

Katarzyna Rejzner¹

INdAM (Marie Curie) fellow University of Rome Tor Vergata

Wuppertal, 01.06.2013

¹Based on the joint work with Klaus Fredenhagen and Romeo Brunetti

Outline of the talk

- Introduction
 - Effective quantum gravity
 - Local covariance
- Classical theory
 - Kinematical structure
 - Equations of motion and symmetries
 - BV complex
- Quantization
 - Deformation quantization
 - Background independence

• In experiment, geometric structure is probed by local observations. We have the following data:

- In experiment, geometric structure is probed by local observations. We have the following data:
 - Compact causally convex region 0 of spacetime where the measurement is performed,

- In experiment, geometric structure is probed by local observations. We have the following data:
 - Compact causally convex region O of spacetime where the measurement is performed,
 - An observable Φ , which we measure,

- In experiment, geometric structure is probed by local observations. We have the following data:
 - Compact causally convex region O of spacetime where the measurement is performed,
 - An observable Φ , which we measure.
 - We don't measure the scalar curvature at a point, but we have some smearing related to the experimantal setting: $\Phi(f) = \int f(x)R(x)$, $\operatorname{supp}(f) \subset \mathcal{O}$.

- In experiment, geometric structure is probed by local observations. We have the following data:
 - Compact causally convex region O of spacetime where the measurement is performed,
 - An observable Φ , which we measure,
 - We don't measure the scalar curvature at a point, but we have some smearing related to the experimantal setting: $\Phi(f) = \int f(x)R(x)$, $\operatorname{supp}(f) \subset \mathcal{O}$.
- We can think of the measured observable as a perturbation of the fixed background metric: a tentative split into: $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}$.

- In experiment, geometric structure is probed by local observations. We have the following data:
 - Compact causally convex region O of spacetime where the measurement is performed,
 - An observable Φ , which we measure,
 - We don't measure the scalar curvature at a point, but we have some smearing related to the experimantal setting: $\Phi(f) = \int f(x)R(x)$, $\operatorname{supp}(f) \subset \mathcal{O}$.
- We can think of the measured observable as a perturbation of the fixed background metric: a tentative split into: $\tilde{g}_{\mu\nu} = g_{\mu\nu} + h_{\mu\nu}$.
- Diffeomorphism transformation: move our experimental setup to a different region O'.

How to implement it?

• To compare $\Phi_{(0,g)}(f)$ and $\Phi_{(0',\alpha_*g)}(\alpha_*f)$ we need to know what does it mean to have "the same observable in a different region".

- To compare $\Phi_{(0,g)}(f)$ and $\Phi_{(0',\alpha_*g)}(\alpha_*f)$ we need to know what does it mean to have "the same observable in a different region".
- A good language to formalize it is the category theory. We need following categories:

How to implement it?

- To compare $\Phi_{(0,g)}(f)$ and $\Phi_{(0',\alpha_*g)}(\alpha_*f)$ we need to know what does it mean to have "the same observable in a different region".
- A good language to formalize it is the category theory. We need following categories:
 - **Loc** where the objects are all four-dimensional, globally hyperbolic oriented and time-oriented spacetimes $\mathcal{M} = (M, g)$. Morphisms: isometric embeddings preserving orientation, time-orientation and the causal structure.

How to implement it?

- To compare $\Phi_{(0,g)}(f)$ and $\Phi_{(0',\alpha_*g)}(\alpha_*f)$ we need to know what does it mean to have "the same observable in a different region".
- A good language to formalize it is the category theory. We need following categories:
 - **Loc** where the objects are all four-dimensional, globally hyperbolic oriented and time-oriented spacetimes $\mathcal{M} = (M, g)$. Morphisms: isometric embeddings preserving orientation, time-orientation and the causal structure.
 - Vec with (small) topological vector spaces as objects and injective continuous homomorphisms of topological vector spaces as morphisms.

Kinematical structure

• Having the quantization in mind we formulate already the classical theory in the perturbative setting.

Kinematical structure

- Having the quantization in mind we formulate already the classical theory in the perturbative setting.
- We work off-shell, so for the effective theory of gravity the configuration space is $\mathfrak{E}(\mathfrak{M}) = \Gamma((T^*M)^{2\otimes})$. The space of compactly supported configurations is denoted by $\mathfrak{E}_c(\mathfrak{M})$.

Kinematical structure

- Having the quantization in mind we formulate already the classical theory in the perturbative setting.
- We work off-shell, so for the effective theory of gravity the configuration space is $\mathfrak{E}(\mathfrak{M}) = \Gamma((T^*M)^{2\otimes})$. The space of compactly supported configurations is denoted by $\mathfrak{E}_c(\mathfrak{M})$.
- We define a contravariant functor $\mathfrak{E}: \mathbf{Loc} \to \mathbf{Vec}$, which assigns to a spacetime the corresponding configuration space and acts on morphisms $\chi: \mathcal{M} \to \mathcal{N}$ as $\mathfrak{E}\chi = \chi^*: \mathfrak{E}(\mathcal{N}) \to \mathfrak{E}(\mathcal{M})$.

- Having the quantization in mind we formulate already the classical theory in the perturbative setting.
- We work off-shell, so for the effective theory of gravity the configuration space is $\mathfrak{E}(\mathfrak{M}) = \Gamma((T^*M)^{2\otimes})$. The space of compactly supported configurations is denoted by $\mathfrak{E}_c(\mathfrak{M})$.
- We define a contravariant functor €: Loc → Vec, which assigns to a spacetime the corresponding configuration space and acts on morphisms χ : M → N as €χ = χ* : €(N) → €(M).
- In a similar way we define a covariant functor $\mathfrak{E}_c : \mathbf{Loc} \to \mathbf{Vec}$ by setting $\mathfrak{E}\chi = \chi_*$, where:

$$\chi_* h \doteq \left\{ \begin{array}{ll} (\chi^{-1})^* h(x) &, & x \in \chi(M), \\ 0 &, & \text{else} \end{array} \right.$$

Functionals and dynamics

• We consider the space of smooth functionals on $\mathfrak{E}(\mathfrak{M})$, i.e. $\mathfrak{C}^{\infty}(\mathfrak{E}(\mathfrak{M}), \mathbb{R})$.

