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Introduction and motivation

Different strategies towards quantum gravity:

e Apply QFT to GR (e.g. WDW, path integral)
e Adapt GR to QFT (e.g. Ashtekar variables, Shape dynamics)

e Change the fundamental microscopic dynamics, GR as an ef-
fective emergent theory (e.g. string theory, GFT, induced grav-
ity, quantum/non-commutative space-times)



Introduction and motivation

e To try: Adapt quantum theory to GR?

— Take the relativistic space-time seriously,

— Avoid the distinguished role of time dimension in the for-
malism of quantum theory.

— The distinguished role of time is rooted already in the classical canonical Hamiltonian

formalism underlying canonical quantization.

— Fields as infinite-dimensional Hamiltonian systems evolving in time.

How to circumvent it?

— De Donder-Weyl ("precanonical”) Hamiltonian formalism.

Precanonical means that the mathematical structures of the canonical Hamiltonian formal-
ism can be derived from those of the DW (or multisymplectic, or polysymplectic) formalism.

Precanonical and canonical coincide at n = 1.

— "Precanonical quantization” is based on the structures of DW Hamiltonian formalism.



Outline of the talk

e De Donder-Weyl Hamiltonian formulation.

e Mathematical structures of DW theory.
Poisson-Gerstenhaber brackets on forms.

e Applications of P-G brackets:
field equations, geometric prequantization.

e Precanonical quantization of scalar field theory.

e Precanonical quantization vs. functional Schrodinger represen-
tation.

e Precanonical quantization of gravity.
A. in metric variables,
B. in vielbein variables.

e Discussion.



De Donder-Weyl (precanonical) Hamiltonian formalism

e Lagrangian density: L = L(y“, y;, z").
e polymomenta: p; := dL/dyj.
e DW (covariant) Hamiltonian function: H := yiph — L,
— H = H(y", ps, z").
e DW covariant Hamiltonian form of field equations:
Oy’ (x) = OH [Opy, Oupy(x) = —OH /0y".

o New regularity condition: det ||02L/dy"dyy || # 0.
— No usual constraints,
— No space-time decomposition,

— Finite-dimensional covariant analogue of the
configuration space: (y*, x*).



De Donder-Weyl (precanonical) Hamiltonian formalism
2. DWHJ

e DW Hamilton-Jacobi equation on n functions S* = S*(y*, x") :

)
05" + H (ya,pﬁf — g%, :U”) = 0.

e Can DWHJ be a quasiclassical limit of some Schrodinger like
formulation of QFT?

e How to quantize fields using the DW analogue of the Hamiltonian
formalism?
The potential advantages would be:

— Explicit compliance with the relativistic covariance principles,

— Finite dimensional covariant analogue of the configuration space
(y*, x*) instead of (y(x),t).

e What are the Poisson brackets in DW theory? What is the ana-
logue of canonically conjugate variables, the starting point of
quantization?



DW Hamiltonian formulation: Examples

Nonlinear scalar field theory

1
L = 2 My@“y — V(?J)

DW Legendre transformation:

OL
g — "
"= 5o 0"y
1

H=08p" = L=gpp" +V(y)

DW Hamiltonian equations:
Oy(x) = 0H/Op" = p,,
o.p''(zr) = —0H/0y = —0V /0y

are equivalent to : Oy + 0V/dy = 0.



DW Hamiltonian formulation: Einstein’s gravity

Einstein’s gravity in metric variables
o I'T action: £(¢*’, 0,¢");
e Field variables: h*% := /gg®?, with g := |det(g,., )],
e Polymomenta: Q4. := (60,10, — T'5.);
e DW Hamiltonian density: $(h**,Q3.),

55:\/§H:87TGE)‘”( 5@ +LQ55Q );

e Einstein field equations in DW Hamiltonian form
0.h" = 05/0Q%,,
0,Q%, = —09/9H™.
e No constraints analysis!
— Gauge fixing is still necessary to single out physical modes.



Mathematical structures of the DW formalism. Brief outline.

1. Finite dimensional "polymomentum phase space” (y*, p~, z")
2. Polysymplectic (n + 1)-form: 2 = dy® A dpt A wy,

with w, = 9, s(dzt A dx? A ... A dx™).
3. Horizontal differential forms £, , (v, p, z)dz" A ... A dx™

as dynamical variables.

4. Poisson brackets on differential forms follow from X, Q2 = dF'.
= Hamiltonian forms F/,
=- Co-exterior product of Hamiltonian forms:

p q p q

FeLl =xYxF NxF).
— Graded Lie (Nijenhuis) bracket.
= Gerstenhaber algebra.

