be interpreted as the limit

on localization. The inverse scale therefore will be the lsailength scale up to which we can use our
semiclassical picture of locality, using the above definedks and rods.

As a kind of crosscheck to the results of chapier 5 we invatgidjin chaptei]6 a model with a Yang-
Mills gauge field coupled to scalar matter field in the preseoicgravitons on a flat background. This
theory contains a three point interaction vertex as welthadthere exist similar pseudo-local observables
as in chaptef]5. We have performed the same analysis as fputhescalar model in order to find out if
there is some universality of the results.

In chaptefl we will approach the question what kind of effedominant to the breakdown of perturba-
tive quantum gravity, the quantum or the classical geonedtects. We will investigate the self-gravitation
of two crossing wave packets in perturbative quantum argbsidal gravity and compare the results.

Finally chapte[ B concludes this work by a compact summatgefesults.

Additional (interesting) insights gained throughout thigrk as well as rather lengthy expressions and
calculations were put into the appendix. It also contaiesistruction how one can modify FeynArts and
FormCalc[[3] in order to include gravitons.



Chapter 2

Physical and mathematical basics

2.1 Notation and conventions

This chapter is devoted to introducing the necessary cdioresused throughout this work. The Minkowski
metric is given byn,,, = n*¥ = diag(1, —1, —1, —1). Greek indicesy, (3, ... are used to label indices of
Riemann or Minkowski tensors. Latin indicésj, k, ... are used to label spacelike indices of tensors. We
have the identity’ = —v; for any 3-vectow, and the positive definite Euclidean scalar product is défine
between vectors with either both upper or both lower indices (v, w)euclia = viw' = v;w; = —viw;.

We use Einstein’s summation convention, but sometimewesiplicitly the sums when it helps to avoid
confusion. The symmetrization and antisymmetrizationtefeor" is given by round and square brackets
respectively

1

T(I“’) = §(le + TU#) (21)
1

T[MV] = i(T#U - TU#) . (22)

We sometimes write partial/covariant derivatives as corfseraicolon operation in order to get more com-
pact expressions. The following definitions apply to thewdgives of some field

V=0,V and V,:=D,V. (2.3)

When we work on a general 4-dimensional maniféij we always assume that it is globally hyperbolic,
i.e. the manifold can be topologically decomposedvds= R x ¥, whereX is a spacelike 3-dimensional
submanifold. A spacetime point is denotedsdby¥ M, and its spacelike part in boldface letterssby .
The smearing of an operator dengityx) on X by a functionf : ¥ — C is defined by

O(f) = [ ¥ V=35 fx) 0x). (2.4)
b
if not stated otherwise. Herg: is the subspace metric ai
Working on Minkowski space\* := (R* n), we use as wave packets the positive frequency square

integrable function£€? (M*) solving the Euler Lagrange equations together with the gangscalar prod-
uct

(f,9)cov = Z/ Br(f*(x)0rg(x) — 0 f*(x)g(x)) =: Z/ drf*(x) 5t g(z) . (2.5)

We will use natural units, i.éh = ¢ = 1.



2.2 Riemannian geometry

In this section we will introduce the general definitions iffetential and Riemannian geometry we use
throughout this work. We assume the reader to be familidn thiese ideas and therefore state the defini-
tions and formulas without explanation. For further infation see e.gl]4].

The basic object in the following is/a-dimensional differential manifold M, which is a topological
space with a collection of char{$U;, ¢;)} such that JU; = M and¢; homeomorphisms betweéh and
a subset oR™. Having overlapping sets, i.&; NU; # 0, the chart exchanges o qu‘l should be bijective
and smooth.

Given some smooth map between two manifofds M — N there exists a natural functor to an
induced map between the tangential spaces and a cofunctom@p between the cotangential spaces,
called thepushforward andpullback, respectively. The coordinate representation of thesesraggpgiven
by the Jacobian or inverse Jacobian matrix of the rhap

A diffeomorphism f : M — A is defined as a homeomorphism betweenand A\ with the property
that its chart representation is infinitely differentigble. C>°.

A (0,2) tensor fieldg on M is called apseudo-Riemannian metricif it satisfies(i.) ¢,(U,V) =
gp(V,U) for any pointp € M andU,V € T,(M) and(ii.) if g,(U,V) = 0foranyU € T,(M) then
V = 0. HereT,,(M) denotes the tangential space in the ppirt M.

Using the coordinate representation of the metric and aisguentorsion-free manifold we can give
expressions for theonnectionsymbols (here Christoffel symbols), tiRiemann tensorand theRicci
tensor. They are given by

« 1 «
Fuu = 59 ﬁ(guﬁ# + Gupu — Guw,) (2.6)
Rys=Tg, =T +T0I5, — TS (2.7)
Ry =R, = rgw —Tha+ F‘;Argu — r;urﬁa , (2.8)

whereg®? is the inverse metric, i.e. the, 0) tensor satisfying®’gs., = 5.
The unique metric compatibtvariant derivative, i.e. D, g3 = 0, is given by the following abstract
expression

Dy =0, + wy (2.9)

wherew is an abstract connection, which can be expressed througmaot Christoffel symbols when
acting on a tensor expression on the right. For example thariamt derivative of a vector and covector
field is given by

DAY = 9, A" + TV, A® (2.10)
DB, :=8,B, —T%,B, (2.11)

and for generalp, ¢) tensor fields it is given by using Leibniz’s rule for the abstrconnectiow.
Working on a (pseudo)-Riemannian manifold there is a natlifieomorphism invariantvolume ele-

ment given by
/d,u ::/dmx lg| . (2.12)

2.3 Basics in cohomology

Since we will later use some terminology of the theory of cobtogy we will briefly give the required
definitions, without going too much into details.

For our purpose cohomology is the investigation of someotdipt linear operatiod; : V; — V;; (not
necessarily an automorphism) between some vector spacBy nilpotency we mean that acting with the
operator twice on an element s zero, g, (d; v) = 0 Vv € V;.

This fact leads to the following natural classification adsk elements in € V; with d; v = 0:



1. v is called acocycleor closed if d; v =0
2. v is called acoboundary or exact, if there exists av € V;_ withv = d; | w

Note that every exact vector is closed by using the nilpgtenc
A natural question which always arises in such context iSaHewing: Is every closed vectar € V;
exact? This information is contained in the so calléd cohomology group defined by the factor space

H':= Ker(d;)/Tm(d;_1) , (2.13)

whereKer is the kernel andim is the image of the operator.

At this point it makes sense to give some examples of physigabrtance. Assume as spakgethe
space of-forms on a manifold and ag = d the exterior derivative. It holdg> = 0 because of antisym-
metrization and therefore we have a system to which we caly aphomology. The Lemma of Poincaré,
see e.g/[[4], in particular states that every cohomologygis trivial in the caseM = R™. One physical
implication for example is the fact that & every rotation-free vector field is given by the gradient of
some scalar field.

In our case cohomology is used to classify physical opesatod states in the presence of BRST sym-
metry. Physical quantities must be BRST closed, but areurogue since the addition of exact quantities
does not change physics. Therefore the physical informéiencoded in cohomology groups.

2.4 Classical dynamical systems

In this chapter we give the basics of classical dynamicédksys in order to define some notation. We do
not distinguish between finite dimensional systems anditafdimensional ones. A dynamical system, for
our purpose, is defined as follows.

Definition 1. A dynamical system is a topological manifdldwith an even or infinite number of dimen-
sions), the so called phase space, together with a symp@&irm¢2 and some given dynamical function
H : T — R, sometimes called the Hamiltonian.

A symplectic 2 form is a non degenerate 2 form that is closedthie outer derivative vanishég = 0.

In such a system the algebra of all smooth functions from tizese space to complex numbers contains
the observables of the theory. This algebra has some extigiste coming from the symplectic forta
and is defined as follows.

Definition 2. A Poisson algebra is the associative and involutivalgebra (A, oisson, -) Of all smooth
functions from the phase space to complex numbers togettfeaw antisymmetric bilinear mag-, -} :
Apoisson X Apoisson — Apoisson Called the Poisson bracket, which satisfies the Jacobi ieand Leibniz
rule. The multiplication operation in this algebra is defihley pointwise multiplication of the functions,
ie.(f-g)(x):= f(z)g(x) forall x € T, and therefore is commutative.

The nice thing about the symplectic form defined above isitig@tes a natural definition of the Poisson
bracket by

{A, B} := Q"0,A 0,B , (2.14)

whereQ? is the inverse of the symplectic form, which exists becatiseenondegeneracy 6.
The dynamics of the system is given by the one parameter grefiped from the Hamilton vector field
of the Hamiltonian, which is given by

XH = {'7 H} : Apoisson - Apoisson . (215)

But we can also generate other flows by defining the Hamiltatovdields of the corresponding conserved
charges of the flow. The infinitesimal change of an observabls the group action of some conserved
chargeG with parametee is given by

5.0 == ¢{0,G} . (2.16)



At least locally the symplectic form can always be expregsg@wsition and momentum variables Bk [4]
Q :=dg, N dp® (2.17)

which leads to the following Poisson bracket

0A OB 0B 0A
A,B} = — - A,B oisson - 2.18
{A, B} ;aqaapa S oy B EA (2.18)
The translation of this result to the field theoretic caserasightforward by identifyingi* — ¢(x), p* —

n(x)and). — [d*zy/=gs.
Finally we give the fundamental Poisson brackets betwesitipo and momentum variables for infinite
dimensional systems. They are given by

{6(1), 8(9)} = {n(f),w(g)} = 0 (2.19)
{6(f), 7(9)} = / B/ gnf (x)g(x) - (2.20)

2.5 Constrained systems and BRST formalism

A constrained dynamical system is defined to be a dynamicaésytogether with a set of constraints
{x®: x* € Apoisson @andx® ~ 0 for all a = 1, ..., m}, wherem is the number of constraint(densitie)s and
~ denotes a weak equality, which is defined as follows

Definition 3. Two functionsF'(q,p), G(¢.p) € Apoisson are called weakly equal, i.e8" ~ G, if they
coincide on the constraint surface. They are called strgregjual, i.e./" = G, if they coincide on the
whole phase space. In particular, weakly vanishing fumsioan have nontrivial Poisson brackets on the
reduced phase space.

In this work we assume all constraints to be first class, he.Roisson bracket of two constraints or
one constraint and the Hamiltonian is given by a linear caovation of only the constraints. Second class
constraints do not appear in this work and therefore do ne¢ ta be defined. The interested reader is
referred to[[5LB].

Since we have first class constraints, we can in general write

{x* X"} = Uexe (2.21)
{H,x} := Vbyt (2.22)

whereU *¢ andV ** are assumed to be constants.

We assume that the set of constraints generates gaugeotraasibns by their Hamilton vector fields,
which is given in most first class constraint systems, inipaldr in all the systems of physical relevance
known to us. But as a remark, there are also systems whichtgitilis so called “Dirac conjecture”, which
is discussed i ]6].

The gauge transformations are therefore induced by a lic@abination of the constraints with some
parameters®, which acts on an observalileby

0.0 ={0, x[e"]}, (2.23)

wherex®[e*] = >~ €*x* in the case of finite dimensional systems and the sum of smeanestraints
xX*[e*] = >, x*(e*) in the field theoretic case.

In the presence of gauge symmetries we do not expect the Wwhdson algebral,oisson t0 be phys-
ical observables, since it contains elements which chandengauge transformations and therefore are
unphysical. The physical observables should be invariadeuvall gauge transformations. This idea can
be used to define physical observables in the following Why [5



Definition 4. The physical observables, sometimes called Dirac obségaare exactly the observables
that have weakly vanishing Poisson brackets with all camsts. They form a Poisson sub-algebra of
Apoisson Called the physical observable algehdg .

The reason whyA,.,s is a sub-algebra of the Poisson algebra is because if sonsevabges have
vanishing Poisson brackets with the constraints, the faitas and products also have vanishing Poisson
brackets by using the properties of definitidn 2. This sigehta is a Poisson algebra in its own right, since
the Jacobi identity guarantees that it is closed under Boissackets.

In the following we will discuss a certain method for invgstiing constrained systems, the BRST
method, which provides a powerfull tool especially for istigations of Yang-Mills theories[7] 8]. The
advantage of this method is that it naturally can be appbegerturbative quantum gauge field theories.
In this part we will follow [7] and refer to this work for furétr information and details. Furthermore we
restrict ourselves to bosonic phase space variables arefdhefermionic ghost variables.

The first step of this method is to introduce a phase spacaggteby fermionic variableg®, called the
ghost variables, together with their conjugate momeftéor every constraink®, a = 1, ..., m. The spin
of the ghost variables has to be chosen such that the smearsalaintsy *[1*] are scalars. In general this
results in a violation of the spin statistics theorem, whgchot problematic if we can show that ghosts do
not show up in the physical world. Since fermionic degreeseddom are described by using Grassmann
numbers, we have to define a generalized Poisson brackes ttedled graded Poisson bracket, which is

given by [7]

oA Cabal_B

{4, Bl := 0z Ozb 7

(2.24)

wherez = (q,p,n,n) are the coordinates of the phase space@fd= {z¢, z*},, are the fundamental
brackets which have to be definédandr indicates the derivative from the left or right, which isfdient

for Grassmann numbers. A natural definition of the fundamddmackets is so that they later, in quantum
theory, are given by commutators for bosons and anticontongtéor fermions. Hence a possible choice

is that the ordinary bosonic coordinateandp have the same graded brackets as normal Poisson brackets
and the brackets for the ghost coordinates are given by

{70 }gr = =6 (2.25)
{0 }gr = —6° (2.26)
{ﬁavﬁb}gr = {77‘1777b}gr = {77'1, bV}gr = {ﬁavbv}gr =0, (2.27)

wherebv denotes some bosonic variable. In the following we will otiné subscripyr and assume every
Poisson bracket to be graded.

For a consistent formalism we have to define the behavioreoftiost variables under complex conju-
gation. A possible definition, according id [7], is given by

n* =n" (2.28)
- (2.29)

Fundamental in the BRST formulation of a constrained syssehe definition of the generator of BRST
transformations which is given by

1 a aoc =c
—nPpruetene . (2.30)

Qprst = X"[n°] — 5

It can be shown th&2prst is a fermionic, real and nilpotent generator, {8srsT, Qrst} = 0, Which
generates gauge transformations with ghosts as “parashatging on bosonic variables|[7].

With this new symmetry we can systematically defitingly BRST invariant observabl&3zrs out
of weakly gauge invariant observabl@sdy the extension

Ogrst = O + (=) Va7 + {QprsT, U}, (2.31)



wheree(O) denotes the Grassmann parity of the observ@bémd ¥ is a general function of the variables
of the form

U = v, [17%] + higher powers of ghosts (2.32)
andV3? is defined by
{0.x"} = V& (2.33)

which holds true, sinc® was defined to be a Dirac observable, {@, x“} ~ 0.
Furthermore one can show that [7]

OBRST|ne=ia=0 = O|pa=sa=o (2.34)
and
{Ohst: Ot Hie=geo & {01, 0P}y . (2.35)

Hence the BRST invariant extension of an observable is vedithdd, since in the final result it is equivalent
to the canonical method, at least at classical level.

The main advantage of BRST symmetry does not lie in its a@tas&rmulation, but in its quantization.
The extra termV introduced in[{2.31) can be used to fix the gauge and therefamege the equations of
motion of the unphysical parts. This can be used to modifyetipgations of motion in order to perform
the Fock quantization, see eld. [7] for quantum electrodyos. Furthermore the BRST generafifrst
together with the strongly BRST invariant Hamiltonian wik used to define the physical states, i.e. the
physical Hilbert space of the theory, and their dynamics.

2.6 Canonical quantization

Throughout this work we will quantize our theories by usimganical quantization. This chapter is de-
voted to remind the reader of the basics of canonical quatitiz from an algebraic point of view][9].
We will give the necessary conventions and formulas for Feukce representations, since we will use
them heavily in the following. Finally we will introduce tHBRST method applied to constrained quantum
theories|[7].

2.6.1 Generalities

Since Heisenberg’s uncertainty principle shows us thasjalsyat small distances has some inherent com-
plementarity in measuring certain observables, we havkiink about how one can integrate these facts
into a redefinition of dynamical systems. The most naturahoefor implementing complementarity is to
perform a deformation of the classical Poisson algebraamoncommutative algebria[10], the so called
guantum algebra, since complementarity can only hold ircaormutative algebras. Measurements in the
guantum algebra are described by acting with appropriates{positive functionals) on its elements.
Practically one does not generate the quantum algebra byrdafion but by relating some elementary
classical observables of the system to some abstract opeeaitd generate the quantum algebra as the free
associative algebra from thefd [9]. The information aboatdlassical system is transfered to the quantum
algebra by defining commutation relations among the eleangribservables of the form that for two

elementary quantum observabléss the identity[A, 3] = i#{A, B} holds true. We also encode reality
conditions into the quantum algebra by defining an involution the quantum algebra with the property
that A* = A*,

If the classical phase space of the theory is a linear spacatuaal choice of elementary observables
are the position variableg’ and momentum variables'. Since the Poisson brackets close in the vector
spaceS := Spar 1, ¢%, p*} itis sufficient to quantizé' and identify the free generated associative algebra,
with imprinted commutation relations, as quantum algebtare precisely we generate the free associative



*x-algebra fromS and factor out the ideal generated by the relations comim fireality conditions and
commutation relations. The generalization to field theerstiaightforward.

For completeness and to fix the convention we give the fundeaheommutation relations in the case
of a theory with linear phase space for infinite dimensiogatams. They are given by

[6(f), b(9)] = [7(f),7(9)] =0 (2.36)
(), #(g)] = in / Py g f(x)g(x) 1. (2.37)

From now on we omit the hat above operators if it does not caostision, and we séi = 1.

The next step is to find representations of the abstract goaatgebra discussed above as operator
algebras on Hilbert spaces. We will only consider the ca$ieldftheories, since finite dimensional systems
will not occur in the following. The problem with represergiqguantum algebras on Hilbert spaces is that in
general one can only construct the Hilbert spaces for freamtyum field theories, except for some special
cases. Therefore, in the following we will constrain ouveslto representations of free field theories.
Interacting quantum field theories are for our purpose sefftty well defined by defining the asymptotic
free Hilbert space to be the Hilbert space of the theory apdesenting the operators in the interaction
picture [11], since we just treat them perturbatively. @blems in field theory, like the nonvalidity of
Stone and von Neumann’s theorem and others are not cordiicettes work.

2.6.2 Fock representation

In this section we will present the basics of Fock space sgmations using the example of a free real
scalar fieldp on 4 dimensional Minkowski space in order to give the maim&land to fix the notation.

The starting point for constructing a Fock space is notirgg there exists an isomorphisf, be-
tween the classical phase space of the theory at sometgiraad the solution space of the Euler La-
grange equations. This can be seen as follows. Given a ppase point(¢(x), 7(x)) at a timet it
can be used as initial conditions to solve the Euler Lagratgmtions for the field(x) by identifying
7(x) = ¢(x)|s=1, - Thus we have enough initial conditions to solve the secaddralifferential equations.
The inverse maﬁ[g)1 is also well defined, since given a solutipfic) to the Euler Lagrange equations we
can defineZ; ' (¢(z)) = (¢(to, x), d(to, x)).

The main idea now is to perform a quantization of the solit:) and construct a one particle Hilbert
space from them, which is the basic ingredient for the Foelcep

If the theory has linear Euler Lagrange equations, whichhés dase in free field theories as in our
example, we can write the most general solution of them imsesf Fourier decomposition as

o(x) = /ﬂ(ake_“m + apet®) (2.38)
whereay is the Fourier coefficient andk — (2:)373’;,&. There has been an explicit distinction between

positive and negative frequency solutions, which can beedonhe case of a free scalar field and is very
essential for further investigations.
Now we perform the quantization by assigning everyan operator with the properties that
[axe, ap] = [af, af] =0 (2.39)
[ax, al)] = (2m)°2k°5(p — k) , (2.40)
wherea is the adjoint operator af defined by quantizing*.
It can be shown that using the isomorphigg we can recover the fundamental commutation relations

(2.38) of the ordinary variables.
The Fock vacuunD) € Hrpocx can be defined by a state with the property

ax|0) =0 Yk € R?. (2.41)
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Given this definition we can define the one particle wave pamieation operators by
al = —(f", )eov = fi/d‘q’:z:f(x) Ay p(x) (2.42)

wheref (z) is some wave packet with only positive frequency parts onkidivski spaceM*.

The one particle Hilbert spack; can now be constructed out of tif# (M*) space with the scalar
product(f, g)cov, Which can be shown to induce a positive definite norm fortsmhs to the Euler Lagrange
equations with either positive or negative frequency. ffiien as follows

Hy = {a}|0> . f € L2 (M) A fis pos. freq. solution to E-L efy, (2.43)

with a scalar product given byf|g) = (f, 9)cov, Which can be seen by using the commutafors{2.39).
In analogy, then particle Hilbert space can be constructed by acting withave packet creation oper-
ators on the vacuum and therefore is given by

H = éHl : (2.44)

wheres denotes the symmetrized tensor product. The scalar produgt, is induced by the one particle
scalar product by using the commutatdrs (2.39). FinallyRibek space is given by

Hroak = C|0) & @D Ha , (2.45)

n=1

with the naturally induced scalar product from its summands

This Hilbert space naturally supports a representatioh@fjuantum algebra generated by the elemen-
tary observableg and, since they can be expressed in terms of the creation antikatioin operators
aL anday by means of Fourier transformation.

2.6.3 Quantum BRST formalism

In this section we assume that we deal with a constrainedtquorefield theory with bosonic field variables
A and fermionic ghostg. We also assume that the phase space of the theory is a lpeeaa so that we
can perform quantization by quantizing the linear funddiohthe phase space variables.

We assume that we have found some pre-Hilbert space thagistar\space, not necessarily complete,
in which the norm may not be positive definite, on which we apresent the field operators together with
their (anti-)commutation relations. A natural candidaiethis pre-Hilbert space is the product of some
pre-Hilbert space forl calledV, and some pre-Hilbert space for the ghosts and antighgstsven by
VYV =V4 ®V,. Inorder to find these (pre-) Hilbert spaces we have the treettd manipulate the classical
equations of motion by adding BRST invariant terms to the Htamian so that even Fock representations
can exist.

Like in the Dirac programme of quantization we now want toresent the gauge transformations,
which are here extended to the BRST transformations, onréadipbert spacé’ and use their action on
the auxiliary states in order to define physical states. dfoee we need to represeRtrst as a hermitian,
nilpotent operator oY, which has to be checked explicitly to exist in every theanger consideration. As
a remark, there exist theories in which the operator ordgyievents this representation, like in the case of
string theories with a nonmatching number of dimensions.

Having a representation &fgrsT, we can use the condition that physical states should be BR&Ti-
ant, which is given by the action of the BRST generator

Qprst|phys) = 0. (2.46)

The problem with this definition is that not every state $gitig) (Z.48) can be interpreted as a physical
state, since all statég) € Im(Qprst) = {|¥) : J|P) € V, |[¢) = Qprsr|¢)} Will satisfy this equation
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too, but have zero norm, because of the nilpotendygfst. Hence they can not be interpreted as physical
states, which have to be normalized to some finite positiigeva
A possible and sensible physical Hilbert space would be dneptetion of the factor space given by

thys = Ker(QBRST)/lm(QBRST) s (247)

on which the physical observable algebra, i.e. the algeiB&ST invariant observables can be represented.
A natural representation of this algebra can be induced fremepresentation on the pre-Hilbert spate

by
O[|)] := [Op)] , for [¢) € Ker(Qprst) , (2.48)

which is well defined sinc@?, Qprst| = 0 and hence the action @ can be shifted from the physical
Hilbert spaceH,iys to the pre-Hilbert spac®. The statd|y))] € Honys denotes the equivalence class to
which the stateq)) € V belongs.

The scalar product ol ,ys can be naturally induced by the scalar productdoy

(1), (1) Dpnys == (¥l¢) (2.49)

which is well defined, since every state in(ihsrsr) has vanishing scalar product with a state in(Kaigrsr),
so that it does not depend on the representative of the dgnoclass we choose on the r.h.s[of (2.49).
The positive definiteness of the norm induced by the scaldymt on 1., has to be checked for the
system under consideration. For the case of Yang - Millsrieedhis was done by Kugo and Ojinia]12]
using BRST cohomology methods.

In a perturbative treatment of interacting gauge theotiesuld be somehow nicer if we could avoid
working in the factor spac#/,,s explicitly and work consistently in the pre-Hilbert spacstead, since
the states in the auxiliary Hilbert space are easier to karithe good thing about the BRST approach is
that we can do so. For the-matrix the identity

[(0[1S]|0)) = (4]S9) , forly), |¢) € Ker(Qprst) (2.50)

holds true, sinces = exp(—z’ffooo dtHprsT) IS a physical operator. So we can specify our initial and
final states by some representative of the equivalenceedasith some subsidiary condition, e.g. that
it contains no ghosts and no unphysical polarizations, atcutate S-matrix elements from them. In
intermediate steps of the time evolution, i.e. in loop déegys, we can use representatives in which ghosts
and unphysical polarizations deth contained and therefore simplify polarization sums as lusua

2.7 LSZ formalism for in-out matrix elements

In this section we will give the necessary formulae for aymbrative investigation of in-out matrix elements
in interacting quantum field theories on flat spacetime. MHerivation can be found in nearly every
introductory textbook on quantum field theory, elgl[11].

The basic observables we are interested in are matrix elsneérsome time ordered operator :=
T{[], O;} between asymptotic states. Lfgtandg, be wave packets for all, b then these matrix elements
are given by

(f1s ey fr;0ut|Olg1, ooy g in) = (iZ*%)"er
< I (/ d*zad*ys £ (2a) g6 () (Oa, +m*)(0y, + m2)> (0; out[T{p(21)...0(ym ) O}0; in)
a,b

+ nonconnected terms (2.51)

where Z denotes the wave function renormalization,the mass of the particle, and the nonconnected
terms will vanish if(f,, g»)cov = 0 for all a, b.
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The operator®); we are interested in will be given by integrated local opms®; (), i.e.

