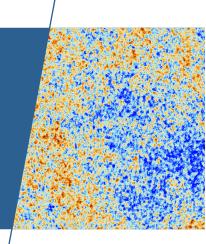
Scale-Invariant Curvature Fluctuations from an Extended Semiclassical Gravity

Pinamonti & Siemssen, arXiv:1303.3241 [gr-qc]

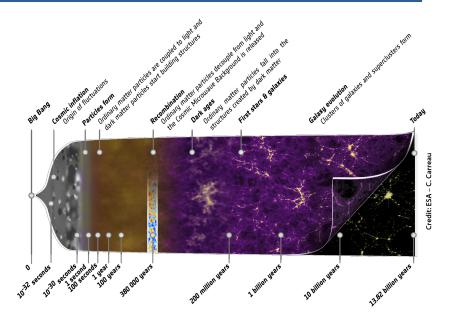
Daniel Siemssen siemssen@dima.unige.it

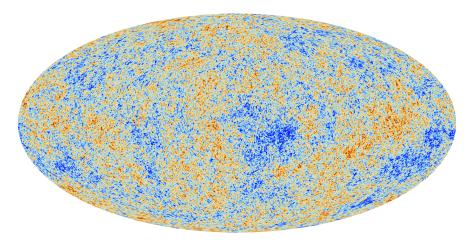


Introduction

In the beginning the Universe was created. This has made a lot of people very angry and has been widely regarded as a bad move.

— Douglas Adams, The Restaurant at the End of the Universe





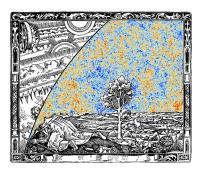
The anisotropies of the **CMB** as observed by the **Planck** space telescope Credit: ESA and the Planck Collaboration

CMB fluctuations and cosmological parameters

The CMB temperature map is usually expanded in spherical harmonics:

$$T(\theta,\phi) = \sum_{l,m} a_{lm} Y_{lm}(\theta,\phi)$$

- l = 0 Mean temperature of 2.7255 ± 0.0006 K
- l = 1 Movement of the Earth relative to CMB ($\sim 10^{-3}$ K)
- $l \ge 2$ Density perturbations at last scattering (~ 10^{-5} K)



The CMB temperature map is usually expanded in spherical harmonics:

$$T(\theta,\phi) = \sum_{l,m} a_{lm} Y_{lm}(\theta,\phi)$$

l = 0 Mean temperature of 2.7255 ± 0.0006 K

l = 1 Movement of the Earth relative to CMB ($\sim 10^{-3}$ K)

 $l \ge 2$ Density perturbations at last scattering (~ 10^{-5} K)

Initial curvature fluctuations affect the density perturbations seen in the higher-order multipoles.

→ Measurements constrain the initial curvature perturbations:

$$P(k) = \frac{A_s}{k^3} \left(\frac{k}{k_0}\right)^{n_s - 1} \quad \text{with} \quad \left\langle \widehat{\Psi}(\vec{k}) \widehat{\Psi}(\vec{k}') \right\rangle = (2\pi)^3 \delta(\vec{k} + \vec{k}') P(k)$$

Planck measures $n_s = 0.9616 \pm 0.0094$.

Ш

- "

Extending the semiclassical Einstein equation

Motivation: We want to describe the interaction between **quantum** fields and a classical gravitational field.

→ Einstein equation with quantum matter as source:

$$G_{ab} = \omega(:T_{ab}:) \qquad (c = \hbar = 8\pi G = 1)$$

 G_{ab} Einstein tensor $G_{ab} = R_{ab} - \frac{1}{2}R g_{ab}$

 $:T_{ab}:$ Normally-ordered stress-energy tensor

ω State of the quantum field

Motivation: We want to describe the interaction between **quantum** fields and a classical gravitational field.

→ Einstein equation with quantum matter as source:

$$G_{ab} = \omega(:T_{ab}:) \qquad (c = \hbar = 8\pi G = 1)$$

 G_{ab} Einstein tensor $G_{ab} = R_{ab} - \frac{1}{2}R g_{ab}$

 $:T_{ab}:$ Normally-ordered stress-energy tensor

ω State of the quantum field

Problems:

- Equating a classical quantity with a probabilistic quantity only meaningful if the fluctuations are small.
- Range of applicability unknown. Limiting case of a quantum gravity?