5. The bracket with H generates de on forms.

6. Canonically conjugate variables from the analogue of the
Heisenberg subalgebra:

{phwu v’} = 00, {Iphwps Ywilt = dqwo,  {Iph, y'wi]} = 8407



Geometric setting 1

e Classical fields y* = y“(z) are sections in the covariant config-
uration bundle Y — X over an oriented n-dimensional space-
time manifold X with the volume form w.

e local coordinates in Y — X: (y%, x*).

e \?(Y) denotes the space of p-forms on Y which are annihilated
by (¢ + 1) arbitrary vertical vectors of Y.

e \/(Y)—=Y:
- generalizes the cotangent bundle,
- models the multisymplectic phase space.

e Multisymplectic structure:
Ops = phdy" Nw, +pw, w, =0, w.

e A section p = —H(y% p", z") yields the Hamiltonian Poincaré-
Cartan form Q) pc:

Qpc =dp, Ndy* ANw, +dH N w



e Extended polymomentum phase space:
(y, i, 37) =: (2%, ) = 2
Z: Ni(Y)/ No(Y) =Y
e Canonical structure on Z:
O := [phdy* Aw, mod A\ G(Y)]
e Polysymplectic form
Q:=[d® mod A} (V)]
1= —dy" Ndpl, Nw,

e DW equations in geometric formulation:

)%JQ:dH



Hamiltonian multivector fields and Hamiltonian forms

e A multivector field of degree p, )p( e N'TZ, is called vertical if
X F =0 for any form F € \ (Z).
e The polysymplectic form establishes a map of horizontal p—form

D n—p
FeN\y(Z) to vertical multivector fields of degree (n — p), X 5,
called Hamiltonian:
n—p p
X r Q) =dF.
e The forms for which the map (2) exists are called Hamiltonian.

e The natural product operation of Hamiltonian forms is the co-
exterior product

D q

FeF =« Y(xF A+F) e AN (2)

e co-exterior product is graded commutative and associative.



Poisson-Gerstenhaber brackets

e P-G brackets:
p q n—p n—q
{{F1, Fo = (-1 )XUCZFQ (—DP P X1, X 5.0

== n+1
<A

e The space of Hamiltonian forms with the operations { , |} and
e is a (Poisson-)Gerstenhaber algebra, viz.

p gﬁ, F} = —<—1>gw2gﬁ ﬁ]}p,
(S0 EFY + (G0 F FL)
+ (1R, (I ) = 0

P q r P q r q
{F.FeF]} = {F,F} e F+ (1)@ pe [ F,
g=n—p—1,¢p=n—q—1,g3=n—1r—1.



Applications of P-G brackets

e The pairs of “canonically conjugate variables”:
Pyl = 00, hw, v’ wolt = down,  {lDh y'wily = 8407

e DW Hamiltonian equation in the bracket form:

de = —o(—1)"{|H,F]} + d"eF,

for Hamiltonian (n — 1)—form F' = Flw,;
1

(n = p)!
1
(n —p)!
o = *£1 for the Euclidean/Minkowskian signature of X.

p
deF =

Oy F'H "'“”—paﬂszx“ ©0, . I w,

- Mn—p

dhOIg::

O, FM - nrdzt @ Oy ) w,

- Hn—p

e More general: dF = {Hw, Z{i]} + d"F.



Application to quantization of fields

e Geometric prequantization of P-G brackets.

Prequantization map ' — Op acting on (prequantum) Hilbert
space fulfills three prorties:

(Q1) the map ' — Or is linear;

(Q2) if F' is constant, then Oy is the corresponding multi-
plication operator;

(Q3) the Poisson bracket of dynamical variables is related
to the commutator of the corresponding operators:

Or, OR) = —ihO(p, 1),
[A,B] .= Ao B — (—1)%s4deBp s 4



e Explicit construction of prequantum operator of form F"
Or =1h|Xp,d] + (Xp.O) e +Fe

is a inhomogeneous operator, acts on prequantum wave func-
tions ¥ (y, p, z) — inhomogeneous forms on the polymomentum
phase space.

¢ “Prequantum Schrodinger equation”
XoQys=0—=>0¥V =0= tchde V¥ = OH<\D)

e Polarization: V(y,p,x) — V(y, ).

e Normalization of prequantum wave functions leads to the metric
structure on the space-time!

= Co-exterior algebra — Clifford algebra.



Geometric prequantization — precanonical quantization

e The metric structure = Clifford algebra
"quantization map” q:wye — %’yﬂ
e Precanonical analogue of the Schrodinger equation:
ihaeyHO, VW = HV

U(y, z) - Clifford-valued wave function on ¥ — X.

