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I
Introduction

In the beginning the Universe was created. This hasmade a
lot of people very angry and has been widely regarded as a
badmove.

—Douglas Adams, The Restaurant at the End of the Universe



Big Bang, In�ation, ... �



Cosmic microwave background �

The anisotropies of the CMB as observed by the Planck space telescope
Credit: ESA and the Planck Collaboration



CMB �uctuations and cosmological parameters �

The CMB temperature map is usually expanded in spherical harmonics:

T(θ , �) =�
l ,m

almYlm(θ , �)
l = � Mean temperature of �.���� ± �.����K
l = � Movement of the Earth relative to CMB (∼ ��−�K)
l ≥ � Density perturbations at last scattering (∼ ��−�K)
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Initial curvature �uctuations a�ect the density perturbations seen in the
higher-order multipoles.�Measurements constrain the initial curvature perturbations:

P(k) = As

k�
� k
k�
�ns−� with �Ψ̂(�k) Ψ̂(�k′)� = (�π)�δ(�k + �k′) P(k)

Planck measures ns = �.���� ± �.���� .



II
Extending the semiclassical Einstein equation



Semiclassical Einstein equation �

Motivation:We want to describe the interaction between quantum �elds
and a classical gravitational �eld.� Einstein equation with quantummatter as source:

Gab = ω(∶Tab ∶) (c = ħ = �πG= �)
Gab Einstein tensor Gab = Rab − ��R �ab∶Tab ∶ Normally-ordered stress-energy tensor
ω State of the quantum �eld

Problems:
� Equating a classical quantity with a probabilistic quantity only
meaningful if the �uctuations are small.

� Range of applicability unkown. Limiting case of a quantum gravity?
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Extending the semiclassical Einstein equation �

Think of the Einstein tensor Gab as a random �eld: Equate moments of
Gab and Tab for a state ω de�ned on the background spacetime (M , �)
speci�ed by �Gab�:

�Gab(x�)� = ω�∶Tab(x�)∶�
�δGab(x�) δGc′d′(x�)� = �� ω�∶δTab(x�)∶ ∶δTc′d′(x�)∶ + ∶δTc′d′(x�)∶ ∶δTab(x�)∶�

⋮
�(δG)�n(x�, . . . , xn)� = Sym�ω�∶δT ∶�n(x�, . . . , xn)��

with δGab = Gab − �Gab� and ∶δTab ∶ = ∶Tab ∶ − ω(∶Tab ∶)
Similar to stochastic gravity, where a Gaussian stochastic source ξab is
added to the semiclassical Einstein equation [Hu, Roura, Verdaguer, ...]:

Gab = ω�∶Tab ∶� + ξab with �ξab ξc′d′� = Sym�ω(∶δTab ∶ ∶δTc′d′ ∶)�



III
Moments of the stress-energy tensor for φ



Conformally-coupled scalar �eld φ �

The quantummatter: A conformally-coupled massive scalar �eld φ
satisfying the Klein-Gordon equation

− � φ + �� R φ +m�φ = P φ = �
in a quasi-free Hadamard state ω on (M , �).
Remember: Hadamard states satisfy themicrolocal spectrum condition

WF(ω�) = �(x , y, ξ, η) ∈ T∗(M ×M)�� � (x , ξ) ∼ (y,−η), ξ � ��
and are thus locally given by

ω� = lim
ε→�+ �Uσε + V ln σε

λ�
� +W

σ signed, squared, geodesic distance
U ,V depend on local geometry, V = ∑n Vn σn

W state-dependent part



Traced stress-energy tensor for φ (I) �

A quasi-free Hadamard state ω for φ on (M , �), i.e.,
ω� = lim

ε→�+ �Uσε +�n Vn σn ln σε
λ�
� +W ,

results in

ω(∶T ∶) = −m�[W] + �[V�] + αm� + βm�R + γ � R
ω�∶δT(x)∶ ∶δT(y)∶� = �m�ω�

�(x , y)⋮
with T = �ab Tab = −m�φ� + �� φ P φ and ∶δTab ∶ = ∶Tab ∶ − ω(∶Tab ∶)

Note:
� No renormalization freedom beyond the �rst moment.
� ωn

� is a well-de�ned distribution becauseWF(ω�) is convex.



Traced stress-energy tensor for φ (II) �

Symmetrized higher moments:

Sym�ω�∶δT ∶⊗n(x�, . . . , xn)�� = �n

n!
m�n
�������G �i , j

ω�(xi , x j)λGi j
λGi j!