Extending the semiclassical Einstein equation

Think of the Einstein tensor G_{ab} as a random field: Equate moments of G_{ab} and T_{ab} for a state ω defined on the background spacetime (M, \overline{g}) specified by (G_{ab}) :

$$\langle G_{ab}(x_1) \rangle = \omega \big(:T_{ab}(x_1):\big)$$

$$\langle \delta G_{ab}(x_1) \, \delta G_{c'd'}(x_2) \rangle = \frac{1}{2} \, \omega \big(:\delta T_{ab}(x_1)::\delta T_{c'd'}(x_2):+:\delta T_{c'd'}(x_2)::\delta T_{ab}(x_1):\big)$$

$$\vdots$$

$$\langle (\delta G)^{\boxtimes n}(x_1,\ldots,x_n) \rangle = \operatorname{Sym} \big[\omega \big(:\delta T:^{\boxtimes n}(x_1,\ldots,x_n) \big) \big]$$

$$\text{with } \delta G_{ab} = G_{ab} - \langle G_{ab} \rangle \quad \text{and } :\delta T_{ab}:=:T_{ab}:-\omega (:T_{ab}:)$$

Similar to **stochastic gravity**, where a Gaussian stochastic source ξ_{ab} is added to the semiclassical Einstein equation [Hu, Roura, Verdaguer, ...]:

$$G_{ab} = \omega(:T_{ab}:) + \xi_{ab}$$
 with $\langle \xi_{ab} \, \xi_{c'd'} \rangle = \text{Sym} [\omega(:\delta T_{ab}::\delta T_{c'd'}:)]$

Moments of the stress-energy tensor for φ

- 11

Conformally-coupled scalar field φ

The quantum matter: A conformally-coupled massive scalar field φ satisfying the Klein-Gordon equation

$$-\Box \varphi + \frac{1}{6} R \varphi + m^2 \varphi = P \varphi = 0$$

in a quasi-free Hadamard state ω on (M, \overline{g}) .

Remember: Hadamard states satisfy the microlocal spectrum condition

$$WF(\omega_2) = \{(x, y, \xi, \eta) \in T^*(M \times M) \setminus 0 \mid (x, \xi) \sim (y, -\eta), \xi \triangleright 0\}$$

and are thus locally given by

$$\omega_2 = \lim_{\varepsilon \to 0^+} \left(\frac{U}{\sigma_{\varepsilon}} + V \ln \frac{\sigma_{\varepsilon}}{\lambda^2} \right) + W$$

 σ signed, squared, geodesic distance

U, V depend on local geometry, $V = \sum_n V_n \sigma^n$

W state-dependent part

A quasi-free Hadamard state ω for φ on (M, \overline{g}) , *i.e.*,

$$\omega_2 = \lim_{\varepsilon \to 0^+} \left(\frac{U}{\sigma_{\varepsilon}} + \sum_n V_n \, \sigma^n \ln \frac{\sigma_{\varepsilon}}{\lambda^2} \right) + W,$$

results in

$$\omega(:T:) = -m^2[W] + 2[V_1] + \alpha m^4 + \beta m^2 R + \gamma \square R$$

$$\omega(:\delta T(x)::\delta T(y):) = 2m^4 \omega_2^2(x,y)$$

$$\vdots$$

with
$$T = \overline{g}^{ab} T_{ab} = -m^2 \varphi^2 + \frac{1}{3} \varphi P \varphi$$
 and $:\delta T_{ab} := :T_{ab} : -\omega(:T_{ab}:)$

Note:

- No renormalization freedom beyond the first moment.
- ω_2^n is a well-defined distribution because WF(ω_2) is convex.

Symmetrized higher moments:

$$\operatorname{Sym}\left[\omega\left(:\delta T:^{\otimes n}(x_1,\ldots,x_n)\right)\right] = \frac{2^n}{n!} m^{2n} \left[\sum_{G} \prod_{i,j} \frac{\omega_2(x_i,x_j)^{\lambda_{ij}^G}}{\lambda_{ij}^G!}\right]$$

The sum is over all acyclical, directed graphs G with n vertices of degree 2:

Fluctuations around a de Sitter universe

Background metric: exponentially expanding FLRW universe

$$\overline{g} = (H\tau)^{-2} \left(-\,\mathrm{d}\tau \otimes \mathrm{d}\tau + \delta_{ij}\,\mathrm{d}x^i \otimes \mathrm{d}x^j \right)$$

