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Introduction and motivation

Different strategies towards quantum gravity:

• Apply QFT to GR (e.g. WDW, path integral)
• Adapt GR to QFT (e.g. Ashtekar variables, Shape dynamics)
• Change the fundamental microscopic dynamics, GR as an ef-

fective emergent theory (e.g. string theory, GFT, induced grav-
ity, quantum/non-commutative space-times)



Introduction and motivation

• To try: Adapt quantum theory to GR?
– Take the relativistic space-time seriously,
– Avoid the distinguished role of time dimension in the for-

malism of quantum theory.
! The distinguished role of time is rooted already in the classical canonical Hamiltonian

formalism underlying canonical quantization.

! Fields as infinite-dimensional Hamiltonian systems evolving in time.

How to circumvent it?

! De Donder-Weyl (”precanonical”) Hamiltonian formalism.
Precanonical means that the mathematical structures of the canonical Hamiltonian formal-

ism can be derived from those of the DW (or multisymplectic, or polysymplectic) formalism.

Precanonical and canonical coincide at n = 1.

! ”Precanonical quantization” is based on the structures of DW Hamiltonian formalism.



Outline of the talk

• De Donder-Weyl Hamiltonian formulation.

• Mathematical structures of DW theory.
Poisson-Gerstenhaber brackets on forms.

• Applications of P-G brackets:
field equations, geometric prequantization.

• Precanonical quantization of scalar field theory.

• Precanonical quantization vs. functional Schrödinger represen-
tation.

• Precanonical quantization of gravity.
A. in metric variables,
B. in vielbein variables.

• Discussion.



De Donder-Weyl (precanonical) Hamiltonian formalism

• Lagrangian density: L = L(ya, yaµ, x
⌫
).

• polymomenta: pµa := @L/@yaµ.

• DW (covariant) Hamiltonian function: H := yaµp
µ
a � L,

,! H = H(ya, pµa, x
µ
).

• DW covariant Hamiltonian form of field equations:

@µy
a
(x) = @H/@pµa, @µp

µ
a(x) = �@H/@ya.

• New regularity condition: det
�

�

�

�@2L/@yµa@y
⌫
b

�

�

�

� 6= 0.

,! No usual constraints,
,! No space-time decomposition,
,! Finite-dimensional covariant analogue of the
configuration space: (ya, xµ).



De Donder-Weyl (precanonical) Hamiltonian formalism
2. DWHJ

• DW Hamilton-Jacobi equation on n functions Sµ
= Sµ

(ya, x⌫) :

@µS
µ
+H

✓

ya, pµa =
@Sµ

@ya
, x⌫
◆

= 0.

• Can DWHJ be a quasiclassical limit of some Schrödinger like
formulation of QFT?

• How to quantize fields using the DW analogue of the Hamiltonian
formalism?
The potential advantages would be:
– Explicit compliance with the relativistic covariance principles,
– Finite dimensional covariant analogue of the configuration space:
(ya, xµ) instead of (y(x), t).

• What are the Poisson brackets in DW theory? What is the ana-
logue of canonically conjugate variables, the starting point of
quantization?
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DW Hamiltonian formulation: Examples

Nonlinear scalar field theory

L =

1

2

@µy@
µy � V (y)

DW Legendre transformation:

pµ =
@L

@@µy
= @µy

H = @µp
µ � L =

1

2

pµp
µ
+ V (y)

DW Hamiltonian equations:
@µy(x) = @H/@pµ = pµ,

@µp
µ
(x) = �@H/@y = �@V/@y

are equivalent to : 2y + @V/@y = 0.