— Reproduces DW Hamiltonian equations on the average!
(Ehrenfest theorem).

— Conserved probability current [dyV~"U.

— Reproduces DWH]J in the classical limit.

e For free scalar field theory:

_ a 0 132 20°
pt = —ihseyt5- H——gh%ay2+2my



o The spectrum of H: (N + 1)3em.
o (M|y|M + 1) # 0 = quantum particles as transitions?

e The ground state (/N = 0) solution (up to a normalisation factor)
Toly, q) = ¢ =07 ©
which corresponds to the eigenvalues ko lwg, kb = 24",

e Higher excited states can be easily found to correspond to £/, =
(N +3)¢"

e Define y(z) = e~ iFueye=ibua i0,¥ = P,V (precanonical SE).
= 0|y (x)y(z )\0> = [ g o),

(U

— y in “ultra-Schrodinger representation” is well-defined,
unlike y(0) in Kadllén-Lehmann ”“spectral representation” calcu-
lation.



Canonical vs. precanonical

A: Schréodinger functional rep.: ¥(|y(x)|, )
0,0 = HY

A= {30 STu0r + Vi) |

B: Precanonical quantization: V(y, x)
10y 0, U = HU
» is a “very large” constant of dimension L~("~1),

~ 1

How those two descriptions can be related?



Canonical vs. precanonical




Canonical vs. precanonical: H] theory

e Canonical Hamilton-Jacobi equation, S(|y(x)], t)

oS+ H (ya(x),pg(x) = 55(8}()775) =0

e Canonical HJ can be derived from DWH] equation

[
05" + H (y“,pg — gS ,x“) =0
ya

e Canonical HJ eikonal functional vs. DWH] eikonal functions:
s— (5l — [ dxs'y =y .0
5
> = (y = y(x),t) ("the Cauchy surface”)



Canonical vs. precanonical: Schréodinger functional

e Denote V(y, x)|y .= Uyx(y(x),x,t). Let
W(ly"(x)], ) = ®([Px(t)], [y (x)).

e The time evolution of the Schrodinger wave functional is de-
termined by the time evolution of precanonical wave function:

ow
ié?‘Il:/dXTr{ 10 ax,x,t}
| VTG0 By R

e The time evolution of Uy, is given by the precanonical Schro-
dinger equation restricted to X:

10Uy (x) = —iﬁvi%qu(x) + 87 0;y(x)0, Us(x) + %B(ﬁ@)g(}()




Hence (for scalar field theory):

, oW oad o in
10, = /dXTr {5@%(){, D [—zﬁfy %\Ijg()d + 187" 0iy(x)0, ¥s(x)

_ %wayyqu + iBV(y(x))\Ilg] }

- _
c.f.: o Tr{ 0 >8y\lig(x)}+_5ql :

oy(x) OWL(x,t oy (x)
6> ow
e o e K ARR),

5>
+ TIrT
r r{5w£<x>®w§<x>

50w 0w
+ 2 Tr {5@%(}() 55 @y\lfz(x)} + S

ay\lf§;<X) X ayqu(X)}




Canonical vs. precanonical: Schréodinger functional 2

[axted o vt} [avie) e,

5(X) 2

o
= Ir {(5‘1@(){) B\IJE(X)} =¥ Vx

6°W ow
= | 5eg 0 0T ™} = e <~ #90)

e = (s — §(0) i.e.the ”inverse quantization map” at 1/ — 0.
e The term »30,,Vy, reproduces the first term in §°¥ /dy(x)*.

e The terms proportional to J,Vy(x) should cancel

ow N oW
SUL() SUL(x)oy(x)

= i3 Oy (x)

— 0. (4)




e Using the condition 55 — §(0) and

oW
)= 5T
o %%Zf; B(x)i6(0)y'0y(x) = 0.

= P(x) = B([Uy]: %) e WO dx)/
where Z(|Vy]; x) is a functional of Vy(x') at x' # x, so that

P(x)/0VL(x) =0 < (5\112(X)5®\II5\IJ2(X) = 0.

e Egs. (5,7) lead to the solution:
@ — Tr {&([Ws]; %) eV ()|

()

(6)
(7)

©)



e The total derivative term in :0, ¥ integrated by parts:

/ dx Tr { (z‘%@) yiqu(x)} , (10)

taking the total derivative % of @ in (7):

d Z,_ —iy(x)V 0y (x) /s
— —E(x)e T (ka?ky(X)f?iy(X)+y(X)vk(‘9¢ky(X>)

and using the expression of W in (9):

Eq.(10) = —i¥ / dx (Y Ohy(x)0y(x) + y(x)7* Tuy(x))y" (1)

= vanishes upon integrating by parts.

d(x) = —



e The functional Z([Uy(x)|) in (9) is specified by noticing that the
formula (9) is valid for any x. It can be achieved only if the
functional ¥ has the continuous product structure, viz.

