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1 Introduction

The Cauchy-Riemann equations – usually expressed by use of the Cauchy-Riemann
operator ∂ – play a central role in Complex Analysis. One can even say that they
are at the heart of the theory as they can be used to define holomorphic functions.
Many of the oldest, classical problems in Complex Analysis are closely related to the
Cauchy-Riemann equations, e.g. the fundamental Cousin problems are equivalent
to the solution of some ∂-equations.

Let M be a Hermitian (complex) manifold and G ⊂⊂ M a relatively compact
domain in M with boundary bG. Then there exist deep and multifaceted relations
between the solvability and regularity of the Cauchy-Riemann equations

∂u = f (1)

on G on the one hand and the geometry of the domain G and its boundary bG on the
other hand. Here, various notions of convexity play a crucial role. We will mention
some important examples for this phenomenon later on.

Closely related to the ∂-operator are the complex Laplacian and the complex
Green operator which are essential for Complex Analysis, as well. The properties of
these operators are also tightly connected to geometric properties of the underlying
spaces. We denote by

∂w : L2
∗(G)→ L2

∗(G)

the ∂-operator in the sense of distributions on L2-forms.1 It is a densely defined
closed operator, and so there is the Hilbert space adjoint operator ∂

∗
w which is again

closed and densely defined. Now, a complex Laplace operator can be defined as

� = ∂w∂
∗
w + ∂

∗
w∂w.

The question whether this operator is invertible in an appropriate sense is known as
the ∂-Neumann problem. The resulting complex Green operator N = �−1 is usually
called the ∂-Neumann operator.

To illustrate the deep connection between analysis and geometry on complex
manifolds, we will now discuss briefly three fundamental results of Complex Anal-
ysis involving the operators ∂, � and N , namely the Theorem of Hodge, Kohn’s
solution of the ∂-Neumann problem [K2, K3] and Hörmander’s L2-estimates [H6].
We will later consider the question what happens to these milestones of the theory
if singularities come into play, i.e. if we study the situation on singular complex
spaces instead of complex manifolds.

Let us first consider the Theorem of Hodge. If M is a compact complex manifold,
then the complex Laplace operator � is a self-adjoint elliptic operator with closed
range, and this yields the orthogonal decomposition

L2
∗(M) = ker�⊕ range�. (2)

1We use the notation ∂w for this operator to indicate that this is the ∂-operator in a weak sense.
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We can thus define the ∂-Neumann operator

N : L2
∗(M)→ Dom� ⊂ L2

∗(M) (3)

as follows: let Nu = 0 for u ∈ ker�, and let Nu be the unique preimage of u
orthogonal to ker� for u ∈ range�.2 Ellipticity of � implies that the groups

Hp,q(M) := ker� ∩ L2
p,q(M) ∼= Hp,q(M) ∼= Hq(M,Ωp) (4)

are of finite dimension. Here, we denote by Hp,q(M) the �-harmonic (p, q)-forms, by
Hp,q(M) the Dolbeault cohomology, and by Hq(M,Ωp) the q-th cohomology group
of the sheaf of germs of holomorphic p-forms on M . The last equivalence relies
on the Theorem of Dolbeault. The ∂-Neumann operator N gains two derivatives
due to ellipticity of the Laplacian �, and so it is a compact operator by the Rellich
embedding theorem. The spectral theorem implies that L2

p,q(M) has an orthonormal
basis consisting of eigenforms of �, the eigenvalues are non-negative, occur with
finite multiplicity and do not have an accumulation point.

The question to what extend this nice situation can be discovered also on open
manifolds is called the ∂-Neumann problem. If we consider the problem on a rel-
atively compact domain G with boundary bG in an arbitrary Hermitian manifold
M , then we have to realize that the situation is much more complicated for we ob-
tain a non-coercive boundary value problem. We need a geometric condition on the
boundary to ensure that the �-operator has closed range. Here, pseudoconvexity
turned out to be a suitable concept.

Assume first that bG is smooth and strongly pseudoconvex, i.e. that it is given as
the zero set of a smooth strictly plurisubharmonic function such that the gradient is
not vanishing in a neighborhood of bG.3 Kohn showed that the range of the complex
Laplacian � is closed under this assumption, � is self-adjoint, (2) and (4) are valid as
before. Kohn obtained subelliptic estimates of order 1 for the complex Laplacian at
the boundary, so that the ∂-Neumann operator gains exactly one derivative. Again,
the space of �-harmonic (p, q)-forms is of finite dimension and N is compact on
(p, q)-forms for q ≥ 1.

Another crucial development of Complex Analysis in the 1960s is Hörmander’s
L2-theory for the ∂-operator which (amongst other things) provides another ap-
proach to the ∂-Neumann problem that does not involve subelliptic estimates. Hör-
mander avoided the regularity problem at the boundary by an artful use of suitable
weight functions in his L2-estimates. So, let us drop all conditions on the bound-
ary of G and assume instead that G itself is pseudoconvex, i.e. that there exists
a continuous strictly plurisubharmonic exhaustion function for G. Under this as-
sumption, Hörmander showed that the ∂-equation is solvable in the L2

loc-sense and
in the C∞-sense on G in all degrees, i.e. that Hq(G,Ωp) = 0 for all q ≥ 1 and all p.

2Generally, the ∂-Neumann operator N can be defined in the same manner even if the range of
� is not closed by setting Nu = 0 for u ∈ (range�)⊥. But then N is not a bounded operator. N
defined in that way is bounded exactly if � has closed range.

3A C2-function is plurisubharmonic (or strictly plurisubharmonic) if the complex Hessian has
only non-negative (or only positive) eigenvalues. From this one can deduce that strongly pseudo-
convex domains are locally biholomorphic to strongly convex domains.
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If we assume that G is contained in a Stein manifold4, for example if G is
an open set in Cn, then the converse is also true. In that case, vanishing of the
cohomology groups Hq(G,O) = Hq(G,Ω0) for all q ≥ 1 implies that G itself is Stein
(see [L1]). But it is not difficult to see that Stein manifolds possess a continuous
strictly plurisubharmonic exhaustion function. Hence, a domain G ⊂⊂M in a Stein
manifold M is pseudoconvex exactly if the ∂-equation is solvable in the L2

loc-category
on G, and this is the case exactly if G itself is Stein.5

After having illustrated the interplay between geometry and analysis on complex
manifolds by these important examples, we will discuss in this thesis the question
to what extend their relations are understood on singular complex spaces. Singular
complex spaces occur naturally as the zero set of holomorphic functions and are
thus an important object in many areas of mathematics. But, whereas geometric
and algebraic methods – particularly the theory of coherent analytic sheaves – are
very well developed on singular spaces, the most analytic tools are still missing.
For instance, a singular complex space is Stein exactly if it is pseudoconvex, i.e. if
there exists a continuous strictly plurisubharmonic exhaustion function (see [N]).
But, in contrast to the situation on manifolds which we discussed above, no analytic
characterization involving some ∂-equation is known.

Starting from the milestones of Complex Analysis on manifolds mentioned above,
we will discuss in this thesis some of the recent developments in an area which we may
call ”Analysis on Singular Complex Spaces” with a special focus on the contribution
of the author. That comprises the joint papers with E. Zeron [RZ1, RZ2] and
M. Colţoiu [CR] as well as the articles [R3, R4, R5, R6, R7, R8]. Much material
also originates from the two preprints [R9, R10]. Some results stem from the joint
preprint with N. Øvrelid [OR].

We tried to arrange this exposition self-contained in the sense that the reader
should be able to understand all the principles and methods without consulting the
references, but we skip most of the details. A special focus is placed on the L2-theory
for the ∂-operator which was developed recently in the two preprints [R9, R10]. Here,
we give more details.

With all my heart I thank my wife Julia for her great interest in my work, her
loving support and ongoing encouragement in hard times.

4We call a complex space X, particularly a complex manifold X, Stein if Cartan’s Theorem B
holds, i.e. if Hq(X,F) = 0 for any coherent analytic sheaf F on X and all q ≥ 1. A complex
space X is Stein exactly if X is holomorphically convex and holomorphically spreadable. Here,
we say that X is holomorphically convex if for each sequence {xk}k∈N ⊂ X without accumulation
point in X there exists a holomorphic function f ∈ O(X) such that f is unbounded on {xk}.
X is said to be holomorphically spreadable if for each point x0 ∈ X there exist finitely many
holomorphic functions f1, ..., fl ∈ O(X) such that x0 is an isolated point in the common zero set
{x ∈ X : f1(x) = ... = fl(x) = 0}. For more details, we refer to the works of Cartan, Serre,
Grauert and Remmert (see [GR1]).

5In general, the implication that pseudoconvex spaces are holomorphically convex is called Levi
problem.
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2 L2-theory for the ∂-operator

The L2-theory for the ∂-operator is exceptionally important, on the one hand be-
cause the Hilbert space machinery is a very mighty tool which enables a far-reaching
theory, on the other hand because L2-methods have led to fundamental advanes in
many areas. For instance, Hörmander’s L2-theory does not only yield a solution
of the Levi problem, but also the Ohsawa-Takegoshi L2-extension theorem.6 The
Ohsawa-Takegoshi L2-extension and its variations in turn play a central role in many
further results, like e.g. Siu’s proof of the analyticity of the level sets of Lelong num-
bers [S7] or the invariance of plurigenera [S8]. These are good examples of how
analytic methods on manifolds have led to fundamental advances in geometry, and
so there is a hope that a suitable L2-theory for the ∂-operator on singular complex
spaces will also lead to some new developments.

In the present exposition, we will describe an L2-theory for the ∂-operator for
(0, q) and (n, q)-forms on complex Hermitian spaces7 of pure dimension n with iso-
lated singularities.8 This theory was developed in [R9, R10]. The general philosophy
is to use a resolution of singularities to obtain a regular model of the L2-cohomology.

In general, it seems that studying the ∂-equation for (n, q)-forms is the most
interesting case on singular complex spaces so that we can live with the fact that
not too much is known about (p, q)-forms for 0 < p < n. The reason is that many of
the interesting concepts and problems in algebraic or complex geometry are linked
to canonical sheaves. Let us just mention L2-extension and vanishing theorems,
invariance of plurigenera, the Kodaira dimension, the abundance conjecture, finite
generation of the canonical ring.

2.1 The ∂-operator on singular complex spaces

2.1.1 L2-cohomology of singular complex spaces

When we consider the ∂-operator on singular complex spaces, the first problem is
to define an appropriate Dolbeault complex in the presence of singularities. It turns
out that it is very fruitful to investigate the ∂-operator in the L2-category (simply)
on the complex manifold consisting of the regular points of a complex space. One
reason lies in Goresky and MacPherson’s notion of intersection (co-)homology (see
[GM1, GM2]) and the conjecture of Cheeger, Goresky and MacPherson, which states
that the L2-deRham cohomology on the regular part of a projective variety Y (with
respect to the restriction of the Fubini-Study metric and the exterior derivate in
the sense of distributions) is naturally isomorphic to the intersection cohomology of

6Here, various further developments of Hörmander’s L2-estimates come into play, like the twisted
L2-estimates of Ohsawa–Takegoshi [OT], Donelly–Fefferman [DF] or McNeal [McN].

7We call a reduced and paracompact complex space X Hermitian if the regular part X−SingX
carries a Hermitian metric which is locally the restriction of a Hermitian metric in some complex
number space where X is represented locally. In other words, the metric h on X − SingX extends
smoothly to the singular set. We write (X,h) for a Hermitian space with metric h. For example,
a projective variety is Hermitian with the the restriction of the Fubini-Study metric.

8Some of the results are also for arbitrary singularities, but the picture is almost complete for
spaces with only isolated singularities.
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middle perversity IH∗(Y ) of Y :

Conjecture 2.1. (Cheeger–Goresky–MacPherson [CGM])
Let Y ⊂ CPN be a projective variety. Then there is a natural isomorphism

Hk
(2)(Y − Sing Y ) ∼= IHk(Y ). (5)

The early interest in this conjecture was motivated in large parts by the hope
that one could then use the natural isomorphism (5) and a classical Hodge decom-
position Hk = ⊕Hp,q for Hk

(2)(Y − Sing Y ) to put a pure Hodge structure on the
intersection cohomology of Y . Ohsawa proved the conjecture of Cheeger, Goresky
and MacPherson under the assumption that Y has only isolated singularities (see
[O3]), while it is still open in general. Ohsawa’s proof depends on an earlier work
of Saper who constructed a complete Kähler metric on Y − Sing Y such that the
L2-deRham cohomology in this complete metric equals the intersection cohomology
of Y (see [S2]). Ohsawa used a family of such complete metrics which degenerate
to the incomplete restriction of the Fubini-Study metric on Y − Sing Y , and showed
that the L2-cohomology is stable under the limit process by the use of strong L2-
estimates going back to Donnelly and Fefferman (see [DF]). The principle of this
method is a very important tool for analysis on singular complex spaces.