- We consider the space of smooth functionals on $\mathfrak{E}(\mathfrak{M})$, i.e. $\mathcal{C}^{\infty}(\mathfrak{E}(\mathfrak{M}), \mathbb{R})$.
- The support of $F \in \mathcal{C}^{\infty}(\mathfrak{E}(\mathfrak{M}), \mathbb{R})$ is defined as:

$$\begin{aligned} \operatorname{supp} F &= \{x \in M | \forall \text{ neighbourhoods } U \text{ of } x \ \exists h_1, h_2 \in \mathfrak{E}(\mathfrak{M}), \\ \operatorname{supp} h_2 &\subset U \text{ such that } F(h_1 + h_2) \neq F(h_1) \} \ . \end{aligned}$$

10

- We consider the space of smooth functionals on $\mathfrak{E}(\mathfrak{M})$, i.e. $\mathcal{C}^{\infty}(\mathfrak{E}(\mathfrak{M}), \mathbb{R})$.
- The support of $F \in \mathfrak{C}^{\infty}(\mathfrak{E}(\mathfrak{M}), \mathbb{R})$ is defined as: $\operatorname{supp} F = \{x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists h_1, h_2 \in \mathfrak{E}(\mathfrak{M}), \\ \operatorname{supp} h_2 \subset U \text{ such that } F(h_1 + h_2) \neq F(h_1) \}.$
- F is local if it is of the form: $F(h) = \int_M f(j_x(h))(x)$, where f is a density-valued function on the jet bundle over M and $j_x(h)$ is the jet of φ at the point x.

- We consider the space of smooth functionals on $\mathfrak{E}(\mathfrak{M})$, i.e. $\mathcal{C}^{\infty}(\mathfrak{E}(\mathfrak{M}), \mathbb{R})$.
- The support of $F \in \mathcal{C}^{\infty}(\mathfrak{E}(\mathcal{M}), \mathbb{R})$ is defined as:

supp
$$F = \{x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists h_1, h_2 \in \mathfrak{E}(\mathfrak{M}),$$

supp $h_2 \subset U \text{ such that } F(h_1 + h_2) \neq F(h_1) \}$.

- F is local if it is of the form: $F(h) = \int_M f(j_x(h))(x)$, where f is a density-valued function on the jet bundle over M and $j_x(h)$ is the jet of φ at the point x.
- $\mathfrak{F}(\mathfrak{M}) \doteq$ the space of multilocal functionals (products of local).

- We consider the space of smooth functionals on $\mathfrak{E}(\mathfrak{M})$, i.e. $\mathcal{C}^{\infty}(\mathfrak{E}(\mathfrak{M}), \mathbb{R})$.
- The support of $F \in \mathcal{C}^{\infty}(\mathfrak{E}(\mathfrak{M}), \mathbb{R})$ is defined as:

supp
$$F = \{x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists h_1, h_2 \in \mathfrak{E}(\mathfrak{M}),$$

supp $h_2 \subset U$ such that $F(h_1 + h_2) \neq F(h_1) \}$.

- F is local if it is of the form: $F(h) = \int_M f(j_x(h))(x)$, where f is a density-valued function on the jet bundle over M and $j_x(h)$ is the jet of φ at the point x.
- $\mathfrak{F}(M) \doteq$ the space of multilocal functionals (products of local).
- To implement dynamics we use a certain generalization of the Lagrange formalism of classical mechanics.

- We consider the space of smooth functionals on $\mathfrak{E}(\mathfrak{M})$, i.e. $\mathfrak{C}^{\infty}(\mathfrak{E}(\mathfrak{M}), \mathbb{R})$.
- The support of $F \in \mathcal{C}^{\infty}(\mathfrak{E}(\mathfrak{M}), \mathbb{R})$ is defined as:

supp
$$F = \{x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists h_1, h_2 \in \mathfrak{E}(\mathfrak{M}),$$

supp $h_2 \subset U$ such that $F(h_1 + h_2) \neq F(h_1) \}$.

- F is local if it is of the form: $F(h) = \int_M f(j_x(h))(x)$, where f is a density-valued function on the jet bundle over M and $j_x(h)$ is the jet of φ at the point x.
- $\mathfrak{F}(\mathcal{M}) \doteq$ the space of multilocal functionals (products of local).
- To implement dynamics we use a certain generalization of the Lagrange formalism of classical mechanics.
- For GR the action takes the form:

$$S_{(M,g)}(f)[h] \doteq \int R[\tilde{g}]f \,\mathrm{d}\,\operatorname{vol}_{(M,\tilde{g})}, \quad \tilde{g} = g + h.$$

Fields as natural transformations

• In the framework of locally covariant field theory [Brunetti-Fredenhagen-Verch 2003], fields are natural transformation between certain functors. Let $\Phi \in \operatorname{Nat}(\mathfrak{D},\mathfrak{F})$, where \mathfrak{D} is the functor of test function spaces $\mathfrak{D}(\mathcal{M}) = \mathfrak{C}_c^{\infty}(M)$ (one could substitute \mathfrak{F} with a functor to the category of Poisson or C^* -algebras).

Fields as natural transformations

- In the framework of locally covariant field theory [Brunetti-Fredenhagen-Verch 2003], fields are natural transformation between certain functors. Let $\Phi \in \operatorname{Nat}(\mathfrak{D},\mathfrak{F})$, where \mathfrak{D} is the functor of test function spaces $\mathfrak{D}(\mathfrak{M}) = \mathfrak{C}_c^{\infty}(M)$ (one could substitute \mathfrak{F} with a functor to the category of Poisson or C^* -algebras).
- Φ is a natural transformation if $\Phi_{\mathcal{O}}(f)[\chi^*h] = \Phi_{\mathcal{M}}(\chi_*f)[h]$ holds.

