

Construction of Hadamard states by pseudo-differential calculus

Michał Wrochna

→ arXiv:1209.2604

joint work with Christian Gérard

31.05.13

2 Quasi-free Hadamard states

3 Model Klein-Gordon equation

4 General space-times

Introduction

Physical states for QFT on curved space-times

On general curved space-times, no notion of vacuum state.

- Substitute for vacuum state: Hadamard states, characterized
- Most important property: quantum stress-energy tensor can
- Since [Radzikowski '96], Hadamard condition formulated in
- Problem: few examples of Hadamard states have been

• On general curved space-times, no notion of vacuum state.

- Substitute for vacuum state: Hadamard states, characterized by the singularity structure of their two-point functions [Kay, Wald, etc. '70-'80];
- Most important property: quantum stress-energy tensor can
- Since [Radzikowski '96], Hadamard condition formulated in
- Problem: few examples of Hadamard states have been

Introduction

Physical states for QFT on curved space-times

On general curved space-times, no notion of vacuum state.

- Substitute for vacuum state: Hadamard states, characterized by the singularity structure of their two-point functions [Kay, Wald, etc. '70-'80];
- Most important property: quantum stress-energy tensor can be renormalized w.r.t. a Hadamard state:
- Since [Radzikowski '96], Hadamard condition formulated in
- Problem: few examples of Hadamard states have been

Introduction

Physical states for QFT on curved space-times

On general curved space-times, no notion of vacuum state.

- Substitute for vacuum state: Hadamard states, characterized by the singularity structure of their two-point functions [Kay, Wald, etc. '70-'80];
- Most important property: quantum stress-energy tensor can be renormalized w.r.t. a Hadamard state:
- Since [Radzikowski '96], Hadamard condition formulated in terms of wave front set.
- Problem: few examples of Hadamard states have been constructed.

 We reconsider the construction of Hadamard states on space-times with metric well-behaved at spatial infinity;

- Working on a fixed Cauchy surface, we can use rather
- We construct a large class of Hadamard states with ΨDO
- We give a new construction of Hadamard states on general

Introduction

 We reconsider the construction of Hadamard states on space-times with metric well-behaved at spatial infinity;

- Working on a fixed Cauchy surface, we can use rather standard pseudo-differential analysis.
- We construct a large class of Hadamard states with ΨDO two-point functions, in particular all pure Hadamard states
- We give a new construction of Hadamard states on general globally hyperbolic space-times.

 We reconsider the construction of Hadamard states on space-times with metric well-behaved at spatial infinity;

- Working on a fixed Cauchy surface, we can use rather standard pseudo-differential analysis.
- We construct a large class of Hadamard states with ΨDO two-point functions, in particular all pure Hadamard states.
- We give a new construction of Hadamard states on general

Introduction

 We reconsider the construction of Hadamard states on space-times with metric well-behaved at spatial infinity;

- Working on a fixed Cauchy surface, we can use rather standard pseudo-differential analysis.
- We construct a large class of Hadamard states with ΨDO two-point functions, in particular all pure Hadamard states.
- We give a new construction of Hadamard states on general globally hyperbolic space-times.

Quasi-free states: neutral case

Let (\mathcal{X}, σ) be a symplectic space and \mathcal{A} its Weyl CCR C^* -algebra, generated by elements W(f), $f \in \mathcal{X}$, with

$$W(f)^* = W(-f), \quad W(f)W(g) = e^{-\mathrm{i}\sigma(f,g)/2}W(f+g), \quad f,g \in \mathcal{X}.$$

A state ω on $\mathcal A$ is quasi-free if there is a symmetric form η s.t.

$$\omega(W(f)) = e^{-\frac{1}{2}\eta(f,f)}, \quad f \in \mathcal{X}.$$

- A symmetric form η on $\mathcal X$ defines a quasi-free state iff the two-point function $\lambda = \eta_{\mathbb C} + \frac{\mathrm{i}}{2}\sigma_{\mathbb C}$ satisfies $\lambda \geq 0$.
- A symmetric form λ on $\mathbb{C}\mathcal{X}$ is the two-point function of a quasi-free state iff $\lambda \geq 0$ and $\lambda \geq \mathrm{i}\sigma_{\mathbb{C}}$.

$$[\phi(f), \phi(g)] = i\sigma(f, g), \quad \omega(\phi(f)\phi(g)) = \lambda_{\mathbb{R}}(f, g).$$

Let (\mathcal{X}, σ) be a symplectic space and \mathcal{A} its Weyl CCR C^* -algebra, generated by elements W(f), $f \in \mathcal{X}$, with

$$W(f)^* = W(-f), \quad W(f)W(g) = e^{-\mathrm{i}\sigma(f,g)/2}W(f+g), \quad f,g \in \mathcal{X}.$$

A state ω on $\mathcal A$ is quasi-free if there is a symmetric form η s.t.

$$\omega(W(f)) = e^{-\frac{1}{2}\eta(f,f)}, \quad f \in \mathcal{X}.$$

- A symmetric form η on $\mathcal X$ defines a quasi-free state iff the two-point function $\lambda=\eta_{\mathbb C}+\frac{\mathrm{i}}{2}\sigma_{\mathbb C}$ satisfies $\lambda\geq 0$.
- A symmetric form λ on $\mathbb{C}\mathcal{X}$ is the two-point function of a quasi-free state iff $\lambda \geq 0$ and $\lambda \geq i\sigma_{\mathbb{C}}$.

$$[\phi(f), \phi(g)] = i\sigma(f, g), \quad \omega(\phi(f)\phi(g)) = \lambda_{\mathbb{R}}(f, g).$$

Introduction

Let (\mathcal{X}, σ) be a symplectic space and \mathcal{A} its Weyl CCR C^* -algebra, generated by elements W(f), $f \in \mathcal{X}$, with

$$W(f)^* = W(-f), \quad W(f)W(g) = e^{-i\sigma(f,g)/2}W(f+g), \quad f,g \in \mathcal{X}.$$

A state ω on $\mathcal A$ is quasi-free if there is a symmetric form η s.t.

$$\omega(W(f)) = e^{-\frac{1}{2}\eta(f,f)}, \quad f \in \mathcal{X}.$$

- A symmetric form η on $\mathcal X$ defines a quasi-free state iff the two-point function $\lambda=\eta_{\mathbb C}+\frac{\mathrm{i}}{2}\sigma_{\mathbb C}$ satisfies $\lambda\geq 0$.
- A symmetric form λ on $\mathbb{C}\mathcal{X}$ is the two-point function of a quasi-free state iff $\lambda \geq 0$ and $\lambda \geq \mathrm{i}\sigma_{\mathbb{C}}$.

$$[\phi(f), \phi(g)] = i\sigma(f, g), \quad \omega(\phi(f)\phi(g)) = \lambda_{\mathbb{R}}(f, g)$$

Quasi-free states: neutral case

Let (\mathcal{X}, σ) be a symplectic space and \mathcal{A} its Weyl CCR C^* -algebra, generated by elements W(f), $f \in \mathcal{X}$, with

$$W(f)^* = W(-f), \quad W(f)W(g) = e^{-i\sigma(f,g)/2}W(f+g), \quad f,g \in \mathcal{X}.$$

A state ω on $\mathcal A$ is quasi-free if there is a symmetric form η s.t.

$$\omega(W(f)) = e^{-\frac{1}{2}\eta(f,f)}, \quad f \in \mathcal{X}.$$

- A symmetric form η on $\mathcal X$ defines a quasi-free state iff the two-point function $\lambda=\eta_{\mathbb C}+\frac{\mathrm{i}}{2}\sigma_{\mathbb C}$ satisfies $\lambda\geq 0$.
- A symmetric form λ on $\mathbb{C}\mathcal{X}$ is the two-point function of a quasi-free state iff $\lambda \geq 0$ and $\lambda \geq \mathrm{i}\sigma_{\mathbb{C}}$.

$$[\phi(f),\phi(g)]=\mathrm{i}\sigma(f,g),\quad \omega(\phi(f)\phi(g))=\lambda_{\mathbb{R}}(f,g).$$

Quasi-free states: charged case

Let (\mathcal{Y}, σ) be a complex symplectic space (with some complex structure j) and \mathcal{A} the Weyl CCR C^* -algebra of $(\mathcal{Y}_{\mathbb{R}}, \operatorname{Re}\sigma)$.

