A simplicial approach to the non-Abelian Chern-Simons path integral

Atle Hahn

Group of Mathematical Physics, University of Lisbon

May 31st, 2013

Table of Contents

- Overview
- 2 The Chern-Simons path integral
- 3 The shadow invariant for $M = \Sigma \times S^1$
- 4 From the CS path integral to the shadow invariant
- Conclusions

Motivation: Why is the theory of 3-manifold quantum invariants interesting?

- 1) It is beautiful: surprising relations between many different areas of mathematics/physics like
 - Algebra
 - low-dimensional Topology
 - Differential Geometry
 - Functional Analysis and Stochastic Analysis
 - Quantum field theory (in particular, Conformal field theory, Quantum Gravity, String theory)
- 2) It is deep: Fields Medals for Jones, Witten, Kontsevich
- It is useful: Applications in Knot Theory and Quantum Gravity, ...

List of approaches to 3-manifold quantum invariants

Original heuristic approach

0. Chern-Simons path integrals approach (Witten)

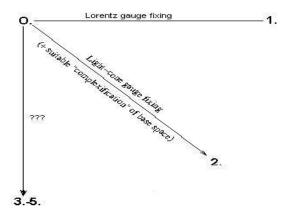
Rigorous perturbative approaches

- 1. Configuration space integrals
- 2. Kontsevich Integral

Rigorous non-perturbative approaches

- 3a. Quantum groups + Surgery (Reshetikhin/Turaev)
- 3b. Quantum groups + Shadow links (Turaev)
- 3c. Lattice gauge theories based on Quantum groups
- 4. Skein Modules
- 5. Geometric Quantization

Some relations between the approaches



Important open problems

- (P1) Chern-Simons path integral $\stackrel{???}{\longleftrightarrow}$ rigorous non-perturbative approaches 3a, 3b, 3c, 4, 5.
- (P2) Rigorous definition of original Chern-Simons path integral expressions?

Alternatively:

(P2') Rigorous definition of Chern-Simons path integral expressions <u>after</u> suitable gauge fixing?

The shortterm goal

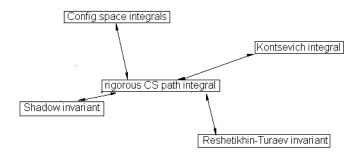
Our Aim

Make progress regarding (P1) and (P2')

Strategy

We consider special situation $M = \Sigma \times S^1$ and apply "torus gauge fixing" (cf. Blau/Thompson '93)

The longterm "goal" /dream



(all "arrows" being rigorous)

(or something analogous for BF_3 -theory with cosmological constant)

The Chern-Simons path integral

Fix

- M: oriented connected 3-manifold (usually compact)
- G: simply-connected simple Lie subgroup of U(N) $(N \in \mathbb{N} \text{ fixed})$
- $k \in \mathbb{R} \setminus \{0\}$ (usually $k \in \mathbb{N}$)

Space of gauge fields:

$$\mathcal{A} = \{A \mid A \text{ } \mathfrak{g}\text{-valued } 1\text{-form on } M\} \quad (\mathfrak{g} \subset u(N)\text{: Lie algebra of } G)$$

Action functional:

$$S_{CS}: \mathcal{A} \ni A \mapsto rac{k}{4\pi} \int_{M} \operatorname{Tr}(A \wedge dA + rac{2}{3}A \wedge A \wedge A) \in \mathbb{R}$$

where $\operatorname{Tr} := c \operatorname{Tr}_{\operatorname{Mat}(N,\mathbb{C})}$ for suitable normalisation constant $c \in \mathbb{R}$

Observation 1

 S_{CS} is invariant under (orientation-preserving) diffeomorphisms

Fix

- "link" $L=(I_1,I_2,\ldots,I_n)$, $n\in\mathbb{N}$, in M
- n-tuple $(\rho_1, \rho_2, \dots, \rho_n)$ of finite-dim. representations of G

Overview

"Definition"

$$\mathsf{Z}(M,L) := \int \prod_{i} \mathsf{Tr}_{\rho_{i}}(\mathsf{Hol}_{I_{i}}(A)) \exp(i\mathsf{S}_{CS}(A)) DA$$

where DA is the "Lebesgue measure" on $\mathcal A$ and

$$\mathsf{Hol}_{l_i}(A) := \lim_{n \to \infty} \prod_{k=1}^n \mathsf{exp}(\frac{1}{n} \mathcal{A}(l_i'(\frac{k}{n})))$$
 ("holonomy of A around l_i ")

Observation 2

 S_{CS} invariant under (orientation-preserving) diffeomorphisms \Rightarrow Z(M, L) only depends on diffeomorphism class of M and isotopy class of L.

