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Physical states for QFT on curved space-times

e On general curved space-times, no notion of vacuum state.

e Substitute for vacuum state: Hadamard states, characterized
by the singularity structure of their two-point functions [Kay,
Wald, etc. '70-'80];

e Most important property: quantum stress-energy tensor can
be renormalized w.r.t. a Hadamard state;

e Since [Radzikowski '96], Hadamard condition formulated in
terms of wave front set.

o Problem: few examples of Hadamard states have been
constructed.
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Overview

e We reconsider the construction of Hadamard states on
space-times with metric well-behaved at spatial infinity;

e Working on a fixed Cauchy surface, we can use rather
standard pseudo-differential analysis.

e We construct a large class of Hadamard states with VDO
two-point functions, in particular all pure Hadamard states.

e We give a new construction of Hadamard states on general
globally hyperbolic space-times.
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Quasi-free states: neutral case
Let (X, 0) be a symplectic space and A its Weyl CCR C*-algebra,
generated by elements W(f), f € X', with

W(f)" = W(-f), W(AW(g) =e ""O2W(f1g), fgeX.
A state w on A is quasi-free if there is a symmetric form 7 s.t.

w(W(f)) =e 21N fex.



Introduction Quasi-free Hadamard states Model Klein-Gordon equation General space

Quasi-free states: neutral case
Let (X, 0) be a symplectic space and A its Weyl CCR C*-algebra,
generated by elements W(f), f € X', with

W(f)" = W(-f), W(AW(g) =e ""O2W(f1g), fgeX.
A state w on A is quasi-free if there is a symmetric form 7 s.t.
w(W(f)) =e 21N fex.

e A symmetric form 1 on X defines a quasi-free state iff the
two-point function A = n¢ + 50¢ satisfies A >0 .



Introduction Quasi-free Hadamard states Model Klein-Gordon equation General space

Quasi-free states: neutral case

Let (X, 0) be a symplectic space and A its Weyl CCR C*-algebra,
generated by elements W(f), f € X', with

W(f)" = W(-f), W(AW(g) =e ""O2W(f1g), fgeX.
A state w on A is quasi-free if there is a symmetric form 7 s.t.
w(W(f)) =e 21N fex.

e A symmetric form 1 on X defines a quasi-free state iff the
two-point function A = n¢ + %0@ satisfies A >0 .

e A symmetric form A on CX is the two-point function of a
quasi-free state iff A > 0 and A > io¢ .



Introduction Quasi-free Hadamard states Model Klein-Gordon equation General space-times

Quasi-free states: neutral case
Let (X, 0) be a symplectic space and A its Weyl CCR C*-algebra,
generated by elements W(f), f € X', with

W(f)" = W(-f), W(AW(g) =e ""O2W(f1g), fgeX.
A state w on A is quasi-free if there is a symmetric form 7 s.t.
w(W(f)) =e 21N fex.

e A symmetric form 1 on X defines a quasi-free state iff the
two-point function A = n¢ + %0@ satisfies A >0 .

e A symmetric form A on CX is the two-point function of a
quasi-free state iff A > 0 and A > io¢ .

The field operators ¢(f) in the GNS rep. of w satisfy
[¢(f), o(g)] = i0(f, &), w(B(F)o(g)) = Ar(f, g).
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Quasi-free states: charged case

Let (), o) be a complex symplectic space (with some complex
structure j) and A the Weyl CCR C*-algebra of (Vg, Reo).
A quasi-free state w on A is gauge-invariant if

w(W(y)) = w(W(’y)), 0<f<2m, yel.

Let ¢(y) be the (‘neutral’) field operators in the GNS rep. of w.
The charged fields:

U(y) = J5(y) +i(iy)), ¢ (v) = F5(o(y) —ig(iy))

W), ¥ ()] = io(y1,y2),  w(()¥™(v2)) = Ay, y2)
= My1,y2) —io(y1, y2) = w(¥* (y2)v(y1))

e A symmetric form A on Y is the two-point function of a
gauge-invariant quasi-free state iff A > 0and A > io .
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Let (), 0) be a complex symplectic space and A the Weyl CCR
C*-algebra. The unitary group:

U,io) ={u: v'ou=o}.
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Quasi-free states: unitary group

Let (), 0) be a complex symplectic space and A the Weyl CCR
C*-algebra. The unitary group:

U,io) ={u: v'ou=o}.