Eventually, using methods not directly related to L2-cohomology (D-modules),
Saito established a pure Hodge decomposition in the sense of Deligne for the inter-
section cohomology of singular varieties ([S1]). However, it still seems interesting
to get a classical Hodge decomposition on Hk

(2)(Y − Sing Y ) and to investigate the
relation to Saito’s construction via an isomorphism (5). This was done in special
cases by Zucker [Z2] and Ohsawa [O4]. In the case of isolated singularities, a de-
composition of Hk

(2)(Y − Sing Y ) in terms of Dolbeault cohomology groups was in
fact established by Pardon and Stern (in [PS2]). Combined with Ohsawa’s solution
of the Cheeger-Goresky-MacPherson conjecture, this gives a Hodge decomposition
for the intersection cohomology on such varieties. See also the work of Nagase [N]
and Fox and Haskell [FH] for related decomposition results on projective normal
complex surfaces.

The conjecture of Cheeger, Goresky and MacPherson is closely related to the
(more famous) Zucker conjecture which states that the L2-cohomology of a Hermi-
tian locally symmetric space is isomorphic to the intersection cohomology of middle
perversity of its Baily-Borel compactification [Z1]. Zucker’s conjecture was proved
independently by Looijenga [L3] and by Saper and Stern [SS].

Another reason why it is interesting to study the L2-cohomology of the ∂-
operator on the regular part of the variety is the arithmetic genus of complex vari-
eties. If M is a compact complex manifold of dimension n, the arithmetic genus

χ(M) :=
∑

(−1)q dimHn,q(M) (6)

is a birational invariant of M . The conjectured extension of the classical Hodge
decomposition to projective varieties led MacPherson also to ask wether the arith-
metic genus χ(M) extends to a birational invariant of all projective varieties (see
[M]). We may formulate MacPherson’s question slightly more general, extending it
to Hermitian complex spaces:
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Conjecture 2.2. If X is a compact Hermitian space of pure dimension n, then

χ(2)(X − SingX) :=
n∑
q=0

(−1)q dimHn,q
(2) (X − SingX) = χ(M),

where π : M → X is any resolution of singularities.

Due to the incompleteness of the metric on X − SingX, one has to be very
careful with the definition of L2-Dolbeault cohomology groups for they depend on
the choice of some kind of boundary condition for the ∂-operator. We will explain
that now more precisely and return to the arithmetic genus later.

2.1.2 Closed L2-extensions of the ∂-operator and Serre duality

If N is any Hermitian complex manifold of dimension n, let

∂cpt : Ap,qcpt(N)→ Ap,q+1
cpt (N) (7)

be the ∂-operator on smooth forms with compact support in N . We may consider
∂cpt as a densely defined operator on L2-forms

∂cpt : L2
p,q(N)→ L2

p,q+1(N).

This operator then is graph-closable and has various closed extensions. The two
most important are the maximal closed extension

∂max : L2
p,q(N)→ L2

p,q+1(N),

that is the ∂-operator in the sense of distributions, and the minimal closed extension

∂min : L2
p,q(N)→ L2

p,q+1(N)

given by the closure of the graph of ∂cpt in L2
p,q(N)× L2

p,q+1(N).9

We denote by Hp,q
max(N) the L2-Dolbeault cohomology on N with respect to the

maximal closed extension ∂max, and by Hp,q
min(N) the L2-Dolbeault cohomology with

respect to the minimal closed extension ∂min.
To get an impression of the difference between the two kinds of Dolbeault coho-

mology, consider the following example: If D is a relatively compact domain with
smooth strongly pseudoconvex boundary in a complex manifold, then Hp,q

max(D) is
canonically isomorphic to the C∞-Dolbeault cohomology Hq(D,Ωp) if q ≥ 1. This

9We should mention that there are other common notations for ∂max and ∂min in the literature.
In [R9], we denoted the maximal closed extension by ∂w and the minimal closed extension by ∂s. In
that case, the subscript refers to ∂w as the ∂-operator in a weak sense and to ∂s as the ∂-operator
in a strong sense. In the present exposition, we will later use the notation ∂w for the localized
version of ∂max and ∂s for a localized version of ∂min.

Note that Pardon and Stern use the notation ∂D for ∂min and ∂N for ∂max. Their notation refers
to some kind of Dirichlet respectively Neumann boundary conditions (see [PS1]). It is interesting
to study under which circumstances the extensions coincide. See the work of Grieser and Lesch
[GL], Pardon and Stern [PS2], or Brüning and Lesch [BL] for this topic.
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follows from the well-known fact that in this special situation, the L2-Dolbeault co-
homology is canonically isomorphic to the L2

loc-Dolbeault cohomology which in turn
is canonically isomorphic to the C∞-cohomology (cf. [LM], VIII.4).

On the other hand, we can use Serre duality and the L2-version of Serre duality
to deduce that also Hn−p,n−q

min (D) and Hn−q
cpt (D,Ωn−p) are canonically isomorphic for

q > 0 in this nice situation. We will explain that more precisely. While it is clear
that there is a non-degenerate pairing

Hq(D,Ωp)×Hn−q
cpt (D,Ωn−p)→ C

by the classical Serre duality for the ∂-operator has closed range on D (cf. [S6]), we
will now describe the L2-Serre duality between Hp,q

max(D) and Hn−p,n−q
min (D) because

this is a very important tool in the study of the ∂-operator in the L2-sense on singular
complex spaces.10

Analogous to (7), let

ϑcpt = −∗∂cpt∗ : Ap,q+1
cpt (N)→ Ap,qcpt(N) (8)

be the (formal) adjoint operator to the ∂-operator acting on smooth forms with
compact support. Here, ∗ is the Hodge-∗-operator and ∗ its conjugated version.
Then we define as before the maximal closed extension

ϑmax : L2
p,q+1(N)→ L2

p,q(N),

i.e. the ϑ-operator in the sense of distributions, and the minimal closed extension

ϑmin : L2
p,q+1(N)→ L2

p,q(N)

given as the closure of the graph of ϑcpt. Since ∂max is the ∂-operator in the sense
of distributions, we have that ∂max = ϑ∗cpt by definition, and this yields

∂
∗
max = ϑ∗∗cpt = ϑmin = −∗∂min∗. (9)

Similarly, ϑmax = ∂
∗
cpt implies

∂
∗
min = (∂

∗∗
cpt)
∗ = (ϑ∗max)

∗ = ϑmax = −∗∂max∗. (10)

The two relations (9) and (10) together imply that the operator ∗ induces an iso-
morphism between the space of ∂max-harmonic forms

Hp,q
max(N) := {f ∈ Dom ∂max ∩Dom ∂

∗
max : ∂maxf = ∂

∗
maxf = 0}

and the ∂min-harmonic forms of conjugate degree

Hn−p,n−q
min (N) := {f ∈ Dom ∂min ∩Dom ∂

∗
min : ∂minf = ∂

∗
minf = 0}.

If the ∂-operators under consideration have closed range such that L2-cohomology
classes have unique harmonic representatives, one can deduce the following version
of L2-Serre duality (see [PS1], Proposition 1.3 or [R9], Theorem 2.3):

10The relevance of such kinds of duality has been also realized by Chakrabarti and Shaw [CS].
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Theorem 2.3. Let N be a Hermitian complex manifold of dimension n and let
0 ≤ p, q ≤ n. Assume that the ∂-operators in the sense of distributions

∂max : L2
p,q−1(N)→ L2

p,q(N), (11)

∂max : L2
p,q(N)→ L2

p,q+1(N) (12)

both have closed range (with the usual assumptions for q = 0 or q = n). Then there
exists a non-degenerate pairing

{·, ·} : Hp,q
max(N)×Hn−p,n−q

min (N)→ C

given by

{η, ψ} :=

∫
N

η ∧ ψ.

Thus, it is always essential to study the closed range property of the ∂-operators
under consideration on singular complex spaces.11 This problem can be treated in
the spirit of our general philosophy to use a resolution of singularities to obtain a
regular model for the L2-cohomology. If this is somehow successful, one can then
deduce properties of the ∂-operator on singular spaces from well-known properties
of the ∂-operator on the desingularization.

This philosophy is the main theme of the joint paper with N. Øvrelid [OR] from
where the following example is taken: Let X be a Hermitian complex space of pure
dimension n with only isolated singularities. Let

π : M → X

be a resolution of singularities which exists due to Hironaka [H5], and let σ be any
(positive definite) Hermitian metric on M . We denote by L2

p,q the spaces of L2-forms
on RegX = X − SingX, and by L2,σ

p,q the spaces of L2-forms on M with respect to
σ. Let Ω ⊂⊂ X be a relatively compact open subset of X such that the boundary
of Ω does not intersect the singular set of X, bΩ∩SingX = ∅. Let Ω∗ := Ω−SingX
and Ω′ := π−1(Ω).

So, the resolution of singularities has the following nice effect: If the original
domain Ω has a ’good’ boundary bΩ, then Ω′ is a domain in a complex manifold
with the same ’good’ boundary. One might consider for example a domain Ω with a
strongly pseudoconvex boundary, or assume that X is a compact space and Ω = X
(no boundary at all). In both cases we know that the ∂-equation has compact
solution operators on Ω′ (modulo the obstructions to solving the equation), and
that the ∂-Neumann operator exists and is compact. It is thus interesting to relate
properties of the ∂-operator on Ω∗ (which have to be studied) to properties of the
∂-operator on Ω′ (which are well understood):

Theorem 2.4. ([OR], Theorem 1.1) Let q ≥ 1 and either p + q 6= n or (p, q) =
(0, n). Under the assumptions above, the ∂-operator in the sense of distributions

∂max : L2
p,q−1(Ω∗)→ L2

p,q(Ω
∗)

11Besides that, recall that the closed range property of appropriate ∂-operators is also essential
for boundedness of the ∂-Neumann operator.
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has closed range of finite codimension in ker ∂ ⊂ L2
p,q(Ω

∗) exactly if the ∂-operator
in the sense of distributions

∂
M

max : L2,σ
p,q−1(Ω′)→ L2,σ

p,q (Ω′)

has closed range of finite codimension in ker ∂
M

max ⊂ L2,σ
p,q (Ω′).

If this is the case, then there exists a compact ∂-solution operator

S : Im ∂max ⊂ L2
p,q(Ω

∗)→ L2
p,q−1(Ω∗)

exactly if there exists a compact ∂-solution operator

SM : Im ∂
M

max ⊂ L2,σ
p,q (Ω′)→ L2,σ

p,q−1(Ω′).

Our main tools in the proof of Theorem 2.4 are the existence of ∂-solution oper-
ators with some gain of regularity at isolated singularities due to Fornæss–Øvrelid–
Vassiliadou (see [FOV2], Theorem 1.1 and Theorem 1.2) and a characterization of
precompactness in the space of L2-forms on arbitrary Hermitian manifolds which was
given in [R8], Theorem 2.5. This characterization is used to show that the ∂-solution
operators of Fornæss–Øvrelid–Vassiliadou are actually compact. Other ingredients
are Hironaka’s resolution of singularities and Kohn’s subelliptic estimates. For the
details, see [OR], Theorem 1.1., and chapter 3 of this exposition.

We have seen that the L2-Dolbeault cohomology with respect to the ∂max and the
∂min-operator, respectively, do not coincide in general by considering the example
Hp,q
max(D) ∼= Hq(D,Ωp) and Hp,q

min(D) ∼= Hq
cpt(D,Ω

p) for 0 < q < n, when D is a
smoothly bounded strongly pseudoconvex domain in a complex manifold. In this
case, the boundary bD of D is of real codimension 1. Since the ∂min-operator differs
from the ∂max-operator by a kind of boundary condition at bD, which leads to the
fact that the ∂min-cohomology coincides with the cohomology with compact support
in the example described above, one may ask wether this boundary condition looses
its effect if the boundary is of higher codimension. This is an interesting phenomenon
which we will discuss now briefly.

