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Abstract. Let X be a connected normal complex space of dimension n ≥ 2
which is cohomologically (n − 1)-complete, and let π : M → X be a res-
olution of singularities. By use of Takegoshi’s generalization of the Grauert-
Riemenschneider vanishing theorem, we deduce H1

cpt(M,O) = 0, which in turn
implies Hartogs’ extension theorem on X by the ∂-technique of Ehrenpreis.

1. Introduction

The well-known Hartogs’ extension theorem states that for every open subset
D ⊂ Cn, n ≥ 2, and K ⊂ D compact such that D \ K is connected, the
holomorphic functions on D \K extend to holomorphic functions on D. Whereas
first versions of Hartogs’ extension theorem were obtained by filling Hartogs’
figures with analytic discs (Hartogs’ original idea [Ha]), no such geometrical proof
was known for the general theorem in complex number space Cn for a long time.
Proofs of the general theorem in Cn usually depend on the Bochner-Martinelli-
Koppelman kernel or on the solution of the ∂-equation with compact support
(the famous idea due to Ehrenpreis [E], see also [Hö]).

Only recently, Merker and Porten were able to fill the gap by giving an involved
geometrical proof of Hartogs’ extension theorem in Cn in the spirit of Hartogs’
original idea by using a finite number of parameterized families of holomorphic
discs and Morse-theoretical tools for the global topological control of monodromy,
but no ∂-theory or intergal kernels except the Cauchy kernel (see [MP1]).

Since the key ingredient of this strategy is the existence of a strongly (n− 1)-
convex exhaustion function, it is natural to ask wether the result remains true
for (n − 1)-complete complex spaces. In fact, Hartogs’ theorem was generalized
to (n − 1)-complete manifolds by Andreotti and Hill [AH] using cohomological
results (the ∂-method), but no proof was known until now for the more general
case of (n− 1)-complete normal complex spaces. Merker and Porten were able to
carry over their strategy and to prove Hartogs’ extension theorem in this general
situation (see [MP2]).
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The present paper is an answer to the question whether it could be possible to
use ∂-theoretical considerations for reproducing the result of Merker and Porten
on a (n− 1)-complete space X by the simple and striking strategy of Ehrenpreis.
More precisely, we solve a ∂-equation with compact support on a desingularization
ofX in order to derive the following statement by the technique of Ehrenpreis. For
our strategy, it is enough to assume that X is cohomologically (n− 1)-complete.
Note that (n − 1)-complete spaces are cohomologically (n − 1)-complete by the
work of Andreotti and Grauert [AG], but the converse is not known.

Theorem 1.1. Let X be a connected normal complex space of dimension n ≥ 2
which is cohomologically (n − 1)-complete. Furthermore, let D be a domain in
X and K ⊂ D a compact subset such that D \ K is connected. Then each
holomorphic function f ∈ O(D \K) has a unique holomorphic extension to the
whole set D.

In the special case of a Stein space X with only isolated singularities, a ∂-
theoretical proof of Hartogs’ extension theorem was already given in [R].

The main points of the proof of Theorem 1.1 are as follows: Let M be a
complex manifold of dimension n, X a complex space and π : M → X a proper
modification. Then it follows by Takegoshi’s generalization [T] of the Grauert-
Riemenschneider vanishing theorem [GRie] that

Rqπ∗Ω
n
M = 0, q > 0, (1)

where Rqπ∗Ω
n
M are the higher direct images of the canonical sheaf Ωn

M on M (see
Theorem 2.4). By use of the Leray spectral sequence, (1) yields

Hq(M,Ωn
M) ∼= Hq(X, π∗Ω

n
M), q > 0,

and this implies by Serre duality that

H1
cpt(M,O) ∼= Hn−1(M,Ωn

M) = 0

if X is cohomologically (n − 1)-complete (see Theorem 2.6). This is elaborated
in section 2, while we will show in section 3 that vanishing of H1

cpt(M,O) gives

Hartogs’ extension theorem on X by the ∂-technique of Ehrenpreis, because the
extension problem on X can be reduced to an extension problem on the desingu-
larization M . In the last section, we give a few remarks on Takegoshi’s vanishing
theorem for convenience of the reader. We remark that Takegoshi’s result was
used in a similar fashion in an earlier paper of Colţoiu and Silva [CS].

For a more detailed introduction to Hartogs’ theorem with a full historical
record, remarks and references, we refer to [MP1] and [MP2]. Though the method
of Merker and Porten is technically more involved and harder to reproduce than
the ∂-method, it has the advantage that it works as well for meromorphic func-
tions which is out of scope of the ∂-method. In fact, Merker and Porten proved the
extension theorem even for the extension of meromorphic functions (previously
considered in the smooth case by Koziarz and Sarkis [KS]).
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2. Dolbeault Cohomology of Proper Modifications

In its general form, the Grauert-Riemenschneider vanishing theorem (see [GRie],
Satz 2.1) states:

Theorem 2.1. Let X be an n-dimensional compact irreducible reduced complex
space with n independent meromorphic functions (Moishezon), and let S be a
quasi-positive coherent analytic sheaf without torsion on X. Then:

Hq(X,S ⊗ Ωn
X) = 0, q > 0,

where Ωn
X is the sheaf of holomorphic n-forms on X (the canonical sheaf), defined

in the sense of Grauert and Riemenschneider.