Task: Solve the (traced) first moment equation

$$\langle G \rangle = \overline{g}^{ab} \langle G_{ab} \rangle = -12H^2 = \omega(:T:)$$

Solution: Take as the state ω the Bunch–Davies vacuum

$$\omega_2(x_1, x_2) = \frac{m^2}{16\pi \sin(\pi \nu_+)} {}_{2}F_{1}\left(\nu_+, \nu_-; 2; \frac{\sigma_{\mathbb{M}}(x_1, x_2)}{4\tau_1 \tau_2}\right)$$

where $2\nu_{\pm}=3\pm\sqrt{1-2m^2/H^2}$ and $\sigma_{\mathbb{M}}$ is the geodesic distance on Minkowski space.

Add **Newtownian perturbation** Ψ to the background metric \overline{g} :

$$g = (H\tau)^{-2} \left(-(1+2\Psi) d\tau \otimes d\tau + (1-2\Psi) \delta_{ij} dx^{i} \otimes dx^{j} \right).$$

Note:

- The perturbation Ψ is directly related to the Bardeen potentials.
- In single field inflation the same metric perturbation is used.
- The moments of Ψ can be constrained by observations.

The perturbed metric g yields the **linearized**, **traced**, **perturbed Einstein tensor**:

$$\delta G = \overline{g}^{ab} \left(G_{ab} - \langle G_{ab} \rangle \right) = 6H^2 \tau^4 \left(\frac{\partial^2}{\partial \tau^2} - \frac{1}{3} \vec{\nabla}^2 \right) \tau^{-2} \Psi$$

NB: The trace is performed using the background metric.

Inverting the differential equation for Ψ with the **retarded propagator** $\Psi = \Delta_R[\delta G]$, we can calculate the moments for Ψ ($\langle \Psi \rangle = 0$):

... and analogously for higher moments.

Note:

- Ψ is not a Gaussian random field.
- Only δT is taken as a source for Ψ .

\

Power spectrum and bispectrum of Ψ

V

Power spectrum of Ψ : $P(\tau, k)$

Calculate the power spectrum $P(\tau, k)$, i.e., the Fourier transform of $\langle \Psi \Psi \rangle$ at equal time τ :

$$\langle \Psi(x_1) \Psi(x_2) \rangle = m^4 \left(\underbrace{\overset{x_1}{\bullet}}_{\Delta_R} \underbrace{\overset{x_2}{\bullet}}_{\Delta_R} \underbrace{\overset{x_2}{\bullet}}_{\Delta_R} \underbrace{\overset{x_1}{\bullet}}_{\Delta_R} \underbrace{\overset{x_2}{\bullet}}_{\Delta_R} \underbrace{\overset$$

Power spectrum of Ψ : $P(\tau, k)$

Calculate the power spectrum $P(\tau, k)$, i.e., the Fourier transform of $\langle \Psi \Psi \rangle$ at equal time τ :

The square of the two-point function ω_2^2

We only use the leading term of the Bunch–Davies state

$$\omega_2(x_1, x_2) = H^2 \tau_1 \tau_2 \omega_{\mathbb{M}}(x_1, x_2) + \text{less singular terms}$$

and its Fourier-transformed square can be calculated as

$$\widehat{\omega_{\mathbb{M}}^2}(\tau_1, \tau_2, \vec{k}) = \frac{1}{16\pi^2} \int_{k}^{\infty} e^{-ip(\tau_1 - \tau_2)} dp$$

NB: The less singular terms vanish for zero mass m.

Estimates of the power spectrum $P(\tau, k)$

Theorem (Useful estimate for large k)

The power spectrum P has the form

$$P(\tau,k) = \frac{\mathcal{P}(k\,\tau)}{k^3}$$

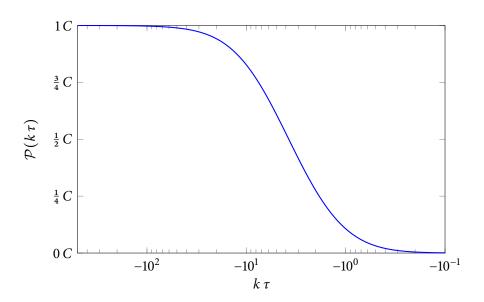
with
$$\mathcal{P}(k\tau) \le \lim_{k\tau \to -\infty} \mathcal{P}(k\tau) = C = m^4 \frac{3 - 2\sqrt{3}\operatorname{arccoth}\sqrt{3}}{192\pi^2}$$

and is independent of the Hubble parameter H.