DW Hamiltonian formulation: Einstein’s gravity

Einstein’s gravity in metric variables

• �� action: L(g↵�, @⌫g↵�);

• Field variables: h↵� :=

p
gg↵�, with g := |det(gµ⌫)|,

• Polymomenta: Q↵
�� :=

1
8⇡G(�

↵
(��

�
�)� � �↵��);

• DW Hamiltonian density: H(h↵�, Q↵
��),

H =

p
gH = 8⇡G h↵�

✓

Q�
↵�Q

�
�� +

1

1� n
Q�

↵�Q
�
��

◆

;

• Einstein field equations in DW Hamiltonian form

@↵h
��

= @H/@Q↵
��,

@↵Q
↵
�� = �@H/@h��.

• No constraints analysis!

– Gauge fixing is still necessary to single out physical modes.



Mathematical structures of the DW formalism. Brief outline.

1. Finite dimensional ”polymomentum phase space” (ya, pµa, x⌫)
2. Polysymplectic (n + 1)-form: ⌦ = dya ^ dpµa ^ !µ,

with !µ = @µ (dx1 ^ dx2 ^ ... ^ dxn).
3. Horizontal differential forms F⌫1...⌫p(y, p, x)dx

⌫1 ^ ... ^ dx⌫p

as dynamical variables.
4. Poisson brackets on differential forms follow from XF ⌦ = dF .
) Hamiltonian forms F ,
) Co-exterior product of Hamiltonian forms:

p

F •
q

F := ⇤�1
(⇤

p

F ^ ⇤
q

F ).

) Graded Lie (Nijenhuis) bracket.
) Gerstenhaber algebra.
5. The bracket with H generates d• on forms.
6. Canonically conjugate variables from the analogue of the
Heisenberg subalgebra:

{[pµa!µ, y
b
]} = �ba, {[pµa!µ, y

b!⌫ ]} = �ba!⌫, {[pµa, yb!⌫ ]} = �ba�
µ
⌫ .



Geometric setting 1

• Classical fields ya = ya(x) are sections in the covariant config-
uration bundle Y ! X over an oriented n-dimensional space-
time manifold X with the volume form !.

• local coordinates in Y ! X : (ya, xµ).
•
V

p
q(Y ) denotes the space of p-forms on Y which are annihilated

by (q + 1) arbitrary vertical vectors of Y .
•
Vn

1(Y ) ! Y :
- generalizes the cotangent bundle,
- models the multisymplectic phase space.

• Multisymplectic structure:
⇥MS = pµady

a ^ !µ + p!, !µ := @µ !.

• A section p = �H(ya, pµa, x
⌫
) yields the Hamiltonian Poincaré-

Cartan form ⌦PC:
⌦PC = dpµa ^ dya ^ !µ + dH ^ !



• Extended polymomentum phase space:
(ya, p⌫a, x

⌫
) =: (zv, xµ) = zM

Z:
Vn

1(Y )/
Vn

0(Y )!Y.

• Canonical structure on Z:
⇥ := [pµady

a ^ !µ mod

V

n
0(Y )]

• Polysymplectic form

⌦ := [d⇥ mod

Vn+1
1 (Y )]

⌦ = �dya ^ dpµa ^ !µ

• DW equations in geometric formulation:
n
X ⌦ = dH
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Hamiltonian multivector fields and Hamiltonian forms

• A multivector field of degree p,
p

X 2
Vp TZ, is called vertical if

p

X F = 0 for any form F 2
V⇤

0(Z).
• The polysymplectic form establishes a map of horizontal p�forms

p

F2
Vp

0(Z) to vertical multivector fields of degree (n � p),
n�p

X F ,
called Hamiltonian:

n�p

X F ⌦ = d
p

F .

• The forms for which the map (2) exists are called Hamiltonian.
• The natural product operation of Hamiltonian forms is the co-

exterior product
p

F •
q

F := ⇤�1
(⇤

p

F ^ ⇤
q

F ) 2
^

p+q�n
0 (Z)

• co-exterior product is graded commutative and associative.