Fields as natural transformations

- In the framework of locally covariant field theory [Brunetti-Fredenhagen-Verch 2003], fields are natural transformation between certain functors. Let $\Phi \in \operatorname{Nat}(\mathfrak{D},\mathfrak{F})$, where \mathfrak{D} is the functor of test function spaces $\mathfrak{D}(\mathfrak{M}) = \mathfrak{C}_c^{\infty}(M)$ (one could substitute \mathfrak{F} with a functor to the category of Poisson or C^* -algebras).
- Φ is a natural transformation if $\Phi_{\mathcal{O}}(f)[\chi^*h] = \Phi_{\mathcal{M}}(\chi_*f)[h]$ holds.
- In classical gravity we understand physical quantities not as pointwise objects but rather as something defined on all the spacetimes in a coherent way.

Equations of motion and symmetries

• The Euler-Lagrange derivative of *S* is defined by

$$\left\langle S_M'(\tilde{g}), h_1 \right\rangle = \left\langle S_M(f)^{(1)}(\tilde{g}), h_1 \right\rangle$$
, where $f \equiv 1$ on $\operatorname{supp} h_1$.
$$\sup_{g \in S_M(f)} \left\langle S_M'(\tilde{g}), h_1 \right\rangle = \left\langle S_M(f)^{(1)}(\tilde{g}), h_1 \right\rangle$$

Equations of motion and symmetries

• The Euler-Lagrange derivative of S is defined by

$$\langle S_M'(\tilde{g}), h_1 \rangle = \langle S_M(f)^{(1)}(\tilde{g}), h_1 \rangle$$
, where $f \equiv 1$ on supp h_1 .

• Abstractly, S'_M is a 1-form on $\mathfrak{E}(M)$. The field equation is: $S'_M(\tilde{g}) = 0$.

Equations of motion and symmetries

• The Euler-Lagrange derivative of S is defined by

$$\langle S_M'(\tilde{g}), h_1 \rangle = \langle S_M(f)^{(1)}(\tilde{g}), h_1 \rangle$$
, where $f \equiv 1$ on supp h_1 .

• Abstractly, S'_M is a 1-form on $\mathfrak{E}(M)$. The field equation is: $S'_M(\tilde{g}) = 0$.

• A symmetry of *S* is a vector field on $\mathfrak{E}(M)$, $X \in \mathfrak{V}(M)$ that characterizes the direction in which *S* is locally constant, i.e. $\forall \varphi \in \mathfrak{E}(M)$: $\langle S'_M(\tilde{g}), X(\tilde{g}) \rangle = 0$.

- The Euler-Lagrange derivative of *S* is defined by
- $\langle S'_M(\tilde{g}), h_1 \rangle = \langle S_M(f)^{(1)}(\tilde{g}), h_1 \rangle$, where $f \equiv 1$ on supp h_1 . • Abstractly, S'_M is a 1-form on $\mathfrak{E}(M)$.
- Abstractly, S_M is a 1-form on $\mathfrak{E}(M)$. The field equation is: $S_M'(\tilde{g}) = 0$.
- A symmetry of *S* is a vector field on $\mathfrak{E}(M)$, $X \in \mathfrak{V}(M)$ that characterizes the direction in which *S* is locally constant, i.e. $\forall \varphi \in \mathfrak{E}(M)$: $\langle S'_M(\tilde{g}), X(\tilde{g}) \rangle = 0$.
- Let $\mathfrak{E}_S(M)$ denote the space of solutions of field equations. We want to characterise the space of functionals on $\mathfrak{E}_S(M)$ which are invariant under all the local symmetries of S: invariant on-shell functionals $\mathfrak{F}_S^{\text{inv}}(M)$. In a finite dimensional case this space has a clear homological interpretation.

- For GR symmetries are infinitesimal diffeomorphisms, i.e. elements of $\mathfrak{X}(\mathcal{M}) \doteq \Gamma_c(TM)$. Let us choose a sequence $\vec{\xi} = (\xi_{\mathcal{M}})_{\mathcal{M} \in \text{Obj}(\mathbf{Loc})}, \, \xi_{\mathcal{M}} \in \mathfrak{X}(\mathcal{M})$.
- After applying the exponential map we obtain $\alpha_{\mathbb{M}} \doteq \exp(\xi_{\mathbb{M}})$.
- The exponentiated action of diffeomeorphisms is given by: $(\vec{\alpha}\Phi)_{(M,g)}(f)[\tilde{g}] = \Phi_{(M,g)}(\alpha_{M*}^{-1}f)[\alpha_{M}^*\tilde{g}].$

- For GR symmetries are infinitesimal diffeomorphisms, i.e. elements of $\mathfrak{X}(\mathcal{M}) \doteq \Gamma_c(TM)$. Let us choose a sequence $\vec{\xi} = (\xi_{\mathcal{M}})_{\mathcal{M} \in \text{Obj}(\mathbf{Loc})}, \, \xi_{\mathcal{M}} \in \mathfrak{X}(\mathcal{M})$.
- After applying the exponential map we obtain $\alpha_{\mathbb{M}} \doteq \exp(\xi_{\mathbb{M}})$.
- The exponentiated action of diffeomeorphisms is given by: $(\vec{\alpha}\Phi)_{(M,g)}(f)[\tilde{g}] = \Phi_{(M,g)}(\alpha_{M*}^{-1}f)[\alpha_{M}^{*}\tilde{g}].$
- The derived action reads:

$$\begin{split} (\vec{\xi}\Phi)_{(M,g)}(f)[\tilde{g}] &= \\ & \left\langle (\Phi_{(M,g)}(f))^{(1)}[\tilde{g}], \pounds_{\xi_M} \tilde{g} \right\rangle + \Phi_{(M,g)}(\pounds_{\xi_M} f)[\tilde{g}] \,. \end{split}$$

