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Outline of the Talk

Motivations: The source of a problem

Abelian gauge theories

Quantizing and losing general local covariance

Open problems

Based on

M. Benini, C. D. and A. Schenkel, arXiv:1210.3457 [math-ph], to appear
on Ann. Henri Poinc.

M. Benini, C. D. and A. Schenkel, arXiv:1303.2515 [math-ph].

M. Benini, C. D., H. Gottschalk, T.-P. Hack and A. Schenkel, in
preparation
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Motivations

Which problem?
Starting from the seminal paper of Brunetti, Fredenhagen & Verch

General local covariance has become the leading principle in AQFT,

it works for bosonic and fermionic matter,

It is a powerful concept to use in the study of structural properties of a
QFT, e.g., renormalization....

What about gauge theories?

First application: Maxwell’s equations written in terms of the field
strength tensor F 1,

The theory is not generally locally covariant on account of topological
obstructions.

1C.D., Benjamin Lang, Lett. Math. Phys. 101 (2012) 265
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Motivations

What goes wrong with the vector po-
tential? - I

One can construct the field algebra for the vector potential:

A 2 ⌦1(M) such that �dA = 0 where � = ⇤�1d⇤,
A0 is gauge equivalent to A if 9� 2 C1(M) such that A0 � A = d�

Proposition
The space of solutions for Maxwell’s equation �dA = 0 is

S(M) = {A 2 ⌦1(M) | 9! 2 ⌦1

0

(M) and A = G(!) with �! = 0},
where G = G+ � G� is built out of the fundamental solutions for ⇤ .

=
d� + �d = ⇤g � Rµ⌫ .

N.B. Since � � G = G � �, �! = 0 implies �A = 0 (Lorenz gauge)
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Motivations

What goes wrong with the vector po-
tential? - II

One can associate to S(M) the field algebra A(M):

Proposition

The following statements hold true:

The field algebra A(M) associated to the vector potential is not

semisimple, that is it possesses an Abelian ideal generated by
�⌦2

0,d (M)

�d⌦1

0

(M)

whenever H2(M) 6= {0}. Furthermore

For any isometric embedding ◆ : M ! M 0 where H2(M) 6= {0} and
H2(M 0) = {0} the corresponding ⇤-homomorphism

↵◆ : A(M) ! A(M 0) is not injective.
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Motivations

Strategy

Why general local covariance fails?

The overall plan is the following:

Consider all possible principal G -bundles with G connected and Abelian,

Write Maxwell’s equation as a theory on the bundle of connections,

Characterize explicitly the full gauge group and analyze the classical
dynamics,

Construct the algebra of fields and study (the failure of) general local
covariance.

(Un)expected connections with the Aharonov-Bohm e↵ect appear!
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Abelian gauge theories

Bundles for Dummies

Proposition:

Let M be a smooth manifold and G a Lie group (structure group). A
principal G-bundle consists of a smooth manifold P together with a right,
free G -action r : P ⇥ G ! G , r(p, g) = pg such that

1 M is the quotient P/G and the projection ⇡ : P ! M is smooth,

2 P is locally trivial, that is, for every x 2 M, there exists an open
neighbourhood U ⇢ M with x 2 U and a G -equivariant
di↵eomorphism  : ⇡�1(U) ! U ⇥ G .

To each P we can associate the adjoint bundle

ad(P) = P ⇥ad g,

where g is the Lie algebra of G . ad(P) is trivial, hence M ⇥ g, if G is Abelian.
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Abelian gauge theories

The gauge group

A smooth map f : P ! P 0 where P,P 0 are principal G -bundles is

a bundle morphism if f (pg) = f (p)g . This entails the existence of a
map f : M ! M 0 such that f � ⇡ = ⇡0 � f .
a bundle automorphism if P 0 = P and f is also a di↵eomorphism. Hence
we have a group Aut(P).

a gauge transformation if f 2 Aut(P) and f = idM . Hence we have a
group Gau(P) ⇢ Aut(P).

If G is Abelian and connected, than G = Rk ⇥ T n, n, k 2 N and

Gau(P) ' C1(M;G)
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Abelian gauge theories

Connections

Goal: Write Maxwell’s equations as a theory of connections.

Definition:

Let ⇡ : P ! M be a principal G -bundle and let ⇡⇤ : TP ! TM be the
induced map. Then

we call vertical bundle the collection of all

Vp(P) = {Y 2 Tp(P) | ⇡⇤(Y ) = 0}, p 2 P,

we call connection of P a smooth assignment to each p 2 P of a
subvector space Hp(P) ⇢ TpP such that TpP = Hp(P)� Vp(P) and
rg⇤(Hp(P)) = Hpg (P) for all g 2 G and p 2 P.

