Massless Wigner particles in conformal field theory are free

Yoh Tanimoto

JSPS SPD fellow, University of Tokyo

May 31st 2013, Wuppertal

Introduction

Is there any nontrivial CFT in 4 dimensions?

- Baumann, 1982: asymptotically complete, dilation-covariant scalar field is free.
- Weinberg, 2012: any conformal field which creates massless particle is free.

cf. complementary approach by Nikolov, Rehren, Todorov...

Main result

In any **conformal** net, the massless particle spectrum is generated by a free field subnet. The free field net decouples from the rest as a tensor product component if it is scalar (**No asymptotic completeness, no field**).

cf. in 2 dimensions, massless wave spectrum in CFT is generated by a tensor product subnet (T. 2012). A tensor product net may have a nontrivial extension (Rehren 2000, Kawahigashi-Longo 2004).

31/05/2013, Wuppertal

Modular theory in CFT

The conformal group $\mathscr C$ is generated by Poincaré transformations, dilations and special conformal transformations. They contain:

$$\Lambda_t a_{\pm} = rac{(1+a_{\pm}) - e^{-2\pi t}(1-a_{\pm})}{(1+a_{\pm}) - e^{-2\pi t}(1+a_{\pm})}, \ \ a \pm = a_0 \pm a_1.$$

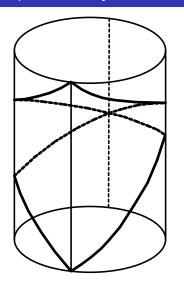
A **conformal net** is a net of von Neumann algebras $\{\mathcal{A}(O)\}$ parametrized by O, subject to the standard requirements and local covariance by a representation U(g) of $\widetilde{\mathscr{C}}$, the universal covering of \mathscr{C} .

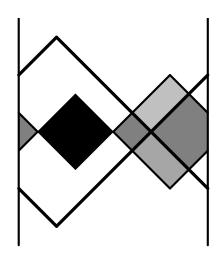
Theorem (Brunetti-Guido-Longo, 1993)

Any conformal net extends to the cylinder $\widetilde{M} = S^3 \times \mathbb{R}$ and Haag duality holds on \widetilde{M} . The modular group for the following regions are:

- The future lightcone V_+ : dilations.
- The standard wedge W: the boosts which preserve W.
- The standard double cone $|a_0| + |a| < 1$: Λ_t above.

The spacetime cylinder





Unitary projective representations of the conformal group

The conformal group $\mathscr C$ is locally isomorphic to $\mathrm{SU}(2,2)$, whose maximally compact subgroup is $\mathrm{S}(\mathrm{U}(2)\times\mathrm{U}(2))$. Accordingly, the representations are classified by (d,j_1,j_2) .

Theorem (Mack 1977)

Irreducible unitary projective representations of ${\mathscr C}$ with positive energy are:

- trivial representation $d = j_1 = j_2 = 0$
- $j_1 \neq 0 \neq j_2$, $d > j_1 + j_2 + 2$. m > 0 and $s = |j_1 j_2|, \dots, j_1 + j_2$
- $j_1 \neq 0 \neq j_2$, $d = j_1 + j_2 + 2$. m > 0 and $s = j_1 + j_2$
- $j_1j_2 = 0$, $d > j_1 + j_2 + 1$. m > 0 and $s = j_1 + j_2$
- $j_1j_2 = 0$, $d = j_1 + j_2 + 1$. m = 0, helicity $j_1 j_2$.

The **only massless representations** are the last ones.

Main result: if the representation U of a CFT contains one of them, then it is generated by the free field subnet.

Scattering theory for massless particles

- A: a Poincaré covariant net.
- $U(\tau)$: representation of translations, whose spectral projection of the boundary of the future lightcone is nontrivial.

For $x \in \mathcal{A}(O)$ which is smooth under translation,

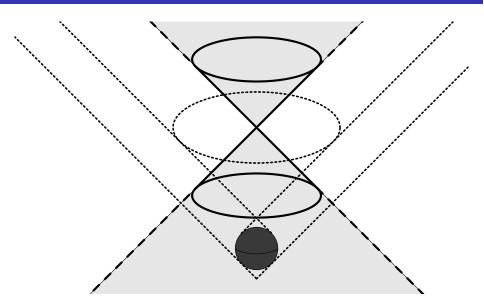
$$\Phi^{\mathrm{out}}(x) = \lim_{T \to \infty} \int dt \, h_T(t) \int d\omega(n) \, t \mathrm{Ad} \, U(\tau(t,tn))(\partial_0 x),$$

where h_T is a certain regularizing function, $d\omega$ is the rotation-invariant measure on S^3 , ∂_0 is the time-derivative.

Theorem (Buchholz 1977, T. in preparation)

- $\Phi^{\text{out}}(x)$ is self-adjoint and $A(V_{O,+})\Omega$ is a core, where $V_{O,+}$ is the future tangent of O.
- Ad $U(g)(\Phi^{\text{out}}(x)) = \Phi^{\text{out}}(\operatorname{Ad} U(g)(x))$. This holds also for a conformal transformation g if A is a conformal net.

Approximating asymptotic field



Proof under Global Conformal Invariance

Simpler proof under stronger assumption.

Global Conformal Invariance: the action of $\widetilde{\mathscr{C}}$ factors through \mathscr{C} and the net is defined on the compactified Minkowski space \overline{M} . **E.g.** the free scalar field.

Consequence: $A(O_1)$ and $A(O_2)$ commute when O_1 and O_2 are timelike separated.

Moreover, $\mathcal{A}(V_+)'=\mathcal{A}(V_-)$ because of Takesaki's theorem: by GCI $\mathcal{A}(V_-)\subset\mathcal{A}(V_+)'$ and the dilations are the modular group for both, the vacuum Ω is cyclic for both, then they must coincide.

Proof under Global Conformal Invariance

We define the free subnet $\mathcal{A}^{\text{out}}(O) := \{e^{i\Phi^{\text{out}}(x)} : x \in \mathcal{A}(O)\}''$. This is conformally covariant with respect to the same U(g).

By the scattering theory, $\mathcal{A}^{\mathrm{out}}(V_{-}) \subset \mathcal{A}(V_{+})' = \mathcal{A}(V_{-})$. By conformal covariance of the both nets, $\mathcal{A}^{\mathrm{out}}$ is a **subnet** of \mathcal{A} and generate all the massless particle spectrum by definition.

What is the structure of the full net A?

Decoupling of the free subnet

If the particle spectrum is only scalar, then the free subnet $\mathcal{A}^{\mathrm{out}}$ has no nontrivial DHR sector (Araki 1963, Driessler 1979) and has split property (Buchholz-Jacobi 1978, Buchholz-Wichmann 1977).

Theorem

Let $\mathfrak{F} \subset \mathcal{A}$ be an inclusion of conformal nets. If \mathfrak{F} has split property and has no nontrivial DHR sector, then $\mathcal{A}(O) = \mathfrak{F}(O) \vee \mathfrak{C}_0(O)$, where $\mathfrak{C}_0(O) = \mathcal{A}(O) \cap \mathfrak{F}(O)'$ is the coset net.

Proof (cf. Carpi-Conti 2001): by assumption, $\mathfrak{F}(O) = \pi_0(\mathfrak{F}(O)) \otimes \mathbb{C}1$, $\mathfrak{F}(O) \subset \mathcal{A}(O) = \pi_0(\mathfrak{F}(O)) \otimes \mathcal{B}(\mathfrak{K})$. Since $\mathfrak{F}(O)$ is a factor, $\mathcal{A}(O) = \pi_0(\mathfrak{F}(O)) \otimes \mathcal{C}_0(O)$ (Ge-Kadison 1993).

Corollary: $A(O) = A^{out}(O) \otimes C(O)$

General case (work in progress)

Without GCI, not necessarily $\mathcal{A}(V_-) = \mathcal{A}(V_+)'$, so it is not clear whether the asymptotic algebra $\mathcal{A}^{\text{out}}(V_-)$ is a subalgebra of $\mathcal{A}(V_-)$.

Use directed asymptotic field (suggested by Buchholz 1977).