- For GR symmetries are infinitesimal diffeomorphisms, i.e. elements of $\mathfrak{X}(\mathcal{M}) \doteq \Gamma_c(TM)$. Let us choose a sequence $\vec{\xi} = (\xi_{\mathcal{M}})_{\mathcal{M} \in \text{Obj}(\mathbf{Loc})}, \, \xi_{\mathcal{M}} \in \mathfrak{X}(\mathcal{M})$.
- After applying the exponential map we obtain $\alpha_{\mathcal{M}} \doteq \exp(\xi_{\mathcal{M}})$.
- The exponentiated action of diffeomeorphisms is given by: $(\vec{\alpha}\Phi)_{(M,g)}(f)[\tilde{g}] = \Phi_{(M,g)}(\alpha_{M*}^{-1}f)[\alpha_{M}^*\tilde{g}].$
- The derived action reads:

$$(\vec{\xi}\Phi)_{(M,g)}(f)[\tilde{g}] = \left\langle (\Phi_{(M,g)}(f))^{(1)}[\tilde{g}], \mathcal{L}_{\xi_M}\tilde{g} \right\rangle + \Phi_{(M,g)}(\mathcal{L}_{\xi_M}f)[\tilde{g}].$$

• Diffeomorphism invariance is the statement that $\vec{\xi}\Phi = 0$.

- For GR symmetries are infinitesimal diffeomorphisms, i.e. elements of $\mathfrak{X}(\mathcal{M}) \doteq \Gamma_c(TM)$. Let us choose a sequence $\vec{\xi} = (\xi_{\mathcal{M}})_{\mathcal{M} \in \text{Obj}(\mathbf{Loc})}, \, \xi_{\mathcal{M}} \in \mathfrak{X}(\mathcal{M})$.
- After applying the exponential map we obtain $\alpha_{\mathfrak{M}} \doteq \exp(\xi_{\mathfrak{M}})$.
- The exponentiated action of diffeomeorphisms is given by: $(\vec{\alpha}\Phi)_{(M,g)}(f)[\tilde{g}] = \Phi_{(M,g)}(\alpha_{M*}^{-1}f)[\alpha_{M}^*\tilde{g}].$
- The derived action reads:

$$(\vec{\xi}\Phi)_{(M,g)}(f)[\tilde{g}] = \left\langle (\Phi_{(M,g)}(f))^{(1)}[\tilde{g}], \mathcal{L}_{\xi_M}\tilde{g} \right\rangle + \Phi_{(M,g)}(\mathcal{L}_{\xi_M}f)[\tilde{g}].$$

- Diffeomorphism invariance is the statement that $\vec{\xi}\Phi=0$.
- Example: $\int R[\tilde{g}]f \, d \operatorname{vol}_{(M,\tilde{g})}$ is diffeomorphism invariant, but $\int R[\tilde{g}]f \, d \operatorname{vol}_{(M,g)}$ is not.

Physical interpretation

• Let us fix \mathcal{M} . A test tensor $f \in \mathfrak{Tens}_c(\mathcal{M})$ corresponds to a concrete geometrical setting of an experiment, so for each $\mathcal{M} \in \mathrm{Obj}(\mathbf{Loc})$, we obtain a functional $\Phi(f)$, which depends covariantly on the geometrical data provided by f.

Physical interpretation

- Let us fix \mathcal{M} . A test tensor $f \in \mathfrak{Tens}_c(\mathcal{M})$ corresponds to a concrete geometrical setting of an experiment, so for each $\mathcal{M} \in \mathrm{Obj}(\mathbf{Loc})$, we obtain a functional $\Phi(f)$, which depends covariantly on the geometrical data provided by f.
- Given $f \in \mathfrak{Tens}_c(\mathcal{M})$ we recover not only the functional $\Phi_{\mathcal{M}}(f)$, but also the whole diffeomorphism class of functionals $\Phi_{\mathcal{M}}(\alpha_* f)$, where $\alpha \in \mathrm{Diff}_c(\mathcal{M})$.

Physical interpretation

- Let us fix M. A test tensor f ∈ Tens_c(M) corresponds to a concrete geometrical setting of an experiment, so for each M ∈ Obj(Loc), we obtain a functional Φ(f), which depends covariantly on the geometrical data provided by f.
- Given $f \in \mathfrak{Tens}_c(\mathcal{M})$ we recover not only the functional $\Phi_{\mathcal{M}}(f)$, but also the whole diffeomorphism class of functionals $\Phi_{\mathcal{M}}(\alpha_* f)$, where $\alpha \in \mathrm{Diff}_c(\mathcal{M})$.
- We allow arbitrary tensors to be test objects, because we don't want to restrict a'priori possible experimental settings.

Physical interpretation

- Let us fix \mathcal{M} . A test tensor $f \in \mathfrak{Tens}_c(\mathcal{M})$ corresponds to a concrete geometrical setting of an experiment, so for each $\mathcal{M} \in \mathrm{Obj}(\mathbf{Loc})$, we obtain a functional $\Phi(f)$, which depends covariantly on the geometrical data provided by f.
- Given $f \in \mathfrak{Tens}_c(\mathcal{M})$ we recover not only the functional $\Phi_{\mathcal{M}}(f)$, but also the whole diffeomorphism class of functionals $\Phi_{\mathcal{M}}(\alpha_* f)$, where $\alpha \in \mathrm{Diff}_c(\mathcal{M})$.
- We allow arbitrary tensors to be test objects, because we don't want to restrict a'priori possible experimental settings.

New insight

Classical (or quantum) fields generate physical quantities, but a concrete observable quantity is obtained by evaluation on a test tensor. New concept: evaluated fields.

Evaluation of fields

• In our formalism, the full information about the dependence of a measurement on the geometrical setup should be contained in the family $(\alpha_* f)_{\alpha \in \text{Diff}_c(\mathcal{M})}$.

