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Motivation from noncommutative gravity
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Noncommutative gravity à la Wess et al.

� Basic idea: [Aschieri,Blohmann,Dimitrijević,Meyer,Schupp,Wess]

diffeos
`
Ξ, [·, ·]

´

acts on

��

`
UΞ, µ,∆, ε, S

´ `
UΞF , µ,∆F , ε, SF

´

spacetime M NC spacetime
`
C∞(M), ?

´

� NC geometry via imposing covariance under UΞF

– h?k = f̄α(h) f̄α(k) “ = h e
iλ
2
←−
∂µΘµν

−→
∂ν k ”

– ω ∧? ω′ = f̄α(ω) ∧ f̄α(ω′)

– v?h = f̄α(v) · f̄α(h) . . .

� NC Einstein equation

R?ab −
1
2
gab?R

? = 8πGN T ?ab
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� Basic idea: [Aschieri,Blohmann,Dimitrijević,Meyer,Schupp,Wess]
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Mathematical dictionary

NC gravity

� deformed diffeomorphisms

� quantized functions

� quantized vector fields

� covariant derivatives

� one-forms, torsion, Riemann
curvature, . . .

Mathematical structure

� (quasi)triangular Hopf algebra H

� H-module algebra A

� H-module A-bimodule V

� connections on V

� homomorphisms between
appropriate modules V,W ,
e.g. V ′ = HomA(V,A)

� Outline of my talk:

– twist deformation of homomorphisms and connections

– extension (lift) to tensor product modules V ⊗AW

– NC gravity solutions from a global point-of-view (not using Xtoomany
strangeletters)
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Twist deformation of homomorphisms and connections
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Twist deformation preliminaries

Let H be a Hopf algebra.

Def: A twist is an invertible element F ∈ H ⊗H, such that

F12 (∆⊗ id)F = F23 (id⊗∆)F ,

(ε⊗ id)F = 1 = (id⊗ ε)F .

Ex: Let UP be the Poincaré Hopf algebra, then F = exp(− iλ2 Θµν∂µ ⊗ ∂ν) is a
twist (Moyal twist) .

Theorem (textbook)

� Given a twist, there is a new Hopf algebra HF with coproduct
∆F (·) = F ∆(·)F−1 and antipode SF (·) = χS(·)χ−1, where χ = fαS(fα).

� Given also an H-module algebra A, there is an HF -module algebra A? with
product a ? b = (f̄α . a) (f̄α . b).

� Given also an H-module A-bimodule V , there is an HF -module A?-bimodule
V? with a ? v = (f̄α . a) · (f̄α . v) and v ? a = (f̄α . v) · (f̄α . a).
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Endomorphisms

Let H be a Hopf algebra with twist F , A an H-module algebra and V an
H-module A-bimodule.

� EndA(V ), i.e. P (v · a) = P (v) · a, is an H-module algebra:

P ◦Q , ξ I P := (ξ1 . ) ◦ P ◦ (S(ξ2) . ) .

� Two possible quantizations:
(
EndA(V ), ◦?

)
vs.
(
EndA?(V?), ◦

)
Theorem
There is an isomorphism

DF :
(
EndA(V ), ◦?

)
→
(
EndA?(V?), ◦

)
, P 7→ DF (P ) = (f̄α I P ) ◦ (f̄α . )

preserving the HF -module algebra structure, i.e. DF (P ◦? Q) = DF (P ) ◦DF (Q)
and DF (ξ I P ) = ξ IF DF (P ).

NB: DF is a quantization isomorphism, mapping one-to-one classical
endomorphisms P (v · a) = P (v) · a to deformed ones P?(v ? a) = P?(v) ? a.
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� EndA(V ), i.e. P (v · a) = P (v) · a, is an H-module algebra:
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Homomorphisms

� HomA(V,W ), i.e. P (v · a) = P (v) · a,

is an H-module A-bimodule:

a · P · b := la ◦ P ◦ lb , where lb : v 7→ b · v .

� Two possible quantizations:
(
HomA(V,W )

)
?

vs. HomA?(V?,W?)

Theorem
There is an isomorphism

DF :
(
HomA(V,W )

)
?
→ HomA?(V?,W?) , P 7→ DF (P ) = (f̄α I P ) ◦ (f̄α . )

preserving the HF -module A?-bimodule structure, i.e.
DF (a ? P ? b) = a ? DF (P ) ? b and DF (ξ I P ) = ξ IF DF (P ).

Ex: Consider the dual module V ′ := HomA(V,A). Then DF ensures that
(V?)′ ' (V ′)?.
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Connections

Let
(
Ω• =

⊕∞
n=0 Ωn,∧,d

)
be an H-module differential calculus over A.

Def: A (right) connection on V is a linear map O : V → V ⊗A Ω1 satisfying the
Leibniz rule O(v · a) = O(v) · a+ v ⊗A da.