0; := /d% O;(x) (2.52)
and therefore do not depend onlt is natural to write the general formu[@(2151) in Fouspace as
d*p, d*k . ~
(f1, -, [n;0ut|O|g1, .., Gm;in) /H P 27T)b4 L] B(faspa) Bgs, ko) G(p1, -, km) ,  (2.53)
whereB(f,p) := [ d*zf(z)e’?* andG is given by

G o= H (P ; m?) (ki — m?)

i
a,b
/Hd zodtypePetee

Formula [2.5B) can be further simplified by using the ondsigéctral representation gf(z) which
reduces3(f,p) to

B(f,p) = / dize / PR = ZFE)S Vo ). (2.55)

Putting the result intd (Z.53) we arrive at the final result

7(0; 0ut|T{¢(1)... 6y ) O}[0; m) . (2.54)

»(k ~
(f1, s fr; 0Ut|Og1, ...\ g i) /Hd3p L ) (2 ) G(p1y s km) (2.56)

whereG is now on-shell.

If the operatorg); () are polynomials in the fields we can apply Gell-Mann and Ldwisnula and
Wick’s theorem and reduce the problem of determining matiexnents of operators to Feynman diagram
calculations. In this casé' can be interpreted as some part of the amputated, renogdaliz m point
Green function in momentum space.

If one of theO; is not polynomial there is no natural access to this problgniFé&nman diagram
methods. Because of this we will restrict ourselves to tise cd polynomial operators, in particular vertex
operators occurring in the action.

2.8 Schwinger-Keldysh formalism for in-in matrix elements

As we will see below, using in-out matrix elements of pselmt®l operators will just give access to a
limited class of observables. In particular the possibkup®-local observables which are accessible by
in-out matrix elements and which can be interpreted phifgicaterms of scattering matrix elements will
strongly depend on the chosen dynamics of the system.

Another kind of observables, which are very different framout matrix elements, are expectation
values of some operat@?(t) at some timet in the state of the systef), i.e. matrix elements like
(¥|O(t)|1). Writing this expectation value in the interaction picture get

(WlO@)|) = int (¥, 1 Oine (D) [¥, Eine (2.57)
where|y, —co)int = |¢) andOine (t) is the operator in the interaction picture.
Using the interaction picture time evolution operatobS{.reads
t t
(WOWI) = s, 00T {exp i [ d Hin(t))} Ouue(®) T{exp (i [ dtHu @)} o)

— 00 — 00

(2.58)
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whereH,, is the interaction Hamiltonian in the interaction pictureld” and7’ denote time and anti-time
ordering, respectively.

The basic formula{2.58) can be evaluated perturbativelydizg some modified diagrammatic rules.
This formalism is known as the Schwinger-Keldysh or in-imfialism, se€[13] and references therein. In
the following we will summarize the basic diagrammatic fatism:

Since the expansion in the coupling constant leads to tirdeaati-time ordered terms, we have to
distinguish between “left” and “right” vertices, where tlefnd right means anti-time ordered and
time ordered, respectively. The right vertex comes withcédiaof; and the left vertex with a factor
of —i in Lagrangian field theory.

A line connecting a left vertex with a left vertex Ok, (t) is given by the anti-Feynman propagator
01T{p(x)¢(y)}0).

A line connecting a right vertex with a right vertex ©x,,.(¢) is given by the Feynman propagator
O01T{¢(x)p(y)}0).

A line connecting a left vertex with a right vertex is given the two-point Wightman function
(0lo(z)9(y)]0), wherep(x) is associated to the left anfly) is associated to the right vertex.

A line connecting an external field f) = (f, ¢)cov from the asymptotic state,; (1), —oo| with an
internal fieldp(x) (left vertex, right vertex 00;y,:(t)) is given bya(f), ¢(x)] = f*(x), wheref (x)
is the wave packet associated to the partglg).

A line connecting an external field (f) = —(f*, )cov from the asymptotic stat@), —oc);n with
an internal fields () (left vertex, right vertex 00;,: (t)) is given by[é(z), a’ (f)] = f(z), where
f(z) is the wave packet associated to the particlgf).

All time parameters associated to the vertices have to kgiated over the rande-oo, t].

Symmetry factors are included.

Furthermore it can be showin ]13] that the vacuum to vacuugrdias, i.e. disconnected loops, do not
contribute.

Within this formalism we can, in principle, evaluate ex@icin values of operators at fixed timep to
the desired order in perturbation theory. In order to obd#fieomorphism invariance we have to integrate
the resulting matrix elements over alli.e.

oo

e (2.59)

— 00
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Chapter 3

Effective theory of qguantum general
relativity (QGR)

In this chapter we introduce the basic framework of effec@FT applied to gravity. This approach has
been applied to different problems in the existing literafifor example[[14, 15]. We will also discuss
the sensible definition of relational observables in gyairitthe sense of |1]. One other point is the in-
vestigation of the classical gauge structure of the thearg fixed background. Therefore we will define
useful classical gauge transformations which will remagymmetry of the system, even after a classical
background is fixed. At the end of this section we will disctlssinterpretation of dynamical localization
on fixed backgrounds.

3.1 QGR as low-energy effective theory

Because we do not yet know the microscopic degrees of freddamf.) of spacetime, we are forced
to work within an effective description of quantum gravitydrder to make predictions. Therefore and
for many other reasons, effective field theory methods weweldped which provide a controlled way of
investigating the low-energy behavior of quantum gravityorder to formulate an effective field theory
of quantum gravity we first have to identify possible low-gged.o.f. and their (gauge) symmetries. As
low-energy d.o.f. we choose the metric figldwhich classically describes spacetime very well and define
the theory to be invariant under the gauge symmetry indugediassical diffeomorphisms.

With this choice we can write down the most general actioraftireory respecting these conditions as

2
S = /d4.17 vV —g (A + —2R + aR2 + bR#VRMU + CRuya[jRuyaﬁ
K

+dD,, D, R" + eOR + #RB +.. > , (3.1)
wherex = \/32—7r/Mp1, A is the cosmological constamt/ < M, is an energy scale larger than typical
energies of the problem, and all other constants are dimelesis. Because of experimental observations
we know that the cosmological constant is very small. Forpupose we can assume its renormalized
value to vanish. The other constants, ¢, ... are assumed not to be unnaturally large in order to avoid
conflicts with existing experiments.

These are only some of the operators one can write down irctlema\We see that higher order operators
like e.g.R* come with a suppression factg&;, wheren is some positive integer, while the operator used
in the Einstein Hilbert action gets enhanced by a factdwgf.

In classical GR one now argues that if the curvatires small compared to the scald? and does
not vary fast, i.eD,R* < M3 in some appropriate way, one can neglect the higher ordeistand the
Einstein Hilbert action is a good approximation to the peobl The higher order terms just give corrections

of orderR/M? or DR/ (MI?IM), where byD R we mean some derivatives &f
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In our work we do not describe the dynamics of the metric fieslelf, but only describe small fluctuations
around some fixed background. We will see later that in thée ©&e can also identify relevant and irrelevant
terms of the action, where the irrelevant terms will be sepped by powers af' /M, whereE is the
graviton energy.

3.2 Pseudo-local observables in QGR from clock and rod varlales

Because of the symmetries of our effective theory the loergy observations should also be invariant
under these symmetries. The problem is that diffeomorphismriance prohibits the straightforward
definition of local observables, because any local scalaemableO (x) will in general change under
diffeomorphisms and therefore is not a Dirac observablee ®ay out is to integrate local or multilo-
cal observables over the whole spacetime which can be stmba diffeomorphism invariant neglecting
boundary terms1].

The problem with these integrated observables is that weeltloe concept of locality. This leads to
a serious problem, since our theory should be capable t@aiexpkperiments in laboratories which are
definitely local.

There have been many attempts to restore locality in an appte sense by defining relational observ-
ables, see [1] and references therein. The basic idea tibredhobservables is as follows:

Since general relativity describes the universe as a cloggdm, the emergence and definition of space
and time has to be intrinsic. We will therefore use dynamiealables of the system, like for example
metric or matter d.o.f., in order to define spatial locatiansg time relative to them. These variables will
from now on be called clock and rod variables.

For a classical example assume a wooden rod and a mechdadatall¢ these variables are in an appro-
priate state, e.g. the clock performs periodic oscillatjome can define time distances by counting these
oscillations and space distances by using the rod. Loc&reagons now can be performed by combining
clocks and rods with a suitable subsystem on which we wiliqgger measurements. For a classical example
assume another oscillator with some time dependent fraylenated at some spatial position relative to
the rod. We are interested in the frequency of this oscillat@raged over some finite time interval. Using
parameter time leads to a gauge variant observable andrefdhe useless. But we can use our mechan-
ical clock and rod and build some gauge invariant obsernidtde) := fd4z\/TgOclock(x)Odevice(x),
whereOgevice () is a function depending on rod and observed system(angy(x) is dependent on the
clock variable. Now assume thé.;..x(z) is 1 if the clock is switched on and else and tha®geyice ()
gives delta functions on the parameter coordinates whemghémal amplitude of the observed oscillator
is reached. Thet gives the number of oscillations of the investigated sutesysiuring the time interval
defined by the number of oscillations of the clock, which is #veraged frequency, in a diffeomorphism
invariant and relative way. Since the observabldefines a local quantity through a nonlocal observable
by applying a suitable state, it is called a pseudo-loca¢nlable.

But now let us turn to quantum physics. In scenarios whergtia@tum nature of space and time plays a
role we do not expect classical clocks and rods to be ap@tgrandidates for clock and rod variables. We
expect more suitable candidates to be matter quantum fieldetic d.o.f.. The definition of pseudo-local
observables by using these quantum clocks and rods works iseime way.

At this point it is useful to give an example of such a clockiable in a simple quantum system. We use
the minisuperspace model of isotropic and homogeneousalogg in which the variable to be quantized
is the scale factor operatarof the universe. In our toy universe there has to be some matén order to
register the evolution of the universe. We see easilydlighot invariant under diffeomorphisms, which are
reduced to time reparametrizations because of isotropyanmgeneity. But under certain circumstances
we can us& as a clock variable relative to which one can describe the dictime.

If the state of the universi)) is such that it can be interpreted as monotonically growiegcan use
a for defining time, because our intuition would say that biguea ofa correspond to late times at least
classically. If we now are interested in some observab(é) at the “time” when(«|a|v)) reaches a value
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7, we can define it in a diffeomorphism invariant way by somerafs like

0= /dtO(t)&(d(t) —7) . (3.2)

By the Diracd-function we mean an appropriate regularization of it, megfirough a Gaussian function
with small width. Thisd-function acts as a projection operator onto the eigenstatecorresponding to
the eigenvalue.

In a statdt) with the properties described above the expectation vdldewill be

{YlOl) = (O(7)) , (3.3)

where(O(7)) is the expectation value of the system observable in thesystate encoded i) at the
time the universe has a scale factor

The important point is that the interpretation of localigpgnds on both, the state and the observable
under consideration.

In this work we will use wave packet states of matter clockautfields in order to perform localization.
In this approach the basic idea is to construct diffeomamphinvariant operators

. N
0= / Hd4$i\/ -9 Osystem(xlv '--7xN) Oclockfrod(xlv "'wrN) ) (34)
=1

such that taking matrix elements between suitable statesand|«.) leads to

N
(¥1]0|2) N/VHd4xi\/_g<osystem($1;---awN)>- (3.5)
i=1

HereV denotes some region in the product manifaitf¥ defined through the wave packets of the clock
and rod fields contained in the states) and|;), and(Osystem) IS the expectation value of the system
observable in the system state, which is also encodggh inand|s).

Since localization always requires energy, and since greagses backreaction on the metric, there are
restrictions on how precise localization can be performetil the quantum nature of spacetime and/or
strong curvature effects set a cutoff. There are severad wagddress the issue of localization from which
we use the perturbative formulation of quantum gravity orxedibackground. In this framework we can
give an estimation of the limits on localization by calcirgtthe backreaction during localization. More
details about the interpretation of dynamical localizaim a fixed background are given in secfiod 3.6.

As a final remark, the idea of integrating over the whole spaeewith the diffeomorphism invariant
measure is equivalent to applying group averaging over thepgof four-diffeomorphisms. This is how
this idea of defining observables connects to a generaiegatof gauge theories, where group averaging
is one specific method to generate gauge invariant expressia of gauge variant ones.

3.3 QGR with fixed background

The most intuitive access to quantum gravity from a pargitigsicists point of view is to describe it as the
propagation of perturbative gravitons on a fixed, classieakground. This approximation can of course
only be done if there is a well defined distinction betweeraasital background and quantum fluctuations
on it, which is not always the case. For example in scenarloarevstrong curvature effects and small
distances come into play, like in the vicinity of black hoteghe big bang, a separation between classical
background and quantum fluctuations is not possible anyniéoe these problems one requires a more
fundamental theory of quantum gravity.

For the application of quantum gravity in nonsingular syetelike e.g. colliders if there are large extra
dimensions, we expect that a separation of background aawitgns can be done until some threshold
energy is reached where nonperturbative effects come layo phe background in these cases is assumed
to be a smooth manifold, in particular a Minkowski space incase.
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In the following part of this chapter we present the metholdaf this separation can be done and which
are the relevant terms for low-energy effective field theriThe energy scale defined above will from
now on be set td/,,, because we expect the scale of new physics connected ttugugravity to be the
Planck mass.

The starting point is the expansion of the classical meteicl fj and its inversgy—! around a classical
background;, which is not necessarily flat. This expansion is given by

Guv = M + fihm/ (36)
g =" — kh" + f<;2h“Ah’\” +0 (,%3) , (3.7)

whereh denotes the graviton field andis used in this expansion in order to gikehe dimension of a
bosonic field. Itis important to note that the indices of tas®n a fixed background are raised and lowered
by the background metric. It can be seen that if we want tochivivierse powers of thi field, which will
cause problems during quantization, the expansion of thexse metric includes terms of all orders«in

Since this expansion is systematicxitwe can calculate low-energy effective theories by colfertll
terms up to a given order in from the general actiofi (3.1) by inserting the expansiomefrhetric. The
order inx used for defining the effective field theory will depend on gieblem and the precision one
requires, because higher orders:imre suppressed by powersBf M, whereE is a typical energy of
the problem we describe.

The required quantities for theexpansion of the actiofi(3.1) are the square root of the mgfrig, the
Christoffel connectioii'l, ; and the Riemann tensét’,,, ; together with its contractions. These quantities
can be calculated up to arbitrary order by inserting the ejom [3.6) into the definition of these geometric
objects given in[(2]6). This expansion and the expansiomefgraviton action itself will be explicitly
performed in sectiopn 3.5.

3.4 Gauge transformations with fixed background

When we fix a background and describe only fluctuations onthe@slynamical variables we manifestly
break the usual diffeomorphism invariance. But there remairesidual gauge symmetry of the theory on
a fixed background which we can identify if we reformulate difeeomorphism transformation.

The usual symmetry transformation of the metric figlts given by the pullbacks of the infinitesimal
diffeomorphisms

at — =2t — ke (z) (3.8)

where we used in order to make the vector field(z) = > e*d,, dimensionless. The induced transfor-
mation on the chart representation of the metric is giverhkypullbacks

. Az dxP
G (T) = G (T) = @@gaﬁ (z)

= Guv (x) + K (g,uaeofy =+ gm,eof“) +0 (62) ) (39)
and in a similar way the one of the inverse metric by the pustdods

y iy~ o+ 0zv
g (x) — g (2) = ﬁ@g B(l’)

= g" (x) — K (g""€" o + g™ ") + O (€%) . (3.10)

Fixing the background in these equations by inserting tipaesion[(3.6) will cause problems, because
this symmetry transformation directly acts on spacetimearagsforming the argument too. A better
suited transformation which can be fixed on a backgrounddsotiie where we remove the spacetime
dependent part by defining theyauge transformation as

30 :=0(x) — O (x) =60 + K O oc™ , (3.11)
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whereO is some function of the variables (metric or matter fields) & is its transformation induced by
diffeomorphisms. .
With this definition we get thé gauge transformations of the backgrounaind the fluctuations as

My = 0 (3.12)
oM =0 (3.13)
Shy, = Nua €y + Nav€” ) + Nuv,a€” + K (hwe‘l,l, + have®, + Py, €®) (3.14)
Shiv = e, + et =" et + K (h“ﬁn”“eéa + hﬁ”n‘“’eéa + n“an”ﬁhagﬂe"’) . (3.15)

One easily sees from a short calculation that these tramsitiwns respect the background structure, i.e.

Sh =" n? Shag (3.17)

and therefore are well defined.

The next step is to work out th& transformation for matter field. Since we do not need feriigion
matter in the following, and fermionic matter requires arefulation of gravity in the sense of vielbein
variables, we do not need to work out their gauge transfaomsit Hence a general matter fiétd for our
purpose, is dp, q)-tensor field and transforms under the diffeomorphisms @8&jiven by the pullbacks
and pushforwards, i.e.

ap...a QL. O [~ ox*t 0% Jx**  OJxe
Vﬁlﬂﬂqp () — Vﬁlf”ﬁqp (2) = T T e Vit () (3.18)

The definition of the transformation is according tb (3]11) and given by
OVl iy (@) i= Vgl v (2) = Vgt 7 (2) = 6V 5 (2) + ket 0,V 3 (@) (3.19)
where the indices are taken with respect to the background.
For completeness we give the explicit form of thgauge transformation for a scalar fieléind a vector
field A =) A*0,. They read
8¢ = ke’ 0,0 (3.20)
0AM = —ket A” + ke 9, A" . (3.21)
It can be shown that thé gauge transformations commute with the background caviedierivatives.
This is required for representing this symmetry transfaiomain the Poisson algebra. It shows that the
transformations are more natural for the investigatiorhebties on a fixed background than the usual

transformations, since these do not have this importameytg.
As a final step in this section we can state the following

Proposition 1. LetS = [ d'x \/Tgﬁ be a diffeomorphism invariant action for the metric fieldnd some
matter fields. Then the theory on a fixed backgrogiginvariant under the isometrics of the background
and thed gauge transformations of the fluctuationand matter fields, if appropriate boundary (or falloff)
conditions hold true. The background fixed Lagrangian iegibyL = /—g/v/—1L.

Proof. The proof of the isometric invariance is trivial since thedhy on a fixed background inherits this
structure from the former theory. Thd@nvariance of the fluctuations can be proven by a short caficun

0:55:/5((141:) \/Tgﬁ+/d4x5(\/fgﬁ) =
Jate (retvmat 46 (v=a£)) = [t (et (v732) 40 (VL) )
_ /d4:1: 5 (V=oL) = / o =8 (VoI L) =65, (3.22)
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where P.I. denotes integration by parts and we have éiged 0 in the last line. The technical assumption
of appropriate boundary conditions was in order to avoidnaauy terms while performing integration by
parts. O

With the tools developed in this section we can define thearfenetric fluctuations and matter fields
on a fixed background and investigate them like usual galegwiths..

3.5 Graviton expansion of geometric quantities and the Eingin-
Hilbert action

This section is devoted to theexpansion of the geometric quantities and the gravitomaaround a flat
Minkowski background. Since the required calculationsstraightforward we will only state the results
without explanations.

The expansion of the geometric quantities up to the requirddr inx are given by

1 1
J=g=1+ gh = R+ SR+ O () (3.23)
2
D5 = 5 (Wha+ o= ol ) = 50 (hgno + hass = has.s) + O (5) (3.24)
R:=R" + kR 4+ k?R? + O (x*) (3.25)
R® =90 (3.26)
RW = h ot —h v (3.27)
1 1
2 Ao R Ao H
R®) = 9 (h (2h;mu - hvf’))y)\ T 9 (h h)\ffnu)
1 v v 174 v
+3 (=P BN 4 2Ry RPN — 2R B 4 b — 20 R,
“2R R, AR, (3.28)

The graviton action can be calculated from the Einsteiétil action by usind (316). (3.23) arld (3.25).
In the following we require this action only up to ordet. It is given by

1 1
S = /d4z <§hw,>\h‘“”/\ - ihyuh’“ +h W, — hﬂy,khﬂA7U) + 0O (k) . (3.29)

This action agrees with the result 57[16] and it can be shawetinvariant under thé gauge transforma-
tions [3.12) in this particular order it
The ghost and gauge fixing Lagrangian for the de Donder (anbaic) gauge are given by

Eghost = *C’“CH:;\ (330)

1 1
Lor = <hu£,y - §h,u> <h#,)\/\ - 5”’“) ) (3.31)

whereC* andC* are the hermitian ghosts and antinermitian antighostpewively. Furthermore the sum
Lenost + Lar is invariant under the BRST transformations

drsTC" =0 (3.32)
- 1

OgrsTCH = h“'fy — 5]7,’” (333)

6BRSThuu = C(,u.,v) . (334)

More details on the BRST formulation and gauge fixing of limeszd gravity will be given in chaptéi 4.
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If we turn on graviton-matter interactions there will ocalivergences coming from graviton induced
matter tadpoles. In order to absorb these divergences wéean additional cosmological constant action
given by

Sy = gA/d4m h+ O(R?) | (3.35)

It will be used to eliminate graviton tadpoles by renormalizthe cosmological constant as shown in the
appendixC.

The graviton expanded matter actions will be given in theesponding chapters where they are re-
quired.

3.6 Dynamical localization of pseudo-local operators on seiclassi-
cal fixed backgrounds

In this thesis we work on a fixed background and describe dicemgravity as fluctuations around the
background metric in terms of gravitons. In this picture vem @pply standard quantum measurement
theory in terms of a semiclassical apparatus and a quantst@syon which measurements are performed.
This section is devoted to explain qualitatively the emaogeand breakdown of this semiclassical approach
to geometry and how this breakdown is related to dynamicallipation.

Assume an early universe in a full quantum state of mattergmmnetry. In this region in spacetime
the definition and interpretation of locality, in particulacal measurements, is not possible in the sense of
standard qguantum measurement theory, since there is n@tiepdetween a sufficiently large semiclassi-
cal apparatus, the measuring device, and the subsystemioln mbasurements are performed. Hence our
formalism can not be applied to this region.

Now assume that through some mechanism like e.g. decoleetlemainiverse evolves into some state
which contains a sufficiently large semiclassical subsystéssume further that this subsystem also con-
tains the metric d.o.f. which is in agreement with the cosigmal observation that the geometry of the
universe became classical at a very early stage. This statean be approximated by a classical back-
ground state and some matter and graviton quantum state meitclassical background state can contain
classical matter d.o.f. too, e.g. an apparatus producidgregasuring quantum matter wave packet states.

In this work we assume for simplicity that the classical neestate is a flat Minkowski space. But in
principle the classical metric state can be any smooth mihiFurthermore we assume the quantum fields
on this background to be in their vacuum state.

This classical region in spacetime can now be used in ordeetimrm and interpret local experiments
using some classical apparatus and wave packet statesddficality relative to them. Increasing the
resolution is associated to increasing the energy of thewagkets, such that at some threshold energy the
backreaction of the wave packet states on the geometry @slrdy the semiclassicality of this spacetime
region. This will be the worst at energies when the overlappiave packets will create a black hole which
is a non-classical geometry state because of the singularithis interpretation the limit on localization
is reached when the geometry gets too fuzzy. But there is@ndeslightly different interpretation based
on scattering theory.

Since most of today’s small scale experiments are scaftesiperiments which are theoretically de-
scribed on a fixed background we will not be able to measur&dmness of the geometry directly. What
we will measure are gravitational effects in loop contribos to scattering processes. These contributions
have their origins in quantum and classical geometry effémit can also depend on the dynamics. Since
we are restricted to the description of scattering expeammsen a fixed background, the important scale set-
ting the limits on our understanding of locality is the soateere perturbation theory on fixed backgrounds
breaks down. This scale can of course be different from takesnentioned above.

In this work we will follow the second interpretation. Adidibally we try to relate the two approaches
by studying geometry observables which contain infornmatio pseudo-local geometry. With these ob-
servables we try to find out the nature of backreaction of weaakets, in particular if it is a classical or
guantum effect.
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Chapter 4

Canonical BRST formulation of
linearized QGR on a flat background

In this chapter we study the canonical BRST formulation péérized gravity on a flat background in
order to compare it with existing results from path integpadntization[[1l7]. We will study the constraint
structure of the theory and perform the BRST extension optieese space. The resulting classical BRST
invariant system will be quantized using an auxiliary Fopkee and afterwards reduced to the physical,
i.e. BRST invariant, degrees of freedom. In particular wk fecus on the cohomological aspects of the
one- and multi-graviton Hilbert space.

Additionally we have investigated the physical states & fihesence of classical matter. The result is
given in appendiX™B, since it is not directly connected te thvork. It shows connections to Newton’s
gravitational potential.