This generalization of Kodaira’s famous vanishing theorem is also proved by
means of harmonic theory. The main point in the proof is ([GRie], Satz 2.3):

Theorem 2.2. Let X be a projective complex space, S a quasi-positive coherent
analytic sheaf on X without torsion, and let π : M → X be a resolution of
singularities, such that Ŝ = S ◦ π is locally free on M . Then:

Rqπ∗(Ŝ ⊗ Ωn
M) = 0, q > 0.

Here, Ŝ = S ◦ π denotes the torsion-free preimage sheaf:

S ◦ π := π∗S/T (π∗S),

where T (π∗S) is the coherent torsion sheaf of the preimage π∗S (see [G], p. 61).
As a simple consequence of Theorem 2.2, one can deduce:

Corollary 2.3. Let M be a Moishezon manifold of dimension n, and X a pro-
jective variety such that π : M → X is a resolution of singularities. Then:

Rqπ∗Ω
n
M = 0, q > 0,

where Rqπ∗Ω
n
M , q > 0, are the higher direct image sheaves of Ωn

M .

As Grauert and Riemenschneider mention already in their original paper [GRie],
this statement is of local nature and doesn’t depend on the projective embedding
(whereas their proof does). And in fact, the result was generalized later by
K. Takegoshi (see [T], Corollary I; and also [O]):

Theorem 2.4. Let M be a complex manifold of dimension n, and X a complex
space such that π : M → X is a proper modification. Then:

Rqπ∗Ω
n
M = 0, q > 0.

The nice proof consists mainly of a vanishing theorem on weakly 1-complete
Kähler manifolds which is based on L2-estimates for the ∂-operator. For conve-
nience of the reader, we will give some remarks on the proof in section 4. As an
easy consequence, we obtain:
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Theorem 2.5. Let M be a complex manifold of dimension n, and X a complex
space such that π : M → X is a proper modification. Then:

Hn,q(M) ∼= Hq(M,Ωn
M) ∼= Hq(X, π∗Ω

n
M). (2)

Proof. The proof follows directly by the Leray spectral sequence. �

Now, if the space X has nice properties, we can deduce consequences for the
Dolbeault cohomology on M . In this paper, we are particularly interested in
q-complete spaces. Recall that a complex space X is q-complete in the sense of
Andreotti and Grauert [AG] if it has a strongly q-convex exhaustion function. X
is called cohomologically q-complete if

Hk(X,F) = 0

for any coherent analytic sheaf F and all k ≥ q. Note that q-complete spaces are
cohomologically q-complete by the work of Andreotti and Grauert [AG], but the
converse is not known.

Theorem 2.6. Let M be a complex manifold of dimension n, and X a cohomo-
logically q-complete complex space such that π : M → X is a proper modification.
Then:

Hn−k
cpt (M,O) ∼= Hk(M,Ωn

M) = 0, k ≥ q. (3)

Proof. Since X is q-complete, it follows from Theorem 2.5 that

Hk(M,Ωn
M) ∼= Hk(X, π∗Ω

n
M) = 0, k ≥ q, (4)

because π∗Ω
n
M is coherent by Grauert’s direct image theorem (see [G]). Serre’s cri-

terion ([S], Proposition 6) tells us that we can apply Serre duality ([S], Théorème
2) to the cohomology groups in (4), and we get the duality

Hn−k
cpt (M,O) ∼= Hk(M,Ωn

M), k ≥ q.

�

3. Proof of Theorem 1.1

The assumption about normality implies that X is reduced. Let

π : M → X

be a resolution of singularities, where M is a complex connected manifold of
dimension n, and π is a proper holomorphic surjection. Let E := π−1(SingX) be
the exceptional set of the desingularization. Note that

π|M\E : M \ E → X \ SingX (5)

is a biholomorphic map. For the topic of desingularization we refer to [AHL],
[BM] and [Hau]. M is non-compact because

H0
cpt(M,O) = 0

by Theorem 2.6. Keep in mind that H1
cpt(M,O) = 0, as well.
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First, we observe that the extension problem on X can be reduced to an anal-
ogous extension problem on M . Let

D′ := π−1(D), K ′ := π−1(K), F := f ◦ π ∈ O(D′ \K ′).
Well-known properties of normal complex spaces (see [GRe] for a reference) im-
ply that K ′ is a compact subset of the domain D′ ⊂ M such that D′ \ K ′ is
connected. That means that the assumptions on D and K behave well under
desingularization, and it is enough to construct an extension of F to D′, because
π∗OM = OX by normality of X. The existence of such an extension follows easily
from H1

cpt(M,O) = 0 by Ehrenpreis’ ∂-technique (see [Hö]) as we will describe in
the remainder of this section for convenience of the reader.