� First try: Consider DF (O) : V? →
(
V ⊗A Ω1

)
?

/ does not give (yet) a connection O? : V? → V? ⊗A? Ω1
?

� Second try: ,

V?

DF (O)
((QQQQQQQQQQQQQQ

eDF (O)
// V? ⊗A? Ω1

?

(V ⊗A Ω1)?

ι−1

OO With isomorphism

ι(v⊗A? ω) = (f̄α .v)⊗A (f̄α .ω)

Theorem

The map D̃F : ConA(V )→ ConA?(V?) is an isomorphism between connections on
V and connections on V?.
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Product module homomorphisms and connections
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Lifting homomorphisms

? Given P ∈ HomA(V , Ṽ ) is there a lift to HomA(V ⊗AW, Ṽ ⊗AW ) and

HomA(W ⊗A V ,W ⊗A Ṽ )?

� First lift P ⊗ id: v ⊗A w 7→ P (v)⊗A w always exists!

� Second lift i.g. not: w ⊗A v 7→ w ⊗A P (v) is incompatible with A-linearity!

� If H comes with a quasitriangular structure R ∈ H ⊗H and A, V, Ṽ are
quasi-commutative, i.e. a b = (R̄α . b) (R̄α . a) (as in NC gravity), we have

id⊗R P : w ⊗A v 7→ (R̄α . w)⊗A (R̄α I P )(v)

Def: R-tensor product of homomorphisms P ⊗R Q := (P ⊗ id) ◦ (id⊗R Q)

– ξ I (P ⊗R Q) = (ξ1 I P )⊗R (ξ2 I Q) (covariance)

– (P ⊗R Q)⊗R T = P ⊗R (Q⊗R T ) (associativity)

– (P ⊗R Q) ◦ (T ⊗R U) =
`
P ◦ (R̄α I T )

´
⊗R

`
(R̄α I Q) ◦ U

´
(comp. law)
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HomA(W ⊗A V ,W ⊗A Ṽ )?
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? Given P ∈ HomA(V , Ṽ ) is there a lift to HomA(V ⊗AW, Ṽ ⊗AW ) and
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? Given P ∈ HomA(V , Ṽ ) is there a lift to HomA(V ⊗AW, Ṽ ⊗AW ) and
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� First lift P ⊗ id: v ⊗A w 7→ P (v)⊗A w always exists!

� Second lift i.g. not: w ⊗A v 7→ w ⊗A P (v) is incompatible with A-linearity!

� If H comes with a quasitriangular structure R ∈ H ⊗H and A, V, Ṽ are
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Lifting homomorphisms
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HomA(W ⊗A V ,W ⊗A Ṽ )?

� First lift P ⊗ id: v ⊗A w 7→ P (v)⊗A w always exists!

� Second lift i.g. not: w ⊗A v 7→ w ⊗A P (v) is incompatible with A-linearity!

� If H comes with a quasitriangular structure R ∈ H ⊗H and A, V, Ṽ are
quasi-commutative, i.e. a b = (R̄α . b) (R̄α . a) (as in NC gravity), we have
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Product module connections

? Given two connections OV : V → V ⊗A Ω1 and OW : W →W ⊗A Ω1, can
we construct a connection on V ⊗AW?

� Yes, provided the Hopf algebra H is triangular, i.e. R21 = R−1, and A,Ω1,W
are quasi-commutative, i.e. a b = (R̄α . b) (R̄α . a) (as in NC gravity).

Theorem

The linear map OV ⊕R OW : V ⊗AW → V ⊗AW ⊗A Ω1 defined by

OV ⊕R OW := (id⊗ τR) ◦ (OV ⊗ id) + (id⊗ROW ) ,

where τR(ω ⊗A v) = (R̄α . v)⊗A (R̄α . ω), is a connection on V ⊗AW .

The sum ⊕R is associative, (OV ⊕R OW )⊕R OZ = OV ⊕R (OW ⊕R OZ).

NB: Our product connections differ from the ones of Madore

OV⊗AW = (id⊗ σ) ◦ (OV ⊗ id) + (id⊗OW )

� For central connections id⊗ROW = id⊗OW , but for noncentral connections
the ⊗R is important!

A. Schenkel (Würzburg & Wuppertal) Twisted homomorphisms and connections Corfu 2011 9 / 12



Product module connections

? Given two connections OV : V → V ⊗A Ω1 and OW : W →W ⊗A Ω1, can
we construct a connection on V ⊗AW?

� Yes, provided the Hopf algebra H is triangular, i.e. R21 = R−1, and A,Ω1,W
are quasi-commutative, i.e. a b = (R̄α . b) (R̄α . a) (as in NC gravity).