4.1 Hamiltonian and constraint algebra

Performing the: expansion of the general actidn (3.1) to lowest order an flat Minkowski background
one gets

1 1
S = / d*x (EhW,AhWA = hal b, — huv;h“g) : (4.1)

Since there are only quadratic terms, this action descabiese spin 2 particle propagating on a flat
background neglecting the graviton selfinteraction. Thimad¢Z.1) can be shown to be invariant under the
é gauge transformations given By (3.12) up to orefer

In order to perform the Legendre transformation we needltutate the conjugate momenté” of the
variablesh,,. Therefore we use the symmetrized functional derivatiedmed by

gz;g; = 02,00 6(x —y) = %@755 +6052) S(@ —y) . (4.2)
The momenta correspondinghg,, are given by
790 = ho; ; (4.3)
= —%(hoo,i —hjji) = hij g (4.4)
7 = hijo + 055 (hokk — hko) - (4.5)

Solving them for the time derivatives éfwe get primary constraints, because the system of equations
(4.3) and[(44) can not be solved fiagy o andho; o. Therefore we get the solutions

. 1
hij,O = 7T” — 55” (Wkk — h()k,k) (46)
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and the smeared primary constraints
O = [ 60 (7~ hoy ) @.7)

KO = [ 00 (0 + Shoos = 3hasi + ) ) @8)

2

Performing the Legendre transformation of the Lagrangiarawive at the following Hamiltonian

1 1 . 1 1
H = /d3 ( )2 4(7Tkk)2 + §7T” hok,k + Z(hok,k)z — (hojx)?* + §(hij,k)2

_%(hjj,i)Q + hoo,iljji — hoo,ihijg + hik,ihig; — (hij,j)Q) - (49)

Having the Hamiltonian of the system we can calculate the #wolution of the constraints in order to
get possible secondary constraigts For the time evolution we omit the addition of the constisimith
Lagrange multipliers to the Hamiltonian, since the primeoystraints have vanishing Poisson brackets
so that additional gauge transformations will not contiébto the secondary constaints. The secondary
constraints are given by

) = RO = WO HY = [ £60 By~ his) () (4.10)
)= X0 = WO Y = [ 50 (17— Shor) ) (4.11)
The tertiary constraints are given by
WO = [ @060 3060 (4.12)
(=0 (4.13)

and do not give rise to new constraints, since they can beeeged in terms of the other constraints. Given
all 8 constraints of our system we arriveléit— 8 = 2 physical d.o.f. which can be interpreted as the two
helicity states of the graviton.

Calculating the Poisson brackets between the constrairgobtains that our system has an abelian
constraint algebra, i.e.

(x4 x*} =0 Va,b, (4.14)

whereq, b are indices labeling the whole set of constraints, i.e. prinand secondary. This and the fact that
we are dealing with a free field theory will simplify the apgaltion of the BRST formalism, in particular
its quantization, in a dramatic manner.

4.2 Algebraically generated gauge transformations

Given the constraint§ (4.7) arld (4110) we can study the gamgsformations that they generate by their
Hamilton vector fields on the subspace of configuration véem Therefore we calculate the Poisson
brackets of the smeared constraints with the graviton fiekl/e arrive at

{P (0, %), X (f)} = 6260 (%) (4.15)
{P (0, %), X (f1)} = 60,00, fi(x) (4.16)
{h (o, %), XV (9)} = 0 (4.17)
{uw(t0, %), X$7(90)} = —6{,,07,0;9:(x) . (4.18)



Comparing the result witti (3.112) we see that the constrgiaterate the desired gauge transformations up
to orderx® by identifying

f(X) = 26070 (to, X) (419)
fl(X) = 260,1‘@07 X) —|— 26i,0(ﬁ0, X) (420)
gl(X) = 72€i(t0,X) y (421)

wheret, is the time when we perform the gauge transformations.

So we have shown that up to leading ordekithe gauge transformatiorfs (3112) defined from purely
geometrical assumptions can be induced out of the Poisgebral. This will be necessary for later repre-
senting the gauge transformations as operators on somerttimace.

4.3 BRST charge and minimal BRST invariant Hamiltonian

By knowing the constraint structure of our system we canutate the BRST charge and the minimal
BRST invariant extension of the Hamiltonian. Since we haweabkelian constraint algebra the BRST
chargel(2.30) has an easy form given by

QsrsT = X"[n"] , (4.22)

wherea is an index running over all constraints amfdare the corresponding ghost fields.
In order to get the minimal BRST invariant Hamiltonian one tacalculate the coefficients*® defined
in (Z21). For our system the minimal BRST invariant extensf the Hamiltonian(2.31) is given by

Hyin = H — 10 [17] = 0[] + 0V 10:7(] . (4.23)

The next step is to use the freedom of adding an exact furaitiothe Hamiltonian in order to manipu-
late the dynamics of the gauge variant parts. This additi@na@xact functional does not change physics,
i.e. the gauge equivalence classes, due to a theorem by &ien[iS].

4.4 Exact functionals for extending the Hamiltonian

In this chapter we will construct the most general exact fional for extending the minimal BRST in-
variant Hamiltonian and therefore gauge fixing it suitaldy éur purposes. The conditions for possible
Hamiltonian extension® are as follows:

¢ O has dimension, since the Hamiltonian is the energy functional
e O hasto be local

O has to be real

e O has to be invariant under spatial SO(3) rotations

O has to be bosonic, i.e. no odd powers of ghost fields are atlowe

¢ O has to be of ghost numbéy i.e. the power of ghost and antighost fields in each summarst m
agree

O has to be quadratic in the fields in order to introduce no usjglaycouplings which would com-
plicate our problem.

Now assumé to be an exact functional, i.€ := {QggrsT, V}. Then the conditions posed above lead
to the following expression

U = O[] + @ [0] + O [7O] + P[], (4.24)
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where ally)* are real and linear in the bosonic fields. Another restnicisothat the dimension o¥ is 0
such that{ QprsT, ¥} has dimension. This constrains the dimension of the primairyo [¢(®) (x)] = 2
and of the secondany to | () (x)] = 1. Since all bosonic field variables and derivatives have dsiun
1 and we have no natural energy scale in linearized pure grévé following expressions hold true

PO = c1hgj j + cam® + can¥ (4.25)
YO = cyhoo i + cshyji + cohijj + e (4.26)
0 = cghoo + cohyj (4.27)
v = ¢iohi (4.28)

wherec; are real dimensionless constants. This leads to the folpwipression for thé0 parameter
family of exact functionals

c (i _ 1 Dia -
{QpRrsT, ¥} = —9*[X"] + (ca — 57)77(0) [0:7 D] — esn©@ 7] + 5(01 + ez — e3)n 97
Cl10 (iVr—(i _ 1 D AR €6, (i (i 0197
- %77(” [757] + 2¢3n (A7) + 5(c6 = )i [A7D] + (es + 56)77§ [0,0;79] = con{? [0:7(]
(4.29)
with

— X% = /d3x(—02(ﬂ'00)2 —(c1 — Cg)hoj,jﬂ'oo — 03 — 07(770i)2

— (64 + 6—27)h()071‘7'r0i — (65 — C—;)h]‘j_’ﬂTOi — (CG + C7)hij7j7T0i + Cgh()jyjﬁkk + Cloh()iyjﬁij
¢ cs— ¢ ¢
+ c1(hokk)? — c1o(hoi;)* — 54(]100,1)2 — ( SRR cs)hoo,ihjji — (ca+cs + gﬁ)hOO,ihij,j
¢ ¢
+ (co + g)(hjj,i)Q — co(hij;)® — (5 +co — gﬁ)hjj,ihik,k) . (4.30)

From these expressions we see that the vector space of exatibhals isl0 dimensional. This is a
proper subspace of the closed functionals, which can berdited to bel2 dimensional.

4.5 Equations of motion and gauge fixing conditions

In this chapter we will determine the set of parametgrsuch that we arrive at a covariant dynamics for
the gravitons and the ghost fields, i.e. we want the follovdggations of motion (EOM) to hold

1

O(hy — §nwh) =0 (4.31)
Unsp =0 (4.32)
07, =0, (4.33)

where we have identified the configuration variables of thesghand antighosts which are common in
Lagrangian methods. The choice of these variables is geddog dimensionality arguments, spacelike
rotational covariance and hermiticity assignments.

Using the full HamiltonianHgrsT = Hmin + {QBrsT, ¥} We can calculate the gauge fixed EOM by
evaluating the required Poisson brackets. These EOM aea givappendikA.

Demanding the covariant EONM(4]31) for the gravitons andtiercovariant ghost fields leads to a set
of algebraic equations for the. This set is underdetermined so that we can impose furte&igions.

Since we want to construct the Fock space representatidnisathieory and determine the tensor struc-
ture of the graviton propagator, we will get some more resitms by demanding a manifestly covariant
graviton propagator. In order to achieve this covariargt¢eistructure we have four possible real solutions
for ¢; from which we choose the one leading to the simplest HamétarThis solution is given by:
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C1 C2 C3 Cq Cs Ce Cr C8 Co C10

1 1
11 0 0 o0

=
=
ol

This choice even leads to the covariant graviton EQN,, = 0, which implies[4.3]L) and the following
expressions for the time derivatives of the graviton

. 1 1 ..

hoo = 57 + 5777 (4.34)
hoi = — (4.35)
. | N

hij =7" + 5(7’(’00 — Wkk)5ij . (436)

and the following time derivatives of the ghosts and antggbo

i == = g — o (4.37)
7 =70+ 979, 5O =70, (4.38)

These equations give relations among the time derivatif/éseovariables and the variables themselves,
i.e. they can be used to express some variables througtstiteéd dynamics. This will be fundamental in
defining the BRST charge in a suitable form and performindtek quantization of the theory.

The only small drawback of this formulation, so far, is thaie of the time derivatives of the ghost fields
(4.37) come with an additional term which would not be présesimg standard Lagrangian methods and
de Donder gauge fixing. But this problem can be solved by a@pglg suitable canonical transformation
on the ghost sector as shown in the next section.

4.6 Canonical transformation to suitable ghost variables

In this chapter we briefly give the canonical transformatiarthe ghost sector which cancels the undesired
terms in [4.3F7). Consider the following transformationtoé ghost fields and their momenta

n® 1 = @ 4 9,0 (4.39)
70 =T =70 + 9,;7" (4.40)

where the rest of the variables remain untransformed. Itb@shown by a short calculation that this
transformation conserves the Poisson bracket and therisfarcanonical transformation.
Using the new variables, the time derivatives of the enengyedsion 1 ghost fields are given by

i ==l = -1 (4.41)
PO =10 = (4.42)

which is nicer than[{4.37) since it is in accordance to thedovariant ghosts from Lagrangian methods.
The new dimension ghost fields also acquire a free covariant EOM by acting arsitime derivative on
them.

In the following we will always use the new ghost variabléesind therefore will rename them back to
7 again. But we have to be careful since we must always keepnd that in the formulas derived in the
sections above the “old” ghost variables appear such tlegthive to be expressed in terms of the new
variables before proceeding.

To be specific and in order to avoid confusion we insert thévedrconstantg; into the Hamiltonian
Hprst = Hmin + {QBrsT, ¥} and simplify it using the relations between old and new ghobhis leads
to

HBRST = ngav + thost (443)
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with

1 .. 1, .. 1 ) 1 »
—_ 3 S (10\2 T (-J7\2 — (002 0%\2 —,.00_j7
How = [ @2 (57 = J02 + 3G = (O + 3nx
1 2 1 1 2 1 2 2
+7(hoo)” + Shooihjji — 7 (hjja)™ + 5 (hijk)”™ = (hoij) (4.44)
and
Hoen = [ 0 (~oO%(9) 90 {950 - f91259) @.15)

It can be seen that the ghost fields decouple from the grasjitmexpected, since we investigate the
free theory of the graviton. Furthermore it can be checkegii@iy that the Poisson bracket between the
BRST charge and the Hamiltonian(si.e. the Hamiltonian is strongly BRST invariant. The reégafl
the graviton Hamiltonian and (after the canonical transfation) also the result for the ghost part is in
accordance with the result one gets by first applying the baiergauge fixingCer = (h,,; — %fm)2 at
Lagrangian level and then performing the Legendre transition.

4.7 Covariant expression of the BRST charge
The BRST charge of our system reads after the insertion afeéleghost variables
Qprst = XV [0+ XD [P] + (X + aix D) ]+ xP [0 (4.46)
It can be simplified by using the gauge fixed dynamics to thefor
Qprst = i(X",7{)eov + (X7, 0 )cov - (4.47)

Here we have used that the gauge fixed time evolution of theryHeads to the following time derivatives
of the primary constraints

X = {(x9, Hgrsr} = X9 + 9;x@ (4.48)
XD = {x9, Hprsr} = x\¥ (4.49)

while the time derivatives in the ghost sector are giver BFE@in term of the new ghost variables.

In order to achieve a full covariant form of the BRST charge, éxpress the constraints and ghosts in
terms of 4-(co)vectors, we defing, := (n§0>, ng”) to be a 4-covector. Thisis in accordance to the symme-
tries in Lagrangian methods, what can be seen by an invegenidee transformation of the Hamiltonian.
Note that this only holds after the canonical transfornratio the ghost sector.

Furthermore it can be checked explicitly thgt := (x(*), —x(?)) is a 4-covector too, by either rep-
resenting the Noether charge of Lorentz transformatiorteénPoisson algebra and showing that it leads
to a covariant transformation property of the constraimteeor using the EOM to express the constraint
vector in an explicit covariant form.

For the first method we have constructed the Noether chathe abrentz transformations by Noether’s
theorem. It is given by the antisymmetric tensorial funetibon phase spae@,,, (h, ) with the compo-
nents

i o1 1 ,
Qo = / d’x (477[0[3@]5 — 2o hag i+ %(w“ﬁww + hap,ih®P — §7r2 —~ 5h,jh-ﬂ)) (4.50)

Qij = / P (47r[whj§’ - 2x[iwaﬁhaﬁ7ﬂ) , (4.51)
where[...] denotes antisymmetrization. With this charge it can be shthaty, transforms as a 4 -
covector.
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The second method is somewhat easier since the constratot ean be expressed as
, 1
Xp = hu — ih_ﬁ (4.52)

by using the EOM and therefore is obviously a Lorentz covecipte that the constraint vectqy, is
exactly the harmonic gauge fixing condition from the Lagiangpproach. This will be used later in order
to compare the BRST approach with the Gupta-Bleuler appraad show their equivalence.

Hence we have the following expression for the BRST charge

QBRsT = i(X,uv ng>cov ) (4.53)

which is a scalar under Lorentz transformations.

This completely covariant form has two advantages. Firstaresimultaneously diagonalize the BRST
charge and the Lorentz group generators such that we camas8RST quantum number to representa-
tions of the Lorentz group. This will be necessary if we waritivestigate the representations of the BRST
charge on one patrticle states. Second, when we quantizehthige it will obviously annihilate the Fock
vacuum since the covariant scalar product projects ont@dhngbination of positive-negative frequency
solutions and therefore picks out one annihilation opeliateach summand.

4.8 Auxiliary Fock space representation

In this section we construct the kinematical Fock spacethmgevith a representation of the (auxiliary)
observable algebra in terms of the generated associatigebra of linear variables.

Since we have used the freedom of adding BRST invariant téfbasisT, U} to the Hamiltonian in
order to achieve a free and covariant dynamics given by thmilitanian [4.43) we can perform the iso-
morphism from the canonical phase space to the covariarttyttee following equations

By (t,X) = / Bk (a0 (K)e™ ™ 4 o, (K)e'*?) (4.54)
Nsu(t, x) = /ﬁ (cu(k)e™ ™ + cz(k)ei’”) (4.55)
Mu(t,x) = / Bl (6, (k)e~* — cl (k)e) (4.56)

where the operators,,,, ¢, andc, together with their adjoints represent the annihilatiod areation
operators. The minus sign in the definitionvgfis due to its antihermiticity.

There are similar expressions for the field momenta in teritiseocreation and annihilation operators
which can be calculated by inverting the time derivativetheffields [4.34). We do not specify them here
since we only require their existence.

The Fock vacuun) is defined by

au (£)]0) = ¢, (f)|0) = &,(£)[0) = 0 Vwave packet§ € £2(M?) (4.57)
and the wave packet creation and annihilation operatorbeaxpressed as
a () = (fihywdeov > @l () = =(F* P )eov (4.58)
cu(f) = (Finspleov > () = =(* ou)eov (4.59)
&) = Frilpeov > () = (" u)eov (4.60)

wheref is a wave packet, i.e. it has a positive frequency spectrum.
Using [4.58) we can determine the (anti-) commutators bewige creation and annihilation operators
using the canonical (anti-) commutators between the figldgfaeir momenta. They are given by

[auu(f)v a:;ﬁ (g)] = (fa g)cov%(nuanuﬁ + NupMva — nuvnaﬁ) (4-61)
{C#(f)v Ej/ (g)} = (fv g)covn,uv (462)
{E#(f)v C:r/ (g)} = 7(f; g)covn,uu (463)
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and0 for other (anti-) commutators. Here we have used the fadt(tha*)cov = (f*,9)cov = 0 for

two wave packetg andg, because the complex conjugation changes the positivadrety into negative
frequency and therefore the scalar product vanishes beacdusrthogonality. Since these relations are
Lorentz covariant, they will lead to a Lorentz covariantdenstructure of the propagators. The propagators
will be constructed later in this chapter, but before we haveonstruct the Hilbert space and the algebra
of observables.

Using the graviton and ghost wave packet creafors{4.58yaneonstruct the one particle (pre) Hilbert
space for the gravitons and the one for the ghosts and headeottk space by tensor producting them
with symmetrization for the graviton multiparticle Hiliespaces and antisymmetrization for the ghosts.
The scalar product on Fock space induced from the covartafdrsproduct on the one particle states does
not induce a positive definite norm. Therefore we must ingatt the action of the BRST operator on the
auxiliary Hilbert space and identify the physical subspacarder to construct a Hilbert space of positive
norm states.

The Heisenberg algebra can be constructed since we hawsespations of the field and conjugate
momentum variables through the annihilation and creatfarators. The algebra of BRST closed opera-
tors of ghost numbei can be found by demanding invariance under BRST transfaomsat This algebra
also contains exact operators. In classical physics thebedgof Dirac observables is isomorphic to the
cohomology of the ghost numbeiobservables[18]. In quantum theory there is no rigorousfdiar this
isomorphism to exist, but it is guaranteed that for each®alaservable there exists a BRST invariant ex-
tension which is in our case given iy (2.31), such that thewgatlogy of ghost number operators at least
contains the Dirac observables. Using this fact we can mepyddirac observable to a strongly BRST
invariant operator, like we have done it for example withltr@miltonian.

Next we have to discuss the operator ordering. In our caseame Imear constraints so that we do not
have to specify an operator ordering for the constraint® S&me holds true for the BRST operator since
the ghost and graviton variables commute. The quantum Hamdh is defined through normal ordering
in terms of creation and annihilation operators. This fixesdperator ordering for the operators required
in the following.

4.9 Graviton propagator in harmonic gauge
The graviton propagator in position space is defined as
G, Y)uwap = (O/T{hy ()hap(y)}0) - (4.64)

Using the mode expansidn_(4154) and the commutdiors](4.6 Hew

1 — " "
G(@,Y)ywap = 5 (Muatlup + NusTva = TuvTag) / Bk (O — e M) 4 B (y" — 1)kl

2
1 Ak
= 5 (uathup + Mg = Nunas) | 55

—ik(z=y)  (4.65
(2m)* k2 4+ ic” (4.65)

This expression for the propagator is in accordance wittiexj results[[15, 17, 16].

4.10 Cohomology of the one graviton subspace

In this chapter we want to study the action of the BRST opemtahe auxiliary Fock space constructed
in the last section. In particular we are interested in itsoacon one particle states with ghosts and
antighosts, since we suppose that physical free gravieesswill lie in this sector in the Fock space.
Since we can decompose the Fock spacH@ask := Heraviton @ Hehost © Hantighost, Where the factors
are the Fock spaces for gravitons, ghosts and antighostarenviaterested in the closed and exact states
in M. ® Hohost @ Hontighoss- Here the upper indices refer to the particle number of tiferaint

graviton

particle species.
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By taking the full covariant form of the BRST charge (4.53)ldhe mode expansion (4]54) we arrive at
the following BRST operator represented in terms of anatifuh and creation operators

— 1 1
QprsT = — / a3k ((kya‘“’T(k) — Sk al (k))eu (k) + (kya*” (k) — 5imz(1<))cL(1<)) ., (4.66)
wherea := n"a,,,.
When restricting the BRST operator to definite particle nangtates we see that it is given by a sum of
operatorf)grst = Q1 + 2 with the following domains and co-domains

. n m l n+1 m -1

Ql . ngaviton ® thost ® Hantighost - ngaviton ® thost ® Hantighost (467)
. n m l n—1 m—+1 l

QQ . ngaviton ® thost ® Hantighost - ngaviton ® thost ® Hantighost . (468)

By knowing the (co-) domains of the restricted BRST operatrcan simply show the following propo-
sition for the exact states.

Proposition 2. All exact states ift} & Hnost @ Hantighost NAVE their preimage undélgrst in the

graviton

sub-vectorspace(? @ Hpost @ Hintighost- EVEry €xact state can be written @grsrecl, (f+)[0) =

graviton
~1 [k (k“f”(k) + kY fr(k) — kf(k)n*“’) a},,0), where f* is the spectrum of an antighost wave
packet.

Proof. Use the specification of the restricted (co-) domains abatte (., m,1) = (0,0, 1) for Q;. Qs
does not contribute to the desired states, since it req(irdsm) = (2, —1,0) which does not exist. The
expression of the image of an antighost wave packet can bendieed by a short calculation as abovél

The next step is to investigate the subspace of closed onéayrastates. The following proposition
holds.

Proposition 3. The subspace of closed stateshi), . iton @ Hopost @ Hontighost 1S given by the states

al,, (f*)|0) with a spectrum satisfying, f** (k) = 0 Vk € R®.

Proof. Demanding the restrictiod = Qgrsral,, (f#)|0) leads directly tof d3k k, f* (k)c},(k)[0) = 0
by using the commutator§(4161). This identity holds truaniél only ifk, f** (k) = 0 Yk € R?, since the
0 state has an unique spectrum giverdby his is because there is an isomorphism between positeacesp
and momentum space representations of the wave packets. O

It can be checked explicitly that the exact states are clese we hav%k#(k“f”(k) + kY fr(k) —
kf(k)n") = 1k f(k) = 0 by using the graviton on-shell conditiéf = 0.

In the following we investigate explicitly the case of plamave states witkk = (k,0,0, k), i.e. we
will use spectra of the fornf**(p) = (27)32p° 6(p — k)A**. This helps us to determine explicitly
the polarization tensord”” of the physical, i.e. closed but non-exact states. For tse o&a general
momentum we have to perform a Lorentz transformation bygusinexample[(4.50).

For a closed state the polarization tensor must be of theviigllg form

AOO AOl A02 AOO

, AOl C B AOl
AP = , (4.69)

A02 B D AOQ

AOO AOI A02 AOO

where the& constants are arbitrary and leadstbnearly independent states.
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Among these 6 states we find 4 exact states given by

1 0 0 1 0O 1 0 0
0O 1 0 0 1 0 0 1

Ag)lcll ~ ’ Ag;lclz ~
0 01 0 0O 0 0 O
1 0 0 1 0O 1 0 0
0 01 0 1 0 0 1

y 0 0 0 O » 0O -1 0 0

Agx 3" ’ Agx 4~ (470)
1 0 0 1 O 0 -1 0
0 01 0 1 0 0 1

The remaining linearly independent states are closed and non-exact amndftine physical. Their
polarizations are given by

00 0 O 0000
. 01 0 0 o 00 1 0, @)
00 -1 0 0100
00 0 O 0000

which is in agreement with Veltman and van Dam'’s reshlt$.[19]
The norm of the physical states is given by
(Aphys 1, k| Aphys 1, k) = 2 (27)% 2k° 6(0) (4.72)
(Aphys 2, k| Aphys 2, k) = 2 (27)% 2k° 6(0) , (4.73)

and such they are distributional states of positive normi¢kvban be “normalized” canonically by a factor
of % in the polarization tensor.

4.11 Structure of the physical multi-graviton space

In this section we will investigate the general structuremiitiparticle subspaces in free gauge theories
with decoupling ghosts. This will give the structure of thtiee physical Fock space. In particular we are
interested if in this (very) restrictive case the physicglarticle Hilbert space is isomorphic to theth
product of the physical particle space.

Because we deal with a free QFT we can decompose the BRSTtopieta

QprsT = N1 + Q2 (4.74)

where(); increases the number of particles by 1 and decreases tlyhasis byl, and(2, decreases the
number of particles by 1 and increases the ghosts by 1.

The action of the BRST operator on theparticle space is given by the pdet, since{2; annihilates
this state. The most generaparticle state can be written as

[in) i=al (f1)al(f2)...a’(fa)|0) (4.75)

wherea' is the creation operator of the particles afjdare wave packets.
The condition for closed states is given by the actiof2ebn [); n)

0= al(f1)...[2.a'(f;)]...al(fa)|0) . (4.76)

J
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The problem with exact particle states is thagrst can not be simply restricted to the domain
H e © Hoost ® H i wiignost IN OFder to produce exaet particle states, because the imagé&efwould

particle ghos
be a subset oF}) % 1. @ Hypos @ Ml nignos: @Nd hence nae particle state. Therefore exact states in the
since now the action

n particle Hilbert space have their prelmagé{gdmdeklosed ® thost ® HL
of ), leads to the zero vector.
In order to solve the main problem we require the followingteas.

partlcle

antighost?

Lemma 1. A state in then particle Hilbert space is closed if and only if it is a prodwftclosed 1 particle
states.

Proof. The reverse direction is trivial since if every 1 particlatstis closed then every commutator van-
ishes and equatioh (4]76) is satisfied.

The other direction is proved by contraposition. Let(f;)|0) : j € J} be a set of non-closed 1 particle
states. Then their commutator with leads to ghost creation operators with some wave packetdieted

by f,;. Equation[(4.76) then is given by

0="Y al(fi)...c'(g;)...al(£)[0), (4.77)

JjeJ

wherec is the ghost creator ang the wave packet determined fy.
If the f; are linearly independent the equation can not hold truenf\somef; are linearly dependent
these contributions come with the same sign and therefoareaicancel. This completes the proof. O

The next lemma is devoted to the exagbarticle states.

