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Physical states for QFT on curved space-times

• On general curved space-times, no notion of vacuum state.

• Substitute for vacuum state: Hadamard states, characterized
by the singularity structure of their two-point functions [Kay,

Wald, etc. ’70-’80];

• Most important property: quantum stress-energy tensor can
be renormalized w.r.t. a Hadamard state;

• Since [Radzikowski ’96], Hadamard condition formulated in
terms of wave front set.

• Problem: few examples of Hadamard states have been
constructed.
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Overview

• We reconsider the construction of Hadamard states on
space-times with metric well-behaved at spatial infinity;

• Working on a fixed Cauchy surface, we can use rather
standard pseudo-di↵erential analysis.

• We construct a large class of Hadamard states with  DO
two-point functions, in particular all pure Hadamard states.

• We give a new construction of Hadamard states on general
globally hyperbolic space-times.
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Quasi-free states: neutral case
Let (X ,�) be a symplectic space and A its Weyl CCR C ⇤-algebra,
generated by elements W (f ), f 2 X , with

W (f )⇤ = W (�f ), W (f )W (g) = e�i�(f ,g)/2W (f +g), f , g 2 X .

A state ! on A is quasi-free if there is a symmetric form ⌘ s.t.

!(W (f )) = e�
1
2⌘(f ,f ), f 2 X .

• A symmetric form ⌘ on X defines a quasi-free state i↵ the
two-point function � = ⌘ + i

2� satisfies � � 0 .

• A symmetric form � on X is the two-point function of a
quasi-free state i↵ � � 0 and � � i� .

The field operators �(f ) in the GNS rep. of ! satisfy

[�(f ),�(g)] = i�(f , g), !(�(f )�(g)) = � (f , g).
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Quasi-free states: charged case

Let (Y,�) be a complex symplectic space (with some complex
structure j) and A the Weyl CCR C ⇤-algebra of (Y ,Re�).
A quasi-free state ! on A is gauge-invariant if

!(W (y)) = !(W (ej✓y)), 0  ✓ < 2⇡, y 2 Y.

Let �(y) be the (‘neutral’) field operators in the GNS rep. of !.
The charged fields:

 (y) ··= 1p
2
(�(y) + i�(jy)),  ⇤(y) ··= 1p

2
(�(y)� i�(jy))

[ (y1), 
⇤(y2)] = i�(y1, y2), !( (y1) 

⇤(y2)) =·· �(y1, y2)
) �(y1, y2)� i�(y1, y2) = !( ⇤(y2) (y1))

• A symmetric form � on Y is the two-point function of a
gauge-invariant quasi-free state i↵ � � 0 and � � i� .
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Quasi-free states: unitary group

Let (Y,�) be a complex symplectic space and A the Weyl CCR
C ⇤-algebra. The unitary group:

U(Y, i�) = {u : u⇤�u = �}.
Recall that � is the two-point function of a gauge-invariant
quasi-free state on A i↵

(Pos) � � 0 and � � i� .

• If � satisfies (Pos) then so does u⇤�u for any u 2 U(Y, i�).

• If �1 and �2 are two-point functions of pure states, then there
exists u 2 U(Y, i�) such that �2 = u⇤�1u.



Plan Introduction Quasi-free Hadamard states Model Klein-Gordon equation General space-times

Quasi-free states: unitary group

Let (Y,�) be a complex symplectic space and A the Weyl CCR
C ⇤-algebra. The unitary group:

U(Y, i�) = {u : u⇤�u = �}.
Recall that � is the two-point function of a gauge-invariant
quasi-free state on A i↵

(Pos) � � 0 and � � i� .

• If � satisfies (Pos) then so does u⇤�u for any u 2 U(Y, i�).

• If �1 and �2 are two-point functions of pure states, then there
exists u 2 U(Y, i�) such that �2 = u⇤�1u.