Recall that X is the two-point function of a gauge-invariant
quasi-free state on A iff

(Pos) A>0and A >io.

e If X satisfies (Pos) then so does u*Au for any u € U(Y,i0).

e If A\; and Ay are two-point functions of pure states, then there
exists u € U(),i0) such that Ay = u*A\ju.
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We fix a smooth vector potential A,(x)dx* and a mass term.

e Klein-Gordon operator:
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where |g| = det[gy.], [¢"] == [guw] L
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Klein-Gordon equations

Consider a globally hyperbolic space-time (M, g, dx*dx").
We fix a smooth vector potential A,(x)dx* and a mass term.

e Klein-Gordon operator:
P(x, Dy) = |g|"2(0,, +1A,)|g| 28" (D) + iA,) + m?,

where |g| = det[g,.], [¢"] := [gu] "
e P(x, D) admits unique advanced/retarded fundamental
solutions EL solving:

P(x,Dx) o Ex =1,
suppELf C Ji(Suppf), f e (M),
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Symplectic space of solutions

Let Solsc(P) C C°°(M) be the space of smooth space-compact
solutions of
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e E=F, — E_, called the commutator function.
e One has Sols(P) = EC§®(M).
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Symplectic space of solutions

Let Solsc(P) C C°°(M) be the space of smooth space-compact
solutions of

(KG) P(x,Dy)¢ = 0.

e E=F, — E_, called the commutator function.
e One has Sols(P) = EC§®(M).

(Solsc(P), E) is our complex symplectic space. We look for A s.t.

A>0and A > iE +Hadamard condition .
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Fix a Cauchy hypersurface ¥ and set

p: Sol(P) — C§°(X) @ G (Y)
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Denote by o the canonical symplectic form on C5°(X) @ C5°(X):
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Symplectic space of Cauchy data
Fix a Cauchy hypersurface ¥ and set

p: Sol(P) — C§°(X) @ G (Y)
d) = (d)\):a iilnu(v# + 1A#)¢|Z) = (p0¢7 ,01<l5)

Denote by o the canonical symplectic form on C5°(X) @ C5°(X):

o(f.g) = —i /Z (e + Figo)ds, f.g € G°(E) & C5°(E),

e One has E(uy,u2) = o(po Euy, po Eup) for uy, up € C§(M).
e Hence (C§°(M), E) is isomorphic to (C§°(X) ® C?, o).
We can thus work with (C5°(X) ® €2, o) and look for A s.t.

A>0and A > ioc +Hadamard condition .

Then A(u1, u2) = X(p o Euy, p o Eup) for uy, up € C§°(M).
D
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Pseudo-differential operators

If ue D'(R"), WF(u) can be defined using pseudo-differential
operators. Denote by S™(R29), m € R the symbol class

a€ SR if 9°0%a(x, k) € O((1+ [k12)"7™), a8 € N,
The Weyl quantization of a is the operator
a(x, Dy)u(x) == (2m)~¢ // ei(xfy)ka(%, k)u(y)dydk.

WM(RY) := Op™(S™(R??)) = pseudo-differential operators.

Uo(RY) = (| W(RY)
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In particular a(x, Dyx) € W~°(RY) maps to smooth functions.
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Basic property: a(x, Dy) € V™(R?) maps H*(RY) — H5~™(RY).
In particular a(x, Dy) € W~>°(RY) maps to smooth functions. The
characteristic set of a

Char(a) == {(x, k) € RY x (R¥\ {0}) : am(x, k) =0}.

— a is elliptic iff Char(a) = (. Then there exists al~1) € W~m(RY)
such that al~Ya = 1 mod W—.

Definition
(x, k) ¢ WF(u) (the wave front set) iff there exists x € C§° and
a € SO(R??) with x(x) # 0, (x, k) ¢ Char(a) and

a(x, Dy)xu € S(RY).

— provides criteria for existence of u - v, u|x.
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Hadamard states

e Denote p(x,&) = g (x)£.€, the principal symbol of
P(x, Dx),

e N = p~1({0}) energy surface,
Ny ={(x,8) e N : &€ Vi(x)}, positive/negative energy
surfaces, N = N UN_,

o For X; = (x;,&) write X1 ~ Xy if X1, Xo € N, X1, X2 on the
same Hamiltonian curve of p.