Evaluation of fields

- In our formalism, the full information about the dependence of a measurement on the geometrical setup should be contained in the family $(\alpha_* f)_{\alpha \in \mathrm{Diff}_c(\mathfrak{M})}$.
- Therefore, for a fixed M and Φ , a physically meaningful object is the function $\Phi_f : \mathrm{Diff}_c(M) \ni \alpha \mapsto \Phi_M(\alpha_* f)$.

Evaluation of fields

- In our formalism, the full information about the dependence of a measurement on the geometrical setup should be contained in the family $(\alpha_*f)_{\alpha \in \text{Diff}_c(\mathfrak{M})}$.
- Therefore, for a fixed \mathcal{M} and Φ , a physically meaningful object is the function $\Phi_f : \mathrm{Diff}_c(\mathcal{M}) \ni \alpha \mapsto \Phi_{\mathcal{M}}(\alpha_* f)$.
- Let \mathcal{F} denote the subspace of $\mathcal{C}^{\infty}(\mathrm{Diff}_c(\mathcal{M}), \mathfrak{F}(\mathcal{M}))$ generated by elements of the form Φ_f with respect to the pointwise product.

 A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].

- A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].
- The space of on-shell functionals is a quotient of \mathcal{F} by the ideal generated by $S'_{\mathfrak{M}}(\tilde{g})$ and can be described as a homology of the Koszul-Tate complex.

- A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].
- The space of on-shell functionals is a quotient of \mathcal{F} by the ideal generated by $S'_{\mathfrak{M}}(\tilde{g})$ and can be described as a homology of the Koszul-Tate complex.
- The space of invariants under a Lie algebra action can be seen as the 0 cohomology of the Chevalley-Eilenberg comlex.

- A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].
- The space of on-shell functionals is a quotient of \mathcal{F} by the ideal generated by $S'_{\mathfrak{M}}(\tilde{g})$ and can be described as a homology of the Koszul-Tate complex.
- The space of invariants under a Lie algebra action can be seen as the 0 cohomology of the Chevalley-Eilenberg comlex.
- We can combine the Koszul-Tate complex and the Chevalley-Eilenberg comlex to a BV (Batalin-Vilkovisky) bicomplex, whose 0th cohomology characterizes \mathcal{F}_S^{inv} (the space of gauge-invariant, on-shel evaluated fields).

- A general method to quantize theories with local symmetries is the so called Batalin-Vilkovisky (BV) formalism. Here we present its version proposed by [K. Fredenhagen, K.R., CMP 2011].
- The space of on-shell functionals is a quotient of \mathcal{F} by the ideal generated by $S'_{\mathfrak{M}}(\tilde{g})$ and can be described as a homology of the Koszul-Tate complex.
- The space of invariants under a Lie algebra action can be seen as the 0 cohomology of the Chevalley-Eilenberg comlex.
- We can combine the Koszul-Tate complex and the Chevalley-Eilenberg comlex to a BV (Batalin-Vilkovisky) bicomplex, whose 0th cohomology characterizes \mathcal{F}_S^{inv} (the space of gauge-invariant, on-shel evaluated fields).
- The underlying algebra of the BV complex is a graded algebra denoted by \mathfrak{BV} .

BV complex

• \mathcal{BV} is geometrically interpreted as a subalgebra of the space of smooth functions on $\mathrm{Diff}_c(\mathcal{M})$ with values in multivector fields on some graded manifold $\overline{\mathfrak{E}}(\mathcal{M})$. We can equip the space of multivector fields with the Schouten bracket:

- \mathcal{BV} is geometrically interpreted as a subalgebra of the space of smooth functions on $\mathrm{Diff}_c(\mathcal{M})$ with values in multivector fields on some graded manifold $\overline{\mathfrak{E}}(\mathcal{M})$. We can equip the space of multivector fields with the Schouten bracket:
 - $\{X, F\} = \partial_X F$ for X a vector field and F function,

- \mathcal{BV} is geometrically interpreted as a subalgebra of the space of smooth functions on $\mathrm{Diff}_c(\mathcal{M})$ with values in multivector fields on some graded manifold $\overline{\mathfrak{E}}(\mathcal{M})$. We can equip the space of multivector fields with the Schouten bracket:
 - $\{X, F\} = \partial_X F$ for X a vector field and F function,
 - $\{X,Y\} = [X,Y]$ for X,Y a vector fields,

- \mathcal{BV} is geometrically interpreted as a subalgebra of the space of smooth functions on $\mathrm{Diff}_c(\mathcal{M})$ with values in multivector fields on some graded manifold $\overline{\mathfrak{E}}(\mathcal{M})$. We can equip the space of multivector fields with the Schouten bracket:
 - $\{X, F\} = \partial_X F$ for X a vector field and F function,
 - $\{X,Y\} = [X,Y]$ for X,Y a vector fields,
 - graded Leibniz rule.

- \mathcal{BV} is geometrically interpreted as a subalgebra of the space of smooth functions on $\mathrm{Diff}_c(\mathcal{M})$ with values in multivector fields on some graded manifold $\overline{\mathfrak{E}}(\mathcal{M})$. We can equip the space of multivector fields with the Schouten bracket:
 - $\{X, F\} = \partial_X F$ for X a vector field and F function,
 - $\{X,Y\} = [X,Y]$ for X,Y a vector fields,
 - graded Leibniz rule.
- This induces a graded Poisson bracket $\{.,.\}$ ob \mathcal{BV} . The BV-differential on *Fld* is given by:

$$(s\Phi)_{\mathfrak{M}}(f) = \{\Phi_{\mathfrak{M}}(f), S + \gamma\} + \Phi_{\mathfrak{M}}(\pounds_{C}f),$$

where $C \in \mathfrak{X}(M)$ is the ghost and γ is the Chevalley-Eilenberg differential, which acts on \mathcal{BV} via infinitesimal diffeomorphism transformations along the ghost fields C. For $\Phi \in \mathcal{F}$ we have

$$(\gamma \Phi)_{\mathfrak{M}}(f)(\tilde{g}) := \left\langle (\Phi_{\mathfrak{M}}(f))^{(1)}(\tilde{g}), \pounds_{C}\tilde{g} \right\rangle.$$