Plan Introduction Quasi-free Hadamard states Model Klein-Gordon equation General space-times

Quasi-free states: unitary group

Let (Y,�) be a complex symplectic space and A the Weyl CCR
C ⇤-algebra. The unitary group:

U(Y, i�) = {u : u⇤�u = �}.
Recall that � is the two-point function of a gauge-invariant
quasi-free state on A i↵

(Pos) � � 0 and � � i� .

• If � satisfies (Pos) then so does u⇤�u for any u 2 U(Y, i�).

• If �1 and �2 are two-point functions of pure states, then there
exists u 2 U(Y, i�) such that �2 = u⇤�1u.



Plan Introduction Quasi-free Hadamard states Model Klein-Gordon equation General space-times

Quasi-free states: unitary group

Let (Y,�) be a complex symplectic space and A the Weyl CCR
C ⇤-algebra. The unitary group:

U(Y, i�) = {u : u⇤�u = �}.
Recall that � is the two-point function of a gauge-invariant
quasi-free state on A i↵

(Pos) � � 0 and � � i� .

• If � satisfies (Pos) then so does u⇤�u for any u 2 U(Y, i�).

• If �1 and �2 are two-point functions of pure states, then there
exists u 2 U(Y, i�) such that �2 = u⇤�1u.



Plan Introduction Quasi-free Hadamard states Model Klein-Gordon equation General space-times

Klein-Gordon equations

Consider a globally hyperbolic space-time (M, gµ⌫dxµdx⌫).
We fix a smooth vector potential Aµ(x)dxµ and a mass term.

• Klein-Gordon operator:

P(x ,D
x

) = |g |� 1
2 (@µ + iAµ)|g | 12 gµ⌫(@⌫ + iA⌫) +m2,

where |g | = det[gµ⌫ ], [gµ⌫ ] ··= [gµ⌫ ]�1.

• P(x ,D
x

) admits unique advanced/retarded fundamental
solutions E± solving:

P(x ,D
x

) � E± = 1l,

suppE±f ⇢ J±(suppf ), f 2 C1
0 (M),
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Symplectic space of solutions

Let Sol
sc

(P) ⇢ C1(M) be the space of smooth space-compact
solutions of

(KG) P(x ,D
x

)� = 0.

• E = E+ � E�, called the commutator function.

• One has Sol
sc

(P) = EC1
0 (M).

(Sol
sc

(P),E ) is our complex symplectic space. We look for ⇤ s.t.

⇤ � 0 and ⇤ � iE +Hadamard condition .
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Symplectic space of Cauchy data

Fix a Cauchy hypersurface ⌃ and set

⇢ : Sol
sc

(P) ! C1
0 (⌃)� C1

0 (⌃)

� 7! (�|⌃, i
�1nµ(rµ + iAµ)�|⌃) =·· (⇢0�, ⇢1�).

Denote by � the canonical symplectic form on C1
0 (⌃)� C1

0 (⌃):

�(f , g) ··= �i

Z

⌃
(f0g1 + f1g0)ds, f , g 2 C1

0 (⌃)� C1
0 (⌃),

• One has E (u1, u2) = �(⇢ � Eu1, ⇢ � Eu2) for u1, u2 2 C1
0 (M).

• Hence (C1
0 (M),E ) is isomorphic to (C1

0 (⌃)⌦ 2,�).

We can thus work with (C1
0 (⌃)⌦ 2,�) and look for � s.t.

� � 0 and � � i� +Hadamard condition .

Then ⇤(u1, u2) = �(⇢ � Eu1, ⇢ � Eu2) for u1, u2 2 C1
0 (M).
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Pseudo-di↵erential operators

If u 2 D0( n), WF (u) can be defined using pseudo-di↵erential
operators. Denote by Sm( 2d), m 2 the symbol class

a 2 Sm( 2d) if @↵
x

@�
k

a(x , k) 2 O
�
(1 + |k |2)m�|�|

2
�
, ↵,� 2 d .