Poisson-Gerstenhaber brackets

• P-G brackets:

{[
p

F 1,
q

F 2 ]} = (�1)

(n�p)
n�p

X 1 d
q

F 2 = (�1)

(n�p)
n�p

X 1

n�q

X 2 ⌦

2
^

p+q�n+1
0 (Z).

• The space of Hamiltonian forms with the operations {[ , ]} and
• is a (Poisson-)Gerstenhaber algebra, viz.

{[
p

F ,
q

F ]} = �(�1)

g1g2{[
q

F ,
p

F ]},

(�1)

g1g3{[
p

F , {[
q

F ,
r
F ]}]} + (�1)

g1g2{[
q

F , {[
r
F ,

p

F ]}]}

+ (�1)

g2g3{[
r
F , {[

p

F ,
q

F ]}]} = 0,

{[
p

F ,
q

F •
r
F ]} = {[

p

F ,
q

F ]} •
r
F + (�1)

g1(g2+1)
q

F • {[
p

F ,
r
F ]},

g1 = n� p� 1, g2 = n� q � 1, g3 = n� r � 1.



Applications of P-G brackets

• The pairs of ”canonically conjugate variables”:

{[pµa!µ, y
b
]} = �ba, {[pµa!µ, y

b!⌫ ]} = �ba!⌫, {[pµa, yb!⌫ ]} = �ba�
µ
⌫ .

• DW Hamiltonian equation in the bracket form:

d•F = ��(�1)

n{[H,F ]} + dh•F,
for Hamiltonian (n� 1)�form F := Fµ!µ;

d•
p

F :=

1

(n� p)!
@MFµ1 ... µn�p@µz

Mdxµ • @µ1 ... µn�p !,

dh•
p

F :=

1

(n� p)!
@µF

µ1 ... µn�pdxµ • @µ1 ... µn�p !,

� = ±1 for the Euclidean/Minkowskian signature of X .

• More general: dF = {[H!,
p

F ]} + dhF.



Application to quantization of fields

• Geometric prequantization of P-G brackets.
Prequantization map F ! OF acting on (prequantum) Hilbert
space fulfills three prorties:

(Q1) the map F ! OF is linear;
(Q2) if F is constant, then OF is the corresponding multi-
plication operator;
(Q3) the Poisson bracket of dynamical variables is related
to the commutator of the corresponding operators:

[OF1, OF2] = �i~O{F1,F2},

[A,B] := A �B � (�1)

degA degBB � A.



• Explicit construction of prequantum operator of form F :

OF = i~[XF, d] + (XF ⇥) • +F•
is a inhomogeneous operator, acts on prequantum wave func-
tions  (y, p, x) – inhomogeneous forms on the polymomentum
phase space.

• “Prequantum Schrödinger equation”

X0 ⌦MS = 0 ! O0 = 0 ) i�~ d •  = OH( )

• Polarization:  (y, p, x) !  (y, x).

• Normalization of prequantum wave functions leads to the metric
structure on the space-time!
) Co-exterior algebra ! Clifford algebra.



Geometric prequantization ! precanonical quantization

• The metric structure ) Clifford algebra

”quantization map” q : !µ• ! 1

{�µ

• Precanonical analogue of the Schrödinger equation:

i~{�µ@µ =

ˆH 

 (y, x) - Clifford-valued wave function on Y ! X .
,! Reproduces DW Hamiltonian equations on the average!
(Ehrenfest theorem).
,! Conserved probability current

R

dy �µ
 .

,! Reproduces DWHJ in the classical limit.
• For free scalar field theory:

bpµ = �i~{�µ @
@y,

bH = �1

2

~2{2

@2

@y2
+

1

2

m2y2.



• The spectrum of bH : (N +

1
2){m.

• hM |y|M ± 1i 6= 0 ) quantum particles as transitions?
• The ground state (N = 0) solution (up to a normalisation factor)

 0(y,q) = e�
1
2{qµ�

µy2, (3)

which corresponds to the eigenvalues kt0 =
1
2!q, ki0 = 1

2q
i.