U =Tr {H e~ W0 O g (%), x, t)}

X

e Expresses the Schrodinger wave functional ¥([y(x)|,?) in terms
of precanonical wave functions V(y, x) restricted to >..

e Implies the inverse of the “quantization map” [ — §(0) in
the limit of infinitesimal ”“elementary volume” 1/ — 0.

e = QFT based on canonical quantization is a singular limit of
QFT based on precanonical quantization.



Precanonical quantization of metric gravity
e A guess: /\ _
ihkeYW VU = HU, (12)
o with ¥ := Y0, + 9M), the quantized covariant Dirac operator,
o YHAY 4+ AVyH = 2gHY, éu the spin-connection operator.

Qﬁfy — —Zh/i/}/ {\/ﬁabﬂv }Ord ) (13)
S 14
e Problems:
0

- Classical () transforms as connection vs. Qo3 ~ 7° ® PPTr;
- e0e part of spin-connection can’t be expressed in terms of Q:

0,=e®el',+ed,e



e — Assume the hybrid approach, viz. the remaining (not quan-
tizable) objects needed to formulate the covariant Schrodinger
equation are introduced in a self-consistent with the underly-
ing quantum dynamics of  way as averaged notions.

e Diffeomorphism covariant wave equation for “hybrid” quan-
tum gravity: N
ihke YV + thr(ey"0,)"V = HU (15)
oY = e (x)y4(0, + 0,(x)) is the Dirac operator constructed using
the self-consistent field ¢, (x):

& (@)eg(x)n™? = (¢") (@),

(g") (x) = / U(g,2)g" (g, x)[g" ™ [ dg*;  (16)

a<p

e Quantum superposition principle is effectively valid on the
self-consistent space-time.



e The operator part of the spin-connection:

0
Va0, = —miGin { Vig" 5o | a7
ord
e To complete the description, impose the De Donder-Fock har-
monic gauge: 9, (,/gg") (xr) = 0. In the present context this is
the gauge condition on the wave function V(¢"”, ") rather than
on the metric field.

e Can the hybrid description be circumvented in vielbein/spin-
connection variables?



DW formulation of first order e-0 gravity.

e EH Lagrangean density £ = ﬁ(R + 2A)/—g:

1 o
Sz—ee[l

g pll Lo 1Kg, 7 LA
- €7 (0aty” + b, 6K>+"‘3Ee

e Polymomenta — primary constraints:

a 0L ~ 126[Q6ﬁ] _
Pl = 0u07 ¥ pt 1 P T 5

e DW Hamiltonian density:
$H =pp0l + p.0e — £+ A(py — ee Ae) + up.
e On the constraints surface:

1
Nlc ~ —ngJeaIKeﬁKJ — —Ae
B KRE



DW formulation of first order e-0 gravity — Constraints.

e Preservation of constraints & DW equations or vanishing PG
brackets of (n — 1)-forms C'“w, constructed from the constraints
C% ~ (0 with $).

e From Jcand 00 = =0, A =0

0%
0P = ——
pelﬁ (9eé
= Einstein equations.
° (955
Oubor) = ——1=
Polr = o1

= expression of 0}’ i.t.0. de.



Quantization of e-0 gravity

v
O:>a——O:>\IJ(Qe:L')+\IJ(9 )

66 6‘6
cele Iy = ey P%ﬂ
- 0
a iRl
p%‘] nacery 88&]
= AP = —ihxk vl 6” — &l
865

DW Hamiltonian operator 5% = e/]\{ -

T 312 2 I1J 0 p KM 1



Covariant Schrodinger equation for quantum gravity

iRV = HU
with the “quantized Dirac operator”:
N ) 1
¥ = (Y0 +0,)", 0= EQMUVU

—

= Y = —ih%ﬁ;E*y”@%,(@M + 10, k17" E)

Hence, precanonical counterpart of WDW:

9, 1 9,
1J KL KMpa L
y —6’9{[] <8M+49MKL7 —0%@9” 9@]\4) U0, x)
A
+ U(h,z)=0.
hz%%%

— Ordering ambiguities!



Defining the Hilbert space

e The scalar product: (®|V) := [[dA]DV.
— Misner-like covariant measure on the space of 0-s:

[d6) = e """V T, d6l.