A quasi-free state ω on $\mathcal A$ is gauge-invariant if

$$\omega(W(y)) = \omega(W(e^{j\theta}y)), \quad 0 \le \theta < 2\pi, \quad y \in \mathcal{Y}.$$

Let $\phi(y)$ be the ('neutral') field operators in the GNS rep. of ω . The charged fields:

$$\psi(y) := \frac{1}{\sqrt{2}} (\phi(y) + i\phi(jy)), \quad \psi^*(y) := \frac{1}{\sqrt{2}} (\phi(y) - i\phi(jy))$$
$$[\psi(y_1), \psi^*(y_2)] = i\sigma(y_1, y_2), \quad \omega(\psi(y_1)\psi^*(y_2)) =: \lambda(y_1, y_2)$$
$$\Rightarrow \lambda(y_1, y_2) - i\sigma(y_1, y_2) = \omega(\psi^*(y_2)\psi(y_1))$$

• A symmetric form λ on $\mathcal Y$ is the two-point function of a gauge-invariant quasi-free state iff $\lambda \geq 0$ and $\lambda \geq \mathrm{i}\sigma$.

Let (\mathcal{Y}, σ) be a complex symplectic space (with some complex structure j) and \mathcal{A} the Weyl CCR C^* -algebra of $(\mathcal{Y}_{\mathbb{R}}, \operatorname{Re}\sigma)$. A quasi-free state ω on \mathcal{A} is gauge-invariant if

$$\omega(W(y)) = \omega(W(e^{j\theta}y)), \quad 0 \le \theta < 2\pi, \quad y \in \mathcal{Y}.$$

Let $\phi(y)$ be the ('neutral') field operators in the GNS rep. of ω The charged fields:

$$\psi(y) := \frac{1}{\sqrt{2}}(\phi(y) + i\phi(jy)), \quad \psi^*(y) := \frac{1}{\sqrt{2}}(\phi(y) - i\phi(jy))$$
$$[\psi(y_1), \psi^*(y_2)] = i\sigma(y_1, y_2), \quad \omega(\psi(y_1)\psi^*(y_2)) =: \lambda(y_1, y_2)$$
$$\Rightarrow \lambda(y_1, y_2) - i\sigma(y_1, y_2) = \omega(\psi^*(y_2)\psi(y_1))$$

• A symmetric form λ on $\mathcal Y$ is the two-point function of a gauge-invariant quasi-free state iff $\lambda \geq 0$ and $\lambda \geq \mathrm{i}\sigma$.

Let (\mathcal{Y}, σ) be a complex symplectic space (with some complex structure j) and \mathcal{A} the Weyl CCR C^* -algebra of $(\mathcal{Y}_{\mathbb{R}}, \operatorname{Re}\sigma)$. A quasi-free state ω on \mathcal{A} is gauge-invariant if

$$\omega(W(y)) = \omega(W(e^{j\theta}y)), \quad 0 \le \theta < 2\pi, \quad y \in \mathcal{Y}.$$

Let $\phi(y)$ be the ('neutral') field operators in the GNS rep. of ω . The charged fields:

$$\psi(y) := \frac{1}{\sqrt{2}} (\phi(y) + i\phi(jy)), \quad \psi^*(y) := \frac{1}{\sqrt{2}} (\phi(y) - i\phi(jy))$$
$$[\psi(y_1), \psi^*(y_2)] = i\sigma(y_1, y_2), \quad \omega(\psi(y_1)\psi^*(y_2)) =: \lambda(y_1, y_2)$$
$$\Rightarrow \lambda(y_1, y_2) - i\sigma(y_1, y_2) = \omega(\psi^*(y_2)\psi(y_1))$$

• A symmetric form λ on $\mathcal Y$ is the two-point function of a gauge-invariant quasi-free state iff $\lambda \geq 0$ and $\lambda \geq \mathrm{i}\sigma$.

Quasi-free Hadamard states

Quasi-free states: charged case

Let (\mathcal{Y}, σ) be a complex symplectic space (with some complex structure j) and \mathcal{A} the Weyl CCR C^* -algebra of $(\mathcal{Y}_{\mathbb{R}}, \operatorname{Re}\sigma)$. A quasi-free state ω on \mathcal{A} is gauge-invariant if

$$\omega(W(y)) = \omega(W(e^{j\theta}y)), \quad 0 \le \theta < 2\pi, \quad y \in \mathcal{Y}.$$

Let $\phi(y)$ be the ('neutral') field operators in the GNS rep. of ω . The charged fields:

$$\psi(y) := \frac{1}{\sqrt{2}} (\phi(y) + i\phi(jy)), \quad \psi^*(y) := \frac{1}{\sqrt{2}} (\phi(y) - i\phi(jy))$$
$$[\psi(y_1), \psi^*(y_2)] = i\sigma(y_1, y_2), \quad \omega(\psi(y_1)\psi^*(y_2)) =: \lambda(y_1, y_2)$$
$$\Rightarrow \lambda(y_1, y_2) - i\sigma(y_1, y_2) = \omega(\psi^*(y_2)\psi(y_1))$$

• A symmetric form λ on \mathcal{Y} is the two-point function of a gauge-invariant quasi-free state iff $\lambda \geq 0$ and $\lambda \geq i\sigma$.

Quasi-free states: unitary group

Let (\mathcal{Y}, σ) be a complex symplectic space and \mathcal{A} the Weyl CCR C^* -algebra. The unitary group:

$$U(\mathcal{Y}, i\sigma) = \{u : u^*\sigma u = \sigma\}.$$

(Pos)
$$\lambda \geq 0$$
 and $\lambda \geq i\sigma$.

Plan

Quasi-free states: unitary group

Let (\mathcal{Y}, σ) be a complex symplectic space and \mathcal{A} the Weyl CCR C^* -algebra. The unitary group:

$$U(\mathcal{Y}, i\sigma) = \{u : u^*\sigma u = \sigma\}.$$

Recall that λ is the two-point function of a gauge-invariant quasi-free state on A iff

(Pos)
$$\lambda \geq 0$$
 and $\lambda \geq i\sigma$.

- If λ satisfies (Pos) then so does $u^*\lambda u$ for any $u \in U(\mathcal{Y}, i\sigma)$.
- If λ_1 and λ_2 are two-point functions of pure states, then there

Let (\mathcal{Y}, σ) be a complex symplectic space and \mathcal{A} the Weyl CCR C^* -algebra. The unitary group:

$$U(\mathcal{Y}, i\sigma) = \{u : u^*\sigma u = \sigma\}.$$

Recall that λ is the two-point function of a gauge-invariant quasi-free state on A iff

(Pos)
$$\lambda \geq 0$$
 and $\lambda \geq i\sigma$.

- If λ satisfies (Pos) then so does $u^*\lambda u$ for any $u \in U(\mathcal{Y}, i\sigma)$.
- If λ_1 and λ_2 are two-point functions of pure states, then there

Let (\mathcal{Y}, σ) be a complex symplectic space and \mathcal{A} the Weyl CCR C^* -algebra. The unitary group:

$$U(\mathcal{Y}, i\sigma) = \{u : u^*\sigma u = \sigma\}.$$

Recall that λ is the two-point function of a gauge-invariant quasi-free state on ${\mathcal A}$ iff

(Pos)
$$\lambda \geq 0$$
 and $\lambda \geq i\sigma$.

- If λ satisfies (Pos) then so does $u^*\lambda u$ for any $u\in U(\mathcal{Y},i\sigma)$.
- If λ_1 and λ_2 are two-point functions of pure states, then there exists $u \in U(\mathcal{Y}, i\sigma)$ such that $\lambda_2 = u^* \lambda_1 u$.

Klein-Gordon equations

Consider a globally hyperbolic space-time $(M, g_{\mu\nu} dx^{\mu} dx^{\nu})$. We fix a smooth vector potential $A_{\mu}(x) dx^{\mu}$ and a mass term.