- \mathcal{BV} is geometrically interpreted as a subalgebra of the space of smooth functions on $\mathrm{Diff}_c(\mathcal{M})$ with values in multivector fields on some graded manifold $\overline{\mathfrak{E}}(\mathcal{M})$. We can equip the space of multivector fields with the Schouten bracket:
 - $\{X, F\} = \partial_X F$ for X a vector field and F function,
 - $\{X,Y\} = [X,Y]$ for X,Y a vector fields,
 - graded Leibniz rule.
- This induces a graded Poisson bracket $\{.,.\}$ ob \mathcal{BV} . The BV-differential on *Fld* is given by:

$$(s\Phi)_{\mathfrak{M}}(f) = \{\Phi_{\mathfrak{M}}(f), S + \gamma\} + \Phi_{\mathfrak{M}}(\pounds_{C}f),$$

where $C \in \mathfrak{X}(M)$ is the ghost and γ is the Chevalley-Eilenberg differential, which acts on \mathcal{BV} via infinitesimal diffeomorphism transformations along the ghost fields C. For $\Phi \in \mathcal{F}$ we have

$$(\gamma \Phi)_{\mathcal{M}}(f)(\tilde{g}) := \langle (\Phi_{\mathcal{M}}(f))^{(1)}(\tilde{g}), \pounds_{C}\tilde{g} \rangle.$$

• Gauge invariant observables are given by: $\mathcal{F}_{S}^{inv} := H^{0}(s, \mathcal{BV}).$

Gauge fixing

• Gauge fixing is implemented by means of the so called gauge fixing fermion $\Psi_f \in \mathcal{BV}$ with ghost number #gh = 1.

Gauge fixing

- Gauge fixing is implemented by means of the so called gauge fixing fermion $\Psi_f \in \mathcal{BV}$ with ghost number #gh = 1.
- We define an automorphism of \mathcal{BV} by

$$\alpha_{\Psi}(X) := \sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{\{\Psi_f, \dots, \{\Psi_f, X\} \dots\}}_{n},$$

where $f \equiv 1$ on the support of X.

- Gauge fixing is implemented by means of the so called gauge fixing fermion $\Psi_f \in \mathcal{BV}$ with ghost number #gh = 1.
- We define an automorphism of \mathcal{BV} by

$$\alpha_{\Psi}(X) := \sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{\{\Psi_f, \dots, \{\Psi_f, X\} \dots\}}_{n},$$

where $f \equiv 1$ on the support of X.

• We obtain a new extended action $\tilde{S} \doteq \alpha_{\Psi}(S + \gamma)$ and gauge-fixed BV differential $s^{\Psi} = \alpha_{\Psi} \circ s \circ \alpha_{\Psi}^{-1}$

- Gauge fixing is implemented by means of the so called gauge fixing fermion $\Psi_f \in \mathcal{BV}$ with ghost number #gh = 1.
- We define an automorphism of \mathcal{BV} by

$$\alpha_{\Psi}(X) := \sum_{n=0}^{\infty} \frac{1}{n!} \underbrace{\{\Psi_f, \dots, \{\Psi_f, X\} \dots\}}_{n},$$

where $f \equiv 1$ on the support of X.

- We obtain a new extended action $\tilde{S} \doteq \alpha_{\Psi}(S + \gamma)$ and gauge-fixed BV differential $s^{\Psi} = \alpha_{\Psi} \circ s \circ \alpha_{\Psi}^{-1}$
- Note that $H^0(s^{\Psi}, \alpha_{\Psi}(\mathcal{BV})) = H^0(s, \mathcal{BV}) = \mathcal{F}_{\mathcal{S}}^{\text{inv}}$.

Equations of motion and Poisson bracket

• As an output of classical field theory we have a graded manifold $\overline{\mathfrak{E}}(\mathfrak{M})$ and an extended action \tilde{S} . Now we apply to this data the deformation quantization.

Equations of motion and Poisson bracket

- As an output of classical field theory we have a graded manifold $\overline{\mathfrak{E}}(\mathfrak{M})$ and an extended action \widetilde{S} . Now we apply to this data the deformation quantization.
- We can Taylor expand the gauge fixed action around an arbitrary background metric g and obtain $\tilde{S} = S_0^g + V^g$, where S_0^g is at most quadratic in fields and has #af = 0.

Equations of motion and Poisson bracket

- As an output of classical field theory we have a graded manifold $\overline{\mathfrak{E}}(\mathfrak{M})$ and an extended action \widetilde{S} . Now we apply to this data the deformation quantization.
- We can Taylor expand the gauge fixed action around an arbitrary background metric g and obtain $\tilde{S} = S_0^g + V^g$, where S_0^g is at most quadratic in fields and has #af = 0.
- For each globally hyperbolic background g, we have the retarded and advanced Green's functions $\Delta_g^{R/A}$ for the EOM's derived from S_0^g .

- As an output of classical field theory we have a graded manifold $\overline{\mathfrak{E}}(\mathfrak{M})$ and an extended action \tilde{S} . Now we apply to this data the deformation quantization.
- We can Taylor expand the gauge fixed action around an arbitrary background metric g and obtain $\tilde{S} = S_0^g + V^g$, where S_0^g is at most quadratic in fields and has #af = 0.
- For each globally hyperbolic background g, we have the retarded and advanced Green's functions $\Delta_g^{R/A}$ for the EOM's derived from S_0^g .
- Using this input, we define the free Poisson bracket on \mathcal{BV}

$$\{F,G\}_0^g \doteq \left\langle F^{(1)}, \Delta_g G^{(1)} \right
angle \qquad \Delta_g = \Delta_g^R - \Delta_g^A \,,$$

• We start with the deformation quantization of $(\mathfrak{BV}, \{.,.\}_0)$.