Let M be a compact Hermitian manifold of dimension n and A ⊂ M a proper
closed analytic subset. Then the ∂-equation in the L2-sense of distributions extends
over the analytic set A, i.e. let f ∈ L2

p,q(M − A) and g ∈ L2
p,q+1(M − A) such that

∂f = g

on M − A in the sense of distributions (i.e. ∂maxf = g). Let f̃ and g̃ be the trivial
extensions of f and g to M . Then:

∂f̃ = g̃

in the sense of distributions on M (i.e. ∂maxf̃ = g̃). A proof in a more general
setting which deals also with Lr-forms, 1 ≤ r ≤ ∞, and exceptional sets of arbitrary
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codimension can be found in [R4], Theorem 3.2. This means that there is a canonical
isomorphism (induced by trivial extension of forms)

Hp,q
max(M − A) ∼= Hp,q

max(M) (13)

for all 0 ≤ p, q ≤ n. Since M is a compact manifold, the groups in (13) are of finite
dimension. But if Hp,q

max(M − A) is of finite dimension, then the operator ∂max has
closed range on M−A by a Banach space argument which can be found in the book
of Henkin and Leiterer [HL2], Appendix 2.4. This is true in all degrees 0 ≤ p, q ≤ n.
So, there is a canonical isomorphism

Hp,q
max(M − A) ∼= Hn−p,n−q

min (M − A) (14)

by the L2-duality Theorem 2.3. On the other hand,

Hp,q
max(M) ∼= Hn−p,n−q

max (M), (15)

because there is clearly no difference between the ∂max and the ∂min-cohomology on a
compact manifold. But another application of (13) (for forms of degree (n−p, n−q)
tells us that also

Hn−p,n−q
max (M) ∼= Hn−p,n−q

max (M − A). (16)

Combining the isomorphism (14), (15) and (16), we see that in fact

Hn−p,n−q
min (M − A) ∼= Hn−p,n−q

max (M − A)

for all 0 ≤ p, q ≤ n.
However, this phenomenon does not persist if we replace M by a singular Her-

mitian space X and remove the singular set (i.e. consider the different types of the
∂-equation on X − SingX). If X is a compact Hermitian space of pure dimension
n with only isolated singularities, then actually

Hp,q
max(X − SingX) ∼= Hp,q

min(X − SingX)

for all 0 ≤ p, q ≤ n such that |p + q − n| > 1 (see [PS2], Corollary 2.42), but the
groups are not isomorphic for |p+q−n| ≤ 1 as we shall see later in this exposition.12

Now that we have somewhat clarified the notion of L2-Dolbeault cohomology
on a singular space, we will return to discuss the arithmetic L2-genus of singular
Hermitian spaces. Our main tool and object to study is the canonical sheaf of
Grauert and Riemenschneider.

12This phenomenon occurs also in other singular configurations like e.g. if one studies the ∂-
equation on positive currents (see [BS]). Then one can also define maximal and minimal closed
extensions of the ∂-operator and one sees that the operators and their cohomology do not coincide
in general.
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2.2 The canonical sheaf of Grauert–Riemenschneider KX
2.2.1 The arithmetic L2-genus

When we are looking for a notion of an arithmetic L2-genus which is birationally
invariant, the right choice of L2-cohomology groups to sum up are the cohomology
groups Hn,q

max with respect to the maximal closed extension of the ∂-operator because
these groups themselves are already birationally invariant:

Theorem 2.5. ([R9], Theorem 1.5) Let X be a Hermitian compact complex space
of pure dimension n, π : M → X any resolution of singularities and 0 ≤ q ≤ n.
Then there is a canonical isomorphism

π∗ : Hn,q
max(X − SingX)

∼=−→ Hn,q
(2) (M) (17)

induced by pull-back of forms under π.13

This is the unchallenged prototype to illustrate our general philosophy to use
a resolution of singularities to obtain a regular model for the L2-cohomology on a
singular space. One can deduce immediately that the groups Hn,q

max(X − SingX)
are of finite dimension and that the operator ∂max has closed range for (n, q)-forms
on X − SingX (as above, one can use the argument in [HL2], Appendix 2.4). The
identities (9) and (10) tell us that the ∂min-operator has closed range on (0, q)-forms
and that we can use the L2-version of Serre duality, Theorem 2.3, to deduce that
there are canonical isomorphisms

H0,q
(2)(M)

∼=−→ H0,q
min(X − SingX) (18)

for all 0 ≤ q ≤ n. We will see later how these maps are induced by push-forward
of forms. Note that Theorem 2.5 settles Conjecture 2.2 for the arithmetic L2-genus
defined as

χ(2)(X) :=
n∑
q=0

(−1)q dimHn,q
max(X − SingX).

Alternatively, we could take the alternating sum over the dimensions of the groups
H0,q
min(X − SingX). We will now explain the statement of Theorem 2.5 more pre-

cisely and sketch the proof which contains many interesting features. The main
tools are Hironaka’s resolution of singularities [H5], the canonical sheaf of Grauert–
Riemenschneider [GR3], Takegoshi’s relative vanishing theorem for canonical sheaves
[T1], and a local vanishing result which is based on results of Demailly [D1], Donelly–
Fefferman [DF], Ohsawa [O2] and which is finally due to Pardon-Stern [PS1]. Pardon
and Stern proved Theorem 2.5 for projective varieties in [PS1].

Let us first define the canonical sheaf of Grauert and Riemenschneider which is
the key object that we need to study. It is the sheaf of germs of square-integrable n-
forms which are holomorphic with respect to the localized version of the ∂-operator
in the sense of distributions which we will denote by ∂w in the following.

13Since ∂max = ∂min on M , we use the notation Hp,q
(2) for any L2-cohomology on M .
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2.2.2 The weak ∂-operator ∂w and its L2-complex

We recall some of the essential constructions from [R9]. Let (X, h) always be a
(singular) Hermitian complex space of pure dimension n and U ⊂ X an open subset.
As indicated above, on a singular space, it is most fruitful to consider forms that are
square-integrable up to the singular set. Hence, we will use the following concept of
locally square-integrable forms:

L2,loc
p,q (U) := {f ∈ L2,loc

p,q (U − SingX) : f |K ∈ L2
p,q(K − SingX) ∀K ⊂⊂ U}.

It is easy to check that the presheaves given as

Lp,q(U) := L2,loc
p,q (U)

are already sheaves Lp,q → X. On L2,loc
p,q (U), we denote by

∂w(U) : L2,loc
p,q (U)→ L2,loc

p,q+1(U)

the ∂-operator in the sense of distributions on U−SingX which is closed and densely
defined. When there is no danger of confusion, we will simply write ∂w for ∂w(U).
The subscript refers to ∂w as an operator in a weak sense. Since ∂w is a local
operator, i.e.

∂w(U)|V = ∂w(V )

for open sets V ⊂ U , we can define the presheaves of germs of forms in the domain
of ∂w,

Cp,q := Lp,q ∩ ∂−1

w Lp,q+1,

given by
Cp,q(U) = Lp,q(U) ∩Dom ∂w(U).

These are actually already sheaves because the following is also clear: If U =
⋃
Uµ

is a union of open sets, fµ = f |Uµ and

fµ ∈ Dom ∂w(Uµ),

then
f ∈ Dom ∂w(U) and

(
∂w(U)f

)
|Uµ = ∂w(Uµ)fµ.

Moreover, it is easy to see that the sheaves Cp,q admit partitions of unity, and so we
obtain fine sequences

Cp,0 ∂w−→ Cp,1 ∂w−→ Cp,2 ∂w−→ ... (19)

We will see later, when we deal with resolution of singularities, that

KX := ker ∂w ⊂ Cn,0

is just the canonical sheaf of Grauert and Riemenschneider because the L2-property
of (n, 0)-forms remains invariant under modifications of the metric.
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The L2,loc-Dolbeault cohomology with respect to the ∂w-operator on an open set
U ⊂ X is by definition the cohomology of the complex (19) which is denoted by
Hq(Γ(U, Cp,∗)). The cohomology with compact support is Hq(Γcpt(U, Cp,∗)). Note
that this is the cohomology of forms with compact support in U , not with compact
support in U − SingX.

It is clearly interesting to study wether the sequence (19) is exact, which is well-
known to be the case in regular points of X. In singular points, the situation is quite
complicated for forms of arbitrary degree and not completely understood. However,
the ∂w-equation is locally solvable in the L2-sense at arbitrary singularities for forms
of degree (n, q), q > 0:

Theorem 2.6. (Pardon-Stern [PS1], Proposition 2.1) Let X be a Hermitian
complex space of pure dimension n. Then

0→ KX ↪→ Cn,0 ∂w−→ Cn,1 ∂w−→ Cn,2 ∂w−→ ... −→ Cn,n → 0 (20)

is a fine resolution. For an open set U ⊂ X, it follows that

Hq(U,KX) ∼= Hq(Γ(U, Cn,∗)) , Hq
cpt(U,KX) ∼= Hq(Γcpt(U, Cn,∗)).

If X has only isolated singularities, Fornæss–Øvrelid–Vassiliadou showed that
the ∂w-equation is locally solvable in the L2-sense for forms of degree (p, q) with
p+ q > n (see [FOV2], Theorem 1.2).

The main idea for the proof of Theorem 2.6 is as follows. Locally, one can
approximate the incomplete metric on X−SingX by a sequence of complete Kähler
metrics for which one already knows the local vanishing result by a theorem of
Donelly and Fefferman [DF]. One obtains a sequence of solutions with a uniform
L2-bound on compact subsets of X − SingX. By taking the weak limit, we get a
solution with an L2-bound in the original metric. This strategy was used before by
Ohsawa in the case when X has only isolated singularities [O2], but also appears in
an earlier paper of Demailly [D1]. For the details, we refer to [PS1], Proposition 2.1,
or to section 3 and 4 in [R9], where also a generalization to (n, q)-forms with values
in a semi-positive line bundle can be found.

A similar local L2-vanishing result for (n, q)-forms on positive closed currents of
bidimension (n, n) has been discovered by Berndtsson and Sibony [BS].

2.2.3 Resolution of (X,KX) and its L2-cohomology

Let π : M → X be a resolution of singularities (which exists due to Hironaka [H5]),
i.e. a proper holomorphic surjection such that

π|M−E : M − E → X − SingX

is biholomorphic, where E = |π−1(SingX)| is the exceptional set. We may assume
that E is a divisor with only normal crossings, i.e. the irreducible components
of E are regular and meet complex transversely, but we do not need that for the
moment. Let Z := π−1(SingX) be the unreduced exceptional divisor. For the topic
of desingularization, we refer to [AHL], [BM] and [H2].
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Let
γ := π∗h

be the pullback of the Hermitian metric h of X to M . γ is positive semidefinite (a
pseudo-metric) with degeneracy locus E.

We give M the structure of a Hermitian manifold with a freely chosen (positive
definite) metric σ. Then γ . σ and γ ∼ σ on compact subsets of M − E. For an
open set U ⊂ M , we denote by Lp,qγ (U) and Lp,qσ (U) the spaces of square-integrable
(p, q)-forms with respect to the (pseudo-)metrics γ and σ, respectively.

Since σ is positive definite and γ is positive semi-definite, there exists a contin-
uous function g ∈ C0(M,R) such that

dVγ = g2dVσ. (21)

This yields |g||ω|γ = |ω|σ if ω is an (n, 0)-form, and |ω|σ .U |g||ω|γ on U ⊂⊂ M if
ω is a (n, q)-form, 0 ≤ q ≤ n.14 So, for an (n, q) form ω on U ⊂⊂M :∫

U

|ω|2σdVσ .U
∫
U

g2|ω|2γg−2dVγ =

∫
U

|ω|2γdVγ. (22)

Conversely, |g||η|γ .U |η|σ on U ⊂⊂ M if η is a (0, q)-form, 0 ≤ q ≤ n.15 So, for a
(0, q) form η on U ⊂⊂M :∫

U

|η|2γdVγ .U
∫
U

g−2|η|2σg2dVσ =

∫
U

|η|2σdVσ. (23)

For open sets U ⊂⊂M and all 0 ≤ q ≤ n, we conclude the relations

Ln,qγ (U) ⊂ Ln,qσ (U), (24)

L0,q
σ (U) ⊂ L0,q

γ (U). (25)

For an open set Ω ⊂ X, Ω∗ = Ω− SingX, Ω̃ := π−1(Ω), pullback of forms under π
gives the isometry

π∗ : L2
p,q(Ω

∗) −→ Lp,qγ (Ω̃− E) ∼= Lp,qγ (Ω̃), (26)

where the last identification is by trivial extension of forms over the thin exceptional
set E. Combining (24) with (26), we see that π∗ maps

π∗ : L2
n,q(Ω

∗)→ Ln,qσ (π−1(Ω)) (27)

if Ω ⊂⊂ X is a relatively compact open set. We shall now show how (27) induces
the map

π∗ : Hn,q
max(X − SingX)→ Hn,q

(2) (M) (28)

from Theorem 2.5 (where X is compact).

14This statement means that |ω|σ/|ω|γ is locally bounded on M for (n, q)-forms.
15For (0, q)-forms, |ω|γ/|ω|σ is locally bounded.
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It makes sense to explain that from a slightly more general point of view. For
that, we need a suitable realization of the L2-cohomology on M . Let Lp,qσ be the
sheaves of germs of forms on M which are locally in Lp,qσ , and we denote again by ∂w
the ∂-operator in the sense of distributions on such forms because there is no danger
of confusion in what follows. We can simply use the definitions from section 2.2.2
with the choice X = M and SingX = ∅. Again, we denote the sheaves of germs in
the domain of ∂w by

Cp,qσ := Lp,qσ ∩ ∂
−1

w Lp,q+1
σ

in the sense that
Cp,qσ (U) = Lp,qσ (U) ∩Dom ∂w(U).