Definition ([Radzikowski '96])
N satisfies the Hadamard condition iff

WF(/\)/ C {(Xl,XQ), Xi~Xo: X1 € ./V‘Jr}
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Examples of Hadamard states

On general space-times + arbitrary smooth potentials,
Hadamard states exist [Fulling, Narcowich, Wald '80].

If (M, g) is asymptotically flat at null infinity, distinguished
Hadamard states [Dappiaggi, Moretti, Pinamonti '09]

The ‘Unruh state’ on Schwarzschild space-time [Dappiaggi,
Moretti, Pinamonti '11].

If (M, g) has a compact Cauchy surface, construction by
pseudo-differential methods [Junker '97].

In the stationary case, ground states (and KMS states)
[Sahlmann, Verch '97] + their generalizations for overcritical
potentials [W. '12].

Can one use a WDO-based construction for non-compact Cauchy
surfaces? Can one construct all Hadamard states?
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Model Klein-Gordon equation

We consider first the following Model case:
o M =R'Y9 x=(tx)ecRH

d d )
a(t,x, D) = = Y 042(x)0u+ ) H(x)0y—0b (x)+m(x),
jk=1 j=1

o [2/] uniformly elliptic, 2%, b/, m uniformly bounded with all
derivatives in x, in bounded time intervals.

e We consider P(x, Dy) = 0? + a(t, x, Dy).

¢ Klein-Gordon operators on a space-time (M, g) with a Cauchy
surface ¥ = R? and some uniform estimates on the metric
can be reduced to this case.
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6f¢(t) + a(t7X7 DX)¢(t) = 07
(©) $(0) = fo,
i719:4(0) = f,
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e essential step to construct Hadamard states for P:

characterize solutions with wavefront set in A% in terms of
their Cauchy data.
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e essential step to construct Hadamard states for P:
characterize solutions with wavefront set in A% in terms of
their Cauchy data.

e method: construct a sufficiently explicit parametrix for the
Cauchy problem (C).
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Parametrix for the Cauchy problem

Consider the Cauchy problem for P:

6f¢(t) + a(t7X7 DX)(b(t) = 07
(©) $(0) = fo,
i719:4(0) = f,

e essential step to construct Hadamard states for P:
characterize solutions with wavefront set in A% in terms of
their Cauchy data.

e method: construct a sufficiently explicit parametrix for the
Cauchy problem (C).

e tool: use pseudo-differential calculus
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Parametrix for the Cauchy problem

In the static case, (C) is solved by:
U(t)f — %eit'al/2 (fO + a_1/2f1) + %e—it‘al/2 (fO _ 3_1/2f1) ]

Theorem
There exist b(t) € C®(R, W(RY)), d € WO(RY), r € W~1(RY)
(unique mod W=>°(RY)), such that if

Ui (t)f = Texp(i [y b(s)ds)d (f + rf1)
U—(t)f = Texp(—i [ b*(s ds)d*(fo —r*fh)

then U(t)f := (U4(t) + U—(t)) f solves the Cauchy problem (C)
up to C*.

Above, b(t) = a'/?(t) + ﬁ( a1/2(t))idra'/?(t) mod W—°.
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Parametrix for the Cauchy problem

In the static case, (C) is solved by:
U(t)f — %eit'al/2 (fO + a_1/2f1) + %e—it‘al/2 (fO _ 3_1/2f1) ]

Theorem
There exist b(t) € C®(R, W(RY)), d € WO(RY), r € W~1(RY)
(unique mod W=>°(RY)), such that if

Ui (t)f = Texp(i [y b(s)ds)d (f + rf1)
U—(t)f = Texp(—i [ b*(s ds)d*(fo —r*fh)

then U(t)f := (U4(t) + U—(t)) f solves the Cauchy problem (C)
up to C*.