Theorem

The linear map OV ⊕R OW : V ⊗AW → V ⊗AW ⊗A Ω1 defined by

OV ⊕R OW := (id⊗ τR) ◦ (OV ⊗ id) + (id⊗ROW ) ,

where τR(ω ⊗A v) = (R̄α . v)⊗A (R̄α . ω), is a connection on V ⊗AW .

The sum ⊕R is associative, (OV ⊕R OW )⊕R OZ = OV ⊕R (OW ⊕R OZ).

NB: Our product connections differ from the ones of Madore

OV⊗AW = (id⊗ σ) ◦ (OV ⊗ id) + (id⊗OW )

� For central connections id⊗ROW = id⊗OW , but for noncentral connections
the ⊗R is important!

A. Schenkel (Würzburg & Wuppertal) Twisted homomorphisms and connections Corfu 2011 9 / 12



Product module connections

? Given two connections OV : V → V ⊗A Ω1 and OW : W →W ⊗A Ω1, can
we construct a connection on V ⊗AW?

� Yes, provided the Hopf algebra H is triangular, i.e. R21 = R−1, and A,Ω1,W
are quasi-commutative, i.e. a b = (R̄α . b) (R̄α . a) (as in NC gravity).

Theorem

The linear map OV ⊕R OW : V ⊗AW → V ⊗AW ⊗A Ω1 defined by

OV ⊕R OW := (id⊗ τR) ◦ (OV ⊗ id) + (id⊗ROW ) ,

where τR(ω ⊗A v) = (R̄α . v)⊗A (R̄α . ω), is a connection on V ⊗AW .

The sum ⊕R is associative, (OV ⊕R OW )⊕R OZ = OV ⊕R (OW ⊕R OZ).

NB: Our product connections differ from the ones of Madore

OV⊗AW = (id⊗ σ) ◦ (OV ⊗ id) + (id⊗OW )

� For central connections id⊗ROW = id⊗OW , but for noncentral connections
the ⊗R is important!

A. Schenkel (Würzburg & Wuppertal) Twisted homomorphisms and connections Corfu 2011 9 / 12



Product module connections

? Given two connections OV : V → V ⊗A Ω1 and OW : W →W ⊗A Ω1, can
we construct a connection on V ⊗AW?

� Yes, provided the Hopf algebra H is triangular, i.e. R21 = R−1, and A,Ω1,W
are quasi-commutative, i.e. a b = (R̄α . b) (R̄α . a) (as in NC gravity).

Theorem

The linear map OV ⊕R OW : V ⊗AW → V ⊗AW ⊗A Ω1 defined by

OV ⊕R OW := (id⊗ τR) ◦ (OV ⊗ id) + (id⊗ROW ) ,

where τR(ω ⊗A v) = (R̄α . v)⊗A (R̄α . ω), is a connection on V ⊗AW .

The sum ⊕R is associative, (OV ⊕R OW )⊕R OZ = OV ⊕R (OW ⊕R OZ).

NB: Our product connections differ from the ones of Madore

OV⊗AW = (id⊗ σ) ◦ (OV ⊗ id) + (id⊗OW )

� For central connections id⊗ROW = id⊗OW , but for noncentral connections
the ⊗R is important!

A. Schenkel (Würzburg & Wuppertal) Twisted homomorphisms and connections Corfu 2011 9 / 12



Product module connections

? Given two connections OV : V → V ⊗A Ω1 and OW : W →W ⊗A Ω1, can
we construct a connection on V ⊗AW?

� Yes, provided the Hopf algebra H is triangular, i.e. R21 = R−1, and A,Ω1,W
are quasi-commutative, i.e. a b = (R̄α . b) (R̄α . a) (as in NC gravity).

Theorem

The linear map OV ⊕R OW : V ⊗AW → V ⊗AW ⊗A Ω1 defined by

OV ⊕R OW := (id⊗ τR) ◦ (OV ⊗ id) + (id⊗ROW ) ,

where τR(ω ⊗A v) = (R̄α . v)⊗A (R̄α . ω), is a connection on V ⊗AW .

The sum ⊕R is associative, (OV ⊕R OW )⊕R OZ = OV ⊕R (OW ⊕R OZ).

NB: Our product connections differ from the ones of Madore

OV⊗AW = (id⊗ σ) ◦ (OV ⊗ id) + (id⊗OW )

� For central connections id⊗ROW = id⊗OW , but for noncentral connections
the ⊗R is important!

A. Schenkel (Würzburg & Wuppertal) Twisted homomorphisms and connections Corfu 2011 9 / 12



Product module connections

? Given two connections OV : V → V ⊗A Ω1 and OW : W →W ⊗A Ω1, can
we construct a connection on V ⊗AW?

� Yes, provided the Hopf algebra H is triangular, i.e. R21 = R−1, and A,Ω1,W
are quasi-commutative, i.e. a b = (R̄α . b) (R̄α . a) (as in NC gravity).