• Higher excited states can be easily found to correspond to kµN =

(N +

1
2)q

µ.

• Define ŷ(x) = e�iP̂µxµye�iP̂µxµ, i@µ =

ˆPµ (precanonical SE).
) h0|ŷ(x)ŷ(x0)|0i =

R

dk
2!k

e�ikµ(x�x0)µ.

,! y in ”ultra-Schrödinger representation” is well-defined,
unlike y(0) in Källén-Lehmann ”spectral representation” calcu-
lation.



Canonical vs. precanonical

A: Schrödinger functional rep.:  ([y(x)], t)

i@t =

bH 

bH =

Z

dx

⇢

�1

2

�2

�y(x)2
+

1

2

(ry(x))2 + V (y(x))

�

B: Precanonical quantization:  (y, x)

i{�µ@µ =

bH 

{ is a “very large” constant of dimension L�(n�1),

bH = �1

2

{2@yy + V (y)

How those two descriptions can be related?



Canonical vs. precanonical



Canonical vs. precanonical: HJ theory

• Canonical Hamilton-Jacobi equation, S([y(x)], t)

@tS +H

✓

ya(x), p0a(x) =
�S

�y(x)
, t

◆

= 0

• Canonical HJ can be derived from DWHJ equation

@µS
µ
+H

✓

ya, pµa =
@Sµ

@ya
, xµ
◆

= 0

• Canonical HJ eikonal functional vs. DWHJ eikonal functions:

S =

Z

⌃
(Sµ!µ)|⌃ !

Z

dxS0
(y = y(x),x, t)

⌃ := (y = y(x), t) (”the Cauchy surface”)



Canonical vs. precanonical: Schrödinger functional

• Denote  (y, x)|⌃ :=  ⌃(y(x),x, t). Let

 ([ya(x)], t) =  ([ ⌃(t)], [ya(x)]).

• The time evolution of the Schrödinger wave functional is de-
termined by the time evolution of precanonical wave function:

i@t =

Z

dx Tr

⇢

� 

� T
⌃(y

a
(x),x, t)

i@t ⌃(y
a
(x),x, t)

�

• The time evolution of  ⌃ is given by the precanonical Schrö-
dinger equation restricted to ⌃:

i@t ⌃(x) = �i��i d

dxi
 ⌃(x) + i��i@iy(x)@y ⌃(x) +

1

{�( bH )⌃(x)



Hence (for scalar field theory):

i@t =

Z

dxTr

⇢

� 

� T
⌃(x, t)



�i��i d

dxi
 ⌃(x) + i��i@iy(x)@y ⌃(x)

� 1

2

{�@yy ⌃ +

1

{�V (y(x)) ⌃

��

c.f. :
� 

�y(x)
= Tr

⇢

� 

� T
⌃(x, t)

@y ⌃(x)

�

+

� 

�y(x)
,

�2 

�y(x)2
= Tr

⇢

� 

� T
⌃(x, t)

�(0)@yy ⌃(x)

�

+ Tr Tr

⇢

�2 

� T
⌃(x)⌦ � T

⌃(x)
@y ⌃(x)⌦ @y ⌃(x)

�

+ 2 Tr

(

�� 

� T
⌃(x) �y(x)

@y ⌃(x)

)

+

�
2
 

�y(x)2
.



Canonical vs. precanonical: Schrödinger functional 2

Z

dxTr

⇢

� 

� T
⌃(x)

1

{�V (y(x)) ⌃(x))

�

!
Z

dxV (y(x)) ,

) Tr

⇢

� 

� T
⌃(x)

� ⌃(x)

�

= { 8x

) Tr

⇢

�2 

� T
⌃(x)⌦ � T

⌃(x)
� ⌃(x)

�

=

� 

� T
⌃(x)

({ � ��(0))

•) �{ ! �(0) i.e. the ”inverse quantization map” at 1/{ ! 0.