Lemma 2. A state in then particle Hilbert space is exact if and only if its preimagedenQprgst lies in
el @ H ot @ ML
particle closed ghost antighost*

Proof. The reverse direction is trivial since for any statédh ¢ H"
have

0 1
pdl‘tlcle |C1056d ® thost & Hantighost we

QBRST|¢> Q |¢> € Hpartlcle ® thost ® Hgntighost :

Letnow|y) = Qprst|¢) be an particle state anfs) ¢ M7, 4 1olctosed © Hoposr @ Hagighost - BECAUSE OF
the restricted domains and co-domains of the BRST opetttoids true thate) € H" L | ® Hohost ©

particle
H it ntignose- 1N Order forQgrs|¢) to be an particle state the sum

n—1

a'(fr)a’(fa) ... [Qe,a’ ()] ... a (fau1)e" (fa)[0)

1

<.
Il

must vanish, where we have writtép) in terms of creation operators. This is only possible if alinz
mutators ard), because of the same linear independence and/or same gigmexts as in the lemma
above. O

The main statement of this section is the following

Proposition 4. Assume a free QFT in which the BRST operator takes theffiesmr = x*[n%] = Q1+0Q2,
where x* are first class constraints;* are the ghost variables an@; as above. Then the physical
particle Hilbert space for the ordinary variables is isonpbiic to then-th symmetrized product of the
physicall particle space, i.e.

phys ® thys :

If the physicall particle Hilbert space consists of positive norm statelplaysical multiparticle states will
have positive norm, too.
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Proof. Using lemmdlL andl2 and the definition of the physicahrticle space we see that
Holys 1= Ker(Qerst)|n/In(Qers) | ~ () Ker(Qprst)|1/Im(Qsrst)[1 = (X) Hinys -

where|,, denotes the restricted action of the BRST operatat particle states.
The positivity of the norm gets inherited by the canonicdirdgéon of the scalar product on the multi-
particle Hilbert spaces in terms of the annihilation anchtioa operators. O

4.12 Equivalence to Gupta-Bleuler method

Gupta and Bleuler's method of quantizing abelian gaugertbecan be roughly described as follows.
First of all we need to perform a gauge fixing of the Lagrangigisome gauge conditiod = 0. This
gauge conditions enters the Lagrangian in the following:way

gauge fixing

£PET e 62 (4.78)

The gauge fixed theory can now be quantized canonically wittiee appearance of constraints, since
the gauge freedom is fixed. By investigating the resulting)plilbert space one obtains in general that
there are also unphysical d.o.f., so that we have to use saeins@igary condition in order to eliminate them.
As subsidiary condition we use the gauge fixing, more préctbe annihilating part, and define physical
states according to

G phys) =0, (4.79)

where the superscript denotes the positive frequency part.

The (pre) Hilbert space of physical stafgs,ys has in general a positive semidefinite norm, because
additional norm zero states solve the subsidiary condifidrat is why factoring out the norm zero states
Vo C Vphys IS required.

We arrive at the physical Gupta - Bleuler Hilbert space

Hes := Vpnys/Vo - (4.80)

To compare this method with our BRST approach we just havete that the gauge fixing defined
above is nothing else but the constraint covegipand the subsidiary condition is equivalent to the action
of the BRST operator on zero ghost and antighost stateshétunbre the BRST exact states are exactly
the norm zero states so that we have

Hprst ~ Has - (4.81)

The advantage of the BRST approach compared to Gupta - Biefdemalism in free and abelian
theories is that we get a constructive method for finding npemo states in the graviton Fock space by
applying the BRST operator on states containing one argighithis leads to exact graviton states which
are (in well behaved cases) the only norm zero stat@s;if..
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Chapter 5

Pseudo-local matter observables with
matter clocks and rods

In this chapter we will investigate a model proposed by la@iddings and Marolf]1] in the framework
of perturbative effective quantum gravity on a fixed flat bggrokuind. In the original version of this so-called
12¢ model one uses one scalar fields clock and rod variable for localizing observables of heoscalar
field ¢. For reasons explained later we will use four clock and raddie;, i = 1,2, 3,4. In this model
gravity just acts as a perturbation on the localizationulforadiative corrections. The main goal of this
chapter is to define this model and give constraints on thedilmation of the two point correlation function
of the ¢ field.

5.1 Definition of the theory and observables

It is instructive to first define the desired observables et the dynamical part of the theory, since by
choosing this order we can argue which terms of the effeetition will contribute to our problem.

As mentioned above the theory to be defined should contaifiihiscalar fields); and¢ interacting
through some three point vertex of the fob¥ ¢;1;¢, whereV*/ is some symmetrid x 4 matrix to be
defined later. Now we define the integrated interaction dpefdy, := [ d*z\/=gV";1;¢ which is
obviously diffeomorphism invariant and identify it with ag of the action. This operator, and in particular
powers of it, will be used as Dirac observables in this chrapte

Given such an operator we can in analogyi fo [1] investigatgixnr@lements of products of these oper-
ators in specially prepared states and identify them asdoskacal observables. In the following we are
only interested in the square of the operator and we wiltiesiurselves to this case.

The pseudo-local structure of a product@j-, operators can be seen in the following way. Assume
that we have prepared some stdtgs f2) and|fs, f1), wheref; is a wave packet state for the particle
such that there is no overlap among these wave packets,teocefy and fo overlapping around some
spacetime point and f3 and f, are overlapping aroung. We can understand by usirlg (2.56) that the
matrix element of the time ordered operator squared atiénedis given by

(f: fa;0ut|T{Oyz240y2 } | f1, fos in) ~ VIEVHO|To(2)$(y)|0) . (5.1)

which is local relative to the wave packets.

We assume the index of thig fields to be a quantum number of a conserved current trareshtittough
the ¢ particles such that gravity only couples to singlets. Thi®ws us to avoid tree-level diagrams in-
cluding gravitons in the scattering matifs, f4; out| f1, f2; in). In this case the the matrix elements of our
pseudo-local operatdr (5.1) can be measured directly ¢irthe scattering of the four different clock and
rod particles without further effort of extracting the infisation about our observable from the scattering
process. The scattering experiment of wave packet stafigsres some nonstandard experimental setup
which is not practically available today. We will discusssttopic in appendiXEJ2. It has to be stated
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Figure 5.1: Tree-level localization graphs. They coindidéh the S-matrix element for); 2 — 13 ¥y
scattering, if they fields carry quantum numbers of some conserved current.

again that the main purpose of this work is to perform a Geeiaekperiment and not a detailed technical
description of a realistic experimental setup.

In the following part of this section we will collect the reiged terms from the effective action in order
to study this matrix element up to ord&tx2, where) := \m,, is a dimensionful coupling defining the
overall strength of the three point scalar couplings arid dimensionless. We assume the right energy
scale for the constanitto be the particle mass.,, since this interaction is assumed to be independent of
gravity and should only be defined from the particle propsrtBut in the presence of gravity the form of
the interaction will receive correction terms, where theurel scale is the Planck scale.

Focussing the problem we have to think about to which ordenive need the action of the gravitons
and the scalars. Since the observable we want to calculaiesid on the Feynman diagrams shown in
fig.[5.1 plus the associated graviton loop contributionfgatife vertices and the real emission of one soft
graviton, we see that even at tree-level we already are at afdso that virtual scalars can be neglected
since they come with a factor of. We also see that the effective three point scalar verteixniseld by
2. The four point scalar interaction naturally comes with etda\?«?2, if we assume this operator to be
induced from the three point interactions and gravity. Heib@as to be included into the next to leading
order corrections in the following too. Furthermore them etfective scalar two point operators which are
of orderx?.

Since we calculate the matrix element of the squared operato; particle states the gravitons only
contribute as virtual particles in loop diagrams or as st emission. In the case of the virtual corrections
every emitted graviton must connect somewhere to the grggimaThis sets the limit for a scalar-scalar-
graviton and scalar-scalar-scalar-graviton vertex teokd. The same holds true for soft real graviton
emission. Double graviton emission is forbidden in our &bkbrder, since every graviton comes with at
least a factor ofc and has to connect to some other leg of the graph with anctletsrfofx. The only
exceptions are graviton tadpole loop diagrams, but thesgrains vanish in dimensional regularization,
because gravitons are massless.

Next we write down the most general diffeomorphism invariaction for the scalars respecting the
conditions posed above on the orderand respecting the quantum number conservation aptields.

Itis given by

1 =
S, = /d‘{@ V=g (5 (" 8,00, 6 — m26 + aRG?) + 7¢;¥D¢D¢
1 =
5 (9" 0uidutbs — mihiths + bRYiths) + =5 w200

PRV Hbit6 4 ¢ g DDty + & KT + oY n%mjw))
— NN REM TRy, (5.2)

whereq, b, ¢, d ande are dimensionless constants and the matrix structure éfande has to be chosen
such that the action is#@ quantum number singlet. Furthermatg and=, are dimensionless constants
parameterizing the effective scalar two point interactiohe four point scalar interaction comes with
some tensor structurkl and is parameterized by the dimensionless constantn this action we have
omitted redundant operators like elg(;1;)¢, since they can be expressed through the other ones by
using integration by parts and do not contribute to the Feymmles.
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Expanding this action using (3.6]. (3123) ahd (3.25) we etfollowing action on a flat background

S = / d'e (L9 + kL) + k2L + 0 () (5.3)
LD = 2 (0,000 — 6 + i — it + AV Iyig0) 5.
£ = TH (20,6000 — s (92696 — m36°) + 20,000, — ny (Orsd s — mi ey

+ %(h,;f‘ — h ") (ag? + b)) + %hvij'l/]ﬂ/]j(b (5.5)
£O = %DQSDQS + 52“’ Ops 0 — Aa A2 M TR by + %hﬁhk”(amayqs + 8, 0i0,1)

+ 5RO +buts) + 5 (¢ Q056 + A9 i6T; + €9 iy, 06)

+ % (fh“”((?#qb&,gb + 0,0:0,1;) + RY (ag? + bwmi)) + i(%hQ — h%hP) LY (5.6)

which can be shown to be invariant under thgauge transformations given Hy (3.12) ahd (B.20) up to
orderx2. Although the quadratic graviton terms of this action wititirectly contribute to our problem
we will keep them in order to have a manifestly gauge invadiagrangian.

Given the action[{5]2) we can identify the most general difierphism invariant three point scalar
operator as

Ouns i= [ e V=G (V iyt 0 20,0050+ 4 K260+ w2y 00) . (5.1

The expansion of this operator around a fixed flat backgrouodders? is given by

0 A (g Koy vrid AEITT I Pr
Oyz2y = /d ey (Vji/fﬂ/fjber 5’1‘/]1/%%‘05* Z( she — 5}1 W)
+ /I 0,0, 056 + dY kP00 + € KPii06) + O(K”) . (5.8)

This expression can be shown to be invariant unded @uge transformations up to orde.

The expansion of the graviton action in the required ordsr@ady been performed in section 3.5 and
is given by [3:2D).

The goal of the following part of this chapter is to find lintitms on the localization of the two point
correlator of thep fields in the presence of gravity. Therefore we will first cédde the localization process
to orders®\* in order to get some insights into the dynamics of this prec&ben the radiative corrections
up to orders2\* are calculated, which give bounds on localization.

5.2 Feynman rules

In this section the relevant Feynman rules are derived flmyLingrangian using standard methods. We
can summarize the general method in the following steps:

e every field in the interaction Lagrangian gets replaced bycthrresponding external leg
e the prefactors are multiplied hy

e every derivatived,, gets replaced by-ip,,, wherep is the incoming momentum of the corresponding
field

e permutation symmetry factors are included

Performing these steps for the Lagrangi@ns (5.3)landl(8«@@)rive at the Feynman rules given in fig.]5.2,
omitting the parts we do not require for our problem, like éxample the two graviton emission from
scalars. The graviton propagator was derived in the sedt@above and is given by (4165).
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Figure 5.2: Required Feynman rules for th& model. All momenta are flowing into the vertex. We did
not have to include the indices of the graphs, since theyraenstood.
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5.3 Tree-level localization

In this section we will calculate the pseudo-local obselwatefined above in ordex?x° through the
corresponding tree-level Feynman diagrams, segTiy. 5 drefdre we will use the LSZ reduction formula
(258) in order to relate the matrix element to the Greentfons. The matrix element will be squared,
since this is the quantity which is measured.

Using the Feynman rules we obtain for the Green function

(5.9)

M B 72)\2 V13v24 V14v23 V12v34
free T— md) U — md) S — md) ’

whereS = (k; + k2)?, T = (k1 — k3)? andU = (k1 — k4)? are the standard Mandelstam variables
dependent on the momeritaof the particles);.

According to the LSZ formuld (Z.56) we have to perform théding integral in order to get the matrix
element

(f3: f4:00t|T{Oy29 02} f1, foiin) = —id? / Hd3k (k) fo (ko) f5 (k) £ (ka)

i=1

137/24 147,23 127734
7r45(k1+k2k3k4)<v 4 VTV VoV ) (5.10)

+ + 5
T md) U — m¢ S—m¢

where f; are the spectra of the wave packgfs As a remark we do not have to take into account the
nonconnected terms of the LSZ formula, since the initial #amal state particles are distinct.
Now we want to interpret the individual contributions ffoI@). Using the relation

i _ 4 . ipx
TR = A Ot £ powo) (511)
we can find for each individual term
- - 1
/Hd% Fi(ky) fo(ka) fa (k) fr (ky)m 6 (ky + kg — ks — k) g
—m2

= 24 d*zdy fi(x) f2(2) £3 () F1 )OI T{o(2)b(y)}0) (5.12)

e 1
4 (k4)7T45(]€1 + kQ — kg — k4)T—77’ni

=57 [ dedu @ LW @ G OT{E@0w)0) (613

/Hd% F1061) fo (k2) 5 (k)

4
— - - - 1
/l:[ldgkifl(kl)fz(k2)f§(ks)fi(k4)ﬁ45(k1 + ko — k3 — k4)U —

= 24 d*zd'y fi(z) f2(y) f5 (W) i (@) 0T {(2)(y) }0) . (5.14)
where we have used translation invariance forgheo point function.

We now see that we can choose the relevant scattering cHanalebosing the overlaps among the wave
packets, since the integrals above will only contributdére is some pairwise spacetime overlap among
the wave packets. We call the localizatiSrtype if there is overlap between wave packets 1,2 and 3,4,
T-type if there is overlap between 1,3 and 2,4 and fin&litype, if 1,4 and 2,3 overlaps.
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In the following we will investigate the different types afdalization. We will restrict ourselves to tise
andT'-type localizations, sinc& andU are related by interchanging the center of mass systenesoagtt
angled with = — 6 and therefore are not independent. When we investigat& eygpe localization we will
switch off all couplings/% except forl’12 andV34, since they will not contribute.

In S-type localization we use products of the first order apprated Gaussian wave packets given in
appendi’EN such that is moving in z-direction, f5 in —z-direction, f5 in y-direction andf, in —y-
direction. The overlap of; and f> should be w.l.o.g. around, = (¢,,, %) and the overlap of; and f,
around 0. Note that due to translation invariance only tiséadice between these points is relevant. This
leads to the following result

4
(f35 fa;00t[T{Oy24Oy24 }| f1, f2;in) = *Ns)\Q/d4$d4yeXP (qz((x —x0)% + (tz — txo)2)>

<oxp (<L + ) 0T (D00 . (6.9

whereN/, is some complex prefactor coming from the normalizatiorhefwave packets. This shows that
we can increase the resolution by increasing the momentetri|q||. Since we have not included higher
order corrections we have no upper bounddoso that at this stage the resolution can be arbitrarily high
This of course does not hold true in the presence of gravétyyawill show it in the following sections.
Finally we can square the amplitude{3.15) in order to retatea cross section.

In T-type localization we can use the same Gaussian wave pabketwith different overlap proper-
ties. Since this requires the multiplication of non-ardigdlel moving wave packets, some corrections are
present in their product, sde (E10). But these slightlpdeéd Gaussian functions describing the overlap
can also be adjusted to an arbitrary small width by incregisia momenturg. Hencel'-type localization
behaves in the same way &dype localization, at least at leading order.

5.4 One loop corrections and counterterms

In this section we will discuss the one loop corrections: ito the matrix element. They are part of the
next to leading order (NLO) corrections to the process. Reirtevaluation we have used thlathematica
packageseynArts FormCalcandLoopTools see e.g[]3] and references therein. These tools can be used
for diagram generation, analytical simplifications and eucal evaluation of loop integrals. Butin order to
apply FeynArts and FormCalc we had to modify the packaget®tade spin 2 particles. This modification
is described in appendiX F.

The regularization of the UV divergent integrals is autanely performed by dimensional regulariza-
tion in LoopTools, where we use the conventiba 4 — e. As renormalization scheme we choose i
scheme in which the counterterms are calculated by modifiaéhmal subtraction, i.e. the counterterms
are given by% + log 47 — g times some diagram dependent prefactors and tensor sepetoereyz is
the Euler gamma. The divergences for the individual diagraaturring in our problem are given later.

Since gravitons are massless, we have to take care of therioeclR divergences. This is done by in-
troducing a small graviton mass as IR cutoff which is latenoged by taking into account Bremsstrahlung
corrections. This IR regularization is performed autocally for the loop amplitudes by FormCalc and
LoopTools, but the soft real emission diagrams had to belaeigad by hand. This will be explained in
more detail in the next section.

Now we will discuss the loop contributions to our process give the required counterterms. There-
fore we will divide the loop diagrams according to FeynAritithe diagram typelsoxes self energies
triangles tadpolesandwavefunction correctionsWe will only investigateS-type graphs, since they are
isomorphic to thé'-type graphs by crossing.

In our model all order? tadpole graphs vanish, since there are no scalar tadpotethargraviton
induced tadpoles are renormalized to 0 by a renormalizeniclogjical constant, see appendix C.

The wavefunction renormalization graphs are given by the diagram with renormalized external legs.
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They will enter the amplitude through the following relaticoming from LSZ formula

1\ 4
(Zi) Miree = (1 4 20Zy) Miree + O(KB) =: Mireo + Mwr + O(KB) 7 (5.16)

whereZ, = 1+ dZ, is the renormalized wavefunction renormalization, i.e. siduum of the one loop
1 propagator inMS scheme. The calculation &f,, can be performed automatically in FormCalc, but we
will also give the required off-shell one loop divergence, the counterterm, for the scalar propagator
explicitly

= i“—Q Dt 2 (1+ 3y §b2) +mi (14 3b+ §b2) + finite (5.17)
T 8m2e \ 2 v 27 2 v 2 ' '

In the category of self energy corrections there is only dagrdm given by

- (5.18)

The counterterm for the divergent subdiagram is giverL by#Apwith m.;, replaced bymn, andb replaced
by a. Hence this diagram is renormalized by the propagator esterm.
The triangle diagrams are given by all possible permutatadrihe following basic diagram types

1 301 31 31 3
o+ | S>-( + ?__< + >L\r\y— (5.19)
2 42 42 42 4

These diagrams have subdivergences which have to be relimadiy the three point scalar interaction
counterterm. The off-shell divergence of the sum of allactiree point diagrams is given by

ko
ky —-- = —iAVY v m2(1+§a+§ab+3b+§b2)+m—i(1+§a+3ab+3b)
! - Am2e \ PV T 20 T2 2 2 2
1PI
k k3 3 k3 + k3 3a+3b  3b?
° le(lfBab+3b+§b2)f 2: 31 “;r 7))+ﬁnite. (5.20)

We obtain that the divergences have the same coupling mitfiike in the original definition of the
theory. This is because gravitons do not change the quantumbers, so that graviton loop corrections are
the same for all combinations of, of course weighted by */.

The last type of contributions are the boxes given by all ipbspermutations of the following diagrams

M+ (5.21)
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The divergence of the sum of all box diagrams is given by
1 3

)\2 2
= iV12V3487r—Z€(1 +6b+6b%) + finite, (5.22)
1PI

2 4

where we have restricted ourselvesStdype localization as mentioned above, i.e. olly? andV3* are
nonzero. We see that the prefactor of the divergence is iargénonzero, so that we will have an induced
effective four point interaction.

This completes the list of all occurring one loop divergestoe S-type localization and by crossing also
for T-type localization. The next step was to square the rendzathinatrix elements, i.e. multiplying the
loop matrix element with the tree level matrix element. 8im@ integrate the matrix elements themselves
over the external wave packets, the following formula hoide

[ 150081020y o, fosinl| = [ dkdpi () (0) MM ()

= [ AIF 0 () (M (M) + Musee ) M 5) + Mo (M)
+ higher orders, (5.23)
wherek andp label collectively all four 4-momenta of thie— 2 process, andr is defined as follows:
F(k) =" fi(k) fo(ko) f3 (k) f5 (k)8 (k1 + ko — kg — ka) . (5.24)
Next we can express the NLO corrections to the wave packeepsin terms of the corrections to the

momentum eigenstate scattering process give Mtree(k)/\/li*oop(k)). For this we have to use the

phase information abou (k) and M,ec (k).

As we have seen in sectibn b.3 above, the tree-level magixent has a trivial phase which is inde-
pendent of the momenta. The collective wave padkgt) has a nontrivialk dependent phase due to the
phases of the wave packet spectra. For Gaussian wave paekétave found in appendixE.1 that the
phase of the spectrum is given by*, wherez, is the spacetime position of the narrowest spatial wave
packet. This specific phase is quite natural for more getaralized states.

To see this we use the spectral representation of the wakepge) = [ d3k e~ f(k). Since the
localized wave packet contains some preferred positiparound which it is localized with the smallest
width, this position must be encoded in the spectrum. Asssonee translatiom — 2+ §. This translation
transforms the wave packet localized arougdo the same wave packet localized aroudt+ 6. Since
the translation acts as a multiplication in momentum spazdave the following relation

frors(k) = ™ fr, (k) . (5.25)

Therefore the only information about the pointis contained in the phase factgF®o.

There can be additional phases depending only on the morheBia these phases are quite unnatural
if we use the following natural construction for localizedtss:
We take a real spectrum for assigning the relevant momehia.ré@al spectrum gets multiplied by the min-
imal phase, which contains the information about the pretespacetime pointy, i.e. the real spectrum
gets multiplied bye?*@o,

With this natural restriction on the spectra we can showtti@torrections to our process can in general
be calculated from the momentum eigenstate process dorect

In our specific case we have the preferred positighand0, such that the phase factor is given by
F(k) = |F(k)|e'F1tk2)zo - Furthermore we use the following identity for the time-ered two point
function

01T{¢(x)$(0)}[0) = (0IT{¢(0)¢(x)}0) = (OIT{¢(=2)$(0)}0) , (5.26)
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where we have used translation invariance. Applying theserélations we can averade (5.23) using
and [5.2B) using-x¢ (they are the same) and obtain

5 .
<f37f4;0ut|T{Ow2¢>O¢2¢}|f17fz;in>’ = / dkdpF (k) F* (p) Miree (k) Moo (P)
R(k) | R(p)

x(1+—+

5 5 ) + higher orders. (5.27)

In this expression we have identified the relative correéxtio the momentum eigenstate scattering process
defined by

_ Mtree(k)Mikoop(k) + Mloop(k)M:ree(k)

R(k) : 5.28
( ) |Mtree(k)|2 ( )

The condition for the perturbative theory to be valid is
IR(k)| < 1 (5.29)

for all £ which contribute to the wave packet process, i.e. forkdibr which the wave packet does not
vanish (or at least is very small).

Because of this insight we can study the phenomenology dfithgler case of a momentum eigenstate
scattering process in the following sections and thereddtive the phenomenology of the localization
process.

5.5 Bremsstrahlung corrections

In this section we give a short introduction into how one campute Bremsstrahlung corrections in general
and in our specific case. We will restrict ourselves to the iaiiim eigenstate scattering process, since we
only require the Bremsstrahlung corrections in order taegrthe loop corrections IR finite and therefore
well defined.

The physical idea behind considering the emission of anhefi-Bremsstrahlung particle is as follows.
Since the Bremsstrahlung particles under consideratienreassless, they can in principle be generated
without being detected in the detector if they carry veyeienergy. So we can not distinguish between a
n to m process and the corresponding process with an additioftaBsamsstrahlung particle in the final
state, if it is soft enough. Thus we have to calculate thesitimm probability for an to m process by using
the formula

o0
Mot = [Mpom[* + / d®;| Moy il (5.30)
i=Lgof
where the sum goes over the emission ofassless particles adg denotes the phase space of them. The
integration range denoted by “soft” will be specified later.

In a perturbative framework it is sufficient to includeparticle emission if we restrict ourselvesto
loop diagrams, since they are of the same order in the patiorbseries.

Including the Bremsstrahlung corrections is very impastamce they will cancel the IR divergences
coming from the massless particles in loop diagrams[[20, Zd]check the cancellation the divergences
are in general regularized by introducing small massgdor the massless particles. The regult.|?
must be verified to be cutoff independent and therefore vedihed in the limit of vanishing cutoff in order
to be physically sensible.

The last task of this section is to define the integration ediogthe Bremsstrahlung corrections. Since
we are interested in soft emission we approximately neglectecoil of the emitted quanta and do not
include the soft particle in the energy-momentum consemdor the remaining particles. This will sim-
plify the phase space integration in a dramatic way. Moreaxeehave to put a cutoff to the energy of the
emitted quanta in order to stay “soft”. The choice of thisofuénergy is specific to the detector in use,
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but we assume it to b¢/S/10, which is a typical value suitable for purely theoreticaléstigations, like
in this work. The precise knowledge of this cutoff energyas mecessary at all, since the result will only
depend logarithmically on it so thé(1) prefactors do not matter.

The natural volume element for one particle emission tagyettith the integration range is given by

/d(I):: / a3k (5.31)

soft |k|<\/§/10

wherek is the four momentum of the emitted quanta and is on-shetlpofse.