It is well-known that
KM := ker ∂w ⊂ Cn,0σ

is the usual canonical sheaf on M and that

0→ KM ↪→ Cn,0σ
∂w−→ Cn,1σ

∂w−→ Cn,2σ −→ ... (29)

is a fine resolution so that

Hq(U,KM) ∼= Hq(Γ(U, Cn,∗σ )) , Hq
cpt(U,KM) ∼= Hq(Γcpt(U, Cn,∗σ ))

on open sets U ⊂M .
Now we can use (27) to see that π∗ defines a morphism of complexes

π∗ : (Cn,∗, ∂w)→ (π∗Cn,∗σ , π∗∂w). (30)

Let Ω ⊂ X be an open set and let f ∈ Cn,q(Ω), g ∈ Cn,q+1(Ω) such that ∂wf = g.
By (27), it follows that π∗f ∈ Ln,qσ (π−1(Ω)) and π∗g ∈ Ln,q+1

σ (π−1(Ω)) such that
∂wπ

∗f = π∗g on π−1(Ω)−E. But then the L2-extension theorem [R4], Theorem 3.2,
tells us that ∂wπ

∗f = π∗g on π−1(Ω). So π∗f ∈ Cn,qσ (π−1(Ω)), π∗g ∈ Cn,q+1
σ (π−1(Ω))

and (30) is in fact a morphism of complexes. Including KX = ker ∂w ⊂ Cn,0 and
KM = ker ∂w ⊂ Cn,0σ , we obtain the commutative diagram

0 // KX //

π∗

��

Cn,0
∂w //

π∗

��

Cn,1
∂w //

π∗

��

Cn,2
∂w //

π∗

��

...

0 // π∗KM // π∗Cn,0σ

π∗∂w // π∗Cn,1σ

π∗∂w // π∗Cn,2σ

π∗∂w // ...

(31)

Note that the upper line is exact by Theorem 2.6. It follows that π∗ induces a map
on the cohomology of the complexes,

π∗ : Hq(Γ(Ω, Cn,∗)) −→ Hq(Γ(π−1(Ω), Cn,∗σ )), (32)

for any open set Ω ⊂ X and all q ≥ 0. If X is compact and we choose Ω = X, then
the left hand side in (32) is just Hn,q

max(X − SingX) for ∂w = ∂max on X − SingX,
and the right hand side is Hn,q

(2) (M) for ∂w = ∂max = ∂min on M . This defines (28).
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We will now use Takegoshi’s vanishing theorem [T1] to show that the lower line
in the commutative diagram (31) is also exact. This will yield that (32) is in fact
an isomorphism and that implies in particular Theorem 2.5.

Before, we shall mention another implication of the commutative diagram (31).
The vertical arrow on the left hand side is an isomorphism because Ln,0 ∼= π∗Ln,0σ
and the ∂w-equation extends over the exceptional set as described above. So,

π∗KM ∼= KX . (33)

Thus, KX is in fact the canonical sheaf of Grauert–Riemenschneider as introduced
in [GR3]. It only remains to relate the direct image of the fine resolution (29) of KM
to the fine resolution (20) of KX . This can be done by use of Takegoshi’s vanishing
theorem which tells us that the higher direct image sheaves of KM do vanish:

Rqπ∗KM = 0, q > 0. (34)

This statement also relies on L2-methods. Recognizing that(
Rqπ∗KM

)
x

= lim−→
x∈U

Hq(π−1(U),KM), (35)

Takegoshi proves his vanishing theorem by using a priori estimates to deduce that
the ∂-equation is solvable in the L2-sense for (n, q)-forms on M in domains of the
form π−1(U) where U is a small strongly pseudoconvex set in X.

Since (29) is exact, (34) and (35) imply that the lower line of the commutative
diagram (31) is another fine resolution of π∗KM ∼= KX (use also (33)). But then

Hq(Ω,KX) ∼= Hq(Ω, π∗KM) ∼= Hq(π−1(Ω),KM)

and (32) is an isomorphism for all open sets Ω ⊂ X and all q ≥ 0. If X is compact,
the choice Ω = X proves Theorem 2.5.

Note that we have not only proven Theorem 2.5, but also derived statements
about the resolution of L2,loc-cohomology on non-compact spaces. It is also worth-
while to mention that we can also consider the cohomology with compact support.
From that, we get isomorphisms

π∗ : Hq(Γcpt(Ω, Cn,∗))
∼=−→ Hq(Γcpt(π

−1(Ω), Cn,∗σ ))

for the L2-Dolbeault cohomology with compact support.
Finally, we should briefly indicate how the dual isomorphism

H0,q
(2)(M)

∼=−→ H0,q
min(X − SingX)

is induced by push-forward of forms (if X is compact). By (25), π induces the maps

ψ∗ := (π|−1
M−E)∗ : L0,q

σ (M) −→ L2
0,q(X − SingX).

Let f be a smooth representative of a cohomology class [f ] ∈ H0,q
(2)(M). Then it

is clear that ∂maxψ
∗f = 0. On the other hand, since f is bounded, one can show

that f can be approximated in L0,q
σ (M) by a sequence of smooth forms {fj}j with

support in M − E such that the sequence {∂fj}j converges to 0 in L0,q+1
σ (M). But

then the sequence {(ψ∗fj, ∂ψ∗fj)}j converges to (ψ∗f, 0) in L2
0,q(X − SingX) ×

L2
0,q+1(X − SingX) and that shows that ∂minψ

∗f = 0. Hence, ψ∗f defines a class in

H0,q
min(X − SingX).
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2.3 The canonical sheaf with boundary condition KsX
Similarly to Theorem 2.5, we would now like to understand also the L2-cohomology
in the sense of distributions for (0, q)-forms H0,q

max on singular spaces. This is far
more difficult as we will see soon. One reason is that the ∂-equation in the L2-
sense of distributions is usually not locally solvable at singularities for (0, q)-forms.
However, for Hermitian spaces with only isolated singularities, we can now give
an almost complete description of the L2-cohomology in terms of a resolution of
singularities.

First steps in this direction had been made by Diederich, Fornæss, Øvrelid and
Vassiliadou in [F1], [DFV], [FOV2] who showed that there are only finitely many
obstructions to solving the ∂-equation in the L2-sense at isolated singularities, but
they did not try to identify these obstructions explicitely. The first attempt to
find an explicit representation in terms of a resolution of singularities was made in
[R3] and [R6] for homogeneous isolated singularities. In this spirit, the complete
description for arbitrary isolated singularities has been given recently in [R9], [OV5]
and [R10]. The key idea, introduced in [R9], is as follows. We have already seen that
one can use statements about the ∂max-equation on (n, q)-forms and L2-Serre duality
to deduce statements about the ∂min-equation on (0, q)-forms. Conversely, we will
now first derive statements about the ∂min-operator on (n, q)-forms which can be
used later to deduce statements about the ∂-equation in the sense of distributions
on (0, q)-forms. Since we wish to work in a sheaf-theoretic context as before, we
need a localized version of the ∂min-operator. That is the ∂s-operator which was
introduced in [R9]. It is the ∂-operator in the sense of distributions with some
Dirichlet boundary condition at the singular set of the variety. The key object to
study will then be the canonical sheaf with respect to this operator, denoted by KsX ,
that is the sheaf of germs of square-integrable (n, 0)-forms which are holomorphic
with respect to the ∂s-operator, i.e. which satisfy some boundary condition at the
exceptional set.

2.3.1 The strong ∂-operator ∂s and its L2-complex

We introduce now a suitable local realization of the ∂min-operator. This is the ∂-
operator with a Dirichlet boundary condition at the singular set SingX of X, where
X is any Hermitian singular complex space. For any open set U ⊂ X, let

∂s(U) : L2,loc
p,q (U)→ L2,loc

p,q+1(U)

be defined as follows.16 Let f ∈ Dom ∂w. We say that f is in the domain of ∂s if
there exists a sequence of forms {fj}j ⊂ Dom ∂w ⊂ L2,loc

p,q (U) with essential support
away from the singular set,

supp fj ∩ SingX = ∅,

such that

fj → f in L2
p,q(K − SingX), (36)

∂wfj → ∂wf in L2
p,q+1(K − SingX) (37)

16Again, we write simply ∂s for ∂s(U) if there is no danger of confusion.
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for each compact subset K ⊂⊂ U .
The subscript refers to ∂s as an extension in a strong sense. Note that we can

assume without loss of generality (by use of cut-off functions and smoothing with
Dirac sequences) that the forms fj are smooth with compact support in U−SingX.
This is the equivalent definition that we used in [R9] where we denoted the operator
also by ∂s,loc. It is now clear that

∂s(U)|V = ∂s(V )

for open sets V ⊂ U , and we can define the presheaves of germs of forms in the
domain of ∂s,

Fp,q := Lp,q ∩ ∂−1

s Lp,q+1,

given by
Fp,q(U) = Lp,q(U) ∩Dom ∂s(U).

Here, we shall check a bit more carefully that these are already sheaves: Let U =⋃
Uµ be a union of open sets, f ∈ L2,loc

p,q (U) and fµ = f |Uµ ∈ Dom ∂s(Uµ) for all µ.

We claim that f ∈ Dom ∂s(U). To see this, we can assume (by taking a refinement
if necessary) that the open cover U := {Uµ} is locally finite, and choose a partition
of unity {ϕµ} for U . On Uµ choose a sequence {fµj } ⊂ Lp,qloc(Uµ) as in (36), (37), and
consider

fj :=
∑
µ

ϕµf
µ
j .

It is clear that {fj} ⊂ Lp,qloc(U). If K ⊂⊂ U is compact, then K ∩ suppϕµ is a
compact subset of Uµ for each µ, so that {fµj } and {∂fµj } converge in the L2-sense

to fµ resp. ∂wfµ on K ∩ suppϕµ. But then {fj} and {∂fj} converge in the L2-sense
to f resp. ∂wf on K (recall that the cover is locally finite) and that is what we had
to show.

As for Cp,q, it is clear that the sheaves Fp,q are fine, and we obtain fine sequences

Fp,0 ∂s−→ Fp,1 ∂s−→ Fp,2 ∂s−→ ... (38)

We can now introduce the sheaf

KsX := ker ∂s ⊂ Fn,0 (39)

which we may call the canonical sheaf of holomorphic n-forms with Dirichlet bound-
ary condition. KsX is a coherent analytic sheaf (see Lemma 2.10 below). Our main
objective in the following is to compare different representations of the cohomology
of KsX . One of them will be the L2,loc-Dolbeault cohomology with respect to the
∂s-operator on open sets U ⊂ X, i.e. the cohomology of the complex (38) which is
denoted by Hq(Γ(U,Fp,∗)). The corresponding cohomology with compact support is
the cohomology of sections with compact support in U , denoted by Hq(Γcpt(U,Fp,∗)).

As for the ∂w-complex, it is clear that (38) is exact in regular points of X by the
L2-Grothendieck-Dolbeault lemma, but it is an interesting problem to understand
the obstructions to exactness in singular points. Clearly, what we would like to
have is that the complex (Fn,∗, ∂s) is a fine resolution of our canonical sheaf with
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boundary condition KsX . But this is in fact true at least on spaces with only isolated
singularities.

Let X be a Hermitian complex space of pure dimension n ≥ 2 with only isolated
singularities.17 Then the ∂s-equation is locally exact on (n, q)-forms for 1 ≤ q ≤ n−1
by [R9], Lemma 5.4, and for q ≥ 2 by [R9], Lemma 6.3. Hence:

Theorem 2.7. Let X be a Hermitian complex space of pure dimension n ≥ 2 with
only isolated singularities. Then

0→ KsX ↪→ Fn,0 ∂s−→ Fn,1 ∂s−→ Fn,2 ∂s−→ ... −→ Fn,n → 0 (40)

is a fine resolution. For an open set U ⊂ X, it follows that

Hq(U,KsX) ∼= Hq(Γ(U,Fn,∗)) , Hq
cpt(U,KsX) ∼= Hq(Γcpt(U,Fn,∗)).