Above, b(t) = a'/?(t) +
Moreover, WF(U+(t)f) C

5(a a1/2(t))idra'/?(t) mod W—°.
C M.
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In the proofs, we use:

o If m>0,ac V™(RY) is elliptic in V™(R?) and symmetric:
— a is selfadjoint on H™(RY);
— if f € SP(R), p € R, then f(a) € Y™ (RY) [Bony '96].

e Pseudo-differential operators act a: £’ — D’ — problems
with compositions!
— Instead consider H :=(),, H™ and a: H' — H'.

e Transport equations:
— Fix a € WO(RY). Equations of the form

b=a+ F(b) mod ¥V~
where F : WT(RY) — Wwm™=1(R?), can be solved uniquely mod
Yo,
e Egorov's theorem:

— Gives the wave front set of Texp(i fot b(s)ds)u,
u € H'(RY) for b € W(RY).



We obtained WF(Uy(t)f) C Nx. First consequence:
Define finite energy solutions

Solg(P) := {¢ € CO(R, HY(R)) N CL(R, L3(RY)) : P¢ = 0},
and positive/negative wavefront set solutions

Solg (P, r) :={¢ € Solg(P) : $(0) = —ird:$(0))},
Solz (P, r) := {¢ € Solg(P) : ¢(0) =i r*d:¢(0))}.
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Define finite energy solutions

Solg(P) := {¢ € CO(R, HY(R)) N CL(R, L3(RY)) : P¢ = 0},
and positive/negative wavefront set solutions

Solf(P,r) == {¢ € Sole(P) : ¢(0) = —ird:$(0))},
Solz (P, r) := {¢ € Solg(P) : ¢(0) =i r*d:¢(0))}.
Theorem

One has +ic > 0 on Sol£(P, r), and the spaces Sol£ (P, r) are
symplectically orthogonal.



We obtained WF(Uy(t)f) C Nx. First consequence:
Define finite energy solutions

Solg(P) := {¢ € CO(R, HY(R)) N CL(R, L3(RY)) : P¢ = 0},
and positive/negative wavefront set solutions

Solf(P,r) == {¢ € Sole(P) : ¢(0) = —ird:$(0))},
Solz (P, r) := {¢ € Solg(P) : ¢(0) =i r*d:¢(0))}.
Theorem

One has +ic > 0 on Sol£(P, r), and the spaces Sol£ (P, r) are
symplectically orthogonal.

This decomposition depends on the choice of r. There is no
distinguished one, but we can restrict to the set:

R:=A{re vl = p (1) 4 L/ call<rir< Ca_l/z}.
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Construction of Hadamard states

Once having fixed r € R (not unique in the construction!), set

T(r):=(r+ r*)fé < i _rr* ) )
It diagonalizes the symplectic form:
5= (T() Y oooT(r) ! = ( Pl ) .
If Xis a form on C$°(RY) ® C? (Cauchy data), set

sy = (1)
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Hadamard states with WDO two-point function

(T0yera T = (4 1)

Theorem
Let A be a form with WDO entries. Then A satisfies the Hadamard
condition iff:

S AR e w(RY).



Model Klein-Gordon equation

Hadamard states with WDO two-point function

(T0yera T = (4 1)

Theorem

Let A be a form with VDO entries. Then N\ satisfies the Hadamard
condition iff:

ol do i e w(RY),

To get states, we need additionally A>0, \>i5.



Model Klein-Gordon equation

Pure Hadamard states

Theorem
Let \ be a form with VDO entries. It defines a Hadamard and
pure state iff there exists c_o, € W™°(RY) s.t.

A++ = 1+ C_OOCiOO,
A= ¢ Cono,

Ao = N = oo+ ¢* ocoo)t?



Model Klein-Gordon equation

Pure Hadamard states

Theorem
Let \ be a form with VDO entries. It defines a Hadamard and
pure state iff there exists c_o, € W™°(RY) s.t.

Ay = T+4c o,
A= C* oo Coos
Ao = N = oo+ ¢* ocoo)t?
Choose ¢c_o, = 0 above. The corresponding two-point function is:
A = ( _(rr(r+ :r)*)ll :((rr N rr:))llrr: >

and defines the canonical Hadamard state (associated to r).
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Let Y = H(R?) ® C? and recall U(),ic) consists of
transformations which preserve o.
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Let Y = H(R?) ® C? and recall U(),ic) consists of
transformations which preserve o.