Klein-Gordon operator:

$$P(x, D_x) = |g|^{-\frac{1}{2}} (\partial_{\mu} + \mathrm{i} A_{\mu}) |g|^{\frac{1}{2}} g^{\mu\nu} (\partial_{\nu} + \mathrm{i} A_{\nu}) + m^2,$$
 where $|g| = \det[g_{\mu\nu}], [g^{\mu\nu}] := [g_{\mu\nu}]^{-1}.$

• $P(x, D_x)$ admits unique advanced/retarded fundamental solutions E_\pm solving:

$$P(x, D_x) \circ E_{\pm} = 1$$
,
 $\operatorname{supp} E_{+} f \subset J^{\pm}(\operatorname{supp} f), f \in C_{0}^{\infty}(M)$

Klein-Gordon equations

Consider a globally hyperbolic space-time $(M, g_{\mu\nu}dx^{\mu}dx^{\nu})$. We fix a smooth vector potential $A_{\mu}(x)dx^{\mu}$ and a mass term.

Klein-Gordon operator:

$$P(x, D_x) = |g|^{-\frac{1}{2}} (\partial_{\mu} + iA_{\mu}) |g|^{\frac{1}{2}} g^{\mu\nu} (\partial_{\nu} + iA_{\nu}) + m^2,$$
 where $|g| = \det[g_{\mu\nu}], [g^{\mu\nu}] := [g_{\mu\nu}]^{-1}.$

• $P(x, D_x)$ admits unique advanced/retarded fundamental solutions E_+ solving:

$$P(x, D_x) \circ E_{\pm} = 1,$$

$$\operatorname{supp} E_{\pm} f \subset J^{\pm}(\operatorname{supp} f), \ f \in C_0^{\infty}(M),$$

Symplectic space of solutions

Introduction

Let $Sol_{sc}(P) \subset C^{\infty}(M)$ be the space of smooth space-compact solutions of

(KG)
$$P(x, D_x)\phi = 0.$$

- $E = E_+ E_-$, called the commutator function.
- One has $\operatorname{Sol}_{\operatorname{sc}}(P) = EC_0^{\infty}(M)$.

$$\Lambda > 0$$
 and $\Lambda > iE$ +Hadamard condition

Symplectic space of solutions

Introduction

Let $\operatorname{Sol}_{\operatorname{sc}}(P) \subset C^{\infty}(M)$ be the space of smooth space-compact solutions of

Model Klein-Gordon equation

(KG)
$$P(x, D_x)\phi = 0.$$

- $E = E_+ E_-$, called the commutator function.
- One has $Sol_{sc}(P) = EC_0^{\infty}(M)$.

 $(\operatorname{Sol}_{\operatorname{sc}}(P), E)$ is our complex symplectic space. We look for Λ s.t.

$$\Lambda \geq 0$$
 and $\Lambda \geq iE$ +Hadamard condition.

Symplectic space of Cauchy data

Fix a Cauchy hypersurface Σ and set

$$\begin{split} \rho: & \operatorname{Sol}_{\operatorname{sc}}(P) & \to C_0^\infty(\Sigma) \oplus C_0^\infty(\Sigma) \\ \phi & \mapsto (\phi_{|\Sigma}, \mathrm{i}^{-1} \mathit{n}^\mu(\nabla_\mu + \mathrm{i} A_\mu) \phi_{|\Sigma}) =: (\rho_0 \phi, \rho_1 \phi). \end{split}$$

$$\sigma(f,g):=-\mathrm{i}\int_{\Sigma}(\overline{f_0}g_1+\overline{f_1}g_0)ds,\ f,g\in C_0^{\infty}(\Sigma)\oplus C_0^{\infty}(\Sigma),$$

- One has $E(u_1, u_2) = \sigma(\rho \circ Eu_1, \rho \circ Eu_2)$ for $u_1, u_2 \in C_0^{\infty}(M)$.
- Hence $(C_0^{\infty}(M), E)$ is isomorphic to $(C_0^{\infty}(\Sigma) \otimes \mathbb{C}^2, \sigma)$.

$$\lambda \geq 0$$
 and $\lambda \geq i\sigma$ +Hadamard condition.

Symplectic space of Cauchy data

Fix a Cauchy hypersurface Σ and set

$$\rho: \operatorname{Sol}_{\operatorname{sc}}(P) \to C_0^{\infty}(\Sigma) \oplus C_0^{\infty}(\Sigma)$$
$$\phi \mapsto (\phi_{|\Sigma}, i^{-1} n^{\mu} (\nabla_{\mu} + iA_{\mu}) \phi_{|\Sigma}) =: (\rho_0 \phi, \rho_1 \phi).$$

Denote by σ the canonical symplectic form on $C_0^{\infty}(\Sigma) \oplus C_0^{\infty}(\Sigma)$:

$$\sigma(f,g):=-\mathrm{i}\int_{\Sigma}(\overline{f_0}g_1+\overline{f_1}g_0)ds,\ f,g\in C_0^{\infty}(\Sigma)\oplus C_0^{\infty}(\Sigma),$$

- One has $E(u_1, u_2) = \sigma(\rho \circ Eu_1, \rho \circ Eu_2)$ for $u_1, u_2 \in C_0^{\infty}(M)$.
- Hence $(C_0^{\infty}(M), E)$ is isomorphic to $(C_0^{\infty}(\Sigma) \otimes \mathbb{C}^2, \sigma)$.

Introduction

Plan

Symplectic space of Cauchy data

Fix a Cauchy hypersurface Σ and set

$$\rho: \operatorname{Sol}_{\operatorname{sc}}(P) \to C_0^{\infty}(\Sigma) \oplus C_0^{\infty}(\Sigma)$$
$$\phi \mapsto (\phi_{|\Sigma}, i^{-1}n^{\mu}(\nabla_{\mu} + iA_{\mu})\phi_{|\Sigma}) =: (\rho_0\phi, \rho_1\phi).$$

Denote by σ the canonical symplectic form on $C_0^{\infty}(\Sigma) \oplus C_0^{\infty}(\Sigma)$:

$$\sigma(f,g):=-\mathrm{i}\int_{\Sigma}(\overline{f_0}g_1+\overline{f_1}g_0)ds,\ f,g\in C_0^{\infty}(\Sigma)\oplus C_0^{\infty}(\Sigma),$$

- One has $E(u_1, u_2) = \sigma(\rho \circ Eu_1, \rho \circ Eu_2)$ for $u_1, u_2 \in C_0^{\infty}(M)$.
- Hence $(C_0^{\infty}(M), E)$ is isomorphic to $(C_0^{\infty}(\Sigma) \otimes \mathbb{C}^2, \sigma)$.

We can thus work with $(C_0^{\infty}(\Sigma) \otimes \mathbb{C}^2, \sigma)$ and look for λ s.t.

$$\lambda \geq 0$$
 and $\lambda \geq i\sigma$ +Hadamard condition.

Then $\Lambda(u_1, u_2) = \lambda(\rho \circ Eu_1, \rho \circ Eu_2)$ for $u_1, u_2 \in C_0^{\infty}(M)$.

Pseudo-differential operators

Introduction

If $u \in \mathcal{D}'(\mathbb{R}^n)$, WF(u) can be defined using pseudo-differential operators. Denote by $S^m(\mathbb{R}^{2d})$, $m \in \mathbb{R}$ the symbol class

$$a \in S^m(\mathbb{R}^{2d})$$
 if $\partial_x^{\alpha} \partial_k^{\beta} a(x,k) \in O((1+|k|^2)^{\frac{m-|\beta|}{2}}), \ \alpha, \beta \in \mathbb{N}^d$.

The Weyl quantization of a is the operator

$$a(x, D_x)u(x) := (2\pi)^{-d} \iint e^{i(x-y)k} a(\frac{x+y}{2}, k)u(y) dy dk.$$

 $\Psi^m(\mathbb{R}^d) := \operatorname{Op^w}(S^m(\mathbb{R}^{2d})) = \mathsf{pseudo-differential}$ operators

$$\Psi^{-\infty}(\mathbb{R}^d) := \bigcap \Psi^m(\mathbb{R}^d)$$

Pseudo-differential operators

If $u \in \mathcal{D}'(\mathbb{R}^n)$, WF(u) can be defined using pseudo-differential operators. Denote by $S^m(\mathbb{R}^{2d})$, $m \in \mathbb{R}$ the symbol class

$$a \in S^m(\mathbb{R}^{2d})$$
 if $\partial_x^\alpha \partial_k^\beta a(x,k) \in O((1+|k|^2)^{\frac{m-|\beta|}{2}}), \ \alpha,\beta \in \mathbb{N}^d$.