Theorem

The linear map OV ⊕R OW : V ⊗AW → V ⊗AW ⊗A Ω1 defined by

OV ⊕R OW := (id⊗ τR) ◦ (OV ⊗ id) + (id⊗ROW ) ,

where τR(ω ⊗A v) = (R̄α . v)⊗A (R̄α . ω), is a connection on V ⊗AW .

The sum ⊕R is associative, (OV ⊕R OW )⊕R OZ = OV ⊕R (OW ⊕R OZ).

NB: Our product connections differ from the ones of Madore

OV⊗AW = (id⊗ σ) ◦ (OV ⊗ id) + (id⊗OW )

� For central connections id⊗ROW = id⊗OW , but for noncentral connections
the ⊗R is important!

A. Schenkel (Würzburg & Wuppertal) Twisted homomorphisms and connections Corfu 2011 9 / 12



Noncommutative gravity solutions revisited
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Existing results

� Schupp and Solodukhin [arXiv:0906.2724]:

– NC black hole solution with [xi, xj ] = i λ εijkxk

– Uses local central basis of vector fields and one-forms

� Ohl and AS [arXiv:0906.2730]:

– NC FRW and black hole solutions with special abelian twists

– Uses local central basis

� Aschieri and Castellani [arXiv:0906.2774]:

– NC Einstein spaces with special abelian and affine Killing twists

– Uses local central basis. Affine Killing twists are treated globally

Main observation
If the twist is constructed by sufficiently many Killing vector fields, then a classical
solution is also a solution of the NC Einstein equation.

� Caveats:

– not for every twist there is a local central basis

– localization is i.g. incompatible with non-formal deformations
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Global approach to NC gravity solutions

We use the methods developed above, in particular the isomorphisms

� DF :
(
HomA(V,W )

)
?
→ HomA?(V?,W?) , P 7→ (f̄α I P ) ◦ (f̄α . )

� ι : V? ⊗A? W? → (V ⊗AW )? , v ⊗A? w 7→ (f̄α . v)⊗A (f̄α . w)

Theorem

Let
(
M, g ∈ Ω1 ⊗A Ω1

)
be an Einstein manifold, i.e. Ric = Λ g, with Killing Lie

algebra K and let F−1 − 1⊗ 1 ∈ UΞK⊗ UΞ + UΞ⊗ UΞK. Then the deformed
manifold

(
M, g? = ι−1(g),F

)
is deformed Einstein, i.e. Ric? = Λ g?.

� Proof sketch:
– quantization of the classical Levi-Civita connection O, i.e. O? := eDF (O),

yields deformed LC connection, (O? ⊕R O?)(g?) = 0 and T? = 0.

– deformed curvature R? := O? ◦ O? : Ω1
? → Ω1

? ⊗A? Ω2
? is related to

R = O ◦ O : Ω1 → Ω1 ⊗A Ω2 via R? = ι−1 ◦DF (R)

– deformed Ricci tensor Ric? := Tr?(R?) ∈ Ω1
? ⊗A? Ω1

? is related to
Ric ∈ Ω1 ⊗A Ω1 via Ric? = ι−1(Ric)

⇒ Ric? = ι−1(Ric) = ι−1(Λ g) = Λ g?
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Conclusions and outlook

� Structure preserving isomorphisms/quantization maps

– DF :
`
EndA(V ), ◦?

´
→
`
EndA?(V?), ◦

´
– DF :

`
HomA(V,W )

´
?
→ HomA?(V?,W?)

– eDF : ConA(V )→ ConA?(V?)

� Lift HomA(V , Ṽ )→ HomA(W ⊗A V ,W ⊗A Ṽ ) for quasitriangular Hopf
algebras and quasi-commutative algebras and modules

� Sum ⊕R : ConA(V )× ConA(W )→ ConA(V ⊗AW ) for triangular Hopf
algebras and quasi-commutative algebras and modules
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algebras and quasi-commutative algebras and modules

� Sum ⊕R : ConA(V )× ConA(W )→ ConA(V ⊗AW ) for triangular Hopf
algebras and quasi-commutative algebras and modules

� Generalization of existing results on NC gravity solutions in a global approach

� Open issues:

– existence and uniqueness of NC Levi-Civita connection

– introducing ∗-structures and reality conditions

A. Schenkel (Würzburg & Wuppertal) Twisted homomorphisms and connections Corfu 2011 12 / 12



Conclusions and outlook

� Structure preserving isomorphisms/quantization maps

– DF :
`
EndA(V ), ◦?

´
→
`
EndA?(V?), ◦

´
– DF :

`
HomA(V,W )

´
?
→ HomA?(V?,W?)

– eDF : ConA(V )→ ConA?(V?)
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