Our phase space integration is performed by using the Moaitl® @tegration packagéUBA[22]. To
arrive at more stable results it is convenient to use sphlecmordinates together with some importance
sampling for the radial integratiafk. The integration before the importance sampling is given by

V§/10 )
k 2
0 Q

wherek = ||k|| and{2 is the solid angle. Since thHedependence of the squared amplitude can be roughly
estimated as

1 — dk
[IMop—ms1]? ~ = fork>m, < /cl3l<:|/\/ln_,m+1|2 ~ / - fork > m, (5.33)
it is natural to perform importance sampling by a coordinegasformatiork — = = log(k/M,), where
we usel;, as a natural dimension. The integration element in the neiablas is given by

log(V/5/(10M;1))
63:6

—00 Q

At first sight this reparametrization does not help since &ive a noncompact integration range for
x. But it can be shown that far — —oc the integrand vanishes asp 2z since the estimatiofi {5.83) only
holds true fork > 0 and for smallk we have an approximately constant squared amplitude. Heacan
insert a lower bound to the integral range without affectmgresults too much. We have found a suitable
bound to be log(mg, /M), wherem, is the mass of the emitted particle, i.e. the IR regulatois Bbund
is motivated by the fact that the squared amplitude has & toaaimum atz ~ log(m,/M;1) because of
collinear effects and decreases sulfficiently fast for senalto a constant value. Thedependence of the
integrand in the smalt region is determined byxp 2. Figure[5.8 shows this rapid falloff in the example
of our problem for some set of parameters. This falloff propes universal, i.e. it does not dependent on
the parameters we use.

To calculate the one particle emission we have to sum ovepitrizations. The polarization sum can
for example be performed by using the formulal[19]

2

i L o o
Z GEZL)/ ((12} = i(nuanuﬁ + Nupfva — nuynaﬁ) s (535)
i=1

wheref,, == 1, — (k. k. + k,k,)/kk andk is the space reflected graviton four momentum.
Evaluating this expression leads to

2
S el = manua + upTlva — TuTlap) + tETMS prop. tok (5.36)
=1

so that we can neglect the additional terms proportional iowe can show that the QED-like on-shell
Ward identityk* M ,,, = 0 holds true for our amplitudg,,,,.

43



0.8 —

0.6~ —

integrand

0.4+ -

0.2 |

0 | \ |
1. -1 0.
x /| log (”L/Mplﬂ

Figure 5.3: The Bremsstrahlung integrand expressed inghevariabler = log(k/M,,) for some set of
parameters. The plateau has been normalizéd The vanishing for: < log(my /M) < 0 is universal,
but the larger: part, where the integral is evaluated, of course dependseoparameters we use.

Another way of performing the polarization sum is to mulfiphe matrix elements directly with the
two physical polarization tensors froin (41 71) after suiatotations and summing them up. This second
method has three advantages. First, it can be applied etle@ED-like Ward identity;, M*” = 0 does
not hold true. As we will see in secti@nb.7 this can in priteipe the case in perturbative gravity, because
of some additional terms in the Ward identity. Second, tmeatimethod leads to a faster numerical in-
tegration of the Bremsstrahlung phase space due to a monegambexpression of the squared amplitude.
And third, since we work in soft approximation, the amplitid not in a physical configuration, i.e. the
QED-like Ward identity will not exactly hold and there aredétbnal small contributions from the unphys-
ical d.o.f. in the polarization suni (5.86). But we have sewt for our processes both methods lead to
approximately the same results, in particular both metheas to the cancellation of the IR divergences.
In the following we will restrict ourselves to the numeritaster one, i.e. using only physical polarizations,
and do not usd (5.86) anymore.

5.6 Effective vertices

The general matter action (5.3) contains several effetieeactions of ordex? which have to be included
in the framework of effective quantum field theory.

A second approach to effective theories is writing down tlestsimple action we require for our prob-
lem and calculating the required process to the desired ordie perturbation series. This action should
of course be compatible with the symmetries of our systerthefivergences of the fundamental interac-
tion operators can not be renormalized by countertermsgdkie same structure as the interactions itself,
we include additional operators having this structure éolthgrangian. These operators are called induced
interactions and carry some prefactor including inversegrs of the new physics scale, i&l, in our
case, and a dimensionless constant which has to be fixed leyiegnt. In order to avoid inconsistencies
one assumes that all dimensionless constants are of ord@ramaller[23].

In our example one would start with a minimal theory with atefaction term\V %/ +;1);¢. The graviton
loop corrections in ordet? to this operator can not be renormalized by using a coumienéth the same
structure. As we have seen in secfiod 5.4, the one loop dwmnsavill induce the operators® V' (1, ¢
andx2V¥q;p;0¢. These operators are of course part of the general a€fi@) (ut they are motivated
additionally by being induced dynamically.

Next we give the relative NLO corrections to thetype process due to the effective three point operators.
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Therefore we assume that the matrix structure of the constatrices is the same 387, i.e.c = ¢ V¥,
d7 = d V7 ande” = e V¥, since this is motivated by the one loop counterterms. Thagive NLO
corrections are given by

M 3p0thM:ree + M j;;point‘/\/l”ee
|Mtree |2

= —2k% (S(c+ 2e) + 2m2(d —c)) . (5.37)

We see that there are two types of contributions, the ongsoptional tOm?/) which are irrelevant for the
high energy limit, and the ones proportional§ovhich are relevant. Taking only the induced operators
into account also leads to relevant and irrelevant cortiobs. Furthermore we see that we can adjust the
sign and magnitude of the relevant NLO contributions of tiective vertices by the parameter- 2e.

The relative contribution of the effective four point ireetion to the squared amplitude is given by

Mipoint Moo + Mijpoim Miree
|~/\/lt1ree|2

= 2\4r%(S — mi) . (5.38)

We see that it also has relevant contributions to the highggrienit through the lineatS dependence.

Finally we discuss the contributions due to effective scale point operators. These operators can
either appear in the wavefunction renormalization or asextion to the internap propagator. The con-
tributions to the wavefunction renormalization will beglevant in the high energy limit, so that we can
neglect them. The contributions to the interpglropagator will contain relevant terms, so that we have to
include them. They are given by

MonintM:ree + M
|Mtree|2

Mtree 52

*

2point o - 2

= 25K o 5
S—m

(5.39)

which is proportional t&5' in the high energy limitS > mi.
When we sum up all NLO contributions from the scalar effextiertices we arrive at a total contribution
which we can be parameterized as

MtotaleffM;kree + Mj:otaleHMtree
|Mtree|2

~ Ak*S + Br*m + Ck*m3,  for S>> mj, (5.40)

whereA, B andC are dimensionless constants which can be expressed thiteeifiindamental parameters
of the effective interactions. Note that this formula onppées to the high energy limit, since we had to

. . S2 ~ 2 2 . .
use the approxmaﬂog_—% ~ S +my, for S > mg, in order to expand the contributions from the two

point operators. We will negle@ andC), since they do not contribute in the high energy limit, andwile
only discuss the dependence of the results on the effediraeterd in the following without resolving
the individual contributiong (5.37), (5.838) ard (3.39) amoye.

The phenomenology of the effective scalar-scalar-gravétuplings parameterized hyandb is harder
to investigate, since this interaction occurs in loop daags. We will discuss it later numerically.

5.7 On-shell Ward identity

Since the Bremsstrahlung diagrams come with an externaitgna we are in the position to check the
validity of the on-shell Ward identity. The Ward identitypesses gauge invariance on amplitude level
and therefore is a good check to find possible calculatiorratr® The problem with the gravitational
Ward identity is that at a first sight only

0

1

0
ox”

(0| (2)®1®s . . . B,[0) (5.41)

holds true, because the BRST transformation of the anttgh@sven bydgrstC,, = h, —
®; denotes some other fields and the amplitudes are assumeadmedbell and amputated.

1
5h,,. Here
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Figure 5.4: Numerically determined values of the Ward idgntThe peak ab has a height of around
40000.

But we have found out that for our processes both sides vamipendently, i.e. the QED-like Ward
identity
0

(Ol hy (2)B1 B ... B, |0) = 0 (5.42)
Oz,

holds true. Since we can not prove this statement, we haveeikd5.42) in every process under consid-
eration in order to have the possibility to apply simplifieagrization sums.

We have automatized the calculations which are requiredtfecking the existence of Ward identities
by using FeynArts, FormCalc and some additional small @ogrand Mathematica notebooks we have
written by ourselves. This routine generates all graphltwgpes and field insertions by using FeynArts.
The amplitude is calculated by using FormCalc and the gvayiblarization tensors occurring in the ana-
lytical expressions of the amplitudes are replaced by tlmeesponding graviton momenta. The next part
is to generate physical configurations, i.e. generatingyaiphl combination of the external particles mo-
menta. Since we have2a— 3 process, we have generated the configurations by a numpraadure
using theMAMBO algorithm [24], since it is easier than an analytical stutl{he three (massive) particle
final state phase space.

The numerical procedure works as follows:

e generate a random set of physical momenta for the externiidlpa

e calculate the value df* M, for the desired amplitudg1,,,

e calculate the value of the amplitude ., ¢*”, wheree are physical polarization tensors
o verify that|k* M, / M 5e®?| = 0 Vv

It has to be mentioned here that the Ward identity was cheftketiassless gravitons, since for massive
ones it does not hold. Since the only artifact of the masslatguin the Ward identity is the on-shell
conditionk? = m?, we have a smooth limit fom, — 0 and it is justified to restrict ourselves to the
massless graviton case.

The histograri5]4 shows the distribution of the ratigsM .., / M, ze?| for 10000 physical combina-
tions of momenta and all. For this calculation we have used tBetype localization graphs. The results
for T-type graphs are similar. It can be seen that within the nigaleprecision the Ward identity holds
true. The maximal deviation frofiwas onlyl out of 40000 events with a ratio of about4.5 - 107,
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Figure 5.5: IR cutoff (in)dependence of the result. Theneiee value for the particle massesiig, =
my = 10715 M, i.e. in the TeV range. The cutoff independence is not depeindn the choice of
parameters and kinematic quantities.

5.8 Results and interpretation

5.8.1 IR cutoff independence of the results

Since we had to introduce a small graviton massas an IR regulator, we have to study the (in)dependence
of the results under variations of this mass in order to perfthe limit of vanishingm,. Figure[5.5
shows then, (in)dependence of the relative NLO corrections with andhaiitt adding the Bremsstrahlung
contributions. We see that the corrections without Brerabsiing show a logarithmic dependencerop,
while the inclusive NLO correction are rather independeetr@ wide range of the regulator. This result is
universal, i.e. it is not dependent on the parameters wesgh@nich as masses, couplings and kinematical
guantities.

In the following we will setm, = 10~2° M}, which is also far below the assumed particle mass and
study the individual parts of the relative NLO contributsdior this particular value of the cutoff.

5.8.2 Relative NLO contributions for S-type localization

In this section we will discuss the parameter dependendeeoNLO corrections folS-type localization.
In particular we are interested in the dependence on thercehmass energy’s, the scattering angle
and the particle masses. For these basic investigationsilveeivthe effective coupling constanisand
b to zero and assume natural values ¥ari.e. V12 = V21 = 1, V34 = V4 = 1 andV¥ = 0 else.
The effective interactions will be included through theekelnt effective coupling constadt, for which
we choose the natural valuke = 1. Variations of this parameter, in particular changing tiga swill be
discussed later.

Furthermore we will use the graviton maag = 10~2° M,, and our particular gauge fixing for compar-
ing the individual NLO contributions. Of course only thegflLO contributions including Bremsstrahlung
are IR cutoff independent and gauge invariant, and thezgfbysical, but it is also useful to understand
which individual diagrams have large contributions and find if there are any cancellations between
different contributions.

The relative NLO contributions will not depend on the coaglh since both, the NLO and the squared
tree amplitude, are of order, such that this dependency cancels in the ratio.

Figure[5.6 shows the angular dependence of the NLO correctiba center of mass energls =
0.01 My, using particle masses,, = mg = 107'° My, i.e. TeV particles. One sees that there is
very little angular dependence and the largest NLO cowastare ford = 7 /2 scattering. This very
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Figure 5.6: Angular dependence of the relative NLO corostiforS-type localization. The center of mass
energy was chosen a&S = 0.01 M,,;. We have chosen the particle masses = m, = 10716 M.

little angular dependence is natural for models with thre@tpscalar couplings irv-channel scattering,
since the scalar vertices are independent from the angles.oilly contributions showing some angular
dependencies are the boxes and the Bremsstrahlung. Thireaamderstood since the boxes are the only
diagrams connecting in and out lines with some angular dégrgrvertex, the graviton emission, and thus
depend on the scattering angle. The Bremsstrahlung ardgpa@ndence is due to the interference between
initial and final state Bremsstrahlung diagrams.

Furthermore one obtains that the main contributions areirogrinom triangles, boxes and effective
vertices. The self energies, Bremsstrahlung and espeeialefunction corrections are only marginal
contributions, at least for this particular choice of thediRoff. But it has to be mentioned that the self
energy diagrams are IR independent and therefore havemialy sontributions compared to the total NLO
for every IR regulator.

Moreover we see that the boxes and effective vertices cortie avdifferent sign than the triangles
and therefore lower the absolute value of the NLO contridmgi But the contribution from the effective
vertices can have also a negative sign by assigning thetig@onstantd a negative value.

Figure[5.Y shows the energy dependenceffes /2 scattering and particle masses, = my =
10716 M. We obtain again that triangles, boxes and effective vestgive the main contributions. Fur-
thermore one sees that the NLO corrections exd@étlat energies of about/,,; /100 and grow to nearly
50% at/S = M,1/50. This shows that we can not use the effective theory for highergies than around
M,1/100, since the result will then also depend on the higher loopeotions and the higher order op-
erators. This specific scale will also set a limit on locdla, as we will discuss below. Note that the
particular choice of the critical value of the relative NLOad very subjective task. We chook&% as a
sensible value throughout this work. Different choicee likg.50% will only give order one prefactors
which do matter in our discussion.

Next we will investigate the particle mass dependence ofNh® corrections. Therefore we will not
resolve the NLO corrections into their individual terms arore, but we will only consider the total NLO.
We will vary they particle mass from0~1¢ M, to 10~® M, and thep particle mass from to 1078 M.
The reason why we can not choosg = 0 is the emergence of collinear divergences in this limit.

Figure[5.8 shows the mass dependence of the inclusive NL@atmms. As expected they decrease
by increasing the particle masses. The pictorial reasothfsiis that loops are suppressed if they contain
heavy particles, because of the denominatgi? — m?) of the massive propagators. This means that
we can enhance the validity of our theory by using heavietiggas. Furthermore the dependence on the
internal field massn,, is stronger than on the clock and rod field mass. As a note, we noticed that the
relevance of the Bremsstrahlung contributions increagésdoeasing the particle masses.
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scattering angle was chosen@s= Z. We have chosen the particle masses = my = 107¢ M.
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Figure 5.8: Center of mass energy dependence of the reliti@ecorrections forS-type localization with
different particle masses. The scattering angle was chasen= 7.
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Figure 5.9: Angular dependence of the relative NLO corogxtifor S-type localization with different

effective couplings: andb. The center of mass energy was chosey/as= 0.01 M. We have chosen
the particle masses,, = my = 10716 M.

Since the angular dependence with different particle nsalsebaves as expected, i.e. it decreases like
shown in figuré 518 without changing its form, we do not havsttow the graphs.

Next we investigate the dependence of the results on thetiefecoupling parameteks andb which
give additional terms to the graviton-scalar-scalar verkégure[5.9 shows the angular dependence of the
total NLO corrections for different andb. One obtains that in particular for small or large angletscaiy
the effective interactions have large effectd idoes not vanish. These large effects come from the box
diagrams, where the new kinematical structure of the gvavitcalar-scalar vertex leads to an enhanced
foreward and backward scattering. Furthermore we see lieagsdale where the effective theory breaks
down will depend strongly on the choice afand especiallyp. Moreover if we assume the effective
interaction to be of the natural order of the standard itéva, i.e.a = b = 1/2, we have20% NLO
corrections at/.S = 0.004 M, for § = /2 scattering ofm,, = my = 10~'6 M, particles. This
becomes even worse for smaller and larger angles. We wihéudiscuss this feature in the following
sections.

Finally we discuss the dependence of the results on thetwfescalar vertices. We have chosen the
effective parameter describing the total effective vedentributions asA = 1 and we have obtained that
this particular choice helps to lower the NLO contributi@nbttle bit, see figL5J7. By interchanging the
sign of A we would have slightly larger NLO corrections. But if theeaffive constanti has a magnitude
smaller than arountl its contributions are only marginal compared to the boxesteangles, at least for
TeV particles. Heavier particles will be more affected bg #ffective vertex contributions, since these
contributions do not decrease by increasing the massesglik the loops. But in most scenarios the
breakdown of the effective theory is not strongly affectgdh®e effective scalar vertices.

5.8.3 Relative NLO contributions for 7-type localization

In this section we perform the same analysis as above for lleagmenology off-type localization.
For this purpose we will choosg!3 = V3! = V24 = V42 = 1 andV¥ = 0 else. Again we will
choosem, = 1072° M,, for the IR cutoff andA = 1 for the effective scalar vertices. We will start our
investigations wittu = b = 0 for the general discussion and will study thendb dependence separately
later.

Figure[5.10 shows the angular dependence of the relative &drfections. The relevance of the indi-
vidual contributions is the same as $iitype localization, i.e. the triangles, boxes and effectrertices
give the main contributions and self energies, wavefunatimrrections and Bremsstrahlung are marginal.
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Figure 5.11: Center of mass energy dependence of the eldti® corrections fofl-type localization.
The scattering angle was chosertas- 7. We have chosen the particle masses = mg = 10716 My,).

One sees that the NLO corrections increase by increasingcitéering angle. This is natural since the
squared tree amplitude decreases roughly/d% such that for large angles it becomes small. Therefore
also small absolute corrections at large angles will beslagtptive corrections.

Figure[5.11 shows the energy dependendgefr /2 scattering forn,, = m, = 10716 M, particles.
The10% NLO corrections are reached ¢S = 0.015 My, which is similar toS-type localization.

The mass dependence of the NLO corrections is the same as @ase of5-type localization, i.e. in-
creasing the masses leads to decreasing NLO contributitms dependence of the internal massg is
stronger than the dependence on the clock and rod field massNVe omit a figure showing this depen-
dence since the behavior is very similaridaype localization.

The dependence of the results on the effective scalar gsrtian again be described by an effective
parameter, like in the case Sftype localization. Variations of this parameter in thegaf+-1, 1] do only
lead to small changes in the total NLO contributions. Hemeevialue ofA does not affect strongly the
breakdown of the effective theory. This is exactly like ie ttase of5-type localization.
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Figure 5.12: Angular dependence of the relative NLO coioestfor 7-type localization with different
effective couplings: andb. The center of mass energy was chosey/as= 0.01 M. We have chosen
the particle masses., = m, = 10716 M.

Finally we investigate the dependence on the effectiveigmacouplings: andb. Again the box diagram
contributions will lead to large effects by a change in egdcb. This is shown in figurE5.12. The large
effects on variations dfis predominantly for large angle scattering and confirmssagpicion that through
the modified coupling structure there is a strongly enharsoedtering in tree-level suppressed regions
in phase space through the box diagrams. The same effeatsagiso forS-type scattering, where we
have enhancements in both, the small and large angle regjamase space due to the forward-backward
symmetry.

To conclude we have found out that there are no striking idiffees in using eithe$- or 7'-type lo-
calization. Both models suffer from a strong dependencéereffective graviton-scalar-scalar coupling
parameterized by.

5.8.4 Physical implications to the problem of dynamical loalization

As we have seen in sectibn b.4, the corrections to the Iatadiz process are related to the corrections of
the momentum eigenstate scattering process,[sed (5.2®Misleection we will use the results obtained
above about the NLO corrections to the momentum eigenstatéesing processes in order to estimate a
maximal spacetime resolutions by this kind of model. Fos #stimation we will use the Gaussian wave
packets discussed in appendixIE. 1.

Focussing o (5.27) and (5]29) we see that for the NLO cdorsto the localization process we have
to integrate the corrections to the momentum eigenstateepsoover the momentum range defined by
the momentum space wave packets. Therefore we have to dsatithe effective theory is well defined
over this range. Assume that all four wave packets have aat&itmomentum of magnitudg Then, as
explained in appendixH.1, we can use the maximal width ¢/2 for each of the wave packets. Since
the spectra drop off quickly outside the range defined by tidéhywthe main contributions come from the
inside. We can estimate the highest energy which contidttat¢he intergal by, ~ | /(%q)Q + mi
This maximal energy is the same for all four particles, sweeassume all central momenta to be of the
same magnitude. With the maximal particle energy we camesti the maximal center of mass energy as
VSmax = 2Fmax ~ 3¢ for the high energy limit, wherew,, < q.

Next we have to find out which angular range contributes toptfoeess of localization. The central
momenta are chosen such that they correspond/®scattering. Using again the width of the wave
packets we identify the relevant angular range todbe [r/2 — 2arctan(1/2),7/2 + 2arctan(1/2)].
Using thecos 6 variable this becomeass 6 € [—0.8,0.8].
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If we now assume that the effective theory breaks down attatityg NLO corrections, we see that in
S-type localization with TeV mass particles and zero effectiouplings andb the maximal center of mass
energy is given by/S,,.c = 0.01 M, for the whole angular range, see fig.15.6 5.7. Hence we can
estimate an maximal resolution ¢©/¢ = 3v/2/v/Siax = 300v/2/M,, by using the resolution properties
of overlapping Gaussian functions discussed in appéndix E.

This resolution can be enhanced by increasing the particleses, see fif. 5.8, but it could also be
decreased if there are effective couplimgand especially, see fig[5.0.

This result is rather independent on the scattering chameelse for the localization process. Figure
shows that despite of the fact that the NLO correction§'ftype localization are a little bit smaller
than for S-type localization atr/2-scattering (see also fig.5]11), the growing NLO corredtifor large
angles will lead to a maximal center of mass energy of akG8if,,. = 0.01 M, too, since the theory
has to be defined for the whole angular rangef € [—0.8,0.8]. By increasing the mass we can increase
the resolution like inS-type localization. Switching on and especially will degrade the validity and the
resolution of the theory, see flg. 5]12.

Alltogether we see that the results 8 and7'-type localization are very similar, and in particular that
the maximal resolution of both processes can be spoilectipitbsence of effective graviton interactians
andb.
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Chapter 6

Pseudo-local Yang-Mills observables
with matter clocks and rods

In this chapter we will discuss an explicit realization oéttype of model discussed in the last chapter
through a SU(N) Yang-Mills theory coupled to scalar fieldsvs®y as clocks and rods. The advantage
of this theory is that it is a non-super-renormalizible reatnodel which has stronger connections to
nature than the pure scalar model investigated in the lagiteh Furthermore the additional SU(N) gauge
invariance will constrain the structure of effective irgetions.

6.1 Definition of the theory and observables

In our new model we use two distinct complex scalar fields,and )y, which live in the fundamental
representation of the SU(N) gauge group, i.e. they transas

YL — Y, hy — €My, (6.1)

wherea = o*T* are the generators of the SU(N) gauge transformations ifutidamental representation
anda® are the corresponding scalar parameters fields.
The gauge algebra is given by

[T, T = ifebeTe | tr(T‘lTb):%&‘b, (6.2)

where 2 are the SU(N) structure constants. Note that all gaugeeasdidll appear as upper indices.
The action of the gauge covariant derivatives on the scaalsfined by

D;ﬂ/}i = #’l/)i — Z.gsA#’l/)i y fori = 1, 2 y (63)

whereg; is the Yang-Mills coupling andi,, = A{7T“ is the gauge connection one-form transforming
under gauge transformations as

Ay — (A, + gisau)e*m . (6.4)
The SU(N) gauge transformation property of the covarianivegve is given by
Dy — emD#z/)i . (6.5)
The gauge curvature, or field strength, corresponding tgaluge connection is defined as

Fl = 0,4, — 0,A, —igiA,, A (6.6)
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and it transforms under the SU(N) gauge transformations as
F, — e“F,e . (6.7)

With these ingredients we can construct the familiar SU(Bhg-Mills action for scalar matter fields
coupled to the gauge field, which is given in the presence of an arbitrary smooth metes

2
1
Sym = /d4$\/ —g(—ig““g”ﬁtrFWFaﬁ + ZQW(DM/%)TDV%

i=1

2 2
= mPlei + ) aRplp — MM YLyl - (6.8)

i=1 i=1

This action is also invariant under diffeomorphisms. Ndtattthe derivatives in the field strengfh {6.6)
are ordinary partial derivatives, becauses constructed as the exterior derivative of the one-farmand
hence is independent of the metric connection. Furthertih@&eovariant derivatives on the scalar fields
include only gauge connections and no metric connectiohis Means that in the action (6.8) the metric,
i.e. gravity, just enters througli—g andg”” and not through Christoffel connections.

The action above is incomplete since the one-form gaugeifieldonstrained dynamical system which
has to be gauge fixed. We can think about different realimatid gauge fixing, e.g. we can use the minimal
diffeomorphism invariant extension of the Feynman gaugedirction given by

SVM_gF = —tr /d4x\/—gg“”DuAl,go‘ﬁDaA5 , (6.9)

where now the metric covariant derivatives enter and thteetimover the gauge group. Another possibility
is to choose the non-covariantized version of this gaugedigiven by

SyM—_GF = —tr / dent 9, An*Po, Ag (6.10)

where only the flat background enters. If we include the gpoading ghost action too, the choice of
the gauge fixing is irrelevant in physical observables likess sections, since both combinations, the
covariantized gauge fixing together with the covariantighdsts or the non-covariantized combination,
will only be an additional Yang-Mills BRST exact term in thetian and therefore does not effect physical
quantities. We will choose the non-covariantized versibthe gauge fixing in the following, since with
this choice the off-shell Ward identity of the gluon propegawill hold true after including the graviton
corrections at one loop level. The covariantized versiothefgauge fixing will have a different off-shell
behavior, because of the additional nonlinear terms. Weadmeed to compute the explicit form of the
ghost action since it does not contribute to our processdamlésired order.

In this model there are also effective operators which doutie to our process. They will be discussed
later in the corresponding section on effective verticdevae

Now we can expand the metric around the flat Minkowski spereetind describe only gravitons dynam-
ically. Inserting the metric expansion into the actibnj&8d [6.10) will lead to interaction terms among
scalars, vectors and gravitons. We will not give the expdras¢ion here for reasons of compactness. We
will only give the collection of the required Feynman rulesthe next section. The graviton action has
been derived in sectidn 3.5 above and is giver{ by {3.29).