The Weyl quantization of a is the operator

$$a(x,D_x)u(x):=(2\pi)^{-d}\iint e^{i(x-y)k}a(\frac{x+y}{2},k)u(y)dydk.$$

 $\Psi^m(\mathbb{R}^d) := \operatorname{Op^w}(S^m(\mathbb{R}^{2d})) = \text{pseudo-differential operators.}$

$$\Psi^{-\infty}(\mathbb{R}^d) := \bigcap_{m} \Psi^m(\mathbb{R}^d)$$

Basic property: $a(x, D_x) \in \Psi^m(\mathbb{R}^d)$ maps $H^s(\mathbb{R}^d) \to H^{s-m}(\mathbb{R}^d)$. In particular $a(x,D_x) \in \Psi^{-\infty}(\mathbb{R}^d)$ maps to smooth functions. The

Model Klein-Gordon equation

$$\operatorname{Char}(a) := \{(x, k) \in \mathbb{R}^d \times (\mathbb{R}^d \setminus \{0\}) : \ a_m(x, k) = 0\}$$

 $\to a$ is elliptic iff $\operatorname{Char}(a) = \emptyset$. Then there exists $a^{(-1)} \in \Psi^{-m}(\mathbb{R}^d)$ such that $a^{(-1)}a = 1 \mod \Psi^{-\infty}$

Introduction

$$a(x, D_x)\chi u \in \mathcal{S}(\mathbb{R}^d)$$

Basic property: $a(x, D_x) \in \Psi^m(\mathbb{R}^d)$ maps $H^s(\mathbb{R}^d) \to H^{s-m}(\mathbb{R}^d)$. In particular $a(x, D_x) \in \Psi^{-\infty}(\mathbb{R}^d)$ maps to smooth functions. The characteristic set of a

$$\operatorname{Char}(a) := \{(x,k) \in \mathbb{R}^d \times (\mathbb{R}^d \setminus \{0\}) : \ a_m(x,k) = 0\}.$$

 $\to a$ is elliptic iff $\operatorname{Char}(a) = \emptyset$. Then there exists $a^{(-1)} \in \Psi^{-m}(\mathbb{R}^d)$ such that $a^{(-1)}a = 1 \mod \Psi^{-\infty}$.

$$a(x, D_x)\chi u \in \mathcal{S}(\mathbb{R}^d)$$

Basic property: $a(x, D_x) \in \Psi^m(\mathbb{R}^d)$ maps $H^s(\mathbb{R}^d) \to H^{s-m}(\mathbb{R}^d)$. In particular $a(x, D_x) \in \Psi^{-\infty}(\mathbb{R}^d)$ maps to smooth functions. The characteristic set of a

Model Klein-Gordon equation

$$\operatorname{Char}(a) := \{(x,k) \in \mathbb{R}^d \times (\mathbb{R}^d \setminus \{0\}) : \ a_m(x,k) = 0\}.$$

 $\to a$ is elliptic iff $\operatorname{Char}(a) = \emptyset$. Then there exists $a^{(-1)} \in \Psi^{-m}(\mathbb{R}^d)$ such that $a^{(-1)}a = 1 \mod \Psi^{-\infty}$

Definition

 $(x,k) \notin WF(u)$ (the wave front set) iff there exists $\chi \in C_0^{\infty}$ and $a \in S^0(\mathbb{R}^{2d})$ with $\chi(x) \neq 0$, $(x, k) \notin \operatorname{Char}(a)$ and

$$a(x, D_x)\chi u \in \mathcal{S}(\mathbb{R}^d).$$

 \rightarrow provides criteria for existence of $u \cdot v$, $u|_X$.

Hadamard states

Introduction

- Denote $p(x,\xi) = g^{\mu\nu}(x)\xi_{\mu}\xi_{\nu}$ the principal symbol of $P(x, D_x)$
- $\mathcal{N} = p^{-1}(\{0\})$ energy surface.

Model Klein-Gordon equation

• For $X_i = (x_i, \xi_i)$ write $X_1 \sim X_2$ if $X_1, X_2 \in \mathcal{N}$, X_1, X_2 on the

$$WF(\Lambda)' \subset \{(X_1, X_2), X_1 \sim X_2 : X_1 \in \mathcal{N}^+\}$$

Hadamard states

Introduction

- Denote $p(x,\xi) = g^{\mu\nu}(x)\xi_{\mu}\xi_{\nu}$ the principal symbol of $P(x, D_x)$
- $\mathcal{N} = p^{-1}(\{0\})$ energy surface, $\mathcal{N}_{+} = \{(x, \xi) \in \mathcal{N} : \xi \in V_{+}^{*}(x)\}, \text{ positive/negative energy }$ surfaces, $\mathcal{N} = \mathcal{N}_+ \cup \mathcal{N}_-$.
- For $X_i = (x_i, \xi_i)$ write $X_1 \sim X_2$ if $X_1, X_2 \in \mathcal{N}$, X_1, X_2 on the

$$WF(\Lambda)' \subset \{(X_1, X_2), X_1 \sim X_2 : X_1 \in \mathcal{N}^+\}$$

Introduction

- Denote $p(x,\xi) = g^{\mu\nu}(x)\xi_{\mu}\xi_{\nu}$ the principal symbol of $P(x, D_x)$
- $\mathcal{N} = p^{-1}(\{0\})$ energy surface, $\mathcal{N}_{+} = \{(x, \xi) \in \mathcal{N} : \xi \in V_{+}^{*}(x)\}, \text{ positive/negative energy }$ surfaces. $\mathcal{N} = \mathcal{N}_{\perp} \cup \mathcal{N}_{\perp}$.

Model Klein-Gordon equation

• For $X_i = (x_i, \xi_i)$ write $X_1 \sim X_2$ if $X_1, X_2 \in \mathcal{N}$, X_1, X_2 on the same Hamiltonian curve of p.

Definition ([Radzikowski '96])

Λ satisfies the Hadamard condition iff

$$WF(\Lambda)' \subset \{(X_1, X_2), X_1 \sim X_2 : X_1 \in \mathcal{N}^+\}.$$

Introduction

- On general space-times + arbitrary smooth potentials, Hadamard states exist [Fulling, Narcowich, Wald '80].
- If (M,g) is asymptotically flat at null infinity, distinguished

- The 'Unruh state' on Schwarzschild space-time [Dappiaggi,
- If (M,g) has a compact Cauchy surface, construction by
- In the stationary case, ground states (and KMS states)

Introduction

- On general space-times + arbitrary smooth potentials, Hadamard states exist [Fulling, Narcowich, Wald '80].
- If (M,g) is asymptotically flat at null infinity, distinguished Hadamard states [Dappiaggi, Moretti, Pinamonti '09]

- The 'Unruh state' on Schwarzschild space-time [Dappiaggi,
- If (M,g) has a compact Cauchy surface, construction by
- In the stationary case, ground states (and KMS states)

Introduction

- On general space-times + arbitrary smooth potentials, Hadamard states exist [Fulling, Narcowich, Wald '80].
- If (M, g) is asymptotically flat at null infinity, distinguished Hadamard states [Dappiaggi, Moretti, Pinamonti '09]

Model Klein-Gordon equation

- The 'Unruh state' on Schwarzschild space-time [Dappiaggi, Moretti, Pinamonti '11].
- If (M, g) has a compact Cauchy surface, construction by pseudo-differential methods [Junker '97].
- In the stationary case, ground states (and KMS states)
 [Sahlmann, Verch '97] + their generalizations for overcritical potentials [W. '12].

Can one use a Ψ DO-based construction for non-compact Cauchy surfaces? Can one construct *all* Hadamard states?