The most important tool for the proof of Theorem 2.7 are the results of Fornæss,
Øvrelid and Vassiliadou [FOV2] on the regularity of the ∂-equation in the L2-sense
of distributions at isolated singularities. Let V be a strongly pseudoconvex small
neighborhood of an isolated singularity in X. In the notation from section 2.2.2,
Theorem 1.1 in [FOV2] can be interpreted as

Hq(Γcpt(V, C0,∗)) = 0

for all 0 < q < n, i.e. the ∂w-equation with compact support is solvable for such
(0, q)-forms. By some kind of mixed duality (a mixture of usual Serre duality and
L2-duality at the singularity), one can deduce that

Hq(Γ(V,Fn,∗)) = 0

for all 0 < q < n (this is Lemma 5.4 in [R9]). That shows that (40) is exact at Fn,q
for such q. Exactness at Fn,0 is clear for KsX = ker ∂s. On the other hand, consider
the ∂w-equation ∂wf = g on such a domain V where g is a ∂w-closed (n, q)-form.
This equation can be solved by the method from Theorem 2.6. But here, in the case
of isolated singularities, one can show that for q ≥ 2, there is a solution f with a
gain of regularity such that in fact ∂sf = g. This can be deduced from Theorem 1.2
in [FOV2] and appears in [R9] as Lemma 6.3. It follows that (40) is exact at Fn,q
for q ≥ 2.

The strategy for the proof of Theorem 1.1 and Theorem 1.2 in [FOV2] is as
follows: on a domain V as above, Fornæss, Øvrelid and Vassiliadou modify the
metric so that they obtain a complete Kähler metric on the regular part of V , solve
the equation by L2-estimates and study how the solution behaves in the original
metric. In the case of isolated singularities, this can be computed quite explicit, and
so one obtains results for (p, q)-forms of degree p + q 6= n, not only for (n, q) and
(0, q)-forms. Moreover, this also yields the gain of regularity that we used above.

17For the present exposition, we will omit the case of complex dimension 1 which is much easier
to handle and does not require the techniques on which we focus here.

19



It would be very interesting to know wether the complex (40) is also exact
for arbitrary singularities. Unfortunately, the methods of Fornæss, Øvrelid and
Vassiliadou from [FOV2] cannot be generalized to non-isolated singularities and the
methods we used in the proof of Theorem 2.6 for arbitrary singularities are not strong
enough (i.e. no gain of regularity can be deduced from the estimates). Nevertheless,
many particular examples suggest that the ∂s-equation is locally exact for (n, q)-
forms in general. By duality, this would be related to conject that the ∂w-equation
with compact support is locally solvable for (0, q)-forms, 0 < q < n. This is for
example very reasonable on homogeneous varieties as the results from [RZ2] suggest
which we will discuss later when we treat integral formulas.

2.3.2 Resolution of (X,KsX)

We restrict our considerations from now on to a Hermitian complex space (X, h) of
pure dimension n ≥ 2 with only isolated singularities. As in section 2.2.3, let

π : M → X

be a resolution of singularities, γ := π∗h and σ any positive definite metric on
M . This time, we require that the exceptional set E = |π−1(SingX)| has only
normal crossings. We need a little refinement of the statement (24) which says that
Ln,qγ (U) ⊂ Ln,qσ (U) for open sets U ⊂⊂M and all q ≥ 0.

Let Z := π−1(SingX) be the unreduced exceptional divisor. In the following,
we have to deal with forms with values in O(|Z|−Z). If Z has the multiplicity m on
an irreducible component of the exceptional divisor, then Z − |Z| has multiplicity
m−1 on that component. Sections in O(|Z|−Z) are the holomorphic functions that
vanish to order m − 1 on that component of the exceptional divisor. Note that it
might happen that |Z|−Z = ∅, for example if X has just a homogeneous singularity
which is resolved by a single blow-up.

When we are dealing with forms with values in O(|Z| − Z), we can adopt two
different points of view. First, let L|Z|−Z → M be the holomorphic line bundle
associated to the divisor |Z|−Z such that holomorphic sections of L|Z|−Z correspond
to sections of O(|Z| − Z), and give L|Z|−Z the structure of a Hermitian line bundle
by choosing an arbitrary positive definite Hermitian metric. Then, denote by

Lp,qσ (U,L|Z|−Z) , Lp,qσ,loc(U,L|Z|−Z)

the spaces of (locally) square-integrable (p, q)-forms with values in L|Z|−Z (with
respect to the metric σ on M and the chosen metric on L|Z|−Z). We can then
define the sheaves of germs of square-integrable (p, q)-forms with values in L|Z|−Z ,
Lp,qσ (L|Z|−Z), by the assignment

Lp,qσ (L|Z|−Z)(U) = Lp,qσ,loc(U,L|Z|−Z).

The second point of view is to use the sheaves

Lp,qσ ⊗O(|Z| − Z)
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which are canonically isomorphic to the sheaves Lp,qσ (L|Z|−Z). Let us keep both
points of view in mind. As in section 2.2.3, let

Cp,qσ (L|Z|−Z) := Lp,qσ (L|Z|−Z) ∩ ∂−1

w Lp,q+1
σ (L|Z|−Z), (41)

where ∂w is the ∂-operator in the sense of distributions for forms with values in
L|Z|−Z . It is clear that the sheaves Cp,qσ (L|Z|−Z) are fine.

Now then, the ordinary Lemma of Dolbeault tells us that

0→ KM ⊗O(|Z| − Z) ↪→ Cn,0σ (L|Z|−Z)
∂w−→ Cn,1σ (L|Z|−Z)

∂w−→ ... (42)

is a fine resolution of the sheaf of germs of holomorphic n-forms with values in
O(|Z| − Z), i.e. vanishing to a certain order on the exceptional set.

The refinement of (24) that we need is as follows:

Lemma 2.8. Let q ≥ 1. Then

Ln,qγ (U) ⊂ Ln,qσ (U,L|Z|−Z)

for any open set U ⊂⊂M , i.e.

Ln,qγ ⊂ Ln,qσ (L|Z|−Z).

The proof is in [R10], Lemma 5.1, but we will repeat it here because this really
illustrates how the divisor |Z| − Z comes into play.

Proof. Since the statement is local, it is enough to consider a point P ∈ E and a
neighborhood U of P such that U is an open set in Cn, that E is the normal crossing
{z1 · · · zd = 0}, and P = 0. For σ we can take the Euclidean metric.

Let us investigate the behavior of (0, 1)-forms under the resolution π : M → X
at the isolated singularity π(P ). We can assume that a neighborhood of π(P ) is
embedded holomorphically into W ⊂⊂ CL, L � n, such that π(P ) = 0, and that
γ = π∗h where h is the Euclidean metric in CL. Let w1, ..., wL be the Cartesian
coordinates of CL. We are interested in the behavior of the forms ηµ := π∗dwµ at
the exceptional set. Let dzN := dz1 ∧ · · · ∧ dzn. It follows from the observations in
section 2.2.3 that a form α is in Ln,qγ (U) exactly if it can be written in multi-index
notation18 as

α =
∑
|K|=q

αKdzN ∧ ηK = dzN ∧
∑
|K|=q

αKηK (43)

with coefficients αK ∈ L0,0
σ (U). That can be seen as follows. Let α ∈ Ln,qγ (U) be

written in the form (43). Since the forms ηK are orthogonal to dzN , we have

|α|γ = |dzN |γ
∣∣ ∑
|K|=q

αKηK
∣∣
γ
.

18ηK = ηk1 ∧ · · · ∧ ηkq
for K = (k1, ..., kq) and the sum should be over indices of ascending order.
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Let g be a function as in section 2.2.3. Since |dzN |γ = |g|−1 and |ηK |γ ≤ 1, there are
coefficients αK in (43) such that

|α|γ = |g|−1
∑
|K|=q

|αK |.

So, α is in Ln,qγ (U) exactly if |α|γ is in L0,0
γ (U) which is the case exactly if all the

g−1αK are in L0,0
γ (U). By use of (21), this is the case exactly if all the αK are in

L0,0
σ (U). The representation (43) is not unique.

Let Z have the order kj ≥ 1 on {zj = 0}, i.e. assume that Z is given by
f = zk1

1 · · · z
kd
d . Since Z = π−1(SingX), each π∗wµ must vanish of order kj on

{zj = 0}. We conclude that π∗wµ has a factorization

π∗wµ = fgµ = zk1
1 · · · z

kd
d · gµ,

where gµ is a holomorphic function on U . So,

ηµ = π∗dwµ = dπ∗wµ =
(
z1
k1−1 · · · zdkd−1

)
· βµ,

where the βµ are (0, 1)-forms that are bounded with respect to the non-singular
metric σ. This means that ηµ = π∗dwµ vanishes at least to the order of Z − |Z| on
the exceptional set E.

So, (43) implies that a form α is in Ln,qγ (U) exactly if it can be written in multi-
index notation as

α =
(
z1
k1−1 · · · zdkd−1

)q ∑
|K|=q

αKdzN ∧ βK (44)

with coefficients αK ∈ L0,0
σ (U). We conclude that Ln,qγ ⊂ Ln,qσ (L|Z|−Z) for q ≥ 1.

It follows from Lemma 2.8 that pull-back of forms under π defines a map

π∗ : L2
n,q(Ω)→ Ln,qσ (π−1(Ω), L|Z|−Z)

for any open set Ω ⊂⊂ X and q ≥ 1 (extend the pull-back of forms again trivially
over the exceptional set). As in (30), this induces maps

π∗ : Fn,q → π∗Cn,qσ (L|Z|−Z) (45)

for all q ≥ 1: let Ω ⊂ X be an open set, f ∈ Ln,q(Ω) and g ∈ Ln,q+1(Ω) such that
∂sf = g. Then π∗f ∈ Ln,qσ (L|Z|−Z) and π∗g ∈ Ln,q+1

σ (L|Z|−Z) by Lemma 2.8 and

∂wπ
∗f = π∗g on π−1(Ω)−E. But then ∂wπ

∗f = π∗g on π−1(Ω) by the L2-extension
theorem for the ∂w-equation, and so π∗f ∈ Cn,qσ (L|Z|−Z)(π−1(Ω)). It follows also that

π∗ commutes with the ∂-operator in the sense that

π∗ ◦ ∂s = ∂w ◦ π∗.

We need an analogous statement for (n, 0)-forms, but it is clear that we cannot
expect Ln,0γ ⊂ Ln,0σ (L|Z|−Z) because Ln,0γ ∼= Ln,0σ and sections of O(|Z|−Z) are forms
that vanish to a certain order on the exceptional set. It turns out that we can bridge
this gap by realizing that (n, 0)-forms in the domain of the ∂s-equation must vanish
to some order in the singularities. The reason is the boundary condition which is
involved in the definition of the ∂s-operator.
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Lemma 2.9. For an open set Ω ⊂ X, pull-back of forms under π defines a map

π∗ : Fn,0(Ω)→ Cn,0σ (L|Z|−Z)(π−1(Ω)),

i.e. π∗ gives a morphism of sheaves

π∗ : Fn,0 → π∗Cn,0σ (L|Z|−Z).

The proof is again in [R10], Lemma 5.1, but we will also repeat this one briefly
because it illustrates how the boundary condition of the operator ∂s comes into play.

Proof. We can assume that we are in the same local situation as in Lemma 2.8 with
U = π−1(Ω), i.e. consider a small neighborhood U of the point P = 0 ∈ Cn, assume
that E = {z1 · · · zd = 0} and that Z is given by f = zk1

1 · · · z
kd
d .

Let φ ∈ Fn,0(Ω) with
∂sφ = ψ ∈ Ln,1(Ω).

This means by (24) and Lemma 2.8 (with trivial extension of the forms over the
exceptional set) that

π∗φ ∈ Ln,0γ (U) ∼= Ln,0σ (U)

and
π∗ψ ∈ Ln,0γ (U) ⊂ Ln,1σ (L|Z|−Z)(U)

such that there exists a sequence of smooth forms φj with support away from E
with

φj → π∗φ in Ln,0γ (V ) ∼= Ln,0σ (V ),

∂φj → π∗ψ in Ln,1γ (V )

on suitable open sets V ⊂ U . The considerations above show that convergence in
Ln,1γ (V ) implies convergence in Ln,1σ (V, L|Z|−Z). By use of the inhomogeneous Cauchy
formula, we will show that this implies convergence of {φj}j in Ln,0σ (V, L|Z|−Z), as
well. But then π∗φ ∈ Ln,0σ (L|Z|−Z)(V ).

Since we treat a local question at 0 ∈ Cn, it does no harm to work on a suitable
neighborhood of the origin and to cut-off π∗φ and the φj by a real-valued smooth
function χ ∈ C∞cpt(C) satisfying χ(z1) = 1 for |z1| ≤ ε, χ(z1) = 0 for |z1| ≥ 2ε, and
|χ′| ≤ 2ε−1 for a fixed ε > 0 small enough. So, replace π∗φ(z) by π∗φ(z)χ(z1) and
φj(z) by φj(z)χ(z1).