- We start with the deformation quantization of $(\mathcal{BV}, \{.,.\}_0)$.
- We need to include into the space of functionals on $\overline{\mathfrak{E}}(\mathfrak{M})$ some more singular objects. The right notion of regularity is related to a certain wavefront set property of Hadamard 2-point functions (microlocal spectrum condition, μ SC). The resulting space will be denoted by $\mathcal{BV}_{\mu c}$.

- We start with the deformation quantization of $(\mathcal{BV}, \{.,.\}_0)$.
- We need to include into the space of functionals on $\overline{\mathfrak{E}}(\mathfrak{M})$ some more singular objects. The right notion of regularity is related to a certain wavefront set property of Hadamard 2-point functions (microlocal spectrum condition, μ SC). The resulting space will be denoted by $\mathfrak{BV}_{\mu c}$.
- The deformation quantization of $(\mathcal{BV}_{\mu c}, \{.,.\}_0^g)$ can be performed in the standard way, by introducing a \star -product:

$$(F \star_H G) \doteq m \circ \exp(\hbar \Gamma_{\omega_H})(F \otimes G) ,$$

where
$$\Gamma_{\omega_H} \doteq \int dx \, dy \omega_H(x,y) \frac{\delta}{\delta \varphi(x)} \otimes \frac{\delta}{\delta \varphi(y)}$$
 and

 $\omega_H = \frac{i}{2}\Delta_g + H$ is the Hadamard 2-point function (satisfies the linearized EOM's in both arguments and the μ SC).

• For a fixed \mathcal{M} we have a family of algebras $\mathfrak{A}_H(\mathcal{M})=(\mathcal{BV}_{\mu c}[[\hbar,\lambda]],\star_H)$, numbered by possible choices of H. We can define $\mathfrak{A}(\mathcal{M})$ to be an algebra consisting of families (F_H) , such that $F_H=e^{\frac{\hbar}{2}\Gamma'_{H-H'}}F_{H'}$, where $\Gamma'_{H-H'}\doteq\int dx\,dy(H-H')(x,y)\frac{\delta^2}{\delta\varphi(x)\delta\varphi(y)}$ and the star product is given by

$$(F \star G)_H \doteq F_H \star_H G_H.$$

• For a fixed \mathcal{M} we have a family of algebras $\mathfrak{A}_H(\mathcal{M})=(\mathcal{BV}_{\mu c}[[\hbar,\lambda]],\star_H)$, numbered by possible choices of H. We can define $\mathfrak{A}(\mathcal{M})$ to be an algebra consisting of families (F_H) , such that $F_H=e^{\frac{\hbar}{2}\Gamma'_{H-H'}}F_{H'}$, where $\Gamma'_{H-H'}\doteq\int dx\,dy(H-H')(x,y)\frac{\delta^2}{\delta\varphi(x)\delta\varphi(y)}$ and the star product is given by

$$(F \star G)_H \doteq F_H \star_H G_H.$$

• This leads to a deformation quantization $(\mathfrak{A}(\mathcal{M}),\star)$ of the space of fields.

Interaction

• In the next step we have to introduce the interaction, i.e. consider the algebras $\mathfrak{A}_H(\mathfrak{M})=(\mathfrak{BV}_{\mu c}[[\hbar,\lambda]],\star_H)$ and define on them the renormalized time-ordered products $\cdot_{\mathfrak{T}_H}$ by the Epstein-Glaser method.

Interaction

- In the next step we have to introduce the interaction, i.e. consider the algebras $\mathfrak{A}_H(\mathfrak{M}) = (\mathfrak{BV}_{\mu c}[[\hbar, \lambda]], \star_H)$ and define on them the renormalized time-ordered products $\cdot_{\mathfrak{T}_H}$ by the Epstein-Glaser method.
- Products $\cdot_{\mathfrak{T}_H}$ induce a product $\cdot_{\mathfrak{T}}$ on $\mathfrak{A}(\mathfrak{M})$. The formal S-matrix is given by: $\mathfrak{S}(V^g) \doteq e_{\mathfrak{T}}^{V^g}$.

- In the next step we have to introduce the interaction, i.e. consider the algebras $\mathfrak{A}_H(\mathfrak{M}) = (\mathfrak{BV}_{\mu c}[[\hbar, \lambda]], \star_H)$ and define on them the renormalized time-ordered products $\cdot_{\mathfrak{T}_H}$ by the Epstein-Glaser method.
- Products $\cdot_{\mathfrak{T}_H}$ induce a product $\cdot_{\mathfrak{T}}$ on $\mathfrak{A}(\mathfrak{M})$. The formal S-matrix is given by: $\mathfrak{S}(V^g) \doteq e_{\mathfrak{T}}^{V^g}$.
- Interacting fields are obtained from free ones by the Bogoliubov formula:

$$(R_V(\Phi))_{\mathfrak{M}}(f) \doteq \frac{d}{dt}\Big|_{t=0} S(V^g)^{\star-1} \star S(V^g + t\Phi_{\mathfrak{M}}(f)).$$

Quantum observables

• In the framework of [K. Fredenhagen, K.R., CMP 2013], the gauge invariance of the *S*-matrix is guaranteed by the so called quantum master equation (QME):

$$\{e_{\mathfrak{I}}^{V^g}, S_0{}^g\} = 0$$
.

Quantum observables

• In the framework of [K. Fredenhagen, K.R., CMP 2013], the gauge invariance of the *S*-matrix is guaranteed by the so called quantum master equation (QME):

$$\{e_{\mathfrak{I}}^{V^g}, S_0{}^g\} = 0$$
.

• With the use of Master Ward Identity [F.Brennecke, M.Duetsch, RMP 2008], this condition can be rewritten as

$$\frac{1}{2} \{ S_0{}^g + V^g, S_0{}^g + V^g \} = i\hbar \triangle_{V^g} \,,$$

where \triangle_{V^g} is the anomaly.

Quantum observables

• In the framework of [K. Fredenhagen, K.R., CMP 2013], the gauge invariance of the *S*-matrix is guaranteed by the so called quantum master equation (QME):

$$\{e_{\mathfrak{I}}^{V^g}, S_0{}^g\} = 0$$
.