The shadow invariant for $M = \Sigma \times S^1$

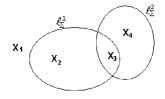
Special case: $M = \Sigma \times S^1$

Fix (framed) link $L = (I^1, I^2, \dots, I^n)$

Loop projections onto S^1 and Σ :

$$I_{S^1}^1, I_{S^1}^2, ..., I_{S^1}^n$$
 and $I_{\Sigma}^1, I_{\Sigma}^2, ..., I_{\Sigma}^n$

D(L): graph in Σ generated by I_{Σ}^1 , I_{Σ}^2 , ..., I_{Σ}^n



$$X_1, X_2, \ldots, X_m$$
: "faces" in $D(L)$

Gleams

Each X_t is equipped in a canonical way with a "gleam" $\mathrm{gl}_t \in \mathbb{Z}$ Gleams $(\mathrm{gl}_t)_t$ contain

- Information about crossings in D(L),
- Information about winding numbers $wind(l_{S^1}^j)$

"Shadow of L"

$$sh(L) := (D(L), (gl_t)_t)$$

Example 1: D(L) has no crossing points

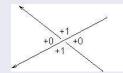
$$\mathsf{gl}_t = \sum_{\{j \mid \ \mathit{l}^j_\Sigma \ \mathsf{touches} \ X_t\}} \mathsf{wind}(\mathit{l}^j_{S^1}) \cdot \mathsf{sgn}(X_t; \mathit{l}^j_\Sigma)$$

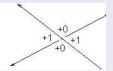
where

$$\operatorname{sgn}(X_t; I_{\Sigma}^j) = \begin{cases} 1 & \text{if } X_t \text{ is "inside" of } I_{\Sigma}^j \\ -1 & \text{if } X_t \text{ is "outside" of } I_{\Sigma}^j \end{cases}$$

Example 2: D(L) has crossing points but wind $\binom{j}{S^1} = 0$, $j \leq n$

Figure: Changes in the gleams at a given crossing point





Fix Cartan subalgebra \mathfrak{t} of \mathfrak{g} . Let k be as in Sec. 2 and additionally, $k > c_{\mathfrak{g}}$ ($c_{\mathfrak{g}}$ dual Coxeter number of \mathfrak{g}).

Colors and Colorings

- "color": dominant weight of \mathfrak{g} (w.r.t. \mathfrak{t}) which is "integrable at level" $k c_{\mathfrak{g}}$.
- ullet \mathcal{C} : set of colors
- "link coloring" : mapping $\gamma:\{l_1,l_2,\ldots,l_n\}\to\mathcal{C}$
- "area coloring": mapping col : $\{X_1, \ldots, X_m\} \to \mathcal{C}$.
- Col: set of area colorings

Fix link coloring $\gamma: \{l_1, l_2, \dots, l_n\} \to \mathcal{C}$.

Example 3: $\mathfrak{g} = su(2)$, \mathfrak{t} arbitrary

$$\mathcal{C} \cong \{0, 1, 2, \dots, k-2\}$$

"Fusion coefficients" $\mathit{N}_{lphaeta}^{\gamma}\in\mathbb{N}_{0}$, $lpha,eta,\gamma\in\mathcal{C}$

$$N_{\alpha\beta}^{\gamma} = \sum_{\sigma \in W_k} (-1)^{\sigma} m_{\alpha} (\beta - \sigma(\gamma)),$$

where

- $m_{\alpha}(\beta)$: multiplicity of weight β in character of α .
- W_k : "quantum Weyl group" for \mathfrak{g} and k.