Because the φj have compact support away from E, we have the representation

φj(z) =
zk1−1

1

2πi

∫
C

∂φj

∂ζ1

(ζ1, z2, ..., zn)
dζ1 ∧ dζ1

ζk1−1
1 (ζ1 − z1)

, (46)

omitting dzN in the notation for simplicity. Note that k1 is the order of Z on
{z1 = 0}. But ∂φj → π∗ψ in Ln,1σ (V, L|Z|−Z) implies that

ζ−k1+1
1 z−k2+1

2 · · · z−kd+1
d ∂φj(ζ1, z2, ..., zn)→ ζ−k1+1

1 z−k2+1
2 · · · z−kd+1

d π∗ψ(ζ1, z2, ..., zn)
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in the L2-sense with respect to the non-singular metric σ, i.e. in Ln,1σ (V ). But the
Cauchy formula (46) is bounded as an operator L2 → L2. Hence, the formula (46)
converges to

π∗φ(z) =
zk1−1

1 zk2−1
2 · · · zkd−1

d

2πi

∫
C
(π∗ψ)1(ζ1, z2, ..., zn)

dζ1 ∧ dζ1

ζk1−1
1 zk2−1

2 · · · zkd−1
d (ζ1 − z1)

in Ln,0σ , and the integral on the right-hand side is itself in Ln,0σ . Here, (π∗ψ)1 is the
dz1-part of π∗ψ. But then π∗φ is zk1−1

1 · · · zkd−1
d multiplied with an Ln,1σ -form. So

π∗φ ∈ Ln,0σ (V, L|Z|−Z) with ∂wπ
∗φ = π∗ψ and that completes the proof.

As above, it follows by extension of the ∂w-equation over the exceptional set
that the commutator relation

π∗ ◦ ∂s = ∂w ◦ π∗

holds also on (n, 0)-forms. Hence, π∗ defines a morphism of complexes

π∗ : (Fn,∗, ∂s)→ (π∗Cn,∗σ (L|Z|−Z), π∗∂w).

Including KsX = ker ∂s ⊂ Fn,0 and KM ⊗ O(|Z| − Z) = ker ∂w ⊂ Cn,0σ (L|Z|−Z), we
obtain the commutative diagram

0 // KsX //

π∗

��

Fn,0
∂s //

π∗

��

Fn,1
∂s //

π∗

��

...

0 // π∗(KM ⊗O(|Z| − Z)) // π∗Cn,0σ (L|Z|−Z)
π∗∂w // π∗Cn,1σ (L|Z|−Z)

π∗∂w // ...

(47)

Note that the upper line of the diagram is exact by Theorem 2.7 since we have
restricted our attention to Hermitian spaces of pure dimension n ≥ 2 with only
isolated singularities. It follows from commutativity of the diagram that π∗ induces
maps on the cohomology of the complexes,

π∗ : Hq(Γ(Ω,Fn,∗)) −→ Hq(Γ(π−1(Ω), Cn,∗σ (L|Z|−Z))), (48)

π∗ : Hq(Γcpt(Ω,Fn,∗)) −→ Hq(Γcpt(π
−1(Ω), Cn,∗σ (L|Z|−Z))), (49)

for any open set Ω ⊂ X and all q ≥ 0. If X is compact and we choose Ω = X,
then the left hand side in both, (48) and (49), is just Hn,q

min(X − SingX) since then
∂s = ∂min on X−SingX, and the right hand side is just the L2-cohomology for forms
with values in the line bundle L|Z|−Z , Hn,q

(2) (M,L|Z|−Z)), since ∂w = ∂max = ∂min on
the compact manifold M .

Analogously to the case of the canonical sheaf of Grauert–Riemenschneider KM ,
we would like to express the L2cohomology of the canonical sheaf with boundary
condition KsX in terms of the L2-cohomology of the sheaf of holomorphic n-forms
with values in the line bundle L|Z|−Z , KM ⊗ (O(|Z| − Z). For this, we can use the
commutative diagram (47) because we have:
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Lemma 2.10. Let (X, h) be a Hermitian complex space with only isolated sin-
gularities and π : M → X a resolution with only normal crossings as above,
Z = π−1(SingX) the unreduced excveptional divisor. Then

π∗ : KsX → π∗
(
KM ⊗ (O(|Z| − Z)

)
is an isomorphism. This implies that KsX is a coherent analytic sheaf by Grauert’s
direct image theorem [G1].

This has been proved in [R9], Lemma 6.2. Since this is the last – and again very
interesting – step to complete the understanding of KsX on a Hermitian space with
isolated singularities and the meaning of the divisor Z−|Z|, we also recall the proof
of this statement.

Proof. It is clear that π∗ is injective since we are talking here about the pull-back
of (n, 0)-forms and not about cohomology classes. It remains to show that

π∗
(
KM ⊗ (O(|Z| − Z)

)
⊂ π∗KsM .

That can be done by a cut-off procedure that we recall from [PS1]. We only have
to consider singular points. So, let Ω be a small neighborhood of a singular point
p ∈ SingX. We can assume that Ω is embedded holomorphically in CL such that
p = 0 ∈ CL. Let U := π−1(Ω) and φ ∈ Γ(U,KM ⊗O(|Z| − Z)). Then φ ∈ Ln,0γ (U),
and we have to show that there exists a sequence of smooth forms {φk}k with support
away from the exceptional set E such that

φk → φ in Ln,0γ (K) ∼= Ln,0σ (K),

∂φk → 0 in Ln,1γ (K)

on compact subsets K ⊂ U . This is sufficient, because then φ = π∗(π|−1
U−E)∗φ and

(π|−1
U−E)∗φ ∈ KsX(Ω) since {(π|−1

U−E)∗φk}k is then a sequence of smooth forms with
support away from the singular point p ∈ SingX such that

(π|−1
U−E)∗φk → (π|−1

U−E)∗φ in L2
n,0(C − SingX),

∂(π|−1
U−E)∗φk → 0 in L2

n,1(C − SingX)

on compact subsets C ⊂ Ω.
As in [PS1], Lemma 3.6, let ρk : R → [0, 1], k ≥ 1, be smooth cut-off functions

satisfying

ρk(x) =

{
1 , x ≤ k,
0 , x ≥ k + 1,

and |ρ′k| ≤ 2. Moreover, let r : R→ [0, 1/2] be a smooth increasing function with

r(x) =

{
x , x ≤ 1/4,
1/2 , x ≥ 3/4,

and |r′| ≤ 1. We need a function measuring the distance to the exceptional set E in
M . A good choice is just the pull-back of the Euclidean distance in CL. So, let

F :=

(
L∑
j=1

|wj|2
)1/2

,
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where w1, ..., wL are the Cartesian coordinates of CL. Since the metric h is quasi-
isometric to the Euclidean metric in CL, we have |∂F |h . 1. As cut-off functions we
can use

µk := ρk(log(− log r(π∗F )))

on M . Thus, we claim that
φk := µkφ

is a suitable sequence of smooth forms with support away from E. Let K ⊂ U be a
compact subset. It is clear that φk → φ in Ln,0γ (K) as k →∞ and that ∂φk = ∂µk∧φ
(since φ is holomorphic). What we have to show is that

∂µk ∧ φ→ 0 (50)

in Ln,1γ (K) as k →∞. By definition,

|∂µk|2γ ≤
|ρ′k(log(− log(r(π∗F ))))|2

r2(π∗F ) log2(r(π∗F ))
|r′|2|∂π∗F |2γ (51)

.
χk(π

∗F )

(π∗F )2 log2(π∗F )
, (52)

where χk is the characteristic function of [e−e
k+1
, e−e

k
] because |π∗∂F |γ = |∂F |h . 1

and µk is constant outside [e−e
k+1
, e−e

k
]. Note that the denominator in (51) equals

the denominator in (52) if π∗F is small enough.
We may assume that U is an open set in Cn and that E is just the normal

crossing {z1 · · · zd = 0}. The unreduced exceptional divisor Z = π−1({0}) is given
as the common zero set of the holomorphic functions {π∗w1, ..., π

∗wL}. Let Z have
the order kj ≥ 1 on {zj = 0}, i.e. assume that Z is given by the holomorphic
function f = zk1

1 · · · z
kd
d . It follows that π∗F ∼ |zk1

1 · · · z
kd
d |, and (52) yields

|∂µk|γ . |z1|−k1 · · · |zd|−kd | log |−1
(
|z1 · · · zd|

)
. (53)

The assumption φ ∈ Γ(U,KM ⊗O(|Z| − Z)) implies that

z1−k1
1 · · · z1−kd

d φ ∈ Γ(U,KM)

which does almost compensate the right hand-side of (53). We have to take care of
the additional factor

λ := |z1 · · · zd|| log ||z1 · · · zd|,
but this is easy because z1−k1

1 · · · z1−kd
d φ has smooth coefficients and λ−1 is locally

square-integrable in Cn. Thus

φ

zk1
1 · · · z

kd
d log |z1 · · · zd|

∈ Ln,0γ (K) ∼= Ln,0σ (K)

on the compact subset K ⊂ U . Combining this with (53), we see that ∂µk ∧ φ is
uniformly bounded in Ln,1γ (K), and so

∂µk ∧ φ→ 0 in Ln,1γ (K)

by Lebesgue’s theorem on dominated convergence because the domain of integration
vanishes as k →∞.
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2.3.3 Resolution of the L2-cohomology of KsX
If X is a Hermitian space of pure dimension n ≥ 2 with only isolated singularities, we
are now finally in the position to represent the L2-cohomology of the canonical sheaf
of holomorphic L2-forms with boundary condition, KsX , in terms of the resolution of
singularities of (X,KsX) described in section 2.3.2.

Recall from (47) the commutative diagram

0 // KsX //

∼= π∗

��

Fn,0
∂s //

π∗

��

Fn,1
∂s //

π∗

��

...

0 // π∗(KM ⊗O(|Z| − Z)) // π∗Cn,0σ (L|Z|−Z)
π∗∂w // π∗Cn,1σ (L|Z|−Z)

π∗∂w // ...

(54)

Note that the upper line of the diagram is exact by Theorem 2.7 and that the vertical
arrow on the left hand side is an isomorphism by Lemma 2.10. This isomorphism

π∗ : KsX
∼=−→ π∗

(
KM ⊗O(|Z| − Z)

)
(55)

is what me mean by resolution of KsX .
We also recall that, by commutativity of the diagram (54), π∗ induces maps on

the cohomology of the complexes,

π∗ : Hq(Γ(Ω,Fn,∗)) −→ Hq(Γ(π−1(Ω), Cn,∗σ (L|Z|−Z))), (56)

π∗ : Hq(Γcpt(Ω,Fn,∗)) −→ Hq(Γcpt(π
−1(Ω), Cn,∗σ (L|Z|−Z))), (57)

for any open set Ω ⊂ X and all q ≥ 0. Note that (56) and (57) are isomorphisms
for q = 0 by use of (55). For q ≥ 1 this is not necessarily the case as we shall see
below. (56) and (57) would be isomorphisms if the lower line of the diagram (54)
were exact.

In [R9], we did assume at this point that the invertible sheaf KM ⊗O(|Z| − Z)
is locally semi-positive with respect to the base space X, i.e. that any point x ∈ X
has a small neighborhood Ux such that KM⊗O(|Z|−Z) is semi-positive on π−1(Ux)
in the sense that the holomorphic line bundle associated to KM ⊗ O(|Z| − Z) is
semi-positive on π−1(Ux). Under this assumption Takegoshi’s vanishing theorem
(see [T1], Theorem I and Remark 2(a)) yields the vanishing of the higher direct
image sheaves

Rqπ∗
(
KM ⊗O(|Z| − Z)

)
= 0 , q ≥ 1. (58)

This is also true without any positivity condition if Z = |Z|, a situation which
occurs for example when we resolve a homogeneous isolated singularity by a single
blow-up. Since

0→ KM ⊗O(|Z| − Z) ↪→ Cn,0σ (L|Z|−Z)
∂w−→ Cn,1σ (L|Z|−Z)

∂w−→ ... (59)

is a fine resolution of KM ⊗ O(|Z| − Z), it follows then from (58) analogously to
section 2.2.3 that the direct image complex (π∗Cn,∗σ (L|Z|−Z), π∗∂w) is a fine resolution
of KsX ∼= π∗

(
KM ⊗ O(|Z| − Z)

)
. So, in this situation, (56) and (57) are in fact

isomorphisms. By use of the L2-version of Serre duality, this also led to a smooth
realization of the L2-cohomology with respect to the ∂-operator in the sense of
distributions for (0, q)-forms on a compact Hermitian space (see [R9], Theorem 1.6).
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In the present exposition, we explain how the semi-positivity condition can be
dropped in general. The first main result in this general situation is as follows:

Theorem 2.11. ([R10], Theorem 1.1) Let X be a Hermitian complex space of
pure dimension n ≥ 2 with only isolated singularities, and π : M → X a resolution
of singularities with only normal crossings. Then:

KsX ∼= π∗
(
KM ⊗O(|Z| − Z)

)
,

where KsX is the canonical sheaf for the ∂s-operator (i.e. the canonical sheaf of holo-
morphic (n, 0)-forms with Dirichlet boundary condition), KM is the usual canonical
sheaf on M and Z = π−1(SingX) the unreduced exceptional divisor.