The Weyl quantization of a is the operator

a(x ,D
x

)u(x) ··= (2⇡)�d

ZZ
ei(x�y)ka( x+y

2 , k)u(y)dydk .

 m( d) ··= Opw(Sm( 2d)) = pseudo-di↵erential operators.

 �1( d) ··=
\

m

 m( d)
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Basic property: a(x ,D
x

) 2  m( d) maps Hs( d) ! Hs�m( d).
In particular a(x ,D

x

) 2  �1( d) maps to smooth functions. The
characteristic set of a

Char(a) := {(x , k) 2 d ⇥ ( d \ {0}) : a
m

(x , k) = 0}.

! a is elliptic i↵ Char(a) = ;. Then there exists a(�1) 2  �m( d)
such that a(�1)a = 1l mod  �1.

Definition
(x , k) /2 WF (u) (the wave front set) i↵ there exists � 2 C1

0 and
a 2 S0( 2d) with �(x) 6= 0, (x , k) 62 Char(a) and

a(x ,D
x

)�u 2 S( d).

! provides criteria for existence of u · v , u|
X

.
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Hadamard states

• Denote p(x , ⇠) = gµ⌫(x)⇠µ⇠⌫ the principal symbol of
P(x ,D

x

),

• N = p�1({0}) energy surface,
N± = {(x , ⇠) 2 N : ⇠ 2 V ⇤

±(x)}, positive/negative energy
surfaces, N = N+ [N�,

• For X
i

= (x
i

, ⇠
i

) write X1 ⇠ X2 if X1,X2 2 N , X1, X2 on the
same Hamiltonian curve of p.

Definition ([Radzikowski ’96])

⇤ satisfies the Hadamard condition i↵

WF (⇤)0 ⇢ {(X1,X2), X1 ⇠ X2 : X1 2 N+}.
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Examples of Hadamard states

• On general space-times + arbitrary smooth potentials,
Hadamard states exist [Fulling, Narcowich, Wald ’80].

• If (M, g) is asymptotically flat at null infinity, distinguished
Hadamard states [Dappiaggi, Moretti, Pinamonti ’09]

• The ‘Unruh state’ on Schwarzschild space-time [Dappiaggi,

Moretti, Pinamonti ’11].

• If (M, g) has a compact Cauchy surface, construction by
pseudo-di↵erential methods [Junker ’97].

• In the stationary case, ground states (and KMS states)
[Sahlmann, Verch ’97] + their generalizations for overcritical
potentials [W. ’12].

Can one use a  DO-based construction for non-compact Cauchy
surfaces? Can one construct all Hadamard states?
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Model Klein-Gordon equation

We consider first the following Model case:

• M = 1+d , x = (t, x) 2 1+d

a(t, x,D
x

) = �
dX

j ,k=1

@
x

j

ajk(x)@
x

k

+
dX

j=1

bj(x)@
x

j

�@
x

j

b
j

(x)+m(x),

• [ajk ] uniformly elliptic, ajk , bj , m uniformly bounded with all
derivatives in x, in bounded time intervals.

• We consider P(x ,D
x

) = @2
t

+ a(t, x,D
x

).

• Klein-Gordon operators on a space-time (M, g) with a Cauchy
surface ⌃ = d and some uniform estimates on the metric
can be reduced to this case.
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Parametrix for the Cauchy problem

Consider the Cauchy problem for P :

(C)

8
>><

>>:

@2
t

�(t) + a(t, x,D
x

)�(t) = 0,

�(0) = f0,

i�1@
t

�(0) = f1,

• essential step to construct Hadamard states for P :
characterize solutions with wavefront set in N± in terms of
their Cauchy data.

• method: construct a su�ciently explicit parametrix for the
Cauchy problem (C).