• The term {�@yy ⌃ reproduces the first term in �2 /�y(x)2.

• The terms proportional to @y ⌃(x) should cancel

) � 

� T
⌃(x)

i��i@iy(x) +
�� 

� T
⌃(x)�y(x)

= 0. (4)



• Using the condition �{ ! �(0) and

�(x) :=
� 

� T
⌃(x)

(5)

) {��(x)

�y(x)
+�(x)i�(0)�i@iy(x) = 0 , (6)

) �(x) = ⌅([ ⌃]; ˘x) e
�iy(x)�i@iy(x)/{, (7)

where ⌅([ ⌃]; ˘x) is a functional of  ⌃(x
0
) at x0 6= x, so that

��(x)/� T
⌃(x) = 0 , �2 

� ⌃(x)⌦ � ⌃(x)
= 0. (8)

• Eqs. (5,7) lead to the solution:

 = Tr

n

⌅([ ⌃]; ˘x) e
�iy(x)�i@iy(x)/{

 ⌃(x)
o

. (9)



• The total derivative term in i@t integrated by parts:
Z

dx Tr

⇢✓

i
d

dxi
�

◆

�i
 ⌃(x)

�

, (10)

taking the total derivative d
dxi

of � in (7):
d

dxi
�(x) = � i

{⌅(x)e
�iy(x)�i@iy(x)/{

⇣

�k@ky(x)@iy(x)+y(x)�k@iky(x)
⌘

and using the expression of in (9):

Eq.(10) ) �i 

Z

dx (�k@ky(x)@iy(x) + y(x)�k@iky(x))�
i

(11)

) vanishes upon integrating by parts.



• The functional ⌅([ ⌃(x)]) in (9) is specified by noticing that the
formula (9) is valid for any x. It can be achieved only if the
functional has the continuous product structure, viz.

 = Tr

(

Y

x

e�iy(x)�i@iy(x)/{
 ⌃(y(x),x, t)

)

• Expresses the Schrödinger wave functional ([y(x)], t) in terms
of precanonical wave functions  (y, x) restricted to ⌃.

• Implies the inverse of the ”quantization map” �{ ! �(0) in
the limit of infinitesimal ”elementary volume” 1/{ ! 0.

•) QFT based on canonical quantization is a singular limit of
QFT based on precanonical quantization.



Precanonical quantization of metric gravity

• A guess:
i~ce6r =

bH , (12)

• with b6r := �µ
(@µ + ˆ✓µ), the quantized covariant Dirac operator,

• �µ�⌫
+ �⌫�µ

:= 2gµ⌫, ˆ✓µ the spin-connection operator.
•

bQ↵
�� = �i~�↵

⇢

p
g

@

@h��

�

ord

, (13)

bH = �16⇡

3

G~22

⇢

p
gh↵�h��

@

@h↵�
@

@h��

�

ord

(14)

• Problems:
- Classical Q transforms as connection vs. ˆQ�↵� ⇠ �� ⌦ @

@@h↵�

- e@e part of spin-connection can’t be expressed in terms of Q:

✓µ = e⌦ e�µ + e@µe



•) Assume the hybrid approach , viz. the remaining (not quan-
tizable) objects needed to formulate the covariant Schrödinger
equation are introduced in a self-consistent with the underly-
ing quantum dynamics of  way as averaged notions.

• Diffeomorphism covariant wave equation for ”hybrid” quan-
tum gravity:

i~fe6r + i~(e�µ✓µ)
op
 =

bH (15)

• e6r = ẽµA(x)�
A
(@µ + ˜✓µ(x)) is the Dirac operator constructed using

the self-consistent field ẽµA(x):

ẽµA(x)ẽ
⌫
B(x)⌘

AB
:= hgµ⌫i (x),

hgµ⌫i (x) =
Z

 (g, x)gµ⌫ (g, x)[g(n+1)/2
Y

↵�

dg↵�]; (16)

• Quantum superposition principle is effectively valid on the
self-consistent space-time.