The pull-back of forms π∗ induces for q ≥ 1 natural exact sequences

0→ Hq(X,KsX)
π∗−→ Hq(M,KM ⊗O(|Z| − Z)) −→ Γ(X,Rq)→ 0, (60)

0→ Hq
cpt(X,KsX)

π∗−→ Hq
cpt(M,KM ⊗O(|Z| − Z)) −→ Γ(X,Rq)→ 0, (61)

where Rq is the higher direct image sheaf Rqπ∗(KM ⊗O(|Z| − Z)).

In this statement one can clearly replace X by any open open subset Ω ⊂ X so
that M has to be replaced by π−1(Ω). Recall that the connection to the mappings
(56) and (57) is as follows. Since the upper line in the diagram (54) is a fine
resolution, we have

Hq(Ω,KsX) = Hq(Γ(Ω,Fn,∗)),
Hq
cpt(Ω,KsX) = Hq(Γcpt(Ω,Fn,∗)).

On the other hand, (59) also is a fine resolution so that

Hq(π−1(Ω),KM ⊗O(|Z| − Z)) = Hq(Γ(π−1(Ω), Cn,∗σ (L|Z|−Z))),

Hq
cpt(π

−1(Ω),KM ⊗O(|Z| − Z)) = Hq(Γcpt(π
−1(Ω), Cn,∗σ (L|Z|−Z))).

The proof of Theorem 2.11 is based on the following observation. If Gn,∗ is a fine
resolution of KM ⊗ O(|Z| − Z) as in (59), then the non-exactness of the direct
image complex π∗Gn,∗ can be expressed by the higher direct image sheaves Rq :=
Rqπ∗KM ⊗O(|Z| −Z), q ≥ 1. These are skyscraper sheaves for X has only isolated
singularities. So, they are acyclic. On the other hand, global sections in Rq can be
expressed globally by L2,loc-forms, i.e. the canonical map

Γ(X, kerπ∗∂w ∩ π∗Cn,qσ (L|Z|−Z)) −→ Γ(X,Rq) =
⊕

x∈SingX

Rq
x (62)

is surjective. These two properties allow to express the cohomology of the canonical
sheaf KsX in terms of the cohomology of the direct image complex π∗Gn,∗ modulo
global sections in Rq. We will explain that more precisely.
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Let us first prove the surjectivity of (62). So, let [ω] ∈ Γ(X,Rq). Since Rq is a
skyscraper sheaf as described above, [ω] is represented by a set of germs {ωx}x∈SingX ,
where each ωx is given by a ∂w-closed (n, q)-form with values in L|Z|−Z in a neigh-
borhood Ux of the component π−1({x}) of the exceptional set,

ωx ∈ ker ∂w ⊂ Cn,qσ (L|Z|−Z)(Ux).

This follows from the facts that(
Rqπ∗(KM ⊗O(|Z| − Z))

)
x

= lim−→
x∈W

Hq(π−1(W ),KM ⊗O(|Z| − Z))

and (59) is a fine resolution. We will show in a moment that we can assume that the
forms ωx have compact support in Ux. Hence, by trivial extension, they give rise to
a global form ω ∈ ker ∂w ⊂ Cn,qσ (L|Z|−Z)(π−1(X)), i.e.

ω ∈ Γ(π−1(X), ker ∂w ∩ Cn,qσ (L|Z|−Z))

represents [ω] ∈ Γ(X,Rq). This representation shows that (62) is in fact surjective.
It remains to show that we can choose ωx with compact support in Ux. To see

that, we can use the fact that Z − |Z| is effective so that ωx can be interpreted as
a ∂-closed form in Cn,qσ (Ux). But Takegoshi’s vanishing theorem (see [T1], Theorem
2.1) tells us that there is a solution ηx ∈ Cn,q−1

σ (Vx) to the equation ∂wηx = ωx on
a smaller neighborhood of the component π−1({x}) of the exceptional set. Since
(Cn,∗σ , ∂w) is a fine resolution of the canonical sheaf KM , this fact is also expressed
by the vanishing of the higher direct image sheaves

Rqπ∗KM = 0 , q ≥ 1,

as we have already seen. Let χx be a smooth cut-off function with compact support
in Vx that is identically 1 in a neighborhood of π−1({x}). Then ∂w(χxηx) is the
form we were looking for because it has compact support in Ux and equals ωx in a
neighborhood of π−1({x}) so that it can be considered again as a form with values
in L|Z|−Z .

We can now prove Theorem 2.11 by the use of some homological algebra:

Theorem 2.12. Let X, M be paracompact Hausdorff spaces and π : M → X a
continuous map. Let C be a sheaf (of abelian groups) over M and

0→ C ↪→ C0 c0−→ C1 c1−→ C2 c2−→ C3 −→ ... (63)

a fine resolution. Let A ∼= π∗C be a sheaf on X, isomorphic to the direct image of
C, and 0→ A→ A∗ a fine resolution of A over X.

Let B := π∗C be the direct image of C and (B∗, b∗) = (π∗C∗, π∗c∗) the direct image
complex which is again fine but not necessarily exact. Since (63) is a fine resolution,
the non-exactness of 0→ B → B∗ is measured by the higher direct image sheaves

Rq := Rqπ∗C , q ≥ 1.
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Let

0 // A //

∼= f

��

A∗
g

��
0 // B // B∗

(64)

be a morphism of complexes, and assume that the direct image sheaves Rq are acyclic
and that the canonical maps Γ(X, ker bq)→ Γ(X,Rq) are surjective for all q ≥ 1.

Then g induces for all q ≥ 1 a natural injective homomorphism

Hq(Γ(X,A∗)) [gq ]−→ Hq(Γ(X,B∗))

with coker [gq] = Γ(X,Rq). More precisely, there is a natural exact sequence

0→ Hq(Γ(X,A∗)) [gq ]−→ Hq(Γ(X,B∗)) −→ Γ(X,Rq)→ 0.

In this sequence, one can replace Hq(Γ(X,B∗)) by Hq(Γ(M, C∗)) because

Γ(X,Bq) = Γ(π−1(X), Cq) = Γ(M, Cq),
bq(Γ(X,Bq)) = cq(Γ(M, Cq))

by definition for all q ≥ 0.

For the proof, we refer to [R10], Theorem 2.6. Our Theorem 2.11 here follows
now from Theorem 2.12 with the following choices. Let

(A,A∗, a∗) := (KsX ,Fn,∗, ∂s),
(C, C∗, c∗) := (KM ⊗O(|Z| − Z), Cn,∗σ (L|Z|−Z), ∂w),

(B,B∗, b∗) := (π∗(KM ⊗O(|Z| − Z)), π∗Cn,∗σ (L|Z|−Z), π∗∂w),

and for f, g in (64), we use the maps induced by pull-back of froms under π : M → X
so that the diagram (64) is equal to the diagram (54). The higher direct image
sheaves

Rq = Rqπ∗
(
KM ⊗O(|Z| − Z)

)
are in fact acyclic for q ≥ 1 because they are skyscraper sheaves with support in the
discrete singular set, and the canonical map Γ(X, ker bq)→ Γ(X,Rq) is nothing else
but the map (62). So, it is in fact surjective for all q ≥ 1.

Hence, Theorem 2.12 yields exactness of the sequences

0→ Hq(Γ(X,Fn,∗)) π∗−→ Hq(Γ(M, Cn,∗σ (L|Z|−Z)) −→ Γ(X,Rq)→ 0 (65)

for all q ≥ 1. But this gives the statement of Theorem 2.11 since the upper line in the
diagram (54) and (59) are fine resolutions of KsX and KM ⊗O(|Z|−Z), respectively
(see the remarks after Theorem 2.11). The statement about the cohomology with
compact support in Theorem 2.11 follows analogously by exactly the same proof
(Theorem 2.12 holds also for the cohomology with compact support).
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If X is compact, then ∂s = ∂min on X − SingX so that

Hq(Γ(X,Fn,∗)) = Hn,q
min(X − SingX).

On the other hand, compactness of M yields in this situation that ∂w = ∂max = ∂min
on M . Thus,

Hq(Γ(M, Cn,∗σ (L|Z|−Z))) = Hn,q
min(M,L|Z|−Z),

where Hn,q
min(M,L|Z|−Z) is the L2-Dolbeault cohomology for forms with values in the

Hermitian line bundle L|Z|−Z . Hence, we deduce from (65) that pull-back of forms
under π : M → X induces the exact sequence

0→ Hn,q
min(X − SingX)

π∗−→ Hn,q
min(M,L|Z|−Z) −→ Γ(X,Rq)→ 0 (66)

for all q ≥ 1 if X is a compact Hermitian space of pure dimension n ≥ 2 with only
isolated singularities.

This L2-version of Theorem 2.11 is pretty interesting because it allows to carry
over our results to (0, q)-forms by use of the L2-Serre duality Theorem 2.3. We
would like to do that also for non-compact spaces. So, we have to invest more
work. It is well-known that the the L2- and the L2

loc-Dolbeault cohomology are
naturally isomorphic on strongly pseudoconvex domains in complex manifolds. The
isomorphism is given by the natural mapping from L2 to L2

loc-forms. In other words,
if D is a relatively bounded domain with smooth strongly pseudoconvex boundary,
then there exists for q ≥ 1 a natural isomorphism

Hp,q
max(D)

∼=−→ Hq(D,Ωp), (67)

where Ωp is the sheaf of germs of holomorphic p-forms. By use of L2-duality on the
left-hand side and the classical Serre duality on the right-hand side, (67) is equivalent
to the natural isomorphism

Hn−q
cpt (D,Ωn−p)

∼=−→ Hn−p,n−q
min (D) (68)

for all q ≥ 1. This map is induced by the natural inclusion of forms with compact
support into the domain of the ∂min-operator (forms with compact support vanish
close to the boundary of the domain so that there is no problem with the boundary
condition). The principles which lead to (67) and (68) can be carried over to spaces
with isolated singularities in the sense that we can allow isolated singularities in the
interior of such a domain D with strongly pseudoconvex boundary:

Theorem 2.13. ([R10], Theorem 6.8) Let X be a Hermitian complex space
of pure dimension n ≥ 2 with only isolated singularities and Ω ⊂⊂ X a do-
main with strongly pseudoconvex boundary which does not intersect the singular set,
bΩ ∩ SingX = ∅.

Let 0 ≤ q < n. Then the natural inclusion map

ι : Hq(Γcpt(Ω,Fn,∗))→ Hn,q
min(Ω∗)

is an isomorphism.

Concerning the proof, we should remark here that this is not a straight forward
generalization from the situation on manifolds: the proof requires for example an
application of Theorem 2.11 to overcome the additional difficulties.
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On the other hand, (68) is also valid for forms with values in holomorphic vector
bundles so that the natural inclusion of compact forms into the domain of ∂min gives
the natural isomorphism

Hq(Γcpt(π
−1(Ω), Cn,∗σ (L|Z|−Z))

∼=−→ Hn,q
min(π−1(Ω), L|Z|−Z) (69)

if Ω is an open set as in Theorem 2.13 and 0 ≤ q < n.
With the help of (69) and Theorem 2.13, one can deduce the following L2-version

of Theorem 2.11:

Theorem 2.14. ([R10], Theorem 1.2) Let (X, h) be a Hermitian complex space
of pure dimension n ≥ 2 with only isolated singularities, π : M → X a resolution of
singularities with only normal crossings, and Ω ⊂⊂ X a relatively compact domain.
Let 0 ≤ q < n, Ω̃ := π−1(Ω) and Ω∗ = Ω − SingX. Provide Ω̃ with a (regular)

Hermitian metric which is equivalent to π∗h close to the boundary bΩ̃.
Let Z := π−1(Ω ∩ SingX) be the unreduced exceptional divisor (over Ω) and

KM the canonical sheaf on M . Let L|Z|−Z → M be a Hermitian holomorphic line
bundle such that holomorphic sections in L|Z|−Z correspond to holomorphic sections
in O(|Z| − Z).

Then the pull-back of forms π∗ induces a natural exact sequence

0→ Hn,q
min(Ω∗)

hq−→ Hn,q
min(Ω̃, L|Z|−Z) −→ Γ(Ω, Rqπ∗(KM ⊗O(|Z| − Z))→ 0, (70)

where the group on the right hand side has to be replaced by 0 if q = 0.