• tool: use pseudo-di↵erential calculus
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Parametrix for the Cauchy problem

In the static case, (C) is solved by:

U(t)f = 1
2e

ita

1/2
⇣
f0 + a�1/2f1

⌘
+ 1

2e
�ita

1/2
⇣
f0 � a�1/2f1

⌘
.

Theorem
There exist b(t) 2 C1( , 1( d)), d 2  0( d), r 2  �1( d)
(unique mod  �1( d)), such that if

U+(t)f = Texp(i
R
t

0 b(s)ds)d (f0 + rf1) ,

U�(t)f = Texp(�i
R
t

0 b⇤(s)ds)d⇤(f0 � r⇤f1)

then U(t)f ··= (U+(t) + U�(t)) f solves the Cauchy problem (C)
up to C1.
Above, b(t) = a1/2(t) + 1p

2
(a�1/2(t))i@

t

a1/2(t) mod  �1.

Moreover, WF (U±(t)f ) ⇢ N±.
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In the proofs, we use:

• If m � 0, a 2  m( d) is elliptic in  m( d) and symmetric:
! a is selfadjoint on Hm( d);
! if f 2 Sp( ), p 2 , then f (a) 2  mp( d) [Bony ’96].

• Pseudo-di↵erential operators act a : E 0 ! D0 — problems
with compositions!
! Instead consider H ··=

T
m

Hm and a : H0 ! H0.

• Transport equations:
! Fix a 2  0( d). Equations of the form

b = a+ F (b) mod  �1

where F :  m( d) !  m�1( d), can be solved uniquely mod
 �1.

• Egorov’s theorem:
! Gives the wave front set of Texp(i

R
t

0 b(s)ds)u,
u 2 H0( d) for b 2  1( d).
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We obtained WF (U±(t)f ) ⇢ N±. First consequence:
Define finite energy solutions

Sol
E

(P) ··= {� 2 C 0( ,H1( d)) \ C 1( , L2( d)) : P� = 0},

and positive/negative wavefront set solutions

Sol+
E

(P , r) ··= {� 2 Sol
E

(P) : �(0) = �i r@
t

�(0))},
Sol�

E

(P , r) ··= {� 2 Sol
E

(P) : �(0) = i r⇤@
t

�(0))}.

Theorem
One has ±i� > 0 on Sol±

E

(P , r), and the spaces Sol±
E

(P , r) are
symplectically orthogonal.

This decomposition depends on the choice of r . There is no
distinguished one, but we can restrict to the set:

R ··= {r 2  �1 : r = b⇤(�1) + �1, c a�1/2  r + r⇤  Ca�1/2}.
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Construction of Hadamard states

Once having fixed r 2 R (not unique in the construction!), set

T (r) ··= (r + r⇤)�
1
2

✓
1l r
1l �r⇤

◆
.

It diagonalizes the symplectic form:

�̃ ··= (T (r)�1)⇤ � � � T (r)�1 =

✓ �i1l 0
0 i1l

◆
.

If � is a form on C1
0 ( d)⌦ 2 (Cauchy data), set

�̃ ··= (T (r)�1)⇤ � � � T (r)�1 =··
✓
�̃++ �̃+�
�̃�+ �̃��

◆
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Hadamard states with  DO two-point function

(T (r)�1)⇤ � � � T (r)�1 =··
✓
�̃++ �̃+�
�̃�+ �̃��

◆

Theorem
Let � be a form with  DO entries. Then ⇤ satisfies the Hadamard
condition i↵:

�̃+�, �̃�+, �̃�� 2  �1( d).

To get states, we need additionally �̃ � 0, �̃ � i�̃.
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Pure Hadamard states

Theorem
Let � be a form with  DO entries. It defines a Hadamard and
pure state i↵ there exists c�1 2  �1( d) s.t.