A connection induces a notion of horizontal lift, i.e. 8(x ,X ) 2 TM we
associate a unique X "

p 2 Hp(P) for any but fixed p 2 ⇡�1(x),
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Abelian gauge theories

Connections: A second look

Essential point: The definition of connection is operatively almost useless.

Theorem
Let ⇡ : P ! M be a principal G-bundle. Then the Atiyah sequence is exact:

0 // ad(P)
e◆ // TP/G

e⇡⇤ // TM // 0 .

Furthermore the choice of a connection for P is tantamount to e� : TM !
TP/G such that e⇡⇤ � e� = idTM . Hence the sequence splits: TP/G =
TM � ad(P).

Notice:

Assigning a connection is also equivalent to assigning ! 2 ⌦1(P; g) such
that r⇤g (!) = adg�1

!, for all g 2 G and !(X ⇠) = ⇠ for all ⇠ 2 g
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Abelian gauge theories

The bundle of connections

Proposition:
Let ⇡ : P ! M be a principal G -bundle and let ⇡Hom : Hom(TM,TP/G) !
M be the homomorphism bundle. We call bundle of connections C(P), the
sub-bundle ⇡C : C(P) ! M, of all linear maps e�x : TxM ! (TP/G)x such

that e⇡⇤ � e�x = idTxM .

Main consequence:

The bundle of connections is an a�ne bundle modeled on the

vector bundle ⇡0
Hom : Hom(TM, ad(P)) ! M.
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Abelian gauge theories

A�ne spaces

Definition:
An a�ne space A modeled on a vector space V is a set endowed with an
Abelian right group action �A : A⇥ V ! A

Notice that a map f : A ! B between a�ne spaces is

called a�ne if there exists a linear map fV : VA ! VB such that
�B � (f ⇥ fV ) = f � �A. fV is called the linear part of f ,

compatible with the Abelian group action, if it is an a�ne map. We write

f (a) +B fV (v) = f (a+A v), 8a 2 A and 8v 2 VA.

The collection of all a�ne maps from A to R form A†, the vector dual of an
a�ne space.
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Abelian gauge theories

A�ne bundles

An a�ne bundle is a triple (M, eA, eV ) where M is a di↵erentiable manifold and

1 eV ⌘ (M,⇡E ,E) is a vector bundle modeled on a vector space V ,

2 eA ⌘ (M,⇡F ,F ) is a fibre bundle such that, for all x 2 M, ⇡�1

F (x) is an
a�ne space modeled on ⇡�1

E (x),

3 The typical fiber of eA is an a�ne space modeled on V ,

4 For all x 2 M, there exist a neighborhood U of x , a trivialization  of eA
on U and a trivialization � of eV on U such that, for all y 2 U, the linear
part of  |y coincides with �|y , namely  V |y = �|y

As with a�ne spaces, we can construct the vector bundle dual to any a�ne
bundle.
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Abelian gauge theories

The curvature of a connection

Notice: Henceforth we assume G = U(1)

Definition
Let ⇡ : P ! M be a principal U(1)-bundle. Then we call curvature the
assignment F : �1(C(P)) ! ⌦2(P, u(1)) such that

F(e�) = dP!e�,

where !e� 2 ⌦1(P, u(1)) is the connection 1-form associated to e�.

Notice:

F(e�) can be regarded as Fe� 2 ⌦2(M) via Fe�(X ,Y )
.
= dP!e�(X

"
p ,Y

"
p ),

Let e�, e�0 2 �(C(P)), then there exists ⌘ 2 ⌦1(M) such that

e� = e�0 + ⌘ =) Fe� = Fe�0 � d⌘.
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Abelian gauge theories

Classification of a U(1) bundle

Further properties of the curvature of a connection:

For each e�, Fe� is closed, hence dFe� = 0,

The cohomology class [Fe�] 2 H2(M) does not depend on e� 2 �1(C(P)).

Theorem
Let ⇡ : P ! M be a principal U(1)-bundle and let e� 2 �1(C(P)). Then
eR(P)

.
= � 1

2⇡ [Fe�] is the real Euler class of P. This is said to be natural,
that is, if ⇡0 : P 0 ! M 0 is a second principal U(1) bundle, any bundle
morphism f : P ! P 0 satisfies

f ⇤
�
eR(P

0)
�
= eR(P),

where f : M ! M 0 is such that f � ⇡ = ⇡0 � f .
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Abelian gauge theories

The Gauge group - I

It can be proven that:

Given a principal G -bundle ⇡ : P ! M, let e� 2 �1(C(P)) and
f 2 Gau(P). The gauge-transformed connection e�f is

e�f (X )
.
= (ef �1

⇤ )�(X ), 8X 2 TM,

where ef⇤ : TP/G ! TP/G is induced by f : P ! P;

If the structure group G is Abelian, then, for any � 2 C1(M; g), the
application exp �� 2 C1(M;G) identifies a unique f� 2 Gau(P). The set
of all these f is called Gau

0

(P) ✓ Gau(P), and

For any e� 2 �1(C(P)) and for any f� 2 Gau
0

(P),

e�f� = e�� d�.
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Abelian gauge theories

The Gauge group - II

What is the full structure of Gau(P)?