Note that we do not require a strongly pseudoconvex boundary of the domain
Ω and that singularities in the boundary bΩ are permitted. Any regular metric on
M will do the job if there are no singularities in the boundary of Ω. If Ω = X is
compact, then the case q = n can be included as we have already seen (in that case
Theorem 2.11 gives the statement directly, see (66)).

The principles of the proof of Theorem 2.14 are as follows. First, it follows
directly from Theorem 2.11 by use of Theorem 2.13 and (69) that the statement
is true for a small strongly pseudoconvex neighborhood of an isolated singularity.
For the general statement, let x1, ..., xL be the (finitely many) isolated singularities
in the domain Ω and choose pairwise disjoint strongly pseudoconvex neighborhoods
Ω1, ...,ΩL of the x1, ..., xL in Ω. Then the statement of the Theorem is clearly also
true on V :=

⋃L
j=1 Ωj. On the other hand, let U1, ...UL be smaller neighborhoods of

the isolated singularities such that Uj ⊂⊂ Ωj and let U := Ω−
(⋃L

j=1 Uj
)
. Then the

statement of the Theorem is trivially true on U and on U ∩V . But there is a Mayer-
Vietoris sequence for the ∂min-operator for the open covering U ∪ V = Ω because in
this special constellation we have a partition of unity as follows: let χ ∈ C∞cpt(V ) be

identically 1 in a neighborhood of
⋃
Uj. If ω is a form in the domain of ∂min(U ∪V ),

then χω ∈ Dom ∂min(V ), (1− χ)ω ∈ Dom ∂min(U) and ω = χω + (1− χ)ω. So, the
boundary condition of the ∂min-operator does not cause difficulties for the Mayer-
Vietoris sequence and the statement of the Theorem is also true on Ω = U ∪ V by
use of the long exact Mayer-Vietoris sequence. This is elaborated in detail in [R10],
section 6.6.
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2.3.4 L2-Dolbeault cohomology of low degree

We can now use the L2-version of Serre duality Theorem 2.3 to derive from Theorem
2.14 also a resolution of the L2-Dolbeault cohomology with respect to the ∂-operator
in the sense of distributions ∂max for (0, q)-forms. What we get immediately from
the L2-resolution of the ∂min-cohomology of (n, q)-forms is as follows:

Theorem 2.15. In the situation of Theorem 2.14, there is a natural surjective
mapping

sq : H0,q
max(π

−1(Ω), LZ−|Z|)→ H0,q
max(Ω− SingX) (71)

for all 0 < q ≤ n, where LZ−|Z| = L∗|Z|−Z is the dual of the bundle from above. The
map sn is an isomorphism.

If Ω = X is compact, then the case q = 0 can be included.

Proof. We could deduce the statement directly from the injectivity of the map hn−q
in (70) if L2-Serre duality (i.e. Theorem 2.3) would apply to the cohomology groups
in (70). However, we can not assume that the cohomology groups allow for harmonic
representation and Serre duality if Ω is an arbitrary domain. But this problem can
be bypassed as in the proof of Theorem 2.14 by use of a Mayer-Vietoris sequence.
So, let V ⊂⊂ Ω be a neighborhood of the singular set in Ω with smooth strongly
pseudoconvex boundary. Then the ∂-operator in the L2-sense of distributions ∂max
has closed range on V ∗ = V − SingX for (0, q)-forms (see Theorem 2.4). Hence,
there is a non-degenerate pairing

{·, ·}X : H0,q
max(V

∗)×Hn,n−q
min (V ∗)→ C

given by

{[η], [ψ]}X :=

∫
V ∗
η ∧ ψ

according to Theorem 2.3 for all 0 ≤ q ≤ n. Let Ṽ := π−1(V ). Then Ṽ also
has a smooth strongly pseudoconvex boundary since there are no singularities in the
boundary of V . So, L2-Serre duality is also valid on Ṽ in M . Here, we need Theorem
2.3 for forms with values in holomorphic line bundles, but this generalization is more
or less straight forward (see [R9], Theorem 2.3). So, there is another non-degenerate
pairing

{·, ·}M : H0,q
max(π

−1(V ), LZ−|Z|)×Hn,n−q
min (π−1(V ), L|Z|−Z)→ C

given by

{[η], [ψ]}M :=

∫
π−1(V )

η ∧ ψ

So, the map sq is defined as follows: for a class [η] ∈ H0,q
max(π

−1(V ), LZ−|Z|), sq([η])
is the unique class in H0,q

max(V
∗) such that

{sq([η]), [ψ]}X = {[η], [π∗ψ]}M
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for each class [ψ] ∈ Hn,n−q
min (V ∗). This mapping is surjective since it is the dual

morphism to hn−q in (70) because hn−q(|ψ]) = [π∗ψ]. We have thus proved the
statement of the Theorem for such a strongly pseudoconvex domain V .

But then we can deduce the general statement as in the remarks on the proof
of Theorem 2.14. Let W ⊂⊂ V be smaller neighborhood of the singular set in Ω
and U := Ω−W . Then the statement of the Theorem is trivially true on U and on
U ∩V . But then it follows also on Ω = U ∪V by use of the Mayer-Vietoris sequence
for the ∂max-equation.

It remains to identify the kernel of the mapping sq in Theorem 2.15 for q < n.
By Theorem 2.14 and the proof of Theorem 2.15, this must be the dual object to

Γ(Ω, Rn−qπ∗(KM ⊗O(|Z| − Z)).

In fact, there is (for q < n) a duality between the higher direct image sheaves
Rn−qπ∗KM⊗O(|Z|−Z) on the one hand and the flabby cohomologyHq

E ofO(Z−|Z|)
with support on the exceptional set E = |Z| on the other hand. This duality is
compatible with the L2-Serre duality pairings that we used above. We will explain
that more precisely.

We need some preliminaries on exceptional sets. Let X be a complex space. A
compact nowhere discrete, nowhere dense analytic set A ⊂ X is an exceptional set
(in the sense of Grauert [G2], §2.Definition 3) if there exists a proper, surjective map
π : X → Y such that π(A) is discrete, π : X −A→ Y − π(A) is biholomorphic and
for every open set D ⊂ Y the map π∗ : Γ(D,OY ) → Γ(π−1(D),OX) is surjective.
Exceptional sets are characterized as follows:

Theorem 2.16. (Grauert [G2], §2.Satz 5) Let X be a complex space and A ⊂ X
a nowhere discrete compact analytic set. Then A is an exceptional set exactly if
there exists a strongly pseudoconvex neighborhood U ⊂⊂ X of A such that A is the
maximal compact analytic subset of U .

An important statement about exceptional sets is as follows:

Theorem 2.17. (Laufer [L1], Lemma 3.1) Let π : U → Y exhibit A as excep-
tional set in U with Y a Stein space. If V ⊂ U with V a holomorphically convex
neighborhood of A and G is a coherent analytic sheaf on U , then the restriction map
ρ : H i(U,G)→ H i(V,G) is an isomorphism for i ≥ 1.

Let π : M → X be a resolution as in Theorem 2.14 and E = |π−1(Ω ∩ SingX)|
the exceptional set. For a closed subset K of M and a sheaf of abelian groups
G, we denote by H∗K(M,G) the flabby cohomology of G with support in K. Here,
we are interested in the case where K is the exceptional set E. A nice review of
cohomology with support on the exceptional set can be found in [OV5], section 3.2,
a more extensive treatment in [K1].

Let Ω ⊂ X be an open set and Ω̃ := π−1(Ω). In the following, we may assume

that E ⊂ Ω̃. Since X has only isolated singularities, there exists a (smoothly

bounded) strongly pseudoconvex neighborhood V of E in Ω̃ which exhibits E as

exceptional set in Ω̃ in the sense of Theorem 2.16 and Theorem 2.17.
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Since E is a compact subset of V in M , H∗E(V,G) = H∗E(Ω̃,G) by excision and
so we have natural homomorphisms

γj : Hj
E(Ω̃,G)→ Hj

cpt(V,G).

Then:

Theorem 2.18. (Karras [K1], Proposition 2.3) If G is a coherent analytic sheaf on
M such that depthxG ≥ d for all x ∈ V − E, then

γj : Hj
E(G̃,G)→ Hj

cpt(V,G)

is an isomorphism for j < d.

On the other hand we have seen that

Γ(Ω, Rqπ∗KM ⊗O(|Z| − Z)) = lim−→
U

Hq(π−1(U),KM ⊗O(|Z| − Z))

for q ≥ 1, where the limit is over open neighborhoods of SingX ∩ Ω. But then the
natural maps (induced by restriction of cohomology classes)

αq : Hq(V,KM ⊗O(|Z| − Z))→ Γ(Ω, Rqπ∗KM ⊗O(|Z| − Z)) (72)

are isomorphisms for q ≥ 1 by Theorem 2.17.
By use of Serre duality, there exists a non-degenerate pairing

Hn−q
cpt (V,O(Z − |Z|))×Hq(V,KM ⊗O(|Z| − Z))→ C. (73)

Since depth O(Z − |Z|) = n, we can combine Theorem 2.18 with (72) and (73) and
obtain:

Theorem 2.19. In the situation described above, there is a natural non-degenerate
pairing

{·, ·}E : Hn−q
E (Ω̃,O(Z − |Z|))× Γ(Ω, Rqπ∗KM ⊗O(|Z| − Z))→ C

for 1 ≤ q ≤ n which is induced by Serre duality and the natural isomorphisms

γn−q : Hn−q
E (Ω̃,O(Z − |Z|))→ Hn−q

cpt (V,O(Z − |Z|)), (74)

αq : Hq(V,KM ⊗O(|Z| − Z))→ Γ(Ω, Rqπ∗KM ⊗O(|Z| − Z)). (75)

More precisely, for two classes represented by (74) and (75),

γ−1
n−q([η]) ∈ Hn−q

E (Ω̃,O(Z − |Z|))

and
αq([ψ]) ∈ Γ(Ω, Rqπ∗KM ⊗O(|Z| − Z)),

we have:

{γ−1
n−q([η]), αq([ψ])}E =

∫
V

η ∧ ψ. (76)
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Let us now return to the exact sequence

0→ Hn,q
min(Ω∗)

hq−→ Hn,q
min(Ω̃, L|Z|−Z)

pq−→ Γ(Ω, Rqπ∗(KM ⊗O(|Z| − Z))→ 0, (77)

from Theorem 2.14 (let 0 < q < n). Then the surjection pq factors through the
isomorphism αq from Theorem 2.19, i.e. pq = αq ◦ rq where

Hn,q
min(Ω̃, L|Z|−Z)

rq−→ Hq(V,KM ⊗O(|Z| − Z))
αq−→ Γ(Ω, Rqπ∗(KM ⊗O(|Z| − Z))

are the natural mappings (recall that V ⊂⊂ Ω̃), i.e. rq is the map induced by

restriction of forms from Ω̃ to V . Combining Theorem 2.15 with Theorem 2.19, we
can see that the short sequence dual to (77) is (with p = n− q)

0→ Hp
E(Ω̃,O(Z − |Z|)) ip−→ H0,p

max(Ω̃, LZ−|Z|)
sp−→ H0,p

max(Ω
∗)→ 0. (78)

Here, the injection ip factors through the isomorphism γp from Theorem 2.19, i.e.
ip = ιp ◦ γp where

Hp
E(Ω̃,O(Z − |Z|)) γp−→ Hp

cpt(V,O(Z − |Z|)) ιp−→ H0,p
max(Ω̃, LZ−|Z|)

are the natural mappings, i.e. ιp is the map induced by trivial extension of forms

with compact support in V to Ω̃. As in the proof of Theorem 2.15, where we have
seen that sn−q = h∗q in the sense that {sn−q([η]), [ψ]}Ω = {[η], hq[ψ]}Ω̃, we deduce
from (76) that the map in−q is the map dual to pq:

{in−q(γ−1
n−q([η])), [ψ]}Ω̃ = {ιn−q[η], [ψ]}Ω̃ =

∫
Ω̃

ιn−qη ∧ ψ =

∫
V

η ∧ rqψ

= {γ−1
n−q([η]), αq(rq([ψ]))}E = {γ−1

n−q([η]), pq([ψ])}E

for all classes [η] ∈ Hn−q
cpt (V,O(Z − |Z|)) and [ψ] ∈ Hn,q

min(Ω̃, L|Z|−Z).
Hence it follows that (78) is in fact a short exact sequence induced by natural

mappings. Summing up, we conclude another main result:

Theorem 2.20. ([R10], Theorem 1.3) Let (X, h) be a Hermitian complex space
of pure dimension n ≥ 2 with only isolated singularities, π : M → X a resolution of
singularities with only normal crossings, and Ω ⊂⊂ X a relatively compact domain.

Let Ω̃ := π−1(Ω), Ω∗ = Ω − SingