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Introduction

In the beginning the Universe was created. This has made a
lot of people very angry and has been widely regarded as a
bad move.

— Douglas Adams, The Restaurant at the End of the Universe




Big Bang, Inflation, ...
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Cosmic microwave background

The anisotropies of the CMB as observed by the Planck space telescope
Credit: ESA and the Planck Collaboration



CMB fluctuations and cosmological parameters 3

The CMB temperature map is usually expanded in spherical harmonics:
T(0,¢) = a1mYim(6,¢)
I,m

[ =0 Mean temperature of 2.7255 + 0.0006 K
I =1 Movement of the Earth relative to CMB (~ 107> K)
I > 2 Density perturbations at last scattering (~ 107 K)




CMB fluctuations and cosmological parameters

The CMB temperature map is usually expanded in spherical harmonics:
T(0,¢) =), aimYin(6,9)
I,m

[ =0 Mean temperature of 2.7255 + 0.0006 K
I =1 Movement of the Earth relative to CMB (~ 107> K)
I > 2 Density perturbations at last scattering (~ 107 K)

Initial curvature fluctuations affect the density perturbations seen in the
higher-order multipoles.
~ Measurements constrain the initial curvature perturbations:

ns—1
P(k) = %; (kﬁo) with  (P(k) T(k")) = (2n)*8(k + k') P(k)

Planck measures n, = 0.9616 + 0.0094 .



Extending the semiclassical Einstein equation




Semiclassical Einstein equation A

Motivation: We want to describe the interaction between quantum fields
and a classical gravitational field.
~ Einstein equation with quantum matter as source:

Guh=w(:Tah:) (c=h=8nG=1)

G, Einstein tensor Gy, = Ry — 3R gap
:T,,: Normally-ordered stress-energy tensor
w State of the quantum field



Semiclassical Einstein equation A

Motivation: We want to describe the interaction between quantum fields
and a classical gravitational field.
~ Einstein equation with quantum matter as source:

Guh=w(:Tah:) (c=h=8nG=1)

G, Einstein tensor Gy, = Ry — 3R gap
:T,,: Normally-ordered stress-energy tensor
w State of the quantum field

Problems:

» Equating a classical quantity with a probabilistic quantity only
meaningful if the fluctuations are small.

» Range of applicability unkown. Limiting case of a quantum gravity?



Extending the semiclassical Einstein equation 5

Think of the Einstein tensor G, as a random field: Equate moments of
G, and Ty, for a state w defined on the background spacetime (M, g)
specified by (G, ):

(Gap(x1)) = 0(:Tup(x1):)
<6Gah(x1) GGC/d/(xz)) =1 w(:ﬁTah(xl): STgr(x2): +: 8T g (x2): :6Tah(x1):)
((8G)™™ (x1, ..., xn)) = Sym[w(:8T™" (x1,..., x4))]
with  8Gap = Gap — (Gap)  and  :8Tpp: = :Top: — w(:Tgp?)

Similar to stochastic gravity, where a Gaussian stochastic source &, is
added to the semiclassical Einstein equation [Hu, Roura, Verdaguer, ...J:

Gap = w(:Tab:) + Eub with <£ab Ec’d’) = Sym[w(:GTah::(STc’d’:)]



Moments of the stress-energy tensor for ¢




Conformally-coupled scalar field ¢ 6

The quantum matter: A conformally-coupled massive scalar field ¢
satisfying the Klein-Gordon equation

~O¢+iRo+m*e=Pp=0
in a quasi-free Hadamard state w on (M, g).
Remember: Hadamard states satisfy the microlocal spectrum condition
WE(w2) = {(x, 7, &) € T (M x M)NO | (x,8) ~ (y,-17), §> 0}

and are thus locally given by
wy = lim (H+Vln2)+ w
e=>0* \ 0g A?

o signed, squared, geodesic distance
U,V depend on local geometry, V =%, V,, ¢"
W state-dependent part



Traced stress-energy tensor for ¢ (1

A quasi-free Hadamard state w for ¢ on (M, g), i.e,

U
=1 —+)>) V,0"1 + W,
wy = 61)1(1)1( Z g n)tz)
results in

w(:T:) = —-m*[W]+2[Vi]+am* + Bm’R +yOR
w(:ST(x): :(ST(y):) =2m*wi(x, )

with T=9%T, =-m?e*>+19P¢ and 8T, =:Tuy: — w(:Ty:)

Note:
» No renormalization freedom beyond the first moment.
» w} is a well-defined distribution because WF(w,) is convex.



Traced stress-energy tensor for ¢ (1) 8

Symmetrized higher moments:

SYm[w(:5T;®"(x1,...,x,,))] [ZH wZ(x};’G):]) ]

)

The sum is over all acyclical, directed graphs G with n vertices of degree 2:

n=2 xI-Ooxz xloO-XZ
221 {1 321
n=3 /\ /\ /\ ...30of6)
o——Se o———e o———e
X2 X3 X2 X3 X2 X3
9&1 9&1 9£1
SR PO
0oé—o 0 ° X3QS¢X4



Fluctuations around a de Sitter universe




Background spacetime 9

Background metric: exponentially expanding FLRW universe
g= (HT)_Z(— dredr+ 6,~jdxi ® dxj)
Task: Solve the (traced) first moment equation
(G) = ﬁ“b(Gub) = —12H* = w(:T%)

Solution: Take as the state w the Bunch-Davies vacuum

UM(xl,xz))

471y

m2

wy(x1,%2) = 2F1(v+,v_;2;

167 sin(mvy )

where 2v, =3 ++/1-2m?/H? and gy is the geodesic distance on
Minkowski space.



Perturbed spacetime 10

Add Newtownian perturbation ¥ to the background metric g:
g=(Hr) (- (1+2¥)dredr+(1-2%)8;dx' ® dxj).

Note:
» The perturbation YV is directly related to the Bardeen potentials.
» Insingle field inflation the same metric perturbation is used.
» The moments of ¥ can be constrained by observations.

The perturbed metric g yields the linearized, traced, perturbed Einstein
tensor:

_ o’ 1.,
8G =G (Gap — (Gap)) = 6H 4(312_3V) 2y

NB: The trace is performed using the background metric.



Moments of ¥ L

Inverting the differential equation for ¥ with the retarded propagator
¥ = AR[8G], we can calculate the moments for ¥ ((¥) = 0):

(¥(x1) ¥(x2)) = m* ( Jil(-’V\z'Gv\/\,-)sz + permutation)

23 X /,owo X3
(¥(x1) ¥(x2) ¥(x3)) = m6 ( e + permutations)
\‘o’\/\,)- X2
... and analogously for higher moments.

Note:
» ¥is not a Gaussian random field.

» Only 8T is taken as a source for V.



Power spectrum and bispectrum of ¥




Power spectrum of ¥: P(t, k) 1

Calculate the power spectrum P(7, k), i.e., the Fourier transform of (¥ ¥) at
equal time T

X1 X2 X1 X2
IP X ‘P X = m4 .("\/\/./—2\.’\/\/'). + o(—’\/\,ol/—z\o’\/\,-)o
(¥ (1) ¥(x2)) ( el @i S Rl

1
(2m)?

1] ik (F1—%2) 337
fR}P(T,k—]kDe =%2) g%,



Power spectrum of ¥: P(t, k) 1

Calculate the power spectrum P(7, k), i.e., the Fourier transform of (¥ ¥) at
equal time T

X1 /—\ X2 X1 l/—\ X2
(‘I’(xl) ‘I’(x2)> = m4 ( .(—/\/\, \“Q/I'W. + .(-/\Z\R,.,\_z/o'\/\,-). )

1
(2m)?

‘/R} P(T,k _ !H) eik-(frfz) d37(
The square of the two-point function w3
We only use the leading term of the Bunch-Davies state
w3 (x1,x2) = H*iywpp (X1, X2 ) + less singular terms

and its Fourier-transformed square can be calculated as

— . 1 (oS} .
2 (11,70, k) = — [ -ip(n-72) g4
W (71, 72, K) 62 Ji € P

NB: The less singular terms vanish for zero mass m.



Estimates of the power spectrum P(7, k) 13
Theorem (Useful estimate for large k)

The power spectrum P has the form

P(kT)

P(t,k) = ;i

43— 2\/3arccoth /3
1922

with P(kT) < ) lim P(kr)=C=m
T—>—00

and is independent of the Hubble parameter H.

Theorem (Useful estimate for small k)

The power spectrum P satisfies

4 2

P(1,k) < %% sothat P(0,k) =0.



Plot of the rescaled power spectrum P(k 1) 14
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Bispectrum of ¥: B(, ki, ks, E3) 15

We want to calculate the bispectrum B(z, 7<1, 122, 123), that is, the Fourier
transform of (¥ ¥ ¥) at equal time 7:

(Y’(T,fl) T(T,fz) l11/(T,.7‘C>3)> = @ %9 8(’;1 + I_éz + ];3) B(T, I_C.I, I:Zz, I_é3)

x el (ki-F1+Ka %y +ks-%s) d37€1 d37Cz d37C3.



Bispectrum of ¥: B(, ki, ks, E3) 15

We want to calculate the bispectrum B(z, 7<1, 122, 123), that is, the Fourier
transform of (¥ ¥ ¥) at equal time 7:

<l1V(T, 551) lP(‘l', 5(?2) lP(T,fC})) = ﬁ %9 8(’;1 + I_éz + ]23) B(T, I;l, I:Zz, I_é3)

w ol (krfitkySatks3s) d%, d%; dks.

Theorem (Form of the bispectrum)

The bispectrum B has the form  (k; = |ki|)

B(kl‘l’, sz, k3T)

B(T> I_él’ EZ! I;?,) = k12 k% k%

and is independent of the Hubble parameter H.

NB: Also in single field inflation a k=° behavior is found [Maldacena].



Summary




Summary 16

» Proposed extension of semiclassical Einstein gravity

(((SG)E"(xl, . ,xn)> = Sym[w(:(ST:”(xl, . ,x,,))]

» Applied extension to calculate curvature fluctuations in an
exponentially expanding universe

v

Results can be compared with observational cosmology:
Almost scale-invariant curvature fluctuations are found

» Non-Gaussianities occur naturally



Fin.
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