We now proceed with the definition of a possible pseudo-lobakrvable in this model. Assume the
following operator

2 .
Oym =igs » / d*a/=g(] A0 p; — 8MpT A (6.11)
=1

which is obviously diffeomorphism invariant but not Yangt¥lgauge invariant. Now assume two scalar
two-particle stategf°d, fP1ue) and|f5ed, fP1ue), whereffol°r is a wave packet state of the particle species
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Figure 6.1: Tree-level localization graph f6type localization in Yang-Mills theory. It coindices withe
S-matrix element forpiedypblue — giredqblue scattering, if\, = 0.

1 with generalized color, i.e. SU(N) quantum number, amgnotes the antiparticle. The wave packets
should have similar overlapping properties as in the chisgdteve forS-type localization, i.e. the two
in-state wave packets should overlap around some spacptimer, and the two out-state wave packets
w.l.o.g. around). Note that the states are not SU(N) gauge invariant either.

If we now take the in-out matrix element of the time orderedase of this operator between the two
states at tree-level, see fig.16.1, we obtain

(f5e, f31 out| T{OymOym H f1°%, f11 in) =

2 = R = *
%o [ dtnaty (7 00 F @) (7 0 £5) (0) 30 (OIT 4G, (042 ()0) . (642)
acA

This is the correlation function of the gauge fields summeer @i gauge fields which contribute to the
particular transition denoted byt C {1,2,..., N2 — 1}. The Lorentz indices of the correlation function
are projected on the left-right derivatives on the wave p&k~or first order Gaussian wave packets these
projectors are given by

(fi 0" f3) (@) = (=ild) — ¢}') = 0*(§"E; — §0"&)) fil@) £ (=) , (6.13)
whereg; are the central four-momenta ¢f and¢;, == x — v — }g—;(t — %), with (v°,v) = = for the

incoming states an(?, v) = 0 for the outgoing ones. Therefore the left-right derivatieé the Gaussian
wave packets have similar locality properties as the wackqia themselves.

In order to interpret the matrix element of the pseudo-lagarators directly as a scattering matrix
element the four point interaction given in the actionl(683 to vanish, or at least to be very small so that
we can neglect it. This is the same problem as in the purersceddel, where we have circumvented it
by the assumption that the four point interaction operaanduced from the three point interactions and
gravity. Here we have to use some other arguments, sincewealoassecond dimensionful coupling in this
model.

Assume that the interactioky is 0 at one particular scale. Then the gluon corrections to ihigkng
constant are at least of ordgf and gravitons will not induce this operator through rasi@tiorrections at
all, if the scalars are massless (or at least very light coetpt M/},;). This is because internal graviton
exchanges lead only to contributions to non-renormakzigerators by using power counting. Therefore
the four point contact interaction is of ordg and negligible compared to th€ diagrams if we choose
gs to be very small.

Another motivation for dropping this kind of interactiontisat we want to model matter clocks and
rods, which are in general fermions. The only reason why wesgsilars is that in this case we can
describe gravity through metric variables which simplities calculations. Fermionic fields can not have
renormalizible four point interactions, so that for theristkind of problem does not occur. Thus we can
also motivate the vanishing of, by arguing that we do not want to introduce interactions ®ahtion
which differ fundamentally from fermion interactions.

It has to be mentioned that the vanishing of the four poinptiog ) is not fundamental for our model.
We could also extract the desired observable from the stajtprocess with four point interactions in-
cluded. But we will nevertheless demand it to vanish, bezauthis case the desired observable is directly
given by the scattering process without performing furttedculations.
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Since the tree-level observable is given by fhenatrix element for vanishing., it is invariant under
the SU(N) gauge transformations. Even if the four point dimgpis nonvanishing the results are gauge
invariant. This is because the scalar contact terms areegaugriant in their own right.

This shows that this model offers us a pseudo-local obs&rwabich is accessible by scattering of
differently colored particles. By using different statégeg by | fid, f21u¢) and|fP'ue, fied) we can also
performT-type localization as in the model above.

We could now perform a similar analysis as in seckion 5.3 @eoto investigate tree-level localization
in both S andT channel. The result would be again that at tree-level wedchalve an arbitrary high
spacetime resolutions by using very small width wave pack&nhce this analysis is the same as in section
we do not have to repeat it here.

The next step is to include the NLO contributions due to dyashd discuss the phenomenology of
localization in the Yang-Mills model and compare it to thegscalar model. In the following, in particular
for the phenomenology, we will constrain ourselves to theecaf SU(3) Yang-Mills theory since this
gauge group is already included in FeynArts and FormCalthabwe do not have to perform any other
modifications in these codes. We will from now on call the doven gauge field gluon.

The problem of the non-existence of asymptotic coloredestat conventional QCD, because of con-
finement, can be avoided by including sufficiently many messs(or at least very light) colored scalar and
fermionic particles to our model, which do not couple to otrgess in the desired order, but do change
the sign of the QCDp-function, such that there is no more asymptotic freedom.aggime the reader to
be familiar with renormalization group, anomalous dimensiand3-functions such that we only give the
result for the SU(3) Yang-Millg3-function, if there areV, scalars andV; fermions in the fundamental
representation, without explaining the required caldoies. It is given by

3

gs
Bacp = 55 (66 — 4Ny — N,) . (6.14)

It has to be mentioned that this calculation has been peddmsing FormCalc in order to determine the
required UV divergences and therewith the anomalous diloess

6.2 Feynman rules

We give the required Feynman rules for the Yang-Mills modeluding scalar matter and linearized grav-
ity. We will use the convention that all momenta flow into thextex. The scalar and graviton propagator
are the same as given in fl[g.b.2, as well as the scalar-gessor interaction. The gluon propagator in
Feynman gauge is given by

)
Q00000009 = _EWW : (6.15)

The gluon-scalar interactions are given by the followingéhand four point interactions for both species
of matter

ki
a, = ig. T3 (K — py) (6.16)
p,J
a, pt i
= ig2(T°T" + T*T) jiny, (6.17)
b, v j
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The three point gluon self interaction is also required fargrocess and is given by

¢ q,p
k, wé = =95 [ (k= Quup + (0 = k) pw + (4 — D)) - (6.18)

b,p,v

We do not require the gluon four point interaction in our @ss
The scalar-scalar-gluon-graviton interaction is given by

;K = T’i (k= p)pnuw — (k= p)unpp — (k= D)) T5; (6.19)

The last required interaction is the gluon-gluon-gravitertex. It is given by

q,8,b

. K
k, pv = —ig o) ((Mpanvs + MupMva — NuwNas)Pd + Padanuw + 2P(udv) a8
p, a) a

*2q(u77u)apﬁ - 2p(pﬂ7u)ﬁ‘]a> + Z>\gf 5 (Uuu(pakﬁ + Paqp + kaQB) + 2p(;ﬂ71/)ﬁpa + 2Q(M77y)aqg) )
(6.20)

where)gs = 1 for the covariantized andly; = 0 for the non-covariantized gauge fixing, i)gy = 0 in the
following.

This completes the set of required Feynman rules for ingattig the matrix elements in ordefx?
and also the soft real graviton and gluon emission.

6.3 One loop corrections and counterterms

In this section we perform a similar discussion of the ong@ldiwergences and the required counterterms to
cure them like in sectidn8.4. Again we use M& renormalization scheme to determine the counterterms.
Thus we only require the divergences of the one loop diagm@eoarring in our process at ordefr>.
We will divide the diagrams into the diagram classadpoles wavefunction correctionsself energies
trianglesandboxes

In our particular order there are no nonvanishing tadpag@ims, since the graviton induced tadpoles
are renormalized t0 by an effective cosmological constant and the gluon tadpaedmish because of
Lorentz invariance.

The wavefunction corrections can be determined by the realized wavefunction renormalization,
i.e. the residuum of the one loop propagator, by using theiosl Mwr = 20Z, M. The one loop
divergence of the scalar propagator is given by

= 1d; H—Q - E*m?(1 + §a - §(12) +m*(1 + 3a + §(12) + finite .  (6.21)
Y 8m2e \ 2 2" 2 2 B
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This is of course exactly the same result as in the pure sceddel. There is no difference betwegnand
1 and different colors. Because of this we can call the renbzedwavefunction renormalizatiaf,, for
both particle species and all colors.

There is one self energy correction diagram given by

blue blue
)

/
\

red red

(6.22)

which is renormalized through the gluon propagator cotieiter. The required divergence is given by

2
— 5% [ p2(k2pe _ pHEY) 4 finite . (6.23)
4872
<€

Note that the Lorentz tensor structure of the propagataiections is exactly the one demanded by the
off-shell Ward identity. This is only the case if we use thefomvariantized gauge fixing (6110).
The triangle diagrams are given by all possible permutatadrihe following basic diagrams

blue blue blue blue blue blue blue blue

/ + / + ”I + / (6.24)
\ \ A\ \
red d d d red

red re red re red re

They are renormalized by the counterterm to the scalaesgilion coupling, which is identical faf; and
1o and can be calculated from the following divergence

ko, i

2
o 9sb (1 3 1
= —il5 5 (§(k2 — k3)um?® + a(ky — k3)u(1m2 - gkf)

kl,a

1PI

7

ks, j 7o 1o, o 1.5
+ak3u(12k2 12k53) ak2u(12k3 12k2)

a’ s ki a’ 2 2 a’ 2 2 .
—Z(k’g—kz3)u(3m —?)—f-gk?,u(k?) —k/’g)—gkfgu(kQ —k/’3) +ﬁn1te.
(6.25)
This divergence leads to induced effective interactiorsetdiscussed later.
And finally the box diagrams are given by all permutationsheffollowing basic diagrams
blue blue blue blue blue blue

/ /

+ / + y (6.26)
|
\ \
red red red red red red
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The on-shell divergence of the sum of all box diagrams isrghe

blue, k- blue, k4

/

_ 3g2k?

=1
1672%€
1P1

red, k; red, ks

(3a® + 2a — 1) (k1 ks — koks) + finite , (6.27)

where all momenta are flowing into the vertex. This showstthexte is in general an induced effective four
point scalar interaction due to this counterterm.

Note that this model has the same diagrammatic structuieeascalar model in chaptier 5 before. The
diagrams of this model can be constructed by interchandiag tscalars by the gluons. Of course the
Feynman rules, and therewith the results of the processhareged due to the difference in the interaction
terms.

6.4 Graviton and Yang-Mills Bremsstrahlung

Since there are IR divergences coming from the gravitongamhs in loop diagrams we have to include
the Bremsstrahlung for both, gravitons and gluons, in olocutation in order to achieve IR finiteness.
The soft graviton emissions are taken into account by theesathod as in sectidn 5.5, but the gluon
emissions require some more effort. The problem with masglarticles carrying quantum numbers, like
the gluons, is that we have to treat the color quantum nunmzdusively. For curing soft divergences an
inclusive treatment of the final state is sufficient, sincly aollinear divergences require a summation over
degenerate initial states.

As discussed in the appendX D, the Kinoshita-Lee-Nauentierorem is compatible with our color
flip process inS channel, since the non-inclusive squared amplitude focttaered process){edz/?‘flue —
yPredypblue s the same as the non-inclusive squared amplitude of thediate color summed process
wied,&%lue N 1/}50111/;5012_

If we now take the soft gluon emissions into account, i.e. westder the final state summed process
redqpblue  gcollyieol2 gawhere A% is the gluon with quantum number the orderx?g? terms of the
squared amplitude will cancel the gluon IR divergence.

As a note, the same approach works also by using the color edrimitial state instead of the final state
and taking into account only the initial state gluon Bremagung while holding the final states at some
fixed color. This is due to the crossing relations among annbis.

For completeness we mention that in the gluon emission psam@y the color combinatiorigoll, col2) €
{(red, red), (blue, blue), (green, green)} contribute to our desired order in the coupling constants.

In the case of-type localization the final state color summed process doeagree with the colored
procesgpicdyblue — qpblueyred gt tree-level. But since all diagrams for this process candwstructed
by crossing ofS-type diagrams, we can get an IR finite result by summing ther cquantum number of
only particle speciesl(or 2) and keeping the other particle’s color quantum numbersifi¥ée can use for
example the procesgsedysell — ypblueqysel2 'which is the crossed process to the final state color summed
S-type process.

This will give us IR finite inclusive cross sections in bathand7-type localization.

6.5 Effective vertices

In this section we will discuss the effective interactioremgtors, which contribute to our process in order
g2k?. The possible effective operators occurring in our probdam be divided into the following classes

(i) higher derivative scalar two point operators

(ii) higher derivative gluon two point operators
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(iii) higher derivative scalar-scalar-gluon operators
(iv) higher derivative four point scalar operators couglparticle specie$ and2

Note that the operator classes are not gauge invariant indiva right, but we will of course construct
them from SU(N) gauge invariant operators working on a flakiyeound. This will lead to relations among
the coupling constants, as we will see below. These relatiol assure that gauge invariance is manifest
in the process in our desired order in the coupling constdiiis effective scale will be set by,

The contributions for (i) can be constructed from all pokesitontractions of the following Lorentz
tensor operator with the Minkowski metric

2
O;lujaﬁ = Z/d4xw;DuDuDaDﬁ7/)j . (628)
j=1

We have used the identi@L = D, which holds true under the integral because one can irieegra
by parts. Performing all contractions will lead to reduntdaperators, because we can use the relation

[D,, D,] = igsF,, in order to perform simplifications. By using this commutatgation it can be shown

that the tensor operatwiljaﬁ gives only one independent contribution to the requirednRen rules.
This interaction is given by the contraction

2
Ol = n“unaﬁo}ujaﬁ = ClHQ Z/d4$(D21/}])TD2w] ? (629)
j=1

wherec; is a dimensionless effective coupling constant paranmteythis operator. For the operator class
(i) it is sufficient to include the partial derivative partstbe covariant derivatives, i.e. the most general
effective operator in this class is given by

2
szzqﬁ§:/ﬁ%D@D%. (6.30)
j=1

Note that this reduced operator is not gauge invariant angniowt it will lead to gauge invariant contri-
butions to the process in our desired order. This is becéesetms missing for formal gauge invariance,
i.e. the connection parts of the derivatives, will eithentcibute through the scalar-scalar-gluon vertex (iii)
or will be of higher order in the process.

To operator class (ii) contractions of the following kindtensor operator will contribute

v pafBy

o? :U/&M@Qﬂ@h, (6.31)

where we also have to allow permutations in the sequenceaifitlividual terms. But since we only require
the partial derivative part of the covariant derivativestfte Feynman rules, only two of the permutations
will contribute. Therewith the most general non-redundamitracted operator of class (ii) is given by

oW .= Ii2tr/ d4x(628uFag8“Fag + 038#F“”8QF“D) , (6.32)

where we have inserted dimensionless constants for thegeiqf parameterization and used only partial
derivatives.

For the operator class (iii) we have contributions frém @.2Additional operators which could have
contributions are contractions of e.g. the following opera

2
OZuaB = Z/délxw;DuDuFaﬁwj ) (633)
7j=1
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or similar operators with exchanged positions of the cardrdlerivatives. But those contributions vanish
since we only require the partial derivative parts from tbgaciant derivatives such that we have com-
muting derivatives and thus only one nontrivial metric cantions remains. The remaining operator is
anti-hermitian and therefore does not contribute to thimaci his shows that all operators of class (iii) are
included in [6.2P). The terms which are relevant for oparel@ss (iii) are given by

2
O = —icygw® Y / d* x0T (0" A, + 24,,0")1; + hec. (6.34)
j=1

Note that in order to assure gauge invariance the couplingtaat of the (i) and (iii) operators have to be
the same.

The class (iv) operators can be constructed from the rerwitia four point scalar operator by mak-
ing all possible insertions of two Lorentz contracted cévatrderivatives and assuring hermiticity of the
operator by adding the hermitian conjugate. Since we reaquity the partial derivatives for our problem,
we will neglect the additional gluon terms in order to arratea shorter expression. There afepossible
insertions of the two partial derivatives from whi¢fare redundant by integration by parts &naf the re-
maining6 are constrained by the hermiticity of the operator. Oneiptesparameterization of this operator
is given by

O .= k242 / d* 2 (B 0P botpb i + e300 102" Phbr + c6dubihobd by + hc.) . (6.35)

In the remaining part of this section we will present the Fegn rules corresponding to these operators
and their contributions to the process.
The expression for the effective scalar two point vertexisiioth particle species given by

———— =i 10y . (6.36)
The effective gluon two point interaction yields

900010000, = i (22 + ¢3)K°p* (M p” — Pupu )6 . (6.37)

It obeys the off-shell Ward identity. Moreover we see thabr cs is redundant on the level of Feynman
amplitudes. A distinction between tlwe andcs operator may get important at higher orders, when the
gluon emitting terms of these operators become importamto&r case we can set w.l.og. = 0.

The effective scalar-scalar-gluon interaction is given by

ki
a, = iclgSf;QTﬁ-(kQ +p*)(k —p), (6.38)

D,J

and the effective four point vertex by the following Feynmate

klvil k37i3
= 77:,%29351'”'351'21'4 (C4(k1]€2 + k3k4) + C5(k1]€3 + k2k4) + 66(k1k4 + kag)) .

ko, ia ka4 (6.39)
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Figure 6.2: IR cutoff (in)dependence of the result. Bottoffst the gluon and graviton mass, are chosen
to be the same. The reference value for the particle mass=s10~'° M,,, i.e. in the TeV range. The
cutoff independence is not dependent on the choice of paeasend kinematical quantities.

When we compare the operators with the structure of the eoignins (see sectign 6.3) we see that the
counterterms can be expressed through gauge invariardgtopgrat least when we take the on-shell limit.
We see that the three point scalar-scalar-gluon interadtas additional terms which cancel only in the
on-shell limit. In this limit the relations from gauge invance, i.e. the equality of the prefactor labeled
above bye; of the scalar self energies and the scalar-gluon intemratiidds true for the counterterms as
well. This shows that we can renormalize the on-shell anghdis in a gauge invariant way. As a note, the
off-shell amplitudes are not physical and can be gauge akgen This is exactly what we obtain, since
the off-shell self energy of the gluon and the scalar-segliaon counterterms depend on which gauge we
choose, e.g. the covariantized or non-covariantized ondy i@ the on-shell limit this dependence cancels.

With the Feynman rules for the effective vertices above weazadculate the NLO contributions from
the effective vertices. They are given by

Mg Moo + MireeMig
MtreeM:ree

= 8c1k°m? + 2¢3k%9

5—(ca —c5 —c)S+ (cates —ce)T + (ca—c5+c6)U
T-U '

— 2K

(6.40)

In the following we assume that the form of the four point fatgion is the same as estimated from
the induced interactions, i.e. the numerator{in (6.40) khoancel the denominatdf — U and lead to
an angular independent relative correction proportiona.t This is achieved by choosing = 0 and
cs = —cg. We can parameterize the relevant high energy contribsiabithe effective interactions by one
parameter for which we can use ecg.

The dependence on the effective graviton coupling parametél later be discussed numerically, since
these couplings are included in the one loop calculatioddead to rather long expressions.

6.6 Results and comparison to the pure scalar model

6.6.1 IR cutoff independence of the results

As we have mentioned above the inclusion of graviton andrgBremsstrahlung will render our inclusive
squared amplitude IR finite. This is shown in fig.]6.2, wherenage displayed the individual contributions
coming from graviton and gluon Bremsstrahlung. We have wseyl one IR regulator for regularizing
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Figure 6.3: Angular dependence of the relative NLO coroatiforS-type localization. We show only the
cos§ > 0 part, since the result is symmetric. We leave@utd = 0, since at this angle the tree-level cross
section (i.e. the denominator)isand the numerical errors blow up. The center of mass energgh@sen
asv/S = 0.01 M, and the particle mass = 10716 M.

both, the gluon and graviton IR divergences. We have choagitie masses of = 1071° M, i.e. TeV
particles. The IR independence holds irrespective on th#esing angle, the center of mass energy and
the particle masses.

In the following we will set the IR regulator, i.e. the gluondagraviton mass, tong, = Mgray =
10—20 M, in order to resolve the individual contributions as in thelgsis above. This is far below the
assumed particle masses.

6.6.2 Relative NLO contributions for S-type localization

In this section we perform a similar analysis as in sedfi@hz. We will investigate the center of mass
energy dependence, the angular dependence and the masslelege of the relative NLO corrections
in S-channel. Thel-type process will be discussed in the next section. At theevea will discuss the
dependence of the results on variations of the effectiveitpracoupling parameter. The particle mass
was chosen as: = 10716 M, i.e. TeV particles. The values for the effective scalar scalar-gluon
interactions are chosen as = 1 andec; = ¢c2 = ¢4 = ¢5 = ¢ = 0. The high energy behavior of the
effective interactions is therefore parameterized by carameter;. We will later discuss the behavior
of the results under variations of this parameter. As meeticabove the gluon and graviton mass will be
chosen asngy = Mgrav = 10—20 M, in order to display the individual contributions. But againly the
inclusive NLO corrections are IR independent and therefbnesical.

Figure[6.3 shows the angular dependence of the NLO correctin,/S = 0.01 M. We have plotted
only the rangeos § > 0, since the result is symmetric in this variable. We havedaftcos § = 0, where
the denominator, i.e. the tree-level squared amplitutes g@& and numerical errors blow up. As in the
pure scalar model there is only a very small dependence oarble. We see that the boxes, triangles
and effective vertices give the main contributions, ands#tléenergies, Bremsstrahlung and especially the
wavefunction corrections are only marginal contributiofsirthermore we see that the combined NLO
contributions are below% over the whole angular range at this energy. This is rougalfydf the NLO
corrections in the pure scalar model at this particulareresit mass energy, see fig. b.6.

Figure[6.% shows the center of mass energy dependence oflLtBechirrections a) = w/4. The
reason why we do not chooge= 7/2 as in the scalar model is that the tree-level process hasoaarer
this scattering angle. We see that boxes, triangles andtiefevertices are the relevant contributions and
the others are irrelevant. This agrees with the pure scataiem We furthermore see that the% NLO
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Figure 6.5: Angular dependence of the relative NLO coroaxtifor S-type localization with different
effective couplinga. We show only thecos > 0 part, since the result is symmetric. We leave out
cos § = 0, since at this angle the tree-level cross section (i.e.¢ém@uhinator) i$) and the numerical errors
blow up. The center of mass energy was choseyigis= 0.01 M, and the particle mass = 1076 M.

corrections are reached at neayhy = 0.02 M,,. This is roughly twice as high as in the pure scalar model,
see fig[B.J.

Performing variations of the clock and rod mass parametere see that there is no noticeable change
in the relative NLO corrections. Even if the individual gavary, their sum does not change. This property
has been tested for masses in the range [1072° M,,, 10~* M,,]. We see that the parts relevant at high
energies are independent of the particle mass and onlyréievant parts, which contribute withQ/M3l
show dependencies. This is a very nice property of the thetge it leads to an universal high energy
behavior, independent of the masses. Moreover the res@ltsnass independent even if the effective
couplinga is switched on. We conjecture that the mass independencedssequence of the additional
SU(N) gauge invariance, since the mass dependences catwekn different diagram types, in particular
box and triangle contributions.
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Next we study the dependence on the effective graviton aogiparametet.. The results are shown in
fig.[63 and show a strong dependencezoThis dependence is not as strong as in the case of the pure
scalar model, but we see that we can even switch the sign oéliave NLO contributions by tuning the
effective coupling to e.gz = 1/2. Note that the absolute value of the NLO corrections stayh®bame
order of magnitude in presence of the effective couplinghus the validity of the theory is not as much
affected by the parameteras in the pure scalar model.

Finally we have to mention that by varying the scalar-gluiaative vertices we can also switch the
sign of the NLO corrections, but the results remain in theesander of magnitude for not too unnatural
values of the effective coupling constants.

6.6.3 Relative NLO contributions for T-type localization

In this section we investigatB-type localization in the Yang-Mills model. As typical forfatype model,
the relative NLO corrections increase by increasing théteséag angle due to the decreasing tree-level
cross section. This is shown in flg_B.6 for a center of massggn&S = 0.01 My, and a particle mass
m = 1071¢ M. The relevant contributions are again boxes, trianglesedfettive vertices and the
remaining individual parts are only marginal, at least atlR cutoffrg e, = mglu = 10—20 M1 There
are again cancellations between boxes and triangles.

The center of mass energy dependence of the NLO correcsostsown in figur€ 617 at a scattering
angle ofd = /2 and particle mass: = 10716 M,,,. It reaches0% aty/s = 0.02 M1, which is around
twice as high as in the pure scalar model.

This natural bound is, as in the case of B#ype process, independent on the particle mass, and hence
sets an universal bound for this model.

The dependence on the effective graviton couplingshown in fig[6.B and shows again a rather strong
dependence, in particular at large angles. But the deperdsmot as dramatic as in the case of the pure
scalar model since in the Yang-Mills model the magnitudehef telative NLO corrections stays in the
same range for natural valuesofThis is an advantage of the Yang-Mills model since its \lidoes not
get spoiled in the presence af

The dependence on the scalar-gluon effective couplingdbad estimated analytically in sectionl6.5.
We can change the sign of the effective vertex contributlmnshanging the sign of;. This can lower
the relative NLO corrections and prolong the validity of theory. For example in the case of vanishing
effective vertex contributions th®)% bound is reached at’S = 0.04 M.
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6.6.4 Implications to localization and comparison to the pte scalar model

In the sections above we have obtained that the results ofahg-Mills model have some advantages
compared to the pure scalar model. Even if the maximal résalis in general not considerably enhanced
(approximately a factor dt for TeV particles) the results of this model are indepenadernthe clock and
rod field mass. Moreover the results are more stable unditizans of the graviton effective coupling
Alltogether the Yang-Mills model leads to more universaluiés and is therefore a more sensible model
for our purpose.
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Chapter 7

Pseudo-local geometry observables with
matter clocks and rods

In this section we will investigate a pure gravity obsereatthe pseudo-local curvature scalar induced
by two crossing particles in small width wave packet stafidse overlapping region of the particle wave
packets will serve as clock and rod. The construction arzliétion of this observable is performed in the
in-in formalism. We will only study the effect of two high emetic particles on local curvature and we
do not define an experimental realization of the experiménteasuring the local curvature, i.e. we only
investigate the preparation of the experiment and not teewdion itself. A full description of the quantum
field theoretical measurement process is in this case ayhigiitrivial task, since local curvature is not an
operator which is easily measured by scattering. We wowe bathink about a different measurement if
we would be interested in the phenomenology of this experiniut in this section we only want to study
the difference between the quantum field theoretical bacdkien on local curvature and the classical one.
We try to get insights into the nature of the backreactiomasdi by wave packet states. In particular we
are interested in the question if the backreaction is dotathly classical or quantum geometry effects.