Remark

For our purposes the formula above is more useful than

$$N_{\alpha\beta}^{\gamma} = \sum_{\delta} \frac{S_{\alpha\delta}S_{\beta\delta}S_{\gamma^*\delta}}{S_{0\delta}} \qquad \alpha, \beta, \gamma \in \mathcal{C},$$

where $(S_{\alpha\beta})_{\alpha\beta}$ is the S-matrix associated to $\mathfrak g$ and k.

Some extra notation

- R₊: set of positive real roots (w.r.t. fixed Weyl chamber)
- $\rho := \frac{1}{2} \sum_{\alpha \in R_+} \alpha$
- $\langle \cdot, \cdot \rangle$: Killing metric normalized such that $\langle \alpha, \alpha \rangle = 2$ if α is a long root.

"Shadow invariant" $|\cdot|$ for $\mathfrak g$ and k

$$\begin{split} |L| &= \sum_{\mathsf{col} \in \mathit{Col}} (\prod_{i=1}^{n} \mathit{N}_{\gamma(\mathit{l}_{i}) \, \mathsf{col}(\mathit{Y}_{i}^{+})}^{\mathsf{col}(\mathit{Y}_{i}^{+})}) \bigg(\prod_{t=1}^{m} (\mathit{V}_{\mathsf{col}(\mathit{X}_{t})})^{\chi(\mathit{X}_{t})} (\mathit{U}_{\mathsf{col}(\mathit{X}_{t})})^{\mathsf{gl}_{t}} \bigg) \\ & \times \bigg(\prod_{\mathit{p} \in \mathsf{CP}(\mathit{L})} \mathsf{symb}_{\mathit{q}}(\mathsf{col}, \mathit{p}) \bigg) \quad \text{ where } \end{split}$$

$$\chi(X_t)$$
: Euler characteristic of X_t

 $Y_i^{+/-}$: face touching I_{Σ}^i from "inside" / "outside"

$$V_{\lambda} := \prod_{lpha \in R_+} rac{\sin rac{\pi \langle \lambda +
ho, lpha
angle}{k}}{\sin rac{\pi \langle
ho, lpha
angle}{k}}$$

$$U_{\lambda} := \exp(\frac{\pi i}{k} \langle \lambda, \lambda + 2\rho \rangle)$$

 $\operatorname{symb}_q(\operatorname{col},p)$: associated q-6j-symbol for $q:=\exp(\frac{2\pi i}{k})$

Special case: D(L) has no crossing points

$$|L| = \sum_{\mathsf{col} \in \mathit{Col}} (\prod_{i=1}^n \mathit{N}_{\gamma(\mathit{I}_i) \, \mathsf{col}(Y_i^+)}^{\mathsf{col}(Y_i^-)}) \left(\prod_{t=1}^m (\mathit{V}_{\mathsf{col}(X_t)})^{\chi(X_t)} (\mathit{U}_{\mathsf{col}(X_t)})^{\mathsf{gl}_t} \right)$$

Aim of the rest of the Talk

Derive the formula above from the Chern-Simons path integral

From the CS path integral to the shadow invariant

Gauge group:
$$G = C^{\infty}(M, G)$$

 ${\cal G}$ operates on ${\cal A}$ from the right by

$$A\cdot \Omega = \Omega^{-1}A\Omega + \Omega^{-1}d\Omega \qquad \text{ for } \ \Omega \in \mathcal{G}, A \in \mathcal{A}$$

Gauge Fixing: Choice of system $A_{\rm gf}$ of representatives of A/\mathcal{G}

Example: "Axial gauge fixing" for $M = \mathbb{R}^3$

In this case each $A \in \mathcal{A}$ can be written as $A = \sum_{i=0}^{2} A_i dx_i$.

$$\mathcal{A}_{gf} = \{A \mid A_0 = 0\}$$

is "essentially" a gauge-fixing.