Let µU(1)

2 ⌦1(U(1)) be the Maurer-Cartan form for U(1). Then, for
every f 2 C1(M;U(1)), f ⇤µU(1)

2 ⌦1(M) and it is closed,

It holds that AU(1)

=
{f ⇤µU(1)

| f2C1
(M;U(1))}

dC1
(M)

✓ H1(M)

Theorem:
The quotient AU(1)

is isomorphic to Ȟ1(M;Z), the first Čech cohomology
group with integral coe�cients.

Ȟ1(M;Z) ,! Ȟ1(M;R) ' H1(M).
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Abelian gauge theories

The Phase Space - I
The equation of motion is given by setting to 0

MW = � � F : �1(C(P)) ! ⌦1(M).

Notice that

� � F is an a�ne di↵erential operator whose linear part is
�d : ⌦1(M) ! ⌦1(M).

It admits a formal adjoint MW ⇤ : ⌦1

0

(M) ! �1
0

(C(P)†) such that
8� 2 �1(C(P)) and 8⌘ 2 ⌦1

0

(M)

hMW ⇤(⌘),�i =
Z

M

dµ(g) (MW ⇤(⌘))(�)
.
=

Z

M

⌘ ^ ⇤(MW (�)).

The formal adjoint is unique only if we single out from �1
0

(C(P)†)

Triv
.
= {aI 2 �1

0

(C(P)†) | a 2 C1
0

(M) and

Z

M

dµ(g)a = 0}.
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Abelian gauge theories

The Phase Space - II

We have to implement gauge invariance

We start with the following set of observables:

8' 2 �1
0

(C(P)†)/Triv �! O' : �1(C(P)) ! R,
such that O'(�) =

R

M

dµ(g) '(�).

Proposition
Invariance of an observable O' under gauge transformations implies that, if
'V 2 ⌦1

0

(M) is the linear part of ' 2 �1
0

(C(P)†)/Triv
h'V , f

⇤(µU(1)

)i = 0 8f 2 C1(M;U(1)).
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Abelian gauge theories

The Phase Space - III
We call phase space of a U(1) gauge theory

E inv .
= {' 2 �1

0

(C(P)†)/Triv | h'V , f
⇤(µU(1)

)i = 0 8f 2 C1(M;U(1))}.

Theorem

The following holds true:

1 for all ' 2 E inv , �'V = 0,

2 The dynamics can be implemented via MW (�) = 0, that is
E inv ! E .

= E inv/MW ⇤(⌦1

0

(M)).

3 The following bilinear form ⌧ : E ⇥ E ! R is presymplectic

⌧(['], ['0])
.
=

Z

M

'V ^ ⇤(G('0
V )),

where G is the causal propagator of ⇤ = �d + d�.
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Abelian gauge theories

No Aharanov-Bohm observables

Let �,�0 2 �1(C(P)) be two connections such that

F (�) = F (�0) =) �� �0 = ⌘,

where ⌘ 2 ⌦1(M) and d⌘ = 0. Notice that

⌘ identifies [⌘] 2 H1(M),

[⌘] is not necessarily in the image of Ȟ1(M;Z) in H1(M),

for all ' 2 E inv , 'V = ��, with � 2 ⌦2

0

(M) and

O'(�) = O'(�
0) + h'V , ⌘i = O'(�

0)

The algebra of observables does not separate all configurations!
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Abelian gauge theories

The center of ⌧

The presymplectic form ⌧ contains the following center

N .
= {' 2 E inv | 'V 2 �⌦2

0,d}/MW ⇤(⌦1

0

(M)).

N is not trivial whenever H2

0

(M) ' H2(M) 6= {0}.

22 / 32

The principle of general local covariance and the quantization of Abelian gauge theories

N



The quantization functor

The relevant categories
Two categories are playing a key role:

• The first is PrBu:

1 Objects are principal U(1)-bundles P over a glob. hyp. spacetime M,

2 Arrows are bundle morphisms f : P ! P 0 such that f (pg) = f (p)g for all
p 2 P and g 2 U(1).

3 For each arrow f the induced map f : M ! M 0 is an orientation, time
orientation preserving, isometric embedding with causally compatible
images.