Introduction

- On general space-times + arbitrary smooth potentials, Hadamard states exist [Fulling, Narcowich, Wald '80].
- If (M, g) is asymptotically flat at null infinity, distinguished Hadamard states [Dappiaggi, Moretti, Pinamonti '09]

Model Klein-Gordon equation

- The 'Unruh state' on Schwarzschild space-time [Dappiaggi, Moretti, Pinamonti '11].
- If (M, g) has a compact Cauchy surface, construction by pseudo-differential methods [Junker '97].
- In the stationary case, ground states (and KMS states)
 [Sahlmann, Verch '97] + their generalizations for overcritical potentials [W. '12].

Can one use a Ψ DO-based construction for non-compact Cauchy surfaces? Can one construct *all* Hadamard states?

Introduction

- On general space-times + arbitrary smooth potentials, Hadamard states exist [Fulling, Narcowich, Wald '80].
- If (M,g) is asymptotically flat at null infinity, distinguished Hadamard states [Dappiaggi, Moretti, Pinamonti '09]
- The 'Unruh state' on Schwarzschild space-time [Dappiaggi, Moretti, Pinamonti '11].
- If (M, g) has a compact Cauchy surface, construction by pseudo-differential methods [Junker '97].
- In the stationary case, ground states (and KMS states) [Sahlmann, Verch '97] + their generalizations for overcritical potentials [W. '12].

Introduction

- On general space-times + arbitrary smooth potentials, Hadamard states exist [Fulling, Narcowich, Wald '80].
- If (M, g) is asymptotically flat at null infinity, distinguished Hadamard states [Dappiaggi, Moretti, Pinamonti '09]
- The 'Unruh state' on Schwarzschild space-time [Dappiaggi, Moretti, Pinamonti '11].
- If (M, g) has a compact Cauchy surface, construction by pseudo-differential methods [Junker '97].
- In the stationary case, ground states (and KMS states)
 [Sahlmann, Verch '97] + their generalizations for overcritical potentials [W. '12].

Can one use a Ψ DO-based construction for non-compact Cauchy surfaces? Can one construct *all* Hadamard states?

We consider first the following Model case:

• $M = \mathbb{R}^{1+d}$, $x = (t, \mathbf{x}) \in \mathbb{R}^{1+d}$

$$a(t, \mathbf{x}, D_{\mathbf{x}}) = -\sum_{j,k=1}^{d} \partial_{\mathbf{x}^{j}} a^{jk}(x) \partial_{\mathbf{x}^{k}} + \sum_{j=1}^{d} b^{j}(x) \partial_{\mathbf{x}^{j}} - \partial_{\mathbf{x}^{j}} \overline{b}^{j}(x) + m(x),$$

- $[a^{jk}]$ uniformly elliptic, a^{jk} , b^j , m uniformly bounded with all derivatives in x, in bounded time intervals.
- We consider $P(x, D_x) = \partial_t^2 + a(t, x, D_x)$.
- Klein-Gordon operators on a space-time (M,g) with a Cauchy surface $\Sigma = \mathbb{R}^d$ and some uniform estimates on the metric can be reduced to this case.

We consider first the following Model case:

• $M = \mathbb{R}^{1+d}$, $x = (t, x) \in \mathbb{R}^{1+d}$

$$a(t, \mathbf{x}, D_{\mathbf{x}}) = -\sum_{j,k=1}^{d} \partial_{\mathbf{x}^{j}} a^{jk}(\mathbf{x}) \partial_{\mathbf{x}^{k}} + \sum_{j=1}^{d} b^{j}(\mathbf{x}) \partial_{\mathbf{x}^{j}} - \partial_{\mathbf{x}^{j}} \overline{b}^{j}(\mathbf{x}) + m(\mathbf{x}),$$

- $[a^{jk}]$ uniformly elliptic, a^{jk} , b^{j} , m uniformly bounded with all derivatives in x, in bounded time intervals.
- We consider $P(x, D_x) = \partial_t^2 + a(t, x, D_x)$.
- Klein-Gordon operators on a space-time (M,g) with a Cauchy

We consider first the following Model case:

• $M = \mathbb{R}^{1+d}$, $x = (t, x) \in \mathbb{R}^{1+d}$

$$a(t, \mathbf{x}, D_{\mathbf{x}}) = -\sum_{j,k=1}^{d} \partial_{\mathbf{x}^{j}} a^{jk}(x) \partial_{\mathbf{x}^{k}} + \sum_{j=1}^{d} b^{j}(x) \partial_{\mathbf{x}^{j}} - \partial_{\mathbf{x}^{j}} \overline{b}^{j}(x) + m(x),$$

- $[a^{jk}]$ uniformly elliptic, a^{jk} , b^{j} , m uniformly bounded with all derivatives in x, in bounded time intervals.
- We consider $P(x, D_x) = \partial_t^2 + a(t, x, D_x)$.
- Klein-Gordon operators on a space-time (M,g) with a Cauchy

We consider first the following Model case:

• $M = \mathbb{R}^{1+d}$, $x = (t, x) \in \mathbb{R}^{1+d}$

$$a(t, \mathbf{x}, D_{\mathbf{x}}) = -\sum_{j,k=1}^{d} \partial_{\mathbf{x}^{j}} a^{jk}(x) \partial_{\mathbf{x}^{k}} + \sum_{j=1}^{d} b^{j}(x) \partial_{\mathbf{x}^{j}} - \partial_{\mathbf{x}^{j}} \overline{b}^{j}(x) + m(x),$$

- $[a^{jk}]$ uniformly elliptic, a^{jk} , b^{j} , m uniformly bounded with all derivatives in x, in bounded time intervals.
- We consider $P(x, D_x) = \partial_t^2 + a(t, x, D_x)$.
- Klein-Gordon operators on a space-time (M, g) with a Cauchy surface $\Sigma = \mathbb{R}^d$ and some uniform estimates on the metric can be reduced to this case.

Introduction

Consider the Cauchy problem for P:

$$\begin{aligned} \text{(C)} & \begin{cases} & \partial_t^2 \phi(t) + a(t, \mathbf{x}, D_{\mathbf{x}}) \phi(t) = 0, \\ & \phi(0) = f_0, \\ & \mathrm{i}^{-1} \partial_t \phi(0) = f_1, \end{cases} \end{aligned}$$

- essential step to construct Hadamard states for P: characterize solutions with wavefront set in \mathcal{N}^{\pm} in terms of their Cauchy data.
- method: construct a sufficiently explicit parametrix for the Cauchy problem (C).
- tool: use pseudo-differential calculus

Consider the Cauchy problem for P:

$$\begin{aligned} \text{(C)} & \begin{cases} & \partial_t^2 \phi(t) + a(t, \mathbf{x}, D_{\mathbf{x}}) \phi(t) = 0, \\ & \phi(0) = f_0, \\ & \mathrm{i}^{-1} \partial_t \phi(0) = f_1, \end{cases} \end{aligned}$$

- essential step to construct Hadamard states for P: characterize solutions with wavefront set in \mathcal{N}^{\pm} in terms of their Cauchy data.
- method: construct a sufficiently explicit parametrix for the
- tool: use pseudo-differential calculus

Consider the Cauchy problem for P:

(C)
$$\begin{cases} & \partial_t^2 \phi(t) + a(t, \mathbf{x}, D_{\mathbf{x}}) \phi(t) = 0, \\ & \phi(0) = f_0, \\ & i^{-1} \partial_t \phi(0) = f_1, \end{cases}$$

- essential step to construct Hadamard states for P: characterize solutions with wavefront set in \mathcal{N}^{\pm} in terms of their Cauchy data.
- method: construct a sufficiently explicit parametrix for the Cauchy problem (C).
- tool: use pseudo-differential calculus

Consider the Cauchy problem for P:

Quasi-free Hadamard states

$$\begin{aligned} \text{(C)} & \begin{cases} & \partial_t^2 \phi(t) + a(t, \mathbf{x}, D_{\mathbf{x}}) \phi(t) = 0, \\ & \phi(0) = f_0, \\ & \mathrm{i}^{-1} \partial_t \phi(0) = f_1, \end{cases} \end{aligned}$$

- essential step to construct Hadamard states for P: characterize solutions with wavefront set in \mathcal{N}^{\pm} in terms of their Cauchy data.
- method: construct a sufficiently explicit *parametrix* for the Cauchy problem (C).
- tool: use pseudo-differential calculus

General space-times

Plan

Parametrix for the Cauchy problem

In the static case, (C) is solved by:

$$U(t)f = \frac{1}{2}e^{ita^{1/2}}\left(f_0 + a^{-1/2}f_1\right) + \frac{1}{2}e^{-ita^{1/2}}\left(f_0 - a^{-1/2}f_1\right).$$

Theorem

There exist $b(t) \in C^{\infty}(\mathbb{R}, \Psi^{1}(\mathbb{R}^{d})), d \in \Psi^{0}(\mathbb{R}^{d}), r \in \Psi^{-1}(\mathbb{R}^{d})$ (unique mod $\Psi^{-\infty}(\mathbb{R}^d)$), such that if

$$U_{+}(t)f = ext{Texp}(i \int_{0}^{t} b(s) ds) d(f_{0} + rf_{1}),$$

 $U_{-}(t)f = ext{Texp}(-i \int_{0}^{t} b^{*}(s) ds) d^{*}(f_{0} - r^{*}f_{1})$

then $U(t)f := (U_+(t) + U_-(t))f$ solves the Cauchy problem (C) up to C^{∞} .

Above, $b(t) = a^{1/2}(t) + \frac{1}{\sqrt{2}}(a^{-1/2}(t))i\partial_t a^{1/2}(t) \mod \Psi^{-\infty}$.

In the static case, (C) is solved by:

$$U(t)f = \frac{1}{2}e^{ita^{1/2}}\left(f_0 + a^{-1/2}f_1\right) + \frac{1}{2}e^{-ita^{1/2}}\left(f_0 - a^{-1/2}f_1\right).$$

Theorem

There exist $b(t) \in C^{\infty}(\mathbb{R}, \Psi^{1}(\mathbb{R}^{d}))$, $d \in \Psi^{0}(\mathbb{R}^{d})$, $r \in \Psi^{-1}(\mathbb{R}^{d})$ (unique mod $\Psi^{-\infty}(\mathbb{R}^{d})$), such that if

$$U_{+}(t)f = ext{Texp}(i \int_{0}^{t} b(s) ds) d(f_{0} + rf_{1}),$$

 $U_{-}(t)f = ext{Texp}(-i \int_{0}^{t} b^{*}(s) ds) d^{*}(f_{0} - r^{*}f_{1})$

then $U(t)f := (U_+(t) + U_-(t))f$ solves the Cauchy problem (C) up to C^{∞} .

Above, $b(t)=a^{1/2}(t)+\frac{1}{\sqrt{2}}(a^{-1/2}(t))\mathrm{i}\partial_t a^{1/2}(t)\ mod\ \Psi^{-\infty}.$ Moreover, $WF(U_+(t)f)\subset\mathcal{N}_+.$

In the proofs, we use:

- If m > 0, $a \in \Psi^m(\mathbb{R}^d)$ is elliptic in $\Psi^m(\mathbb{R}^d)$ and symmetric: $\rightarrow a$ is selfadjoint on $H^m(\mathbb{R}^d)$: \rightarrow if $f \in S^p(\mathbb{R})$, $p \in \mathbb{R}$, then $f(a) \in \Psi^{mp}(\mathbb{R}^d)$ [Bony '96].
- Pseudo-differential operators act $a: \mathcal{E}' \to \mathcal{D}'$ problems with compositions! \rightarrow Instead consider $\mathcal{H}:=\bigcap_m H^m$ and $a:\mathcal{H}'\rightarrow\mathcal{H}'$.
- Transport equations: \rightarrow Fix $a \in \Psi^0(\mathbb{R}^d)$. Equations of the form

$$b = a + F(b) \mod \Psi^{-\infty}$$

where $F: \Psi^m(\mathbb{R}^d) \to \Psi^{m-1}(\mathbb{R}^d)$, can be solved uniquely mod $\Psi^{-\infty}$

• Egorov's theorem: \rightarrow Gives the wave front set of $\text{Texp}(i \int_0^t b(s) ds) u$, $u \in \mathcal{H}'(\mathbb{R}^d)$ for $b \in \Psi^1(\mathbb{R}^d)$.

We obtained $WF(U_{\pm}(t)f) \subset \mathcal{N}_{\pm}$. First consequence: Define finite energy solutions

$$\operatorname{Sol}_E(P) := \{ \phi \in C^0(\mathbb{R}, H^1(\mathbb{R}^d)) \cap C^1(\mathbb{R}, L^2(\mathbb{R}^d)) : \ P\phi = 0 \},$$

and positive/negative wavefront set solutions

$$Sol_{E}^{+}(P, r) := \{ \phi \in Sol_{E}(P) : \ \phi(0) = -i \, r \partial_{t} \phi(0) \},$$

$$Sol_{E}^{-}(P, r) := \{ \phi \in Sol_{E}(P) : \ \phi(0) = i \, r^{*} \partial_{t} \phi(0) \}.$$

$$\mathcal{R} := \{ r \in \Psi^{-1} : r = b^{*(-1)} + \Psi^{-\infty}, c a^{-1/2} \le r + r^* \le Ca^{-1/2} \}.$$

We obtained $WF(U_{\pm}(t)f) \subset \mathcal{N}_{\pm}$. First consequence: Define finite energy solutions

$$\operatorname{Sol}_{E}(P) := \{ \phi \in C^{0}(\mathbb{R}, H^{1}(\mathbb{R}^{d})) \cap C^{1}(\mathbb{R}, L^{2}(\mathbb{R}^{d})) : P\phi = 0 \},$$

and positive/negative wavefront set solutions

$$Sol_{E}^{+}(P,r) := \{ \phi \in Sol_{E}(P) : \ \phi(0) = -i \, r \partial_{t} \phi(0) \},$$

$$Sol_{E}^{-}(P,r) := \{ \phi \in Sol_{E}(P) : \ \phi(0) = i \, r^{*} \partial_{t} \phi(0) \}.$$

Theorem

One has $\pm i\sigma > 0$ on $\mathrm{Sol}_{F}^{\pm}(P,r)$, and the spaces $\mathrm{Sol}_{F}^{\pm}(P,r)$ are symplectically orthogonal.

$$\mathcal{R} := \{ r \in \Psi^{-1} : r = b^{*(-1)} + \Psi^{-\infty}, c a^{-1/2} \le r + r^* \le Ca^{-1/2} \}.$$

We obtained $WF(U_{\pm}(t)f) \subset \mathcal{N}_{\pm}$. First consequence:

Quasi-free Hadamard states

Define finite energy solutions

$$\operatorname{Sol}_{E}(P) := \{ \phi \in C^{0}(\mathbb{R}, H^{1}(\mathbb{R}^{d})) \cap C^{1}(\mathbb{R}, L^{2}(\mathbb{R}^{d})) : P\phi = 0 \},$$

and positive/negative wavefront set solutions

$$Sol_{E}^{+}(P, r) := \{ \phi \in Sol_{E}(P) : \ \phi(0) = -i \, r \partial_{t} \phi(0) \},$$

$$Sol_{E}^{-}(P, r) := \{ \phi \in Sol_{E}(P) : \ \phi(0) = i \, r^{*} \partial_{t} \phi(0) \}.$$

Theorem

One has $\pm i\sigma > 0$ on $\mathrm{Sol}_{F}^{\pm}(P,r)$, and the spaces $\mathrm{Sol}_{F}^{\pm}(P,r)$ are symplectically orthogonal.