"Faddeev-Popov determinant"

If \mathcal{A}_{gf} is "nice" enough there is a function $\triangle_{FadPop}: \mathcal{A}_{gf} \to \mathbb{R}$ such that (informally)

$$\int_{\mathcal{A}} \chi(A) DA = \int_{\mathcal{A}_{\mathsf{gf}}} \chi(A) \triangle_{\mathsf{FadPop}}(A) DA_{|\mathcal{A}_{\mathsf{gf}}}$$

for every \mathcal{G} -invariant function $\chi:\mathcal{A}\to\mathbb{C}$

Example

For $M=\mathbb{R}^3$ and $\mathcal{A}_{\sf gf}:=\mathcal{A}^\perp:=\{A\in\mathcal{A}\mid A_0=0\}$ we have

$$\triangle_{FadPop}(A) = const.$$
 \Rightarrow

$$\int_{\mathcal{A}} \chi(A) DA \sim \int_{\mathcal{A}^{\perp}} \chi(A^{\perp}) DA^{\perp}, \qquad \text{with } DA^{\perp} := DA_{|\mathcal{A}^{\perp}}$$

Example for usefulness of applying a gauge fixing

For
$$M=\mathbb{R}^3$$
 and $\mathcal{A}_{\mathsf{gf}}:=\mathcal{A}^\perp:=\{A\in\mathcal{A}\mid A_0=0\}$ we have

$$\begin{split} \mathsf{Z}(M,L) &= \int_{\mathcal{A}} \prod_{i} \mathsf{Tr}(\mathsf{Hol}_{I_{i}}(A)) \exp(iS_{CS}(A)) DA \\ &\sim \int_{\mathcal{A}^{\perp}} \prod_{i} \mathsf{Tr}(\mathsf{Hol}_{I_{i}}(A)) \exp(iS_{CS}(A)) DA^{\perp} \\ &\stackrel{(*)}{=} \int_{\mathcal{A}^{\perp}} \prod_{i} \mathsf{Tr}(\mathsf{Hol}_{I_{i}}(A^{\perp})) \exp(i\frac{k}{4\pi} \int \mathsf{Tr}(dA^{\perp} \wedge A^{\perp})) DA^{\perp} \end{split}$$

(*) holds because
$$A^{\perp} \wedge A^{\perp} \wedge A^{\perp} = 0$$
 for $A^{\perp} \in \mathcal{A}^{\perp}$.

The last integral involves a Gauss-type measure!

Torus Gauge

$M = \mathbb{R}^3$

$$A = \sum_{i=0}^{2} A_i dx_i = A^{\perp} + A_0 dx_0 \text{ where } A^{\perp} := A_1 dx_1 + A_2 dx_2$$

Note that $A^{\perp} \in \mathcal{A}^{\perp} := \{ A \in \mathcal{A} \mid A(\frac{\partial}{\partial x_0}) = 0 \}$

$$A_{gf} = A^{\perp} = \{A \mid A_0 = 0\}$$
 Axial gauge fixing

$M = \Sigma \times S^1$

Each $A \in \mathcal{A}$ we have $A = A^{\perp} + A_0 dt$ with $A_0 \in C^{\infty}(\Sigma \times S^1, \mathfrak{g})$ and $A^{\perp} \in \mathcal{A}^{\perp} := \{A \in \mathcal{A} \mid A(\frac{\partial}{\partial t}) = 0\}$

dt and $rac{\partial}{\partial t}$ obtained by lifting obvious 1-form/vector field on S^1 to $\Sigma imes S^1$

Problem: $A_{gf} = A^{\perp}$ is <u>not</u> a gauge fixing! We need larger space

1. Option

$$\mathcal{A}_{gf} = \mathcal{A}^{\perp} \oplus \{ \textit{Bdt} \mid \textit{B} \in \textit{C}^{\infty}(\Sigma, \mathfrak{g}) \}$$

2. Option: "torus gauge" (Blau/Thompson '93)

$$\mathcal{A}_{\mathsf{gf}} = \mathcal{A}^{\perp} \oplus \{ \mathsf{Bdt} \mid \mathsf{B} \in \mathsf{C}^{\infty}(\Sigma, \mathfrak{t}) \}$$

where $\mathfrak t$ is Lie algebra of fixed maximal torus $T\subset G$

Example:
$$T = \left\{ \begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} \mid \theta \in \mathbb{R} \right\} \cong U(1)$$
 is a max. torus for $G = SU(2)$

Observation

$$\triangle_{\mathit{FadPop}}(A^{\perp} + Bdt)$$
 only depends on $B \longrightarrow$ we set

$$\triangle_{FP}(B) := \triangle_{FadPop}(A^{\perp} + Bdt)$$

Example

For G = SU(2) and T as above we have

$$\triangle_{FP}(B) \sim \prod_{\sigma} \sin^2(x(B(\sigma)))$$

for suitable isomorphism $x:\mathfrak{t}\to\mathbb{R}$

Not the full story!

Topological obstructions

- ightarrow strictly speaking torus gauge is not a gauge
- \to we must allow gauge transformations which have a singularity in a fixed point $\sigma_0 \in \Sigma$ (this causes also A^{\perp} to have a singularity in σ_0)
- ightarrow 1-1-correspondence

$$\{\text{relevant singularities of }A^{\perp} \text{ in } \sigma_0\} \quad \longleftrightarrow \quad [\Sigma, G/T] \cong \mathbb{Z}^{\dim(T)}$$

 \rightarrow extra summation $\sum_{h \in [\Sigma, G/T]} \cdots$ and factor depending on h in our formulas

Torus Gauge applied to CS theory on $M = \Sigma \times S^1$

"Definition" of
$$\triangle_{FP} \Rightarrow$$

$$Z(M, L) = \int_{\mathcal{A}} \prod_{i} \operatorname{Tr}_{\rho_{i}}(\operatorname{Hol}_{l_{i}}(A)) \exp(iS_{CS}(A)) DA$$

$$\sim \int_{C^{\infty}(\Sigma, \mathfrak{t})} \int_{\mathcal{A}^{\perp}} \prod_{i} \operatorname{Tr}_{\rho_{i}}(\operatorname{Hol}_{l_{i}}(A^{\perp} + Bdt)) \exp(iS_{CS}(A^{\perp} + Bdt)) DA^{\perp}$$

$$\times \triangle_{FP}(B) DB \quad \text{where}$$

- DA^{\perp} : "Lebesgue measure" on A^{\perp}
- *DB*: "Lebesgue measure" on $C^{\infty}(\Sigma, \mathfrak{t})$

1. important Observation

$$S_{CS}(A^{\perp}+Bdt)$$
 quadratic in A^{\perp} for fixed B

$$\mathcal{A}_{\Sigma,V}:= ext{ Space of V-valued 1-forms on Σ for $V\in\{\mathfrak{g},\mathfrak{t},\mathfrak{t}^\perp$}$$
 $\mathbb{A}_{\Sigma,V}:= \mathcal{A}^\perp \cong C^\infty(S^1,\mathcal{A}_{\Sigma,\mathfrak{g}})$ $\mathcal{A}_c^\perp:= \{A^\perp\in\mathcal{A}^\perp\mid A^\perp ext{ constant and $\mathcal{A}_{\Sigma,\mathfrak{t}}$-valued}\}$ $\check{\mathcal{A}}^\perp:= \{A^\perp\in\mathcal{A}^\perp\mid \int_{S^1}A^\perp(t)dt\in\mathcal{A}_{\Sigma,\mathfrak{t}^\perp}\}$

Decomposition $\mathcal{A}^{\perp} = \check{\mathcal{A}}^{\perp} \oplus \mathcal{A}_{c}^{\perp}$

2. important Observation

$$S_{CS}(\check{A}^\perp + A_c^\perp + Bdt) = S_{CS}(\check{A}^\perp + Bdt) + rac{k}{2\pi} \int_{\Sigma} \mathsf{Tr}(dA_c^\perp \cdot B)$$