For a smooth function f on S^3 ,

$$\Phi_f^{\text{out}}(x) = \lim_{T \to \infty} \int dt \, h_T(t) \int d\omega(n) \, f(n) t \operatorname{Ad} U(\tau(t, tn))(\partial_0 x),$$

then it holds that

$$\Phi_f^{\text{out}}(x)\Omega = P_1 f\left(\frac{\mathbf{P}}{|\mathbf{P}|}\right)\Omega.$$

The resolvents $R_{\pm}(\Phi_f^{\mathrm{out}}(x))$ is contained in a spacelike cone. Especially, one can obtain an asymptotic field **contained in the spacelike complement of a double cone** $O: R_{\pm}(\Phi_f^{\mathrm{out}}(x)) \in \mathcal{A}(O')$.

General case (work in progress)

For a fixed double cone O_1 , take all such $R_{\pm}(\Phi_f^{\text{out}}(x)) \in \mathcal{A}(O_1')$. This set is invariant under rotations, but may be not invariant under the modular group.

Take a subalgebra $\mathcal{N} = \{ \operatorname{Ad} \Delta^{it}(R_{\pm}(\Phi_f^{\text{out}}(x))) \}'' \subset \mathcal{A}(O_1)' = \mathcal{A}(O_1^d),$ where the latter is the spacelike complement on \widetilde{M} .

Define a net $\mathcal{A}^{\mathrm{out}}(O) = \operatorname{Ad} U(g)(\mathcal{N})$ with g such that $gO_1^{\mathrm{d}} = O$. This is a **well-defined covariant subnet** of \mathcal{A} because of rotation invariance of \mathcal{N} .

By Haag duality and Reeh-Schlieder property of $\mathcal{A}^{\mathrm{out}}$ defined before, one has $\mathcal{A}^{\mathrm{out}}=\mathcal{A}^{\mathrm{dir}}$. In particular, $\mathcal{A}^{\mathrm{out}}\subset\mathcal{A}$. The rest is as before.

Conclusion

In CFT, massless particles are free and they decouple if scalar.

Open problems:

Can one say anything about m > 0 spectrum?

In dilation-covariant net? Does conformal covariance follow from dilation covariance?

Non free CFT? **Supersymmetric Yang-Mills**? Interacting massless nets by twisting? (cf. Tanimoto 2012, 2013 (**local**), Bischoff-Tanimoto 2012)

Technical appendix

Theorem (Buchholz 1977, T. in preparation)

- $\Phi^{\text{out}}(x)$ is self-adjoint and $A(V_{O,+})\Omega$ is a core, where $V_{O,+}$ is the future tangent of O.
- Ad $U(g)(\Phi^{\text{out}}(x)) = \Phi^{\text{out}}(\text{Ad } U(g)(x))$ for $g \in \mathscr{C}$.
- if $x \in A_{N_0}$, then the first part is ok.
- find $\{x_m\} \subset \mathcal{A}_{N_0}(V_{O,-})$ s.t. $P_1x_m\Omega \to P_1x\Omega = \xi$ (a la Buchholz).
- ullet $\Phi^{\mathrm{out}}(x_m)$ is convergent in the strong resolvent sense to a self-adjoint operator $\Phi^{\text{out}}(\xi)$, which one can easily calculate on $\mathcal{A}(V_{O,+})\Omega$.
- $\mathcal{A}(V_{O,+})\Omega$ is a core. first, $\{y \cdot \xi_1 \times \cdots \times \xi_n\}$ is a core by Nelson. $\xi_1 \overset{\text{out}}{\times} \cdots \overset{\text{out}}{\times} \xi_n$ can be reached by $\mathcal{A}(V_{O,+})\Omega$ since $\|\Phi^{\text{out}}(x)^2\Omega\| < \infty$.
- $\Phi^{\text{out}}(\text{Ad }U(g)(x))$ is an extension of $\text{Ad }U(g)(\Phi^{\text{out}}(x))$ on $\mathcal{A}(gV_{O,+})\Omega$, where g preserves O and $V_{O,g}$. Covariance is OK also for $g \in \mathcal{P}^{\uparrow}_{\perp}$ and dilations, so for $\widetilde{\mathscr{C}}$.