This decomposition depends on the choice of r. There is no distinguished one, but we can restrict to the set:

$$\mathcal{R} := \{ r \in \Psi^{-1} : \ r = b^{*(-1)} + \Psi^{-\infty}, \ c \ a^{-1/2} \le r + r^* \le Ca^{-1/2} \}.$$

Construction of Hadamard states

Once having fixed $r \in \mathcal{R}$ (not unique in the construction!), set

$$T(r) := (r + r^*)^{-\frac{1}{2}} \begin{pmatrix} 1 & r \\ 1 & -r^* \end{pmatrix}.$$

It diagonalizes the symplectic form:

$$\widetilde{\sigma} := (T(r)^{-1})^* \circ \sigma \circ T(r)^{-1} = \begin{pmatrix} -i \mathbb{1} & 0 \\ 0 & i \mathbb{1} \end{pmatrix}.$$

If λ is a form on $C_0^{\infty}(\mathbb{R}^d) \otimes \mathbb{C}^2$ (Cauchy data), set

Quasi-free Hadamard states

$$\tilde{\lambda} := (T(r)^{-1})^* \circ \lambda \circ T(r)^{-1} =: \left(egin{array}{cc} \tilde{\lambda}_{++} & \tilde{\lambda}_{+-} \ \tilde{\lambda}_{-+} & \tilde{\lambda}_{--} \end{array}
ight)$$

Hadamard states with Ψ DO two-point function

$$(T(r)^{-1})^* \circ \lambda \circ T(r)^{-1} =: \left(egin{array}{cc} ilde{\lambda}_{++} & ilde{\lambda}_{+-} \ ilde{\lambda}_{-+} & ilde{\lambda}_{--} \end{array}
ight)$$

Theorem

Let λ be a form with ΨDO entries. Then Λ satisfies the Hadamard condition iff.

$$\tilde{\lambda}_{+-}, \tilde{\lambda}_{-+}, \tilde{\lambda}_{--} \in \Psi^{-\infty}(\mathbb{R}^d).$$

Hadamard states with Ψ DO two-point function

$$(T(r)^{-1})^* \circ \lambda \circ T(r)^{-1} =: \left(egin{array}{cc} ilde{\lambda}_{++} & ilde{\lambda}_{+-} \ ilde{\lambda}_{-+} & ilde{\lambda}_{--} \end{array}
ight)$$

Theorem

Introduction

Let λ be a form with ΨDO entries. Then Λ satisfies the Hadamard condition iff:

$$\tilde{\lambda}_{+-}, \tilde{\lambda}_{-+}, \tilde{\lambda}_{--} \in \Psi^{-\infty}(\mathbb{R}^d).$$

To get states, we need additionally $\tilde{\lambda} > 0$, $\tilde{\lambda} > i\tilde{\sigma}$.

Pure Hadamard states

Theorem

Let λ be a form with ΨDO entries. It defines a Hadamard and pure state iff there exists $c_{-\infty} \in \Psi^{-\infty}(\mathbb{R}^d)$ s.t.

$$\tilde{\lambda}_{++} = 1 + c_{-\infty} c_{-\infty}^*,$$

$$\tilde{\lambda}_{--} = c_{-\infty}^* c_{-\infty},$$

$$\tilde{\lambda}_{+-} = \tilde{\lambda}_{-+}^* = c_{-\infty} (1 + c_{-\infty}^* c_{-\infty})^{1/2}$$

$$\lambda(r) = \begin{pmatrix} (r+r^*)^{-1} & -(r+r^*)^{-1}r^* \\ -r(r+r^*)^{-1} & r(r+r^*)^{-1}r^* \end{pmatrix}$$

Theorem

Let λ be a form with $\Psi \mathrm{DO}$ entries. It defines a Hadamard and pure state iff there exists $c_{-\infty} \in \Psi^{-\infty}(\mathbb{R}^d)$ s.t.

$$egin{array}{lll} ilde{\lambda}_{++} &=& 1\!\!1 + c_{-\infty}c_{-\infty}^*, \ ilde{\lambda}_{--} &=& c_{-\infty}^*c_{-\infty}, \ ilde{\lambda}_{+-} &=& ilde{\lambda}_{-+}^* &= c_{-\infty}(1\!\!1 + c_{-\infty}^*c_{-\infty})^{1/2} \end{array}$$

Choose $c_{-\infty} = 0$ above. The corresponding two-point function is:

$$\lambda(r) = \begin{pmatrix} (r+r^*)^{-1} & -(r+r^*)^{-1}r^* \\ -r(r+r^*)^{-1} & r(r+r^*)^{-1}r^* \end{pmatrix}$$

and defines the canonical Hadamard state (associated to r).

One can characterize the elements $U(\mathcal{Y}, i\sigma)$ which preserve the Hadamard condition. There is a remarkable large subgroup:

$$U_{-\infty}(\mathcal{Y}, \mathrm{i}\sigma) := \{ u \in U(\mathcal{Y}, \mathrm{i}\sigma) : u - \mathbb{1} \in \Psi^{-\infty}(\mathbb{R}^d) \otimes M_2(\mathbb{C}) \}.$$

Theorem

Define a group G by

$$\mathcal{G} = \{(g, t): g - 1, t \in \Psi^{-\infty}, g, g^* \in GL(L^2(\mathbb{R}^a)), t = -t^*\}$$

$$\mathrm{Id} = (1, 0), \quad G_2G_1 = (g_2g_1, (g_2^*)^{-1}f_1g_2^{-1} + f_2) \text{ for } G_i = (g_i, f_i).$$

There is a group homomorphism $\mathcal{G} \ni G \mapsto u_G \in U_{-\infty}(\mathcal{Y}, i\sigma)$ and a transitive group action $\mathcal{G} \ni G \mapsto \alpha_G(r) \in \mathcal{R}$ such that

$$\lambda(\alpha_G(r)) = u_G^* \lambda(r) u_G, \quad \forall \ r \in \mathcal{R}, \ G \in \mathcal{G}.$$

Let $\mathcal{Y} = \mathcal{H}(\mathbb{R}^d) \otimes \mathbb{C}^2$ and recall $U(\mathcal{Y}, i\sigma)$ consists of transformations which preserve σ .

One can characterize the elements $U(\mathcal{Y}, i\sigma)$ which preserve the Hadamard condition. There is a remarkable large subgroup:

$$U_{-\infty}(\mathcal{Y},\mathrm{i}\sigma):=\{u\in U(\mathcal{Y},\mathrm{i}\sigma):\ u-\mathbb{1}\in \Psi^{-\infty}(\mathbb{R}^d)\otimes M_2(\mathbb{C})\}.$$

$$\mathcal{G} = \{(g, f): g - 1, f \in \Psi^{-\infty}, g, g^* \in GL(L^2(\mathbb{R}^d)), f = -f^*\}$$

$$\mathrm{Id} = (1, 0), \quad G_2G_1 = (g_2g_1, (g_2^*)^{-1}f_1g_2^{-1} + f_2) \text{ for } G_i = (g_i, f_i)$$

$$\lambda(\alpha_G(r)) = u_G^* \lambda(r) u_G, \quad \forall \ r \in \mathcal{R}, \ G \in \mathcal{G}.$$

General space-times

Plan

Let $\mathcal{Y} = \mathcal{H}(\mathbb{R}^d) \otimes \mathbb{C}^2$ and recall $U(\mathcal{Y}, i\sigma)$ consists of transformations which preserve σ .