Final heuristic integral formula

$$Z(M,L) \sim \int\limits_{C^{\infty}(\Sigma,\mathfrak{t})} \int\limits_{\mathcal{A}_{c}^{\perp}} \int\limits_{\check{\mathcal{A}}^{\perp}} \prod_{i} \operatorname{Tr}_{\rho_{i}}(\operatorname{Hol}_{I_{i}}(\check{A}^{\perp} + A_{c}^{\perp} + Bdt)) d\check{\mu}_{B}^{\perp}(\check{A}^{\perp})$$
$$\times \triangle_{FP}(B)Z(B) \exp(i\frac{k}{2\pi} \int_{\Sigma} \operatorname{Tr}(dA_{c}^{\perp} \cdot B)) DA_{c}^{\perp} DB$$

where

$$d\check{\mu}_B^{\perp}(\check{A}^{\perp}) := \frac{1}{Z(B)} \exp(iS_{CS}(\check{A}^{\perp} + Bdt))D\check{A}^{\perp}$$

with
$$Z(B) := \int \exp(iS_{CS}(\check{A}^{\perp} + Bdt))D\check{A}^{\perp}$$
.

3. important Observation

Both $d\check{\mu}_B^{\perp}$ and $\exp(i\frac{k}{2\pi}\int_{\Sigma} \text{Tr}(dA_c^{\perp}\cdot B))DA_c^{\perp}DB$ are of "Gauss-type"

Comment

Useful to fix an auxiliary Riemannian metric g_{Σ} on Σ :

- ullet Hodge star operator $\star: \mathcal{A}_{\Sigma,\mathfrak{g}}
 ightarrow \mathcal{A}_{\Sigma,\mathfrak{g}}$
- ullet scalar product $\ll \cdot, \cdot \gg$ on $\mathcal{A}_{\Sigma,\mathfrak{g}}$
- ullet operator \star : $C^\infty(S^1, \mathcal{A}_{\Sigma,\mathfrak{g}}) o C^\infty(S^1, \mathcal{A}_{\Sigma,\mathfrak{g}})$
- scalar product $\ll \cdot, \cdot \gg$ on $C^{\infty}(S^1, \mathcal{A}_{\Sigma, \mathfrak{g}})$

Application: rewriting $d\check{\mu}_B^\perp = \exp(iS_{CS}(\check{A}^\perp + Bdt))D\check{A}^\perp$

$$d\check{\mu}_B^\perp = \exp(-irac{k}{4\pi} \ll \check{A}^\perp, \star (rac{\partial}{\partial t} + \operatorname{ad}(B))\check{A}^\perp \gg) D\check{A}^\perp$$

(Observe that $\star (\frac{\partial}{\partial t} + \operatorname{ad}(B))$ is symmetric w.r.t. $\ll \cdot, \cdot \gg$)

Rigorous implementation

The "discretization approach"

Fix $m \in \mathbb{N}$ and fix triangulation of Σ , K being the underlying simplicial complex.

Let $C^p(K, V)$ denote the space of V-valued p-cochains for K, $p \in \mathbb{N}_0$ Discretization based on replacements

•
$$\mathcal{B} = C^{\infty}(\Sigma, \mathfrak{t}) = \Omega^{0}(\Sigma, \mathfrak{t}) \longrightarrow C^{0}(K, \mathfrak{t})$$

$$ullet \ {\cal A}_{\Sigma,\mathfrak{g}}=\Omega^1(\Sigma,\mathfrak{g}) \longrightarrow C^1(K,\mathfrak{g})$$

$$\bullet \ \, \mathcal{A}^{\perp} \cong \textit{C}^{\infty}(\textit{S}^{1},\mathcal{A}_{\Sigma,\mathfrak{g}}) \qquad \longrightarrow \textit{Maps}(\mathbb{Z}_{\textit{m}},\textit{C}^{1}(\textit{K},\mathfrak{g}))$$

Remark

Apart from K we also use the dual K' of K in order to define a discrete Hodge star operator.

We need to use "field doubling" \to we are now considering BF_3 theory ! (cf. Adams' work on Simplicial Abelian Gauge Theories).