• With the use of Master Ward Identity [F.Brennecke, M.Duetsch, RMP 2008], this condition can be rewritten as

$$\frac{1}{2} \{ S_0{}^g + V^g, S_0{}^g + V^g \} = i\hbar \triangle_{V^g},$$

where \triangle_{V^g} is the anomaly.

• If the QME holds, then gauge invariant quantum observables are recovered as the 0th cohomology of the quantum BV operator $\hat{s} \doteq R_V^{-1} \circ \{., S_0\} \circ R_V$. Equivalently,

$$\hat{s}\Phi_{\mathcal{M}}(f) = \{., S_0^g + V^g\} + \Phi_{\mathcal{M}}(\pounds_C f) - i\hbar \triangle_{V^g} (\Phi_{\mathcal{M}}(f)).$$

Relative Cauchy evolution

• Let \mathcal{N}_+ and \mathcal{N}_- be two spacetimes that embed into two other spacetimes \mathcal{M}_1 and \mathcal{M}_2 around Cauchy surfaces, via causal embeddings given by $\chi_{k,\pm}, k=1,2$.

Relative Cauchy evolution

- Let \mathcal{N}_+ and \mathcal{N}_- be two spacetimes that embed into two other spacetimes \mathcal{M}_1 and \mathcal{M}_2 around Cauchy surfaces, via causal embeddings given by $\chi_{k,\pm}, k = 1, 2$.
- Then $\beta = \alpha_{\chi_{1+}} \alpha_{\chi_{2+}}^{-1} \alpha_{\chi_{2-}} \alpha_{\chi_{1-}}^{-1}$ is an automorphism of $\mathfrak{A}(\mathfrak{M}_1)$.

Relative Cauchy evolution

- Let \mathcal{N}_+ and \mathcal{N}_- be two spacetimes that embed into two other spacetimes \mathcal{M}_1 and \mathcal{M}_2 around Cauchy surfaces, via causal embeddings given by $\chi_{k,\pm}, k = 1, 2$.
- Then $\beta = \alpha_{\chi_{1+}} \alpha_{\chi_{2+}}^{-1} \alpha_{\chi_{2-}} \alpha_{\chi_{1-}}^{-1}$ is an automorphism of $\mathfrak{A}(\mathfrak{M}_1)$.
- It depends only on the spacetime between the two Cauchy surfaces

• Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where $(g_1)_{\mu\nu}$ and $(g_2)_{\mu\nu}$ differ by a (compactly supported) symmetric tensor $h_{\mu\nu}$ with $\sup_{\mu\nu} (h) \cap J^+(\mathcal{N}_+) \cap J^-(\mathcal{N}_-) = \emptyset$,

- Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where $(g_1)_{\mu\nu}$ and $(g_2)_{\mu\nu}$ differ by a (compactly supported) symmetric tensor $h_{\mu\nu}$ with $\operatorname{supp}(h) \cap J^+(\mathcal{N}_+) \cap J^-(\mathcal{N}_-) = \emptyset$,
- $\Theta_{\mu\nu}(x) \doteq \frac{\delta\beta_h}{\delta h_{\mu\nu}(x)}\Big|_{h=0}$ is a derivation valued distribution which is covariantly conserved.

- Let $\mathcal{M}_1 = (M, g_1)$ and $\mathcal{M}_2 = (M, g_2)$, where $(g_1)_{\mu\nu}$ and $(g_2)_{\mu\nu}$ differ by a (compactly supported) symmetric tensor $h_{\mu\nu}$ with $\operatorname{supp}(h) \cap J^+(\mathcal{N}_+) \cap J^-(\mathcal{N}_-) = \emptyset$,
- $\Theta_{\mu\nu}(x) \doteq \frac{\delta\beta_h}{\delta h_{\mu\nu}(x)}\Big|_{h=0}$ is a derivation valued distribution which is covariantly conserved.
- The infinitesimal version of the background independence is a condition that $\Theta_{\mu\nu}=0$.

Theorem [Brunetti, Fredenhagen, K.R. 2013]

The functional derivative $\Theta_{\mu\nu}$ of the relative Cauchy evolution can be expressed, on-shell, as

$$\Theta_{\mu\nu}(\Phi_{\mathcal{M}_1}(f)) \stackrel{o.s.}{=} [R_{V_1}(\Phi_{\mathcal{M}_1}(f)), R_{V_1}(T_{\mu\nu})]_{\star},$$

where $T_{\mu\nu}$ is the stress-energy tensor of the extended action and one can define the time-ordered products in such a way that $T_{\mu\nu}=0$ holds, so the interacting theory is background independent.

• We have constructed a consistent model of perturbative quantum gravity within the framework of locally covariant quantum fields theory.

- We have constructed a consistent model of perturbative quantum gravity within the framework of locally covariant quantum fields theory.
- In our framework, physical diffeomorphism invariant quantities are constructed as natural transformations between certain functors. We have proposed a quantization prescription for such objects, which makes use of the BV formalism.

- We have constructed a consistent model of perturbative quantum gravity within the framework of locally covariant quantum fields theory.
- In our framework, physical diffeomorphism invariant quantities are constructed as natural transformations between certain functors. We have proposed a quantization prescription for such objects, which makes use of the BV formalism.
- To quantize the theory, we make a tentative split into a free and interacting theory. We quantize the free theory first and then use the Epstein-Glaser renormalization to introduce the interaction.

- We have constructed a consistent model of perturbative quantum gravity within the framework of locally covariant quantum fields theory.
- In our framework, physical diffeomorphism invariant quantities are constructed as natural transformations between certain functors. We have proposed a quantization prescription for such objects, which makes use of the BV formalism.
- To quantize the theory, we make a tentative split into a free and interacting theory. We quantize the free theory first and then use the Epstein-Glaser renormalization to introduce the interaction.
- We have shown, using the relative Cauchy evolution, that our theory is background independent, i.e. independent of the split into free and interacting part.

Thank you for your attention!