One can characterize the elements $U(\mathcal{Y}, i\sigma)$ which preserve the Hadamard condition. There is a remarkable large subgroup:

$$U_{-\infty}(\mathcal{Y},\mathrm{i}\sigma):=\{u\in U(\mathcal{Y},\mathrm{i}\sigma):\ u-\mathbb{1}\in \Psi^{-\infty}(\mathbb{R}^d)\otimes M_2(\mathbb{C})\}.$$

Theorem

Define a group \mathcal{G} by

$$\mathcal{G} = \{(g, f): g - 1, f \in \Psi^{-\infty}, g, g^* \in GL(L^2(\mathbb{R}^d)), f = -f^*\},$$

 $\mathrm{Id} = (1, 0), G_2G_1 = (g_2g_1, (g_2^*)^{-1}f_1g_2^{-1} + f_2) \text{ for } G_i = (g_i, f_i).$

There is a group homomorphism $\mathcal{G} \ni G \mapsto u_G \in U_{-\infty}(\mathcal{Y}, i\sigma)$ and a transitive group action $\mathcal{G} \ni \mathcal{G} \mapsto \alpha_{\mathcal{G}}(r) \in \mathcal{R}$ such that

$$\lambda(\alpha_G(r)) = u_G^* \lambda(r) u_G, \quad \forall \ r \in \mathcal{R}, \ G \in \mathcal{G}.$$

Static case

Plan

Consider the *static* case $a(t, x, D_x) = a(x, D_x)$ independent on t. Then one can define the ground state and thermal state. In this case — preferred choice $r = a^{-1/2} \in \mathcal{R}$.

ground state:

$$\tilde{\lambda} = \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right),$$

thermal state:

$$\tilde{\lambda}_{\beta} = \begin{pmatrix} e^{-\beta a^{1/2}} (\mathbb{1} - e^{-\beta a^{1/2}})^{-1} & 0\\ 0 & (\mathbb{1} - e^{-\beta a^{1/2}})^{-1} \end{pmatrix}$$

Static case

Consider the *static* case $a(t, x, D_x) = a(x, D_x)$ independent on t. Then one can define the ground state and thermal state. In this case — preferred choice $r = a^{-1/2} \in \mathcal{R}$.

ground state:

$$\tilde{\lambda} = \left(egin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}
ight),$$

thermal state:

$$\tilde{\lambda}_{\beta} = \begin{pmatrix} e^{-\beta a^{1/2}} (1 - e^{-\beta a^{1/2}})^{-1} & 0 \\ 0 & (1 - e^{-\beta a^{1/2}})^{-1} \end{pmatrix}.$$

Static case

Consider the *static* case $a(t, x, D_x) = a(x, D_x)$ independent on t. Then one can define the ground state and thermal state. In this case — preferred choice $r = a^{-1/2} \in \mathcal{R}$.

ground state:

$$\tilde{\lambda} = \left(egin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}
ight),$$

• thermal state:

$$\tilde{\lambda}_{\beta} = \begin{pmatrix} e^{-\beta a^{1/2}} (1 - e^{-\beta a^{1/2}})^{-1} & 0 \\ 0 & (1 - e^{-\beta a^{1/2}})^{-1} \end{pmatrix}.$$

Both two-point functions are pseudo-differential and Hadamard.

Arbitrary globally hyperbolic space-times

- $M = \mathbb{R} \times \Sigma$.
- Choose an open set Ω in M, and open, pre-compact sets U_n ,
- Fix a partition of unity $1 = \sum_{n} \chi_n^2$ of Σ , with $\chi_n \in C_0^{\infty}(U_n)$.

Arbitrary globally hyperbolic space-times

- $M = \mathbb{R} \times \Sigma$.
- Choose an open set Ω in M, and open, pre-compact sets U_n , \tilde{U}_n in Σ such that:
 - (i) $U_n \in \tilde{U}_n$, $\bigcup_n U_n = \Sigma$,
 - (ii) \tilde{U}_n are coordinate charts for Σ ,
 - (iii) $y \in \Omega$, $J(y) \cap U_n \neq \emptyset \Rightarrow y \in]-\delta_n, \delta_n[\times \tilde{U}_n =: \tilde{\Omega}_n,$
 - (iv) Ω is a neighborhood of Σ in M.
- Fix a partition of unity $1 = \sum_n \chi_n^2$ of Σ , with $\chi_n \in C_0^\infty(U_n)$.

We have $\sigma = \sum_n \chi_n^* \sigma \chi_n$. Now we set $\lambda := \sum_{n \in \mathbb{N}} \chi_n^* \lambda_n \chi_n$, where λ_n are obtained by transporting Hadamard states constructed on $[-\delta_n, \delta_n] \times V_n \subset \mathbb{R} \times \mathbb{R}^d$ along coordinate maps $\varphi_n : \tilde{U}_n \to V_n$.

Arbitrary globally hyperbolic space-times

- $M = \mathbb{R} \times \Sigma$.
- Choose an open set Ω in M, and open, pre-compact sets U_n , \tilde{U}_n in Σ such that:
 - (i) $U_n \in \tilde{U}_n$, $\bigcup_n U_n = \Sigma$,
 - (ii) \tilde{U}_n are coordinate charts for Σ ,
 - (iii) $y \in \Omega$, $J(y) \cap U_n \neq \emptyset \Rightarrow y \in]-\delta_n, \delta_n[\times \tilde{U}_n =: \tilde{\Omega}_n,$
 - (iv) Ω is a neighborhood of Σ in M.
- Fix a partition of unity $1 = \sum_n \chi_n^2$ of Σ , with $\chi_n \in C_0^{\infty}(U_n)$.

We have $\sigma = \sum_n \chi_n^* \sigma \chi_n$. Now we set $\lambda := \sum_{n \in \mathbb{N}} \chi_n^* \lambda_n \chi_n$, where λ_n are obtained by transporting Hadamard states constructed on $[1 - \delta_n, \delta_n] \times V_n \subset \mathbb{R} \times \mathbb{R}^d$ along coordinate maps $\varphi_n : \tilde{U}_n \to V_n$.

Arbitrary globally hyperbolic space-times

- $M = \mathbb{R} \times \Sigma$.
- Choose an open set Ω in M, and open, pre-compact sets U_n , \tilde{U}_n in Σ such that:
 - (i) $U_n \in \tilde{U}_n$, $\bigcup_n U_n = \Sigma$,
 - (ii) \tilde{U}_n are coordinate charts for Σ ,
 - (iii) $y \in \Omega$, $J(y) \cap U_n \neq \emptyset \Rightarrow y \in]-\delta_n, \delta_n[\times \tilde{U}_n =: \tilde{\Omega}_n,$
 - (iv) Ω is a neighborhood of Σ in M.
- Fix a partition of unity $1 = \sum_n \chi_n^2$ of Σ , with $\chi_n \in C_0^\infty(U_n)$.

We have $\sigma = \sum_n \chi_n^* \sigma \chi_n$. Now we set $\lambda := \sum_{n \in \mathbb{N}} \chi_n^* \lambda_n \chi_n$, where λ_n are obtained by transporting Hadamard states constructed on $]-\delta_n, \delta_n[\times V_n \subset \mathbb{R} \times \mathbb{R}^d$ along coordinate maps $\varphi_n : \tilde{U}_n \to V_n$.

Introduction

- Construction of Hadamard states on arbitrary globally-hyperbolic space-times.
- Transparent results if metric components well-behaved at spatial infinity — explicit description of pure quasi-free states
 useful to investigate their local properties;
 - ambiguity in choosing a state encoded in a group of special Bogoliubov transformations.
- In progress:
 - replace space-like Cauchy surface by characteristic one;
 - generalize to other spins spin-1 especially interesting
- Challenge:
 - implemention in semi-classical Einstein/Maxwell equations.

Introduction

- Construction of Hadamard states on arbitrary globally-hyperbolic space-times.
- Transparent results if metric components well-behaved at spatial infinity — explicit description of pure quasi-free states ⇔ useful to investigate their local properties;

- · ambiguity in choosing a state encoded in a group of special Bogoliubov transformations.
- In progress:
 - replace space-like Cauchy surface by characteristic one:
 - generalize to other spins spin-1 especially interesting
- Challenge:
 - implemention in semi-classical Einstein/Maxwell equations.

Introduction

- Construction of Hadamard states on arbitrary globally-hyperbolic space-times.
- Transparent results if metric components well-behaved at spatial infinity — explicit description of pure quasi-free states ⇔ useful to investigate their local properties;

- · ambiguity in choosing a state encoded in a group of special Bogoliubov transformations.
- In progress:
 - replace space-like Cauchy surface by characteristic one;
 - generalize to other spins spin-1 especially interesting.
- Challenge:
 - implemention in semi-classical Einstein/Maxwell equations.

Introduction

- Construction of Hadamard states on arbitrary globally-hyperbolic space-times.
- Transparent results if metric components well-behaved at spatial infinity — explicit description of pure quasi-free states ⇔ useful to investigate their local properties;

- ambiguity in choosing a state encoded in a group of special Bogoliubov transformations.
- In progress:
 - replace space-like Cauchy surface by characteristic one;
 - generalize to other spins spin-1 especially interesting.
- Challenge:
 - implemention in semi-classical Einstein/Maxwell equations.