Evaluation of the path integral

Recall:

We derived the heuristic formula

$$Z(M, L) \sim \int\limits_{C^{\infty}(\Sigma, t)} \int\limits_{\mathcal{A}_{c}^{\perp}} \int\limits_{\check{\mathcal{A}}^{\perp}} \prod_{i} \mathsf{Tr}_{\rho_{i}} (\mathsf{Hol}_{I_{i}}(\check{\mathcal{A}}^{\perp} + A_{c}^{\perp} + Bdt)) d\check{\mu}_{B}^{\perp}(\check{\mathcal{A}}^{\perp}) \\ \times \triangle_{FP}(B) Z(B) \exp(i\frac{k}{2\pi} \int_{\Sigma} \mathsf{Tr}(dA_{c}^{\perp} \cdot B)) DA_{c}^{\perp} DB$$

• We are able to make rigorous sense of the r.h.s. of Z(M, L)

Let us now restrict ourselves to the special case where L has no crossing points and evaluate $\mathsf{Z}(M,L)$ explicitly.

For simplicity: heuristic treatment

Some properties of rigorous analogue of $\check{\mu}_B^\perp$

- oscillatory complex measure of "Gauss-type"
- normalized
- zero mean
- non-definite covariance operator

Toy model: complex "Gauss-type" measure μ on \mathbb{R}^2

$$\mu(x) = \frac{1}{2\pi} \exp(i\frac{1}{2}\langle x, Cx \rangle) dx$$
 where $C = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Clearly,
$$\langle v, Cv \rangle = 0$$
 for $v = (1,0)$

$$\Rightarrow \lim_{\epsilon \to 0} \int \langle x, v \rangle^n e^{-\epsilon |x|^2} d\mu(x) = 0$$
 for all $n \in \mathbb{N}$

 $\Rightarrow \lim_{\epsilon \to 0} \int \Phi(\langle x, v \rangle) e^{-\epsilon |x|^2} d\mu(x) = \Phi(0)$ (for all "sufficiently nice" entire analytic functions $\Phi : \mathbb{R} \to \mathbb{R}$)

1. Step: Perform $\int \cdots d\check{\mu}_B^{\perp}(\check{A}^{\perp})$

$$\begin{split} \int_{\Breve{\mathcal{A}}^\perp} \prod_j \operatorname{Tr}_{\rho_j} (\operatorname{\mathsf{Hol}}_{I_j}(\Breve{A}^\perp_c + Bdt)) d\check{\mu}_B^\perp(\Breve{A}^\perp) \\ &= \prod_j \operatorname{Tr}_{\rho_j} (\operatorname{\mathsf{Hol}}_{I_j}(0 + A_c^\perp + Bdt)) = \prod_j \operatorname{Tr}_{\rho_j} (\exp(\int_{I_j} A_c^\perp + \int_{I_j} Bdt)) \\ \longrightarrow \\ &Z(M,L) \sim \int\limits_{C^\infty(\Sigma,\mathfrak{t})} \int\limits_{\Breve{A}_c^\perp} \prod_j \operatorname{Tr}_{\rho_j} (\exp(\int_{I_j} A_c^\perp + \int_{I_j} Bdt)) \\ &\times \triangle_{FP}(B) Z(B) \exp(i \frac{k}{2\pi} \int_{\Sigma} \operatorname{Tr}(dA_c^\perp \cdot B)) DA_c^\perp DB \end{split}$$

2. Step: Perform $\int \cdots DA_c^{\perp}$

Observe

$$\mathbf{1} \operatorname{Tr}_{\rho_{j}}(e^{b}) = \sum_{\alpha} m_{\rho_{j}}(\alpha)e^{i\alpha(b)} \quad \text{if } b \in \mathfrak{t}$$

$$\mathbf{2} \int \operatorname{Tr}(dA_{c}^{\perp} \cdot B) = \ll B, \star dA_{c}^{\perp} \gg$$

$$\mathbf{3} \alpha\left(\int_{l_{\Sigma}^{j}} A_{c}^{\perp}\right) = \alpha\left(\int_{R_{\Sigma}^{j}} dA_{c}^{\perp}\right) = \ll \alpha \cdot 1_{R_{\Sigma}^{j}}, \star dA_{c}^{\perp} \gg$$