• The second is PSymp:

1 Objects are vector spaces V together with an antisym. bilinear map ⌧ ,

2 Arrows are linear maps from two objects V and V 0 preserving ⌧ and ⌧ 0

(No injectivity).
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The quantization functor

The Phase Space Functor

Our construction entails the existence of a covariant functor

PHSP : PrBu ! PSymp

which assigns

to every principal bundle P, the on-shell gauge invariant observables (E , ⌧)
For each arrow f : P ! P 0 a linear map f⇤ : E ! E 0 induced by singling
out the image of MW ⇤ from the map f⇤ : E inv/Triv ! E 0 inv/Triv 0 defined
as follows Z

M0

dµ(g 0) (f⇤')(�
0) =

Z

M

dµ(g) '(f ⇤�0),

for each ' 2 E inv/Triv and each �0 2 �1(C(P 0)).
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The quantization functor

What is working fine?

Essentially two aspects are still working as we would like:

1 Causality: observables spacelike separated and hence commuting in P so
are in P 0

2 The time slice axiom holds true.

The problem is:
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The quantization functor

What is not working fine

• The map between the space of observables is not injective in general!

Set P 0 as a/the principal U(1) bundle over Minkowski spacetime.

Set P as the trivial principal U(1)-bundle on M = R4 \ �J+(0) [ J�(0)
�
.

Then P 0|M = P.

H2(R4) = {0} but H2(M) = R.

Let ⌘ 2 ⌦2

0

(M) such that d⌘ = 0, but ⌘ 6= d↵. Let F ⇤(⌘) 2 E inv be
Z

M

dµ(g) (F ⇤(⌘))(�) =

Z

M

⌘ ^ ⇤F (�) 8� 2 �1(C(P)).

Since ⌘ 6= d↵, then F ⇤⌘ 6= MW ⇤(↵). Yet f ⇤⌘ = d�, hence

f⇤(F
⇤(⌘)) = F 0⇤(f ⇤⌘) = MW 0⇤(�).
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The quantization functor

What we can measure...

• There is a rather interesting novel observable

Take any ↵ 2 ⌦2

0

(M) such that �↵ = 0,

Take F ⇤(↵) 2 E inv defined by
Z

M

dµ(g)(F ⇤↵)(�) =

Z

M

↵ ^ ⇤F (�) =
Z

M

F (�) ^ ⇤↵ 8� 2 �(C(P)).

Notice that the right hand side is actually the pairing between
[⇤↵] 2 H2

0

(M) and [F (�)] 2 H2(M)

Observables similar to the one above can determine the cohomology class
of the curvature of �, namely the Euler class of the bundle.

The linear part of F ⇤↵ is �↵ = 0. The observable is purely a�ne.
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The quantization functor

What else can we measure...

• There is a second kind of interesting observables

Take any � 2 ⌦2

0

(M) such that d↵ = 0.

Take F ⇤� 2 E inv defined by
Z

M

dµ(g)(F ⇤�)(�) =

Z

M

� ^ ⇤F (�) =
Z

M

F (�) ^ ⇤� 8� 2 �(C(P)).

Notice that, if the connection is on-shell, the right hand side is actually
the pairing between [�] 2 H2

0

(M) and [⇤F (�)] 2 H2(M).

These observables measures completely [⇤F (�)]. It is a measure of the
electric charge.

The linear part of F ⇤� is ��. The observable is purely central.
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The quantization functor

A locally covariant quotient algebra

There is now a way to restore local covariance:

The phase space E is replaced by E inv/F ⇤(⌦2

0,d).

Change the definition of objects in PrBu.

Keep the same covariant functor PHSP : PrBu ! PSymp.

All maps are injective. Hence general local covariance is restored.

Yet, remember that our algebra is not separating
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The quantization functor

A sketch of the future

What about the sneaky configurations?

Instead of observables � 7! O'(�) we consider those of exponential type:

W' : �1(M; C(P)) ! C � 7! exp(2⇡iO'(�)),

where ' 2 �1
0

(M, C(P)†).
We show that the collection of these new functionals forms a well-defined
algebra,

we select the sub-algebra of gauge invariant functionals (there are more
now!),

We prove that the new algebra is separating on gauge equivalence classes
of configurations!
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The quantization functor

A sketch of the future - I

The good,

The exponentiated algebra is ”well-behaved” and separates the gauge
equivalence classes (in a sense we account for AB observables)

The bad,

General local covariance could not be implemented before, it cannot be
now!

The ugly,

The center of the new algebra does not coincide with that of the ”linear”
algebra,

it cannot be consistently singled out for the algebra to recover the locality
property.
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Conclusions

Where are we?
We have proven that

Maxwell’s equations in their full glory as a U(1) gauge theory can be
quantized in the algebraic framework.

The choice between F and A is no longer existent.

The theory is not locally covariant. Amending the problem looks like
playing tic-tac-toe. Alternatively work with 0 electric charge, but
configurations are not fully separated.

The Aharonov-Bohm observables are not present on account of the gauge
group and of the linear structure of the dynamics.

Open issues:

If we couple to P the Dirac bundle, can the construction get weirder?
Probably not!

Can we repeat our construction for non-Abelian gauge theories?
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