One can characterize the elements U(),io) which preserve the
Hadamard condition. There is a remarkable large subgroup:

U_oo(V,io) :={u € U(Y,ic) : u—1¢c VU (R @ My(C)}.



Model Klein-Gordon equation

Let Y = H(R?) ® C? and recall U(),ic) consists of
transformations which preserve o.

One can characterize the elements U(),io) which preserve the
Hadamard condition. There is a remarkable large subgroup:

U_oo(V,io) :={u € U(Y,ic) : u—1¢c VU (R @ My(C)}.

Theorem
Define a group G by

G={(g,f): g—1, feV > g g*ec GL(L2(RY)), f = —F*},
Id = (1,0), GG = (ga,(g3) ‘fig, ' + h) for G = (gi, ).

There is a group homomorphism G 5 G +— ug € U_(Y,i0) and a
transitive group action G 5 G — ag(r) € R such that

Mag(r)) = ugA(r)ug, VYreR, Geg.



Model Klein-Gordon equation

Static case

Consider the static case a(t,x, Dy) = a(x, Dy) independent on t.
Then one can define the ground state and thermal state. In this
case — preferred choice r = a~ /2 € R.

e ground state:
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Model Klein-Gordon equation

Static case

Consider the static case a(t,x, Dy) = a(x, Dy) independent on t.
Then one can define the ground state and thermal state. In this
case — preferred choice r = a~ /2 € R.

e ground state:

e thermal state:
5. e*ﬁam(]l - efﬁ"”m)*1 0
’ 0 (1—efa?)-1 |-

Both two-point functions are pseudo-differential and Hadamard.



Arbitrary globally hyperbolic space-times

e M=R x X.
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Arbitrary globally hyperbolic space-times

e M=RxX.
. CNhoose an open set 2 in M, and open, pre-compact sets U,,
U, in £ such that:
(i) UpeUn U,Un=%,
(i) U, are coordinate charts for ¥,
(i) y€Q Jy)NUp#0 = y €] = 6n,0n[x Up =: Qn,
) Qs a neighborhood of ¥ in M.

(iv
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Arbitrary globally hyperbolic space-times

M=RxX.

Choose an open set 2 in M, and open, pre-compact sets U,,
U, in £ such that:

(1)
(if)
(i) y€Q, Jy)NUp#0 = y €]l 6, 0n[xUp =: Qp,
) Qs a neighborhood of ¥ in M.

Up€ Un U, Up=T%,

U, are coordinate charts for ¥,

(iv

Fix a partition of unity 1 =3 _x?2 of I, with x, € C§°(Up).
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Arbitrary globally hyperbolic space-times

e M=R x X.
e Choose an open set €2 in M, and open, pre-compact sets U,
U, in £ such that:

(i) Un€Un U,Un=T%,
(i) U, are coordinate charts for ¥,
(i) y€Q, Jy)NUp#0 = y €]l 6, 0n[xUp =: Qp,
(iv) € is a neighborhood of ¥ in M.

e Fix a partition of unity 1 = 3" %2 of I, with x, € C§°(Un).

We have 0 = ) Xx;oxa- Now we set A\ := "\ X AnXn, Where
Ap are obtained by transporting Hadamard states constructed on

] = 01, 0a[x Vi, € R x RY along coordinate maps ¢, : U, — V.
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spatial infinity — explicit description of pure quasi-free states
> useful to investigate their local properties;

e ambiguity in choosing a state encoded in a group of special
Bogoliubov transformations.
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e Transparent results if metric components well-behaved at
spatial infinity — explicit description of pure quasi-free states
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e ambiguity in choosing a state encoded in a group of special
Bogoliubov transformations.
e [n progress:

o replace space-like Cauchy surface by characteristic one;
o generalize to other spins — spin-1 especially interesting.
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Outlook

Construction of Hadamard states on arbitrary
globally-hyperbolic space-times.

e Transparent results if metric components well-behaved at
spatial infinity — explicit description of pure quasi-free states
> useful to investigate their local properties;

e ambiguity in choosing a state encoded in a group of special
Bogoliubov transformations.

e [n progress:

o replace space-like Cauchy surface by characteristic one;
o generalize to other spins — spin-1 especially interesting.

Challenge:

e implemention in semi-classical Einstein/Maxwell equations.
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