$$\int \prod_{j} \operatorname{Tr}_{\rho_{j}}(\exp(\int_{l_{j}} A_{c}^{\perp} + \int_{l_{j}} Bdt) \exp(i\frac{k}{2\pi} \int_{\Sigma} \operatorname{Tr}(dA_{c}^{\perp} \cdot B)) DA_{c}^{\perp}$$

$$= \sum_{\alpha_{1}, \dots, \alpha_{n}} (\prod_{j} m_{\rho_{j}}(\alpha_{j})) \quad [\dots] \quad \int \exp(i \ll \frac{k}{2\pi} B - \sum_{j} \alpha_{j} 1_{R_{\Sigma}^{j}}, \star dA_{c}^{\perp} \gg) DA_{c}^{\perp}$$

$$\sim \sum_{\alpha_{1}, \dots, \alpha_{n}} (\prod_{j} m_{\rho_{j}}(\alpha_{j})) \quad [\dots] \quad \delta(B - \frac{2\pi}{k} \sum_{j} \alpha_{j} 1_{R_{\Sigma}^{j}})$$

3. Step: Perform $\int \cdots DB$

$$\begin{split} &Z(M,L) \\ &\sim \sum_{\alpha_1,\ldots,\alpha_n} \int (\prod_j m_{\rho_j}(\alpha_j)) (\triangle_{FP}(B) Z(B)) (\exp(\ldots)) \delta(B - \frac{2\pi}{k} \sum_j \alpha_j 1_{R_{\underline{\Sigma}}^j}) DB \\ &\stackrel{(*)}{=} \sum_{\{B = \frac{2\pi}{k} \sum_j 1_{R_{\underline{\Sigma}}^j} \alpha_j\}} (\prod_j m_{\rho_j}(\alpha_j)) (\triangle_{FP}(B) Z(B)) (\exp(\ldots)) \\ &= \qquad \ldots \\ &= \sum_{\operatorname{col} \in \mathit{Col}} (\prod_{j=1}^n N_{\gamma(l_j) \operatorname{col}(Y_j^+)}^{\operatorname{col}(Y_j^-)}) (\prod_{t=1}^m (V_{\operatorname{col}(X_t)})^{\chi(X_t)}) (\prod_{t=1}^m \exp(\operatorname{gl}_t U_{\operatorname{col}(X_t)})) \\ &= |L| \end{split}$$

(step (*) is not quite the full story

Recall

Topological obstructions

- \rightarrow strictly speaking torus gauge is not a gauge
- \rightarrow we must allow A_c^{\perp} to have a singularity in fixed point σ_0 of Σ
- \rightarrow 1-1-correspondence

$$\{\text{relevant singularities of } A_c^{\perp} \text{ in } \sigma_0\} \quad \longleftrightarrow \quad [\Sigma, G/T] \cong \mathbb{Z}^{\dim(T)}$$

- \rightarrow extra summation $\sum_{h \in [\Sigma, G/T]} \cdots$ (plus a term depending on the "winding number" of h) in some formulas
- ightarrow this extra summation (combined with a suitable application of the Poisson summation formula) does indeed lead to the correct expressions at the end of last slide

Open Questions

Question 1

What about the case where L does have crossing points:

Do we obtain quantum 6j-symbols?

Question 2

Discretization approach possible for original (= non-gauge fixed) path integral?

References

- V.G. Turaev. Shadow links and face models of statistical mechanics. J. Diff. Geom., 36:35–74, 1992.
- M. Blau and G. Thompson. Derivation of the Verlinde Formula from Chern-Simons Theory and the G/G model. *Nucl. Phys.*, B408(1):345–390, 1993.
- O. H. Adams. R-Torsion and Linking Numbers from Simplicial Abelian Gauge Theories. [arXiv:hep-th/9612009]
- A. Hahn. An analytic Approach to Turaev's Shadow Invariant, J. Knot Th. Ram. 17(11):1327–1385, 2008 [arXiv:math-ph/0507040v7].
- A. Hahn. From simplicial Chern-Simons theory to the shadow invariant I, 2012 [arXiv:1206.0439]
- A. Hahn. From simplicial Chern-Simons theory to the shadow invariant II, 2012 [arXiv:1206.0441]