• The operator part of the spin-connection:

(

p
g�µ✓µ)

op
= �4⇡iG~

⇢

p
ggµ⌫

@

@hµ⌫

�

ord

(17)

• To complete the description, impose the De Donder-Fock har-
monic gauge: @µ

⌦p
ggµ⌫

↵

(x) = 0. In the present context this is
the gauge condition on the wave function  (gµ⌫, x⌫) rather than
on the metric field.

• Can the hybrid description be circumvented in vielbein/spin-
connection variables?
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DW formulation of first order e-✓ gravity.

• EH Lagrangean density L =

1
2E

(R + 2⇤)

p
�g:

L =

1

E
ee[↵I e

�]
J (@↵✓

IJ
� + ✓↵

IK✓�K
J
) +

1

E
⇤e

• Polymomenta ! primary constraints:

p↵
✓IJ�

=

@L

@↵✓IJ�
⇡ 1

E
ee[↵I e

�]
J , p↵

eI�
=

@L

@↵eI�
⇡ 0.

• DW Hamiltonian density:

H = p✓@✓ + pe@e� L + �(p✓ � ee ^ e) + µpe

• On the constraints surface:

H|C ⇡ �p↵
✓IJ�

✓↵IK✓�K
J � 1

E
⇤e



DW formulation of first order e-✓ gravity – Constraints.

• Preservation of constraints , DW equations or vanishing PG
brackets of (n� 1)-forms C↵!↵ constructed from the constraints
C↵ ⇡ 0 with H.

• From @e and @✓ ) µ = 0,� = 0

•
@↵p

↵
eI�
= �@H

@eI�
) Einstein equations.

•
@↵p

↵
✓IJ�

= � @H

@✓IJ�
) expression of ✓IJ� i.t.o. @e.



Quantization of e-✓ gravity

p↵
eI�
⇡ 0 ) @ 

@eI�
= 0 )  (✓, e, x) !  (✓, x)

ee[↵I e
�]
J �

IJ
= e�↵� ⇡ E p↵

✓IJ�
�IJ

bp↵
✓IJ�

= �i~{e�[↵ @

@✓IJ�]

) b�� = �i~{E�IJ @
@✓IJ�

! ê�I

DW Hamiltonian operator, bH =:

ceH :

bH = ~2{2E
@

@✓IJ↵
�IJ @

@✓KL
�

✓↵KM✓�M
L � 1

E
⇤



Covariant Schrödinger equation for quantum gravity

i~{ b6r =

bH 

with the ”quantized Dirac operator”:

b6r := (�µ
(@µ + ✓µ))

op, ✓µ :=
1

4

✓µIJ�
IJ

) c6r = �i~{E�IJ @
@✓IJµ

(@µ +
1
4✓µKL�KL

)

Hence, precanonical counterpart of WDW:

�IJ @

@✓IJµ

 

@µ +
1

4

✓µKL�
KL � @

@✓KL
�

✓µ
KM✓�M

L

!

 (✓, x)

+

⇤

~2{22
E

 (✓, x) = 0.

,! Ordering ambiguities!



Defining the Hilbert space

• The scalar product: h�| i :=
R

[d✓]� .

,! Misner-like covariant measure on the space of ✓-s:

[d✓] = e�n(n�1)
Q

µIJ d✓
IJ
µ .

,! [d✓] is operator-valued, because

e := det(eI↵), be↵I ⇠ �J @

@✓IJ↵
.

,! Weyl ordering in d[d✓]:

h�| i :=
R

�

d

[d✓]W .



Further definition of the Hilbert space

• Boundary condition  (✓ ! 1) ! 0.

! Excludes (almost) infinite curvatures R = d✓ + ✓ ^ ✓.
! To be explored, how it will play together with the OVM in
the singularity avoidance.