7.1 Definition of the pseudo-local curvature observable
Assume two free complex scalar quantum fieldsand), on a generic background. If we fix the back-

ground to be flat Minkowski space and describe gravitons ahjeelly on it, we get the following action
for the matter fields

2
5= [t ;(auwj O = 2l — Th (20,0600, = mu (Onul0 v — m*ulv) ) . (1.D)

Assume the following statkf:, f2), wheref; is a wave packet state of the partigie and f> is a wave
packet state o), overlapping around the spacetime positioiMoreover assume the following operator

0:= / a2/ gR(@) (@)1 () (2)ala) - (7.2)

which is the normal ordered spacetime integrated curvatatarR together with a quartic scalar operator.
Now consider the following in-in matrix element in the Heiberg picture

<f11f2;in|0|f11f2;in> . (73)

By switching off the coupling; it is very easy to see that this matrix element is the expectatlue of the
curvature operator in the graviton state integrated oveotlerlapping region defined by the wave packets.
This is of coursé) in the zero coupling limit since the gravitons will be alwaggheir ground state. They
can not be excited without scalar-graviton couplings.
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If we now allow interactions between gravity and matter, dsgmptotic graviton vacuum state will be
filled with virtual gravitons due to emission of gravitonsiin the particles and the expectation value of
the spacetime integrated curvature scalar will not vanishlenger. Therefore we can measure the local
selfgravitation of two crossing wave packet state pawieléth this kind of observable. As mentioned
above we will not attempt a dynamical description of the measent of this value, since it is not required
for our purposes.

We proceed by first giving a semiclassical computation ofgbeudo-local curvature operator in the
framework of quantum fields coupled to classical gravity Bing the semiclassical linearized Einstein
equations. Then after this calculation we compute this fagde in the in-in formalism using quantum
field theory for both, matter and gravity. We have chosenghisicular order because the quantum calcu-
lation requires some low-energy data from the classicalutation in order to renormalize the occurring
divergences.

7.2 Classical computation

As mentioned above we use semiclassical linearized Emstgiiations in order to compute the classical
backreaction induced by matter quantum fields. The equatibmotion for the metric fluctuations read

(o — 220 = (T (7.4)

where(T),,) is the expectation value of the energy momentum tensor tperathe matter state defined
above. It can be explicitly expressed through the wave gadiedoing some algebra and is given by

2
(T = = 3 (01100 o= GOS0 = i 59) (7.5)

The metric fluctuations now can be determined by using trerdet Green function of the equations of
motion and are given by

() = Pavas / 'y Grer(z — )T () | (7.6)

whereG...(z — y) is the scalar Green function of the box operator, and thetestructure is given by

1

P,uvaﬁ = 5 (nuanuﬁ + NuBMva — 77;“/770([3) . (77)

With these ingredients we can express the induced curvataiar trough the energy momentum tensor.
At lowest order it is given by

R(z) = k(Oh — hu;“=”) = —§<T(x)> , (7.8)
where we had to use the equations of motion for the Greenimahd the energy momentum conservation
0 (T*P) = 0.

By inserting [[Z.5) into the expression for the curvature Wwam

5 2
R= =53 (0af70fi - 2m2f; 1) - (7.9)
=1

For the further evaluation we assunfigz) and f>(x) to be first order Gaussian wave packets with
a1 = (0,0,q) andqgy = (0,0, —¢q), see appendix H.1. With this specific choice we can evallia® (
and arrive at the following expression for the classicaleztation value of the pseudo-local curvature
observable

H2

Oclass = 5 /d4$(04($? +$§) +m2) (|f1|4|f2|2 + |f1|2|f2|4) ) (7.10)
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wherex; are the components of the spatial vector

We see that only the densitigf | enter this expression which is quite natural for a classioaiputa-
tion, since there are no interferences. This integral nameaevaluated by inserting the first order wave
packets, se¢ (H.6). The result in the limit— 0 and with the specific widter = ¢/2 is given by

H2q4
class — 5 7.11
S 1843220 (7.11)
where we have used the first order normalization of the waekgia given by
Nigoy = (4y/aria?) ™" (7.12)
This normalization comes from the condition
(fis fi)eor = 1 (7.13)

for the first order wave packets. It differs from the normatian of the non-approximated wave packets
(E-3) by5% for maximal width wave packets = ¢/2.

7.3 Quantum computation

For quantum backreaction we use the in-in formalism, settosd2.8. We will formulate the amplitudes
by using position-space Feynman rules, since with this &ism we can better understand the vanishing
of several terms.

The interaction vertex is given by the following bi-diffeiteal operator

2
1 = ZFig (202,03 — 0, (930 —m?)) (7.14)

3

where the numbers on the partial derivatives indicate theHey are acting on and is for the right and
+ for the left vertex.
The graphical representation of the pseudo-local curgattalar has the following analytical expression

A

AN

= k(0" — 0400 (7.15)

/

4

7/
/

where there is no distinction between left and right, siti® dperator is no interaction vertekindicates
the action of the derivatives on the gravitons.

If we assume the vanishing of graviton tadpoles by eithemabordering the interaction or renormaliz-
ing the cosmological constant to zero, there are the foligiour leading order in-in diagrams contributing
to our observable

\\\ \ N\ \\\ \\\
) + + ) + ) . (7.16)
7 // // //

Note that the disconnected diagrams vanish because of theahordering of the operat@p. It has to be
mentioned that due to the in-in Feynman rules we have to sulefuand right vertices together with the
corresponding anti-propagators and propagators.
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Since all four diagrams are related by crossing we will cotapioie one where the graviton gets emitted
from the f; particle in the ket-state explicitly in the following. Ugjrthe diagrammatic rules we arrive at

AN

9 o0 IU
M= it [ [ [ @edysi @1 @) )

7/

( A (207, — 0w (30 —m?)Prred (A7 A, — A7 AY) (D15 - ‘5@‘5;‘)) . (7.17)

whereA7! is the Feynman propagator with ma&sandAZ; denotes the anti-Feynman propagator. Note
that they? integral is restricted by°. Since we have the inequaligyf < z°, the time ordering is not
required and we can use the equations of motion

YAy, =0°A), =OYA), =0O°A) =0, fory® <a”. (7.18)

Therefore the box operators annihilate the (anti-) profmaga

If we substitute the spectral representations of the waekgia we can perform the required integrals
for plane waves. We had to solve the energy integrals by usingplex contour integration. Since our
integrand falls off sufficiently fast in both, the positivacanegative complex axis, we have chosen the
contour which includes the lowest number of poles. At thewadrrive at the following expression

M= /'%ﬁm%ﬁmﬁ(k»fz(p»ff(kl)f;(pl>5<kr+pwkl—pz> I(k,), (7.19)

where the remaining integral is given by

EqEgvk +ala + k)
EqEqtk ((Eq + Egi)? — Ez)

Z(k) := —K’m / d3q (ERE, + kq(Ey + Egty)) - (7.20)
Summing up the contributions from the four different grajgingl transforming to position space we
arrive at the following formula for the expectation valuettodé pseudo-local curvature observable

4
O) = [ s (B il o+ TS o+ RSP o+ FERSE™) . (720

wheref; are the position space wave packets #ftd< the “modified” wave packets defined by

o) = [ dRF0IZIE (722)

When we compare the structure of the result with the claksieg se€(7.10), we see that as expected the
guantum calculation affects the wave packets themselvdte e classical one only affects the densities
il

Next we have to calculate the integral (4.20), where we aggstrict ourselves to the massless limit
m = 0. The problem with this integral is that it is quadraticallyetgent, so that we have to renormalize
its value. As a counterterm to the integrand we use the semal®tk expanded integrand and subtract it.
We will investigate below if there are some nonzero contidns from zeroth, first and second orderkin
by matching the results to the classical one in the IR Ijfkif — 0. In this limit we expect both results to
agree.

Furthermore we use spherical coordinates and perform fiesahgulaf?, integration and afterwards
the radial one. The dependence of the spherically integjiategrand shows a sufficiently fast fall-off
in the remaining variablg = |q|| and it can be integrated analytically as well. After the dag,
integration we see that the functidigk) is only dependent on the norm kf

The result is thaf (k) is a polynomial ink = || k|| given by

Z(k) = ak? + pE*, (7.23)
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wherea has to be determined by the matching with the classical ceettipn and

272
8= ST (7.24)
The modified wave packet is given by
fr4() = (—al + BA?) fi(x) (7.25)
and with it the expectation value is
1 4 2
(0) = 2 876q¢" + 96aq (7.26)

163847° ’

where we have used the widih= ¢/2.

Next we have to compare the classical and quantum resuldier @0 determinev. Since we are in-
terested in the relative difference between classical aahiyim pseudo-local curvature, we have to relate
their difference to some natural pseudo-local curvaturee problem is that the relation to the induced
curvature itself is not sensible, since it is of the same icaddhe difference and vanishes in the IR. A more
sensible natural quantity to which we can relate the diffeeds the pseudo-local Planck curvature defined
by

—2

K
=2 7.27
e (7.27)

On = w72 [ dlaulviuln)
where we have useR = x~2 as a natural curvature scale.

We now see that the relative difference between the quantdrolassical result compared to the pseudo-
local Planck curvature is given by

(O) = Octass 4 4561 — 1027

~ 0.0094k%¢* 7.28
Op1 " TTS760m2 S (7.28)

where we have fixed = 0 by demanding the vanishing of the quadratic terms in thet lah§y — 0 and
thus matching the quantum quadratic term to the classi@l on

We see that in the limig — 0 the classical and quantum field theoretical result agreg$renquantum
result receives relative corrections proportionalitg)*. Furthermore the quantum pseudo-local curvature
is larger than the classical one at every energy scale.

7.4 Comparison between the quantum and classical results drout-
look

As we see from[{Z.28), the classical and quantum result ferpeudo-local curvature scalar are very
similar compared to the Planck scale curvature for energies M. Hence the original question of
which effects contribute stronger to the breakdown of theypkative treatment of quantum gravity can
not be answered through this calculation. The problem isttteaquantum fluctuations in the curvature
scalar seem to be quite symmetric around the classical vetuthat we can not estimate them from the
expectation value of the local curvature alone.

In the remaining part of this section we define another olad#evwhich has good chances to give
a deeper insight into the question of how quantum the backiceaeffects are. Its evaluation requires
further investigations and is not presented in this worke Témaining part is intended as an outlook on
future work.

Assume the following second pseudo-local operator

Og:= : /'d%Fnglwzwz: : (7.29)
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where now the quadratic scalar curvature enters. If we takeithe quantum expectation value of this
operator in the the two-particle state defined above, weeaati the pseudo-local squared curvature, which
can be used to extract information from the relative fludéturat

(02) — (0)?

) (7.30)

This fluctuation is very sensitive to quantum effects, siimca classical calculation it is obvious zero
and it becomes only nonzero in presence of quantum effddtssliratio is larger than, it would indicate
that the quantum effects are dominant. If it is smaller thae, dhe classical curvature effects would be
more relevant. This means that if this ratio would be large gerturbative description of quantum gravity
breaks down because of quantum geometry effects and ttakdwen can not be cured by e.g. adjusting
a better suited classical background. In the case of a satall this would be different, since we could
enhance the validity of the perturbative theory by adjgstire classical background if the energies are too
high.

The evaluation of the expectation value®@j in the in-in formalism is rather demanding because of
the appearance of two loop calculations with incompletetimegrations at the vertices. Because of this
the standard Feynman integrals known fréhmatrix calculations can not be used anymore and every
integral has to be evaluated by hand. This requires furtivastigations, in particular whether one could
automatize these calculations.
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Chapter 8

Conclusions

We have studied several pseudo-local observables in sHegtiantum gravity. Based on the proposal
of Giddingset al. [1] we have constructed Dirac observables in quantum grdraim local field theory
observables by integration over the whole spacetime mianifafterwards we have used suitable wave
packet states of the clock and rod variables in order to ibeahese nonlocal observables in the sense of
relational locality.

The explicit calculations were performed using methodsasfypbative quantum gravity. Therefore we
have assumed geometry to be in a suitable semiclassica| stah that we can extract a smooth background
geometry. This geometry was chosen to be a flat Minkowskiesprae for two reasons. First we assume
that the basic features of dynamical localization are alesgnt on a Minkowski spacetime and second
this choice of background simplifies the application of pdration theory in a dramatic manner. We have
interpreted the breakdown of perturbation series as thiedimlocality in this approach. This perturbative
limit on locality is also related to our conceptional limib docality, since most small scale experiments
performed today involve scattering of particles. But thattgring of particles is nowadays only understood
when performed on a fixed classical background.

The first explicit model we have investigated consits of aredas fieldp, which is localized with respect
to four scalar clock and rod fields. The observable we werrésted in was the two point correlation of
the ¢ fields localized at a pair of points defined in a relational wgyusing the clock and rod fields. We
used the proposal df][1] to define a diffeomorphism invaragervable from which we could extract this
information by taking matrix elements between suitabléesta These states were chosen to be in and
out two-particle wave packet states of the clock and roddigtidh carefully chosen overlap properties.
We have used the overlap region of respectively two wavegtack order to localize the two spacetime
points required for the correlator. We constructed the rhivdeuch a way that the information about the
correlator is encoded in the two-particle wave packet edaty matrix element. This scattering process
was calculated at tree and one loop level (together withreaftemissions). With the tree level result we
proved that the desired information about the correlasagnicoded in the scattering of two clock and rod
fields. The NLO corrections were used in order to estimatertagimal spacetime resolution possible in
this model. It was shown that the minimal length accessiplthls model is about several hundred inverse
Planck masses, dependent on the masses of the fields.

In order to check the universality of the results gained ulgiothe first model we defined a second
model with similar properties. This model contains a SU(MNY-Mills field localized with respect to
colored scalar clock and rod fields. We could define a simit&augo-local observable as in the model
above and therewith extract information about the localg¥®fills correlation function. In this model we
have again calculated the NLO corrections and estimatechthémal resolution. The results agree with
the ones from the pure scalar model, but there are some adyedf the Yang-Mills model. First, there
is no dependence of the clock and rod field mass in this modethAeads to more universal results, and
second the dependence of this model on the effective grasitalar couplings is weaker than in the first
model.

In the last part we addressed the question if the backreeatitne quantum scalar wave packet states on
geometry is more of a classical or a quantum effect. In or@answer this question we defined a pseudo-
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local curvature observable which we localize using wavekesc We investigated the expectation value
of the pseudo-local curvature observable in lowest ordez. cdmpared the result with the full classical

evaluation of this observable and we found out that thereotsnmuch difference. Hence the curvature
observable alone could not answer our question. We propasstond operator which could be used
to determine the fluctuations of the pseudo-local curvatliseexpectation value will require a two-loop

calculation in the in-in (Schwinger-Keldysh) formalismdais left to future work.
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Appendix A

General gauge fixed BRST invariant
equations of motion

In this appendix we give the full expressions for the EOM a@f\tions, ghosts and antighosts in a general
linear gauge fixing. This gauge fixing is given By (4.29) anpdsameterized by0 parameters;.
The first and second time derivatives of the ghost fields arengdy

1 _
7](0) = 75(61 + Cy — 03)81-77(1) + 203AU£0) (Al)
—(ea = Z)0m® + (es + 30 + 2L A (A.2)

—(1 4 cs)n' + cgdin(? (A.3)

(z) -1+ 010) @ _ g (A.4)

and
i = = (2e3(1 + ) + co) Anl” + (2(61 +e2—c3)(1+cs) —co(l+ %O ain"
%0:75%}3u+f35A€“+(1+%+%1+%?x@—%9)&ﬁm
7(@+4%+— xy+ﬂ%)8@ ) (A.5)

Here we have omitted the second derivatives of the primaogirelds, since we do not need them in this
work.

Since the canonical momenta of the ghost figltihave their independent EOM we have to investigate
them too. They are given by

i = (14 )il — (ea — 5)0m"” (A6)
A0 = (14 L0930 — Ler + 2 — e5)un® A7)
7 = -0 72(:3&77“” (A.8)
A0 = —(es+ 2 )3@*”* BT AGD + o0 (A.9)
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and

. 1
i = (—(1 + cs)2¢3 + 5(04 — %7)(@ + o — 03)) AR — (1 +ocs+ (ca — %)(1 + C;O)) i (Z
(A.10)
.. 1
i = —(1+ SHET a0 + (5<c1 tea—es)lea— 5) = (14 5)(es + )) 0:0;17
1
((1 - C%)CQ —glat+e—c)l+ c8)> i . (A.11)

The equations of motion for the graviton field and its conjegaomenta using the full Hamiltonian
Hprst = Hmin + {QBrsT, ¥} are given by

iloo = 72627’(00 — (Cl — Cg)hojj — CgT(jj (AlZ)
. 1 1 cr Cce + C7
ho; = —crm® — 5(04 + 5 )hoo i 5(05 - g)hjj,i - Thim’ (A.13)
. - 1 1
hij =77 + c1oho(,g) — (637T00 + §7Tkk — (e3 + i)hOkJﬁ) 0ij (A.14)
7% = —cyAhgo + (1 + % cg)Ahj; — (14 %6 + ¢4 +cg)hiji; — (ca + %7)”01;1' (A.15)
) 1 c1—c¢ 11 c i
7'T01 = (— + Cl)hOj,j.,i _— 27'(00 + = ( + 03) ”i + — 0 ] (1 + ClO)AhOz (A16)
4 2 2°2 ’ 2
7:rij = Ah” — (1 — C5 — 209)Ahkk5ij + (1 +cg + I )AhOO(gij
—(A+eites+ 2 )h001j+(1—cQ—C5+ )hkkz]WL(l*CQ*CSJF2)hklk15U
cr i
—2(1+ Cﬁ)h(ik,k,g) (c5 — 5) 51] (c6 + 07)7rofj) (A.17)

and
hoo = Ahooi (2(c1 + 3ez)eq + (e1 — e2)er — 2¢3(cq — 3es — cg + deg +4))
+ Ah;—ji (c1(2¢5 — 1) + ca(—4eq + 2¢5 + ¢7 — 8cg — 8) — 2c3(4es + 6 + 10c — 2))
+ hw;z‘,j% (c1(cs + c7) + ca(dea + ¢ — 7 + 4es +4) + e3(6c5 + c6 + 69 — 2))
+ 7% (2C2C4 + c3(3¢5 + ¢ — %) + clc7) (A.18)

. 1 1
hoi = AhOi(C7 — 1010(66 — 367)) + 7T Ccg — 07(1 + 010)) + Fjjyig(205 + 2c6 — c7 + 203(204 — C7))

1
2(
1
+ hOj,j,i§(4C4(C1 —¢2) — 2¢5(2¢10 + 6¢3 + 3) — 2¢6(c10 + 2¢3 + 1) — ¢7(6¢1 + 2¢9 — 2¢3 + 1))
+ 77‘00Z 1 (46204 + c3 (605 +2c6 —c7) + 20107) (A.19)
. 1
hij = Ahgj — Ahkk5ij§(205 +2¢6 — ¢7 — 2¢3(—2c4 + 7 — 4(cg + 1)) + deg + 4)

1 1
+ Ah005ij§(203(204 —¢7) +2¢5 4+ 2¢6 — ¢7) — hooi

. 4(264(010 + 2) + 2¢g + crei1g + 4es + 4)

1
+ hik ijZ(QCS — 205(2 + ClO) + c7c19 — 4eg + 4)
+ Mkt ke 15” (205 +2c6 — 7 +2¢3(2c4 — 7 + 208 +2) +2c9+2) — 7 Ei)(c(; + ¢7 + ereio)

1 1
= hik k) 5(06(010 +4) +crer0 +4) + WOIfk(gijZ@CB(QCéL —c7) +2¢5 +2¢6 — c7) - (A.20)

78



Appendix B

BRST invariant states for effective
guantum gravity coupled to classical
matter

In this appendix we investigate the structure of the BRSTraipe when we include matter. Therefore we
assume the following interaction term

Sint == *’i/dzla7 h,ul/T'uU 5 (Bl)

whereT*" is the energy momentum tensor of some matter and does natdiepé.
For this kind of single graviton emission the primary coastts remain the same as in the free case,
since the graviton couples without derivativegt’. But the secondary constraints change into
X =X = w1 (.2)

N = xW — k1% (B.3)

where the untilded constraints are the constraints fronfrédeetheory.
If there is energy momentum current conservationg,&#” = 0, the time derivatives of the secondary
constraints are given by

X = —9ix) — k9, T + O(K?) = —0,xD + O(x?) (B.4)

XD = —k,T" + O(k?) = 0+ O(k?) . (B.5)
This means in particular that the constraint structurethenumber of constraints and their algebra, is not
changed by the introduction of this kind of interaction if vestrict ourselves to order. Hence the BRST

invariant extension of the Hamiltonian is equal to the frase; since it depends only on the algebra and
the BRST charge is forminvariant, i.e.

Qprst = X*[1%] = Qprst — KT [1s] + O(K?) . (B.6)

Changing to interaction picture we can evaluate the freeqfdhe BRST charge, i.d2grsT, as in the
free case and arrive at

QBRST = i(Xua ng)cov - HTO“[%M] . (B7)

Because of the additional term in the BRST operator, we saiethie only physical state of definite
particle number is the Fock vacuum. This is clear, becautigeipresence of interactions it is not the free
particle alone which is physical, but the particle togethih its “quantum cloud” of gravitons and other
particles.
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Since the investigation of gravitons coupled to quantuntenas rather hard, we will study only the
coupling of gravitons to classical matter. In this case weamstruct closed expressions for physical states
for given classical matter distributions. Even if the givmsumptions of classical matter in the presence of
guantized gravity has no direct application in our specificld; since there the quantum aspects of matter
occur on larger scales then these of gravity, it is in prilecipteresting how the “graviton cloud” of a point
particle would look like.

Before we give the closed expression of the graviton clouel,fivst have to decompose our BRST
operator into terms with specific domains and co-domaingagginceT*” is classical and therefore a
C-number, the following decomposition holds true

Qprst = Q1 + Qo — KTOH [77;] — KT M5l 5 (B.8)

where+/— denotes positive and negative frequency parts@nis defined as in[(4.66). The individual
domains and co-domains are

Q- ngawton & thost ® Hanhghoat ngtxlnton ® Hgfm ® Hdntlg,hOht (B.9)
Qs ngawton ® thost ® Hanhghoat nga\lnton Hgﬁﬁslt & Hdntlg,hoat (B.10)
T [77;#] : grawton ® thost ® Hantighost - ngaviton ® thost ® Hdnmgh%t (B.11)
T3] : Hiraviton © Hihost © Hantighost — Migraviton @ Hihbatr @ Hantighost - (B.12)

We now make the following ansatz for the graviton cloud state
[v) == GT0) : Zw (AH™0) , (B.13)

wherew,, are some weights and' := GLV(J”“’) is the creation operator for some wave packetvhich
we have to determine now.
Acting with Qprgr on the statéy) and demanding it to be invariant we get the following equatio

0 = Qprsr|t) = (2 — kKT D)W) = (1Q2,GT] = kGTT[,])[0) (B.14)
which has the solutions
[Q2, AT] = kT%[n,] A (n+ Dwngr = wy (B.15)
or
[, ATl = —kT%Mn, ] A (n+ Dwpsr = —wy (B.16)

which are equivalent.
Choosingwy = 1 we arrive at a coherent state

Zi )10y = e4'|0) (B.17)

n!

with the following condition for the spectrum of the wave gat
ky f* (k) = / BT vk € R>. (B.18)

As an example we assume a point particle with madscated atk = 0. Then the energy momentum
tensor is given by"*” = §4'6§md(x) and the condition for the wave packiet (B.18) is for exampliied
by using

KM ezko

3 . fM(k) = 0for (u,v) # (0,0) . (B.19)

JEOO (k) —
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This spectrum leads to the following position space wavéeac

K}mﬂ'Q

() = / BpfO (p)e=ive = ST (B.20)

r

wherer = |x| is the spatial distance. This result is in agreement wittckhssical result that nonrelativistic
matter changes the@d component of the metric by adding a Newtonian potential. Ghantum state
corresponding to the Newtonian potential is thereforemyivg a coherent state afyy particle states with
wave packets decreasing &5r. This solution can be boosted in order to get the gravitoncior a
moving point mass.

It has to be mentioned that this state is only one represeatata whole equivalence class of states we
get by adding exact states to it. Since our state is not of z@nw, it is not equivalent to the trivial state.

We now stop at this point without investigating, for examihes space of exact states or other physical
states including physical gravitons. This is because oun ig@al was to show the similarity between the
graviton cloud and Newton’s potential. To understand timslarity we did not require a full understanding
of the exact states as well as possible other physical statksling physical gravitons. We also do not
expect to gain much more insight by doing these additionalstigations.
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Appendix C

Renormalization of graviton induced
tadpoles

Nonvanishing one point functions of massless particleegda serious divergences and render a theory
inconsistent, if they can not be absorbed into the renomatidin of some parameter. Therefore it must to
be checked that all one point functions behave like this.