Let
χ ∈ C∞cpt(M)

be a smooth cut-off function that is identically one in a neighborhood of K ′ and
has compact support

C := suppχ ⊂⊂ D′.

Consider
G := (1− χ)F ∈ C∞(D′),

which is an extension of F to D′, but unfortunately not holomorphic. We have
to fix it by the idea of Ehrenpreis. So, let

ω := ∂G ∈ C∞(0,1),cpt(D
′),

which is a ∂-closed (0, 1)-form with compact support in D′. We may consider ω
as a form on M with compact support. But H1

cpt(M,O) = 0 by Theorem 2.6. So,
there exists g ∈ C∞cpt(M) such that

∂g = ω,

and g is holomorphic on M \ C (where ω = ∂G = ∂F = 0). Let

F̃ := (1− χ)F − g ∈ O(D′). (6)

Since M is non-compact, it follows by standard arguments that g ≡ 0 on an open

subset of D′ \ C ⊂ D′ \ K ′, and so F̃ is the desired extension by the identity
theorem.

4. Remarks on Takegoshi’s Vanishing Theorem 2.4

Let N be a complex manifold of dimension n and Φ ∈ C∞(N) a real valued
function on N . We denote by H(Φ)p the complex Hessian of Φ at p ∈ N , and set

σ(Φ) = max
p∈N

rank H(Φ)p.

For Φ and Ωn
N , the canonical sheaf on N , we denote by A(p, q) the following

assertion: σ(Φ) = n− p+ 1 and Hq(N,Ωn
N), Hq+1(N,Ωn

N) are Hausdorff.
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N is called weakly 1-complete if it possesses a C∞ plurisubharmonic exhaustion
function. The key point in Takegoshi’s vanishing theorem is the following result
which is proved by use of Kähler identities and a priori L2 estimates for the
∂-operator ([T], Theorem 2.1):

Theorem 4.1. Let N be a weakly 1-complete Kähler manifold with a
C∞-plurisubharmonic exhaustion function Φ. Suppose with respect to Ωn

N and
Φ that A(p, q) is true for q ≥ p ≥ 1. Then: Hq(N,Ωn

N) ∼= Hn−q
cpt (N,O) = 0.

Now, for the proof of Theorem 2.4, a crucial question is how to get a Kähler
metric involved if π : M → X is a proper modification, but M not necessary of
Kähler type. This problem can be settled by Hironaka’s Chow lemma (see [Hi]):

Theorem 4.2. Let π : M → X be a proper modification of complex spaces,
X reduced. Then there exists a proper modification π′ : M ′ → X which is a
locally finite (with respect to X) sequence of blow-ups and a holomorphic map
h : M ′ →M such that π′ = π ◦ h.

Note that h : M ′ → M is a proper modification, too. Now, let x ∈ X. Then
x has a Stein neighborhood V with a C∞ strictly plurisubharmonic exhaustion
function ϕ such that V ′ := π′−1(V ) is of Kähler type and has a C∞ plurisubhar-
monic exhaustion function ϕ ◦ π′. Note that the Hq(V ′,Ωn

M ′) are Hausdorff for
all q ≥ 1 because V ′ is holomorphically convex (see [L], Theorem 2.1, and [P],
Lemma II.1, and use the Remmert reduction). So, Hq(V ′,Ωn

M ′) = 0 for q ≥ 1 by
Theorem 4.1. A similar reasoning shows that Rqh∗Ω

n
M ′ = 0 (cf. [T], paragraph

3) and this yields

Hq(π−1(V ),Ωn
M) ∼= Hq(V ′, h∗Ω

n
M) = Hq(V ′,Ωn

M ′) = 0 (7)

because h∗Ω
n
M ′ = Ωn

M . (7) gives Takegoshi’s Theorem 2.4 for(
Rqπ∗Ω

n
M

)
x

= lim→
x∈V

Hq(π−1(V ),Ωn
M).
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[AG] A. Andreotti, H. Grauert, Théorème de finitude pour la cohomologie des espaces
complexes, Bull. Soc. Math. France 90 (1962), 193–259.

[AH] A. Andreotti, C. D. Hill, E. E. Levi convexity and the Hans Lewy problem. I and
II, Ann. Scuola Norm. Sup. Pisa 26 (1972), 325–363, 747–806.

[AHL] J. M. Aroca, H. Hironaka, J. L. Vicente, Desingularization theorems, Mem.
Math. Inst. Jorge Juan, No. 30, Madrid, 1977.

[BM] E. Bierstone, P. Milman, Canonical desingularization in characteristic zero by
blowing-up the maximum strata of a local invariant, Inventiones Math. 128 (1997),
no. 2, 207–302.



HARTOGS’ EXTENSION THEOREM 7
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