Theorem (Useful estimate for small k)

The power spectrum P satisfies

$$P(\tau, k) \le \frac{m^4}{36\pi^2} \frac{\tau^2}{k}$$
 so that $P(0, k) = 0$.



Bispectrum of Ψ : $B(\tau, \vec{k}_1, \vec{k}_2, \vec{k}_3)$

We want to calculate the bispectrum $B(\tau, \vec{k}_1, \vec{k}_2, \vec{k}_3)$, that is, the Fourier transform of $\langle \Psi \Psi \Psi \Psi \rangle$ at equal time τ :

$$\langle \Psi(\tau, \vec{x}_1) \, \Psi(\tau, \vec{x}_2) \, \Psi(\tau, \vec{x}_3) \rangle = \frac{1}{(2\pi)^9} \iiint_{\mathbb{R}^9} \delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3) \, B(\tau, \vec{k}_1, \vec{k}_2, \vec{k}_3)$$

$$\times e^{i(\vec{k}_1 \cdot \vec{x}_1 + \vec{k}_2 \cdot \vec{x}_2 + \vec{k}_3 \cdot \vec{x}_3)} \, d^3\vec{k}_1 \, d^3\vec{k}_2 \, d^3\vec{k}_3.$$

Bispectrum of Ψ : $B(\tau, \vec{k}_1, \vec{k}_2, \vec{k}_3)$

We want to calculate the bispectrum $B(\tau, \vec{k}_1, \vec{k}_2, \vec{k}_3)$, that is, the Fourier transform of $\langle \Psi \Psi \Psi \Psi \rangle$ at equal time τ :

$$\langle \Psi(\tau, \vec{x}_1) \, \Psi(\tau, \vec{x}_2) \, \Psi(\tau, \vec{x}_3) \rangle = \frac{1}{(2\pi)^9} \iiint_{\mathbb{R}^9} \delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3) \, B(\tau, \vec{k}_1, \vec{k}_2, \vec{k}_3) \\ \times e^{i(\vec{k}_1 \cdot \vec{x}_1 + \vec{k}_2 \cdot \vec{x}_2 + \vec{k}_3 \cdot \vec{x}_3)} \, d^3\vec{k}_1 \, d^3\vec{k}_2 \, d^3\vec{k}_3.$$

Theorem (Form of the bispectrum)

The bispectrum B has the form $(k_i = |\vec{k}_i|)$

$$B(\tau, \vec{k}_1, \vec{k}_2, \vec{k}_3) = \frac{\mathcal{B}(k_1 \tau, k_2 \tau, k_3 \tau)}{k_1^2 k_2^2 k_3^2}$$

and is independent of the Hubble parameter H.

NB: Also in single field inflation a k^{-6} behavior is found [Maldacena].

Summary

Proposed extension of semiclassical Einstein gravity

$$\langle (\delta G)^{\boxtimes n}(x_1,\ldots,x_n) \rangle = \operatorname{Sym} \left[\omega \left(: \delta T : ^{\boxtimes n}(x_1,\ldots,x_n) \right) \right]$$

- Applied extension to calculate curvature fluctuations in an exponentially expanding universe
- Results can be compared with observational cosmology:
 Almost scale-invariant curvature fluctuations are found
- Non-Gaussianities occur naturally

Fin.

Pinamonti, N., Siemssen, D.: Scale-Invariant Curvature Fluctuations from an Extended Semiclassical Gravity.

arXiv:1303.3241 [gr-qc]

Ellis, G.F.R., Maartens, R., MacCallum, M.A.H.: *Relativistic Cosmology*. Cambridge University Press, Cambridge (2012)

Hu, B.L., Verdaguer, E.: Stochastic Gravity: Theory and Applications. Living Reviews in Relativity 11 (2008).

Maldacena, J.: Non-Gaussian Features of Primordial Fluctuations in Single Field Inflationary Models.

Journal of High Energy Physics 5 (2003).

Mukhanov, V.F., Chibisov, G.V.: Quantum Fluctuations and a Nonsingular Universe. JETP Letters **33**, 532–535 (1981)