— |df)] is operator-valued, because

~ 0
¢ :=det(e)), e}~ fy‘]aeu.
— Weyl ordering in @:

(V) = [ B [do]



Further definition of the Hilbert space

e Boundary condition V(6 — oo) — 0.
— Excludes (almost) infinite curvatures R = df + 0 N 0.
— To be explored, how it will play together with the OVM in
the singularity avoidance.

e Huge gauge freedom in spin-connection coefficients is removed
by fixing the De Donder-Fock gauge condition: the choice of
harmonic coordinates on the average:

0, (W(0, ) [7"|W (0, ) = 0.

— Gauge fixing on the level of states U, not spin-connections
or vielbeins.

— To be explored if this gauge fixing is sufficient and should
not be complemented by further conditions.



Precanonical quantum cosmology, a toy model. 1

n = 4, k = 0 FLRW metric with a harmonic time coordinate 7

ds* = a(7)%dr* — a(7)*dx* = nyy ele‘]daz’”‘daz
e =a’00, el =ad), J=1,2,3
w = —w=a/2¢° = w, i=1=1,2,3

7

Our analogue of WDW:

( Z o!0,,0; + 3w, —1—)\>

1=1=1

=+, X =2 + A/(hsxrp)?, Weyl ordering.

<~ The correct value of A can be obtained from the constant
of order unity which results from the operator ordering, if »x ~
1073GeV3.



Precanonical quantum cosmology, a toy model. 2

By separating variables V := u(z) f(w):
2 Z oo = iqu,
i=1
the imaginary unit comes from the anti-hermicity of 0;,

(2q0, + 3wd, + \) f = 0.
Solution f ~ (iq + 3w) ™ yields the probability density

pw) == ff ~ (9w?+¢*)
(similar to t-distribution).
— At A\ > 1/2 (required by L*[(—o0, ), [dw] = dw] normalizabil-
ity in w-space) p(w) has a bell-like shape centered at the zero uni-
verse’s expansion rate a = 0.

— The most probable expansion rate can be shifted by accept-
ing complex values of ¢, and the inclusion of minimally coupled
matter fields changes .



Precanonical quantum cosmology, a toy model. 3

— Although our toy model bears some similarity with the min-
isuperspace models, its origin and the content are different:

e Itis obtained from the full quantum Schrédinger equation when
w is one-component, NOT via quantization of a reduced me-
chanical model deduced under the assumption of spatial ho-
mogeneity.

e Naive assumption of spatial homogeneity of the wave func-
tion: O, = 0, or ¢ = 0, would not be compatible with normaliz-
ability of ¥ in w-space!

¢ Instead, our model implies a quantum gravitational structure

of space at the scales ~Re_ and ~Im_ given by the configuration
of "weyleon” u(z).



Concluding remarks 1.

e Standard QFT in the functional Schrodinger represenation is a
B — 5"0)

“limit” of QFT based on precanonical quantization.
— The latter regularizes some of the singularities of the for-
mer? The details are to be explored!



Concluding remarks 2.

e How to extract physics of quantum gravity from the above pre-
canonical counterpart of WDW equation?

0 1 0
1J KL KM L
Y 8(9—/][] <8M+49MKL’)/ — 895@9“ eﬁM > qf(@,ﬂf)

_|_

U, x) =0.
h2%2/£2E

— Multidimensional generalized hypergeometric equation.
< Quantum geometry in terms of (0, 2'|0, x).
e Precanonical formulation is

— inherently non-perturbative,

— manifestly covariant,

— background-independent,

— mathematically well-defined,

—works in any number of dimensions and metric signature.



Concluding remarks 3.

— Metric structure is emergent:

—_—

(g")(z) = / (6, 2)[d0] g7 (6, ),

> 2 9 9 IJ _AB
gt ——ﬁ%&EaeIAHJBn n
v

— Ehrenfest theorem vs. the ordering of operators and OVM
(work in progress).



Concluding remarks 4.

e \ or couplings with matter fields are crucial to determine the
characteristic scales

— ”Naturality” W ~ n® = s at roughly ~ 10°MeV scale!

— If s is Planckian, then A is estimated to be ~ 10'* higher
than observed (as usual), i.e. ¢ is consistent with the UV cutoff
scale in standard QFT.

— Include matter fields to see their impact on the estimation?
E.g. the conformal coupling term with the scalar field leads to
QL%QRcbz term.

e Misner-like OVM in the definition of the scalar product as a
specifics of quantum gravity and its probabilistic interpreta-
tion?



ITHE END

Many thanks for your attention.