• Huge gauge freedom in spin-connection coefficients is removed
by fixing the De Donder-Fock gauge condition: the choice of
harmonic coordinates on the average:

@µ h (✓, x)|b�µ| (✓, x)i = 0.

! Gauge fixing on the level of states  , not spin-connections
or vielbeins.
! To be explored if this gauge fixing is sufficient and should
not be complemented by further conditions.



Precanonical quantum cosmology, a toy model. 1

n = 4, k = 0 FLRW metric with a harmonic time coordinate ⌧

ds2 = a(⌧ )6d⌧ 2 � a(⌧ )2dx2
= ⌘IJe

I
µe

J
⌫dx

µdx⌫.

e0⌫ = a3�0⌫, e
J
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2, Weyl ordering.

,! The correct value of ⇤ can be obtained from the constant
of order unity which results from the operator ordering, if { ⇠
10

�3GeV 3.
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By separating variables  := u(x)f (!):
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the imaginary unit comes from the anti-hermicity of @i,

(iq@! + 3!@! + �)f = 0.

Solution f ⇠ (iq + 3!)�� yields the probability density

⇢(!) := ¯ff ⇠ (9!2
+ q2)��.

(similar to t-distribution).
,! At � > 1/2 (required by L2

[(�1,1), [d!] = d!] normalizabil-
ity in !-space) ⇢(!) has a bell-like shape centered at the zero uni-
verse’s expansion rate ȧ = 0.
,! The most probable expansion rate can be shifted by accept-

ing complex values of q, and the inclusion of minimally coupled
matter fields changes �.
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,! Although our toy model bears some similarity with the min-
isuperspace models, its origin and the content are different:

• It is obtained from the full quantum Schrödinger equation when
! is one-component, NOT via quantization of a reduced me-
chanical model deduced under the assumption of spatial ho-
mogeneity.

• Naive assumption of spatial homogeneity of the wave func-
tion: @i = 0, or q = 0, would not be compatible with normaliz-
ability of  in !-space!

• Instead, our model implies a quantum gravitational structure
of space at the scales ⇠Re

1
q and ⇠ Im

1
q given by the configuration

of ”weyleon” u(x).



Concluding remarks 1.

• Standard QFT in the functional Schrödinger represenation is a

�{ ! �n�1
(0)

”limit” of QFT based on precanonical quantization.
,! The latter regularizes some of the singularities of the for-
mer? The details are to be explored!



Concluding remarks 2.

• How to extract physics of quantum gravity from the above pre-
canonical counterpart of WDW equation?
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,! Multidimensional generalized hypergeometric equation.
,! Quantum geometry in terms of h✓0, x0|✓, xi.

• Precanonical formulation is
– inherently non-perturbative,
– manifestly covariant,
– background-independent,
– mathematically well-defined,
– works in any number of dimensions and metric signature.



Concluding remarks 3.

,! Metric structure is emergent:
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 (✓, x)d[d✓] cgµ⌫ (✓, x),

cgµ⌫ = �~2{22
E

@2

@✓IAµ ✓JB⌫
⌘IJ⌘AB

,! Ehrenfest theorem vs. the ordering of operators and OVM
(work in progress).



Concluding remarks 4.

• ⇤ or couplings with matter fields are crucial to determine the
characteristic scales.
,! ”Naturality” ⇤

~2{22E
⇠ n6 ) { at roughly ⇠ 10

2MeV scale!

,! If { is Planckian, then ⇤ is estimated to be ⇠ 10

120 higher
than observed (as usual), i.e. { is consistent with the UV cutoff
scale in standard QFT.
,! Include matter fields to see their impact on the estimation?
E.g. the conformal coupling term with the scalar field leads to
⇠

2{2R�2 term.
• Misner-like OVM in the definition of the scalar product as a

specifics of quantum gravity and its probabilistic interpreta-
tion?



THE END

Many thanks for your attention.