�̃++ = 1l+ c�1c⇤�1,

�̃�� = c⇤�1c�1,

�̃+� = �̃⇤�+ = c�1(1l+ c⇤�1c�1)1/2

Choose c�1 = 0 above. The corresponding two-point function is:

�(r) =

✓
(r + r⇤)�1 �(r + r⇤)�1r⇤

�r(r + r⇤)�1 r(r + r⇤)�1r⇤

◆

and defines the canonical Hadamard state (associated to r).
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Let Y = H( d)⌦ 2 and recall U(Y, i�) consists of
transformations which preserve �.
One can characterize the elements U(Y, i�) which preserve the
Hadamard condition. There is a remarkable large subgroup:

U�1(Y, i�) ··= {u 2 U(Y, i�) : u � 1l 2  �1( d)⌦M2( )}.

Theorem
Define a group G by

G = {(g , f ) : g � 1l, f 2  �1, g , g⇤ 2 GL(L2( d)), f = �f ⇤},
Id = (1l, 0), G2G1 = (g2g1, (g⇤

2 )
�1f1g

�1
2 + f2) for Gi

= (g
i

, f
i

).

There is a group homomorphism G 3 G 7! u
G

2 U�1(Y, i�) and a
transitive group action G 3 G 7! ↵

G

(r) 2 R such that

�(↵
G

(r)) = u⇤
G

�(r)u
G

, 8 r 2 R, G 2 G.
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Static case

Consider the static case a(t, x,D
x

) = a(x,D
x

) independent on t.
Then one can define the ground state and thermal state. In this
case — preferred choice r = a�1/2 2 R.

• ground state:

�̃ =

✓
0 0
0 1l

◆
,

• thermal state:

�̃� =

 
e��a1/2(1l� e��a1/2)�1 0

0 (1l� e��a1/2)�1

!
.

Both two-point functions are pseudo-di↵erential and Hadamard.
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Arbitrary globally hyperbolic space-times

• M = ⇥ ⌃.
• Choose an open set ⌦ in M, and open, pre-compact sets U

n

,
Ũ

n

in ⌃ such that:

(i) U
n

b Ũ
n

,
S

n

U
n

= ⌃,

(ii) Ũ
n

are coordinate charts for ⌃,

(iii) y 2 ⌦, J(y) \ U
n

6= ; ) y 2]� �
n

, �
n

[⇥Ũ
n

=·· ⌦̃
n

,

(iv) ⌦ is a neighborhood of ⌃ in M.

• Fix a partition of unity 1 =
P

n

�2
n

of ⌃, with �
n

2 C1
0 (U

n

).

We have � =
P

n

�⇤
n

��
n

. Now we set � ··=
P

n2 �⇤
n

�
n

�
n

, where
�
n

are obtained by transporting Hadamard states constructed on
]� �

n

, �
n

[⇥V
n

⇢ ⇥ d along coordinate maps '
n

: Ũ
n

! V
n

.
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n

=·· ⌦̃
n

,

(iv) ⌦ is a neighborhood of ⌃ in M.

• Fix a partition of unity 1 =
P

n

�2
n

of ⌃, with �
n

2 C1
0 (U

n

).

We have � =
P

n

�⇤
n

��
n

. Now we set � ··=
P

n2 �⇤
n

�
n

�
n

, where
�
n

are obtained by transporting Hadamard states constructed on
]� �

n

, �
n

[⇥V
n

⇢ ⇥ d along coordinate maps '
n

: Ũ
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n

! V
n

.



Plan Introduction Quasi-free Hadamard states Model Klein-Gordon equation General space-times

Outlook

• Construction of Hadamard states on arbitrary
globally-hyperbolic space-times.

• Transparent results if metric components well-behaved at
spatial infinity — explicit description of pure quasi-free states
$ useful to investigate their local properties;

• ambiguity in choosing a state encoded in a group of special
Bogoliubov transformations.

• In progress:
• replace space-like Cauchy surface by characteristic one;
• generalize to other spins — spin-1 especially interesting.

• Challenge:
• implemention in semi-classical Einstein/Maxwell equations.
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