In “standard theories” the only massless particles areovéetsons, such that the vanishing of one point
functions is guaranteed by Lorentz covariance, since dstilat

WO ~ [ dtaer @0 = o. XD

In the case of gravitons it looks quite different, since weeha

WV\Q N / e (01T (2)[0) £ 0, (C.2)

because a general energy momentum teihé6thas a trace nonequal zero and therefore scalar components.
Since such tadpoles come with a graviton propagator deratonih/p? in the on-shell limitp? — 0,
divergences will occur in some Feynman diagrams at NLO. Basé divergences can be absorbed by
renormalizing the cosmological constant as it has been sho{25]. We will now briefly show how this
works.
Since the most general action in general relativity alsdaios a cosmological constant term, we have
in principle to include it. This additional action is of therin

Sy = / d*/—gA = / d4ng h+ O(k?), (C.3)

where we used the expansion on flat background and neglected the constantnetime action, since it
does not contribute.
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In terms of Feynman diagrams this additional action can tezpneted with the following “vertex”
A~ ] = ig/\nuu (C.4)

describing the “interaction” between graviton and the wawwexpectation value of the graviton trake
This does not spoil Lorentz invariance, since the trackisfa scalar.

Working now explicitly in thei?¢ model with the Feynman rules from fig. 5.2 the amplitudes ler t
one loop renormalization of the cosmological constant arengoy

4 -—
MIW = AoNnN] —|—Z WV\O -+ WJ\J\ /\,
i=1 =

d*k 2k,k, — 0., (k2 — m?2 d*k 2k, k, — 1., (k2 — m?
=iy o [ h ) o [ G e e T (e
2 2 ) (2m) k? —mg 2 ) (2n) k? —mg
Since the problematic part of this amplitude is its traceapplyn** and therefore get
'k [ K =2mi Kk —2m]
= 2ikA — 4 . C.6
M " Ii/ (2m)* < k2 — mf/) + k2 — mi (C.6)

Next we have to evaluat®! in some regularization scheme. Since this is a trivial taskassume that
this had been done and simply demand the following renomaédin condition

A= M=0, (C.7)

which relates the bare cosmological constanib the renormalized ong,.. Therefore the additional bare
cosmological constant action can be used as a countertemerformalizing the cosmological constant to
0 in order to avoid problems coming from graviton tadpoles.

With the cosmological constant counterterm it now holds tru

Q0

Since the renormalized one point function does not deperndeaxternal momenta (there is no incoming
momentum) all Feynman diagrams containing graviton inddadpoles as subdiagrams will vanish. Thus
we will neglect them in our calculations.

=0. (C.8)

T
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Appendix D

Colored processes, gluon
Bremsstrahlung and IR finiteness In
Yang-Mills theory

In this work we require rather untypical QCD cross sectiovfsch are not averaged (summed) over color in
the initial (final) state. Since the cancellation of IR diyences in QCD is usually discussed with summed
and averaged color, we have to discuss the topic of fixedmadteolor here in this work. We will make
use of the Kinoshita-Lee-Nauenberg (KLN) theorém [20, ®plical theorem and unitarity cuts in order
to discuss the IR behavior of colored processes.

The KLN theorem guarantees by using unitarity that phygicatesses, i.e. processes summed (av-
eraged) over all degenerate final (initial) states, are @felR divergences. Since unitarity is related to
the optical theorem and unitarity cuts, there is a diagratitniarmalism to check the IR finiteness. We
will briefly explain this formalism by using the most simple Hivergent process of an off-shell photon
decaying into electron and positron in QED.

The incomplete square of the sum of the tree-level and oned@grams is given by all cuts, which do
not cut through the internal photon line, of the followinggiams

But since the optical theorem requires all possible cutshawe even to cut through the photon line and
arrive at the diagrams of the final state Bremsstrahlung, i.e

% ! WQ o2

Therefore we have also to include processes with degerfgraltetates, i.e. photon to electron, positron
and soft photon in this case, in order to arrive at IR finitsreghe inclusive cross section.

In the case of massless matter or gauge bosons with sel&ati@n there occur also collinear diver-
gences. These divergencesrequire an additional incltreiggnent of the initial state. This can be achieved
by crossing all initial states to the final state. Fat a» m process this would lead @ — n + m am-
plitudes. Gluing these amplitudes together, i.e. perfogwn operation which is inverse to the cuts, we
arrive at0 — 0 amplitudes as a starting point for our investigations.

The problem with colored amplitudes in Yang-Mills theoryhsat if we construct th®@ — 0 amplitude
from the color fixed tree and loop amplitudes, it does not egvih the full0 — 0 amplitude, since
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the matter legs are held at fixed color in the first case andrtegnial color is summed in the second
case. This leads to the question if the KLN theorem appligbd@ccase of color restricted processes and
if they can be rendered IR finite by a physically sensibletisisle treatment of color. Now there are two
possibilities. First it could happen that the KLN theoreneslmot apply to restricte@l — 0 amplitudes,

so that the treatment of colored cross section is not senaibdll. Second, it could be that applying all
possible cuts to the restrictédd— 0 amplitude will lead to an IR finite cross section. In this cédeas

to be checked if the cuts give rise to additional physicadiyssble inclusive cross sections, which cure the
IR divergences. Independent of which of the two scenaridd tnoe, we will see that the straightforward
definition of colored cross section is not possible in gelnénahe following we will, in particular, describe
why the second possibility will not work either. We will udgetexample of scalar QED-QCD theory (or
equivalently the Yang-Mills model from chapfér 6), in whisie investigate the one loop cross section for
predypblue  qjredyblue geattering at order?g?.

From the tree and loop amplitudes we can, similar to the QEd® ciescribed above, construct the re-
stricted0 — 0 amplitude. Performing all additional cuts, we recognizegkpected photon Bremsstrahlung
and the inclusive gluon Bremsstrahlung, which we expectdiggiphysically motivated inclusive gluon
processes. The physically motivated inclusive processethase which we get by substituting consecu-
tively every external particle of colarby a particle of colorj plus a gluon performing thégj-transition.
But there are also some additional contributions, whichaldihinto this picture. To see this, consider the
glued0 — 0 amplitude constructed in the following way

-

blue blue blue ) blue \\\ e
4
Y X — (D.3)
: A
red red red

We can cut the scalar lines in such a way that the followingmims emerge

red

blue blue blue blue
/

. 4
Y : (D.4)
\

blue blue blue blue

where the internal lines in the box diagram are held fixed ltrced. The problem is that there are no cuts
in the resticted) — 0 amplitude, which can be related to these diagrams with atitemal colors. But a
physical definition of the cross section is only possibleéfado not restrict internal d.o.f..

There are now two “physical” possibilities. Either we take £xceptional processes into account by in-
cluding also all other d.o.f. contributing to this kind ofstering, or we leave them out. Both methods lead
to a non-vanishing of the IR divergences, because of eitteemuch IR contributions from the additional
inclusive processes or too little.

This shows that there is no consistent way of performingrdited processes in general. We also have
the conjecture that by a systematic completion of the indeterocesses followed by including the new
additional cuts we would arrive at a initial and final statensued process in the end, if we built up the
formalism on cuts 06 — 0 amplitudes.

For our work we can use a trick in order to arrive at sensilis€sections for colored external particles.
This trick only works if we have massive scalars, such tha dufficient to include only the degenerate
final states. In chapt€f 6 we are interestegifflyybue — yredyblue seattering in the framework of scalar
gravity Yang-Mills theory. The trick now is to notice thatdur desired order the color fixed non-inclusive
process is given by the same diagrams as the non-inchigite'"c — 15°11)Se!2 process with summed
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final state colors. But now for the final state color summed@ss we can construct the non-restricted
2 — 2 glued amplitude, which we can cut and cure the soft IR divergs in a consistent way. Because
of the massive matter fields we do not require to work withits@f the0 — 0 amplitude. This leads to a
well defined and IR finite inclusive process related to owr tred loop amplitudes.

It has to be mentioned that we can not use this approach tolatddixed color processes with massless
matter fields. This is because massless matter fields leaulltoear divergences and therefore require a
summation over degenerate states of the timal initial state. But when using a summed initial and final
state, no color information can possibly be left over. Thisject requires further investigations.
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Appendix E

Localized wave packet states

This appendix is devoted to localized wave packet statest, ke discuss the mathematical description of
wave packet states. Therefore we use wave packets with @asgectra and give approximations to study
their spacetime representation. Second, we will discuspittbblem of performing wave packet scattering
processes. In particular the projection of the final statevave packets will require a different setup than
used in conventional colliders.

E.1 Gaussian wave packets

Throughout this work we frequently use wave packets loedlin space for describing our particle states.
A general wave packet for a scalar particle is given by

fo)i= [ EEfge (E.1)

wheref (k) denotes the spectrum, which has to be normalized by thetiomdf, f)co, = [ d3kf* (k) f(k) =
1. Obviouslyf(z) is a solution to the Klein-Gordon equation.

Since we perform integrations involving wave packets wedtgtto use the most simple localized states
given by the family of wave packets with a Gaussian spectigm,

(k—q)?

5oz ) e aERY o€ (0,oo>,xeR4} :

(E.2)

{f@,U,X) () Frpon (k) = Ny (27)°2K exp (—

whereN|, ) is a normalization constant,the width,q the central momentum vector ahti = vk? + m?
is on-shell. Furthermorg is the spacetime position of the tightest spacelike wav&gtaas we will see
below.

The only drawback of the family of Gaussian wave packetsdsithis not closed under Lorentz boosts,
since f(,.0.,) (k) receives some non-Gaussianities when boosted. But thidgmnois not too dramatic,
since performing a boost the wave packet will still remaioalizved and therefore is applicable to our
problems. In the following we will choose the wave packetsddsaussian in the frame where we naturally
perform our calculations and interpret the results, e gctmter of mass system.

Next we are interested in the explicit value §f, ). This can be derived for massless particles by a
short calculation as

1
2

_(49)2 ag a2 0‘2 q -
N(qyo.):{(Qﬂ')gﬂ'e (cr) 0’3q (25"'6(0) ﬁ(2+?)erf(;))} s (E3)
whereerf(z) := % J dt exp (—t?) denotes the error function ad= ||q|| is the norm of they vector.
0
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Furthermore we are interested in the covariant over(@@s o, v,)» f(gz,00,x2))cov @MONG two wave
packetsf(y, o,,v,) and fig,.04,v), Since they will give upper bounds on the width For our problem
we will always prepare two incoming particles (and also stimmes two outgoing particles), which, in the
center of mass system, will be given By, , .y and f_, . ), respectively. Note that we have chosen
the widtho and offsety to be equal for both wave packets. The width is constrainethbycondition
that we want to interpret one of the particles as left movind ane as right moving, i.e. the overlap
(f(g,00x)1 f(=q,0.x))cov Must be sufficiently small.

The overlap can be derived by a short calculation as

(Flaoos F—aonJoow = 2NGy o (2m) e () 0t (E.4)

By inserting [E.B) it can be shown that this overlap only defseon the rati¢t and becomes smaller than
0.01if o < £. Therefore we will always set = £, which on one hand reduces the number of parameters
by one and on the other hand gives the broadest momentumwpsegacket, i.e. the narrowest position
space wave packet, at givenwhich is exactly the wave packet we require in the following

For massive particles we have calculated the normalizationerically and found out that it differs less
than1% for 2 < % This means that we can apply the massless normalizati@hi(ethe following, since
m will always be much smaller than

This concludes the discussion of the Gaussian wave packetsinentum space. But we also have to
investigate the wave packets in position space in order tiergtand their dynamics and learn to control
them. For this purpose we will construct the spacetime ssmation of the wave packets using some
approximations and investigate products of different waaekets, since they always occur in problems of
dynamical localization using wave packets.

The position representation (E.1) involves an integralolvhive can not solve directly, because of the
exponentiated non-polynomial dispersion relatidn= v/k2 + m?2 of the particles. As an approximation
we have performed the Taylor expansion of the energy ar&uady, which is given by

koEQ+M+L<(kq)2%>+E¢10<<S>B> : (E.5)

3
whereE, = \/q?>+m? andO ((g) ) represents some corrections which become small in the limit

k|| < [la]|. The zeroth order just leads to a phase, the first order fixeselocity of the wave and the
second order describes dispersion.
The position representation of the wave packet using theofider approximation is given by

3 o o2 -
flaon0 (@) = V21 03N(q_,g) e~ 1a(@—x) exp (—?g 2) , (E.6)

wheref:: X—X— Eiq(t —x") is the time dependent spatial center of the wave packet.\ildis packet

describes a dispersion-free propagating Gaussian shapdtofl /o.
In second order approximation we get

3 & ; =
v2r Nig.0) e~ i==x) exp <—§—a - it = ) (ad)” ) , (E.7)

f ox)\L) = -
e g, Za(als] — it — XO)aP)

whereq := 0—12 + z(t;;—’(fo) This wave packet describes a propagating and dispersingsizan shape with
a time dependent width. This time dependent width is given by

0.4(t_X0)2

1 2
orty= Y E (E8)

g
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for directions perpendicular g and

o (t) = oL (1) <1+ - =XV CE, — ) ) 2 (E.9)

o+ Bt =X +a(t —x°)?

for the direction parallel tay. It can be shown that this packet has its smallest width at x° and
o1 (t) > o) (t) because of length contraction. This shows that one canaldht spacetime position at
which the smallest width is reached by the parametefEhis is the key to control the wave packets.

Next we are interested in products of crossing wave packetse such expressions will always occur
in problems where one performs dynamical localizationgisiave packets. We will investigate first and
second order wave packets.

Using two first order wave packefs{E.6) with: || = ||qz| = ¢ crossing w.l.o.g. at = 0, and using
the relations; = o2 = 4 for both of them, their product is given by

_ (23 L\6 A2 —2iBE,t _f 2 £2 q_2t
Far.3.0) fiag.0) = @) (5) Ny gy € exp Ot gzt | exp { g xlata) ).
q q
(E.10)

which is a nonsymmetric localized function on spacetimea®u atr = x = 0 with a width proportional
to q. For the special case of anti-parallel moving particles,de = —qi, the overlap is a spacelike

symmetric Gaussian function with spatial widéR and timelike Width@. For sufficiently fast particles
we haveE, ~ ¢, this means that the spatial and timelike width are neanlyakeq

Products of crossing second order wave packets have asghdae for the spatial coordinates with the
time dependent width and non-Gaussian corrections tortiedirection. We have investigated the product
of two second order wave packets usiMgthematicaand found out that for sufficiently fast particles,
i.e.q = L, the overlapping region does not differ too much from the firsler result. In particular first
and second order overlaps have nearly the same width. Iwiris we will use the compact result for
the first order wave packefs{EI10) in order to estimate theefpme resolution due to two crossing wave
packets.

E.2 Scattering of wave packets

Usual scattering experiments are performed by producingitial state, which is approximately a four-
momentum eigenstate. This state is transformed by theaittiens into the outgoing state. Finally, the
outgoing state is projected onto four-momentum eigenstgain by a detector.

The wave packets required for our kind of processes are wijgkad over the momentum space and
therefore can not be prepared and detected with today&ledsl The preparation and detection of these
states is very important in order to resolve the positiorthefcorrelation function.

The preparation of localized wave packet states can for phabe performed by semiclassical accel-
eration in electric fields. We could first prepare some laealistate in a trap and then accelerate it with
electric fields. Since the electric forcE, = ¢E, does not depend on the momentum of the particle, it
accelerates a charged particle without projecting onto erdom eigenstates. As a note, this acceleration
has to be performed in a linear accelerator, since ring ar®irs would project out specific momentum
eigenstates by the magnetic field, which forces the beamarbibmotion.

The second step is to find a device projecting the final state wave packet states. This can not be
done in conventional colliders too, since these resolvertbmentum of the particle. This would destroy
the information about locality in our case. From a matheca&tpoint of view, we would have to find
measurement devices which correspond to the projectioratige P, = |¢) (1| on wave packet states
|1)). We can not give an experimental realization of such a dewithis work and leave it as an open
problem for e.g. experimentalists.

To conclude this section we explain why we can not extractdmsired information by projecting
the final state onto momentum eigenstates. Assume the nedémxent of some Hermitian operator
in some desired statég) and |b). We are interested in the square of the matrix elem@n®|a)|?> =
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(a|O)b)(b|Ola). Now we insert the representation of the identity operatdeims of eigenstates of some
operator which we know how to measure, e.g. the momentunatpei he result is

|(blO]a)|* = > (alOln)(n|b)(b|n’) {n'|Ola) . (E.11)

n,n’

We obtain that we can not extract the desired informatioruabié|O|a)|?> by measuring the projected
squared matrix element$n|O|a)|?, if the coefficient(n|b)(b|n') # ... This shows that we really
require a device projecting onto the wave packet states.

As a final remark, the purpose of our work is to perform a Gedaekperiment in order to understand
dynamical localization. We do not intend to describe theeeixpental realization of these Gedankenexper-
iments.
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Appendix F

Implementation of gravitons in
FeynArts and FormCalc

In order to perform our calculations using FeynArts and Foahe we had to include the graviton field
into the codes, since their field content is originally lietitto scalars, fermions and vector bosons. In this
chapter we briefly summarize which modifications have beefopeed in which parts of the code. The
reason why we give this summary is to pass on the knowledgeawe, such that it can be used by others
who want to perform calculations including gravitons udigynArts and FormCalc.

We have performed our changes using the versions Feyn&ta8d FormCalc 5.3..

Modifications in FeynArts

The first file we had to modify was the main fileynArts.m The line907 which reads
P$Generic = F|S|V|U|SV

was extended to
P$Generic = F|S|V|U|SV|T

in order to define a generic field call&dfor tensor field.
The propagator, vertices and polarization of the new tefislor7” can be defined in an extended generic
model file, which we calGravity.gen This file contains the following source code

ReadModelFile["'Lorentz.gen"]

KinematicIndices[ T ] = {Lorentz, Lorentz}

M$GenericPropagators = Flatten @ {M$GenericPropagators,
AnalyticalPropagator[External][ s1 T[j1, mom, {li1, li2} 11 ==
PolarizationTensor[T[j1], mom, li1, 1i2],

AnalyticalPropagator[internal][ s1 T[j1, mom, {li1, li2} > {li3, li4}] 1 ==
I PropagatorDenominatormom, Mass[T[j1]] ] *
(MetricTensor[li1, 1i3] MetricTensor[li2, li4] +
MetricTensor[li2, 1i3] MetricTensor[li1, li4] -
MetricTensor[lil, li2] MetricTensor[li3, 1i4])/2

M$GenericCouplings = Flatten @ {
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DeleteCases[M$GenericCouplings, [ . _S, _. _S, _. _S] == 1,

(* S-S-S: *)
AnalyticalCoupling[ s1 S[j1, moml1], s2 S[j2, mom2], s3 S[j3 , mom3] ] ==
G[1][s1 S[j1], s2 S[j2], s3 S[j3]] .
{1,

ScalarProductfmoml1, mom2],
ScalarProductfmom2, mom3],
ScalarProductfmom1, mom3],
ScalarProductfmoml, mom1],
ScalarProductfmom2, mom2],
ScalarProductfmom3, mom3]},

(» T-S-S =)

AnalyticalCoupling[ s1 T[j1, moml, {li1, li2}], s2 S[j2, mo m2],

s3 S[j3, mom3] | ==

G[1][s1 T[1], s2 S[j2], s3 S[j3]] .

{ FourVector[mom2, li1] FourVector[mom3, li2] +
FourVector[mom2, li2] FourVectorfmom3, lil] -
MetricTensor[lil, li2] ScalarProductimom2, moma3],
-MetricTensor[li1, li2] ScalarProductimoml, mom1]
+ FourVector[moml, lil] FourVector[moml, li2],
MetricTensor[li1, 1i2] },

(x T-S-S-S *)

AnalyticalCoupling[ s1 T[j1, mom1, {li1, li2}], s2 S[j2, mo m2],
s3 S[j3, mom3], s4 S[j4, mom4] ] ==
G[1][s1 T[j1], s2 S[j2], s3 S[j3], s4 S[j4]] .
{ MetricTensor[li1, li2] } ,

(» T-V-V *)

AnalyticalCoupling[ s1 T[j1, mom1, {li1, li2}], s2 V[j2, mo m2, {li3}],
s3 V[j3, mom3, {li4}] ] ==
G[1][s1 T[j1], s2 VI[j2], s3 V[3]] .
{- ScalarProductfmom2,mom3] (MetricTensor[li1, [i3] Met ricTensor[li2,li4]
+ MetricTensor[lil,lid]MetricTensor[li2,1i3]
- MetricTensor[li1,li2]MetricTensor[li3,li4])

- FourVector[mom2,li4]JFourVector[mom3,li3] MetricTens or[li1,li2]

- (FourVector[mom2,lil]FourVector[mom3,li2]

+ FourVector[mom?2,li2]FourVector[moma3,lil])MetricTen sorfli3,li4]

+ FourVector[mom?2,lil]FourVector[moma3,li3] MetricTens or[li2,li4]
+ FourVector[mom?2,li2]FourVector[moma3,li3] MetricTens or[li1,li4]
+ FourVector[mom?2,li4d]FourVectormom3,lil] MetricTens or[li2,i3]
+ FourVector[mom?2,li4d]FourVectormom3,li2] MetricTens or[li1,li3],
MetricTensor[li1,li2] (FourVector[mom2,li3] FourVecto rfmom1,li4]

+ FourVector[mom?2,1i3] FourVector[mom3,li4]
+ FourVector[mom1,li3] FourVector[moma3,li4])
+ MetricTensor[li1,li4] FourVectormom2,li2] FourVecto rfmom2,1i3]
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+ MetricTensor[li1,li3] FourVectormom3,li2] FourVecto rfmoma3,li4]
+ MetricTensor[li2,li4] FourVectormom2,lil] FourVecto rfmom2,1i3]
+ MetricTensor[li2,li3] FourVectorfmom3,li4] FourVecto rfmom3,li1] },

(* T-S-S-V )

AnalyticalCoupling[ s1 T[j1, mom1, {li1, li2}], s2 V[j2, mo m2, {li3}],
s3 S[j3, mom3], s4 S[j4, mom4] | ==
G[1][s1 T[j1], s2 VI[j2], s3 S[j3], s4 S[j4]] .
{ FourVectorfmom3-mom4, 1i3] MetricTensor[li1,li2]
- FourVectormom3-mom4,li2] MetricTensor[lil,li3]
-FourVectorfmom3-mom4,lil] MetricTensor[li2,li3]}

}

M$LastGenericRules = Flatten @ {M$LastGenericRules,
PolarizationTensor[p_, _. mom:FourMomentum[Outgoing, _ 1, i ] >
Conjugate[PolarizationVector][p, mom, li]
}

In this file we have defined the required interaction vertfoegraviton couplings to scalars and vectors.
Together with this generic model file we have used severaifipenodel files for our different models.
For example the source code for thép model is given by

M$ClassesDescription = {

S[]_] ==
SelfConjugate -> True,
Mass -> Mpsi,
PropagatorLabel -> "psil",
PropagatorType -> Straight,
PropagatorArrow -> None },
8[2] ==
SelfConjugate -> True,
Mass -> Mpsi,
PropagatorLabel -> "psi2",
PropagatorType -> Straight,
PropagatorArrow -> None },
8[3] ==
SelfConjugate -> True,
Mass -> Mpsi,
PropagatorLabel -> "psi3",
PropagatorType -> Straight,
PropagatorArrow -> None },
S[4] ==
SelfConjugate -> True,
Mass -> Mpsi,
PropagatorLabel -> "psi4",
PropagatorType -> Straight,
PropagatorArrow -> None },
8[5] ==
SelfConjugate -> True,
Mass -> Mphi,
PropagatorLabel -> "phi",
PropagatorType -> ScalarDash,
PropagatorArrow -> None },
T[]_] ==
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SelfConjugate -> True,
Mass -> O,
PropagatorLabel -> "g",
PropagatorType -> Sine,
PropagatorArrow -> None }

M$CouplingMatrices = {
(» T-S-S =)
C[ T[1], S[1], S[1] ] ==
C[ T[], S[2], S[2] ] ==
C[ T[1], S[3], S[3] ] ==
C[ T[1], S[4], S[4] ] ==
C[ T[], S[5], S[5] ] ==

kap/2 {{1}, {2 bbb}, {-Mpsi2}},
kap/2 {{1}, {2 bbb}, {-Mpsi2}},
kap/2 {{1}, {2 bbb}, {-Mpsi2}},
kap/2 {{1}, {2 bbb}, {-Mpsi"2}},
kap/2 {{1}, {2 aaa}, {-Mphi"2}},

(*+ S-S-S  *)
C[ S[1], S[2], S[5] ] == | lam {1}, {-kap’2 ccc }, {0}
, {0}, {kap"2 ddd/2}, {-kap*2 ddd/2}, {-kap'2 eee}},
C[ S[3], S[4], S[5] 1 == | lam {{1}, {-kap2 ccc }, {0}

, {0}, {-kap*2 ddd/2}, {-kap™2 ddd/2}, {-kap2 eee}},

(+ T-SSS *)
C[ T[1], S[1], S[2], S[5] ] == | kap/2 lam {{1}},
C[ T[1], S[3], S[4], S[5] ] == | kap/2 lam {{1}}
}

M$LastModelRules = {}

These (generic) model files now can be used in order to defalimiggrnal gravitons. External gravitons
require some changes in FormCalc, to be discussed now.

Modifications in FormCalc

The modifications ifFormCalc.mare much more complicated than these in FeynArts, so thatplete
listing of all modifications is not sensible. The reason fustis that FormCalc uses the symbolic pro-
gramming languagf®rm, which requires a precise declaration of the variables herkfore has problems
with the new variablé>olarizationTensar The main task was to declare the new variable and perform the
necessary manipulations, like for example polarizatiansover graviton polarizations. The source code
of FormCalc.mhas overl000 lines and hence it was too for us to find the required sectimbg tmodified.
Therefore we convinced its inventor Thomas Hahn to help usadify FormCalc. A copy of the modified
version of FormCalc is made available in the interhet [26d@snload.

The second file to be modified was the felarizationSum.frmwhere we have defined the sum over
graviton polarizations.

With these modifications we could use FeynArts and FormQ@edrder to calculate amplitudes includ-
ing internal as well as external gravitons.
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