������
The sum is over all acyclical, directed graphs G with n vertices of degree �:

n = �: x� x� x� x�
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IV
Fluctuations around a de Sitter universe



Background spacetime �

Backgroundmetric: exponentially expanding FLRW universe

� = (Hτ)−��− dτ ⊗ dτ + δi j dxi ⊗ dx j�
Task: Solve the (traced) �rst moment equation

�G� = �ab�Gab� = −��H� = ω(∶T ∶)
Solution: Take as the state ω the Bunch–Davies vacuum

ω�(x�, x�) = m�

��π sin(πν+) �F��ν+, ν−; �;
σM(x�, x�)

�τ�τ�
�

where �ν± = � ±�� − �m��H� and σM is the geodesic distance on
Minkowski space.



Perturbed spacetime ��

Add Newtownian perturbation Ψ to the background metric �:

� = (Hτ)−��− (� + �Ψ)dτ ⊗ dτ + (� − �Ψ) δi j dxi ⊗ dx j�.
Note:
� The perturbation Ψ is directly related to the Bardeen potentials.
� In single �eld in�ation the same metric perturbation is used.
� The moments of Ψ can be constrained by observations.

The perturbed metric � yields the linearized, traced, perturbed Einstein
tensor:

δG = �ab�Gab − �Gab�� = �H�τ�
�
�
∂�

∂τ�
− �
�
�∇��� τ−�Ψ

NB: The trace is performed using the background metric.



Moments of Ψ ��

Inverting the di�erential equation for Ψ with the retarded propagator
Ψ = ∆R[δG], we can calculate the moments for Ψ (�Ψ� = �):

�Ψ(x�)Ψ(x�)� = m� � x� x� + permutation�

�Ψ(x�)Ψ(x�)Ψ(x�)� = ��

�!
m� � x�

x�

x�
+ permutations�

... and analogously for higher moments.

Note:
� Ψ is not a Gaussian random �eld.
� Only δT is taken as a source for Ψ .



V
Power spectrum and bispectrum of Ψ



Power spectrum of Ψ: P(τ, k) ��

Calculate the power spectrum P(τ, k), i.e., the Fourier transform of �Ψ Ψ� at
equal time τ:

�Ψ(x�)Ψ(x�)� = m� � ω�
�

∆R∆R

x� x� + ω�
�

∆R∆R

x� x� �
= �
(�π)� �R�

P(τ, k = ��k�) ei�k⋅(�x�−�x�) d��k

The square of the two-point function ω�
�

We only use the leading term of the Bunch–Davies state

ω�(x�, x�) = H�τ�τ�ωM(x�, x�) + less singular terms

and its Fourier-transformed square can be calculated as

�ω�
M(τ�, τ�, �k) = �

��π� �
∞

k
e−ip (τ�−τ�) dp

NB: The less singular terms vanish for zero massm.
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Estimates of the power spectrum P(τ, k) ��

Theorem (Useful estimate for large k)

The power spectrum P has the form

P(τ, k) = P(k τ)
k�

with P(k τ) ≤ lim
k τ→−∞P(k τ) = C = m� � − �√� arccoth√�

���π�

and is independent of the Hubble parameterH.

Theorem (Useful estimate for small k)
The power spectrum P satis�es

P(τ, k) ≤ m�

��π�
τ�

k
so that P(�, k) = �.



Plot of the rescaled power spectrum P(k τ) ��
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Bispectrum of Ψ: B(τ, �k�, �k�, �k�) ��

We want to calculate the bispectrum B(τ, �k�, �k�, �k�), that is, the Fourier
transform of �Ψ Ψ Ψ� at equal time τ:

�Ψ(τ, �x�)Ψ(τ, �x�)Ψ(τ, �x�)� = �
(�π)��R�

δ(�k� + �k� + �k�)B(τ, �k�, �k�, �k�)
× ei (�k� ⋅�x�+�k� ⋅�x�+�k� ⋅�x�) d��k� d��k� d��k�.

Theorem (Form of the bispectrum)

The bispectrum B has the form (k i = ��k i �)

B(τ, �k�, �k�, �k�) = B(k�τ, k�τ, k�τ)k�� k�� k��

and is independent of the Hubble parameterH.

NB: Also in single �eld in�ation a k−� behavior is found [Maldacena].
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VI
Summary



Summary ��

� Proposed extension of semiclassical Einstein gravity

�(δG)�n(x�, . . . , xn)� = Sym�ω�∶δT ∶�n(x�, . . . , xn)��
� Applied extension to calculate curvature �uctuations in an
exponentially expanding universe

� Results can be compared with observational cosmology:
Almost scale-invariant curvature �uctuations are found

� Non-Gaussianities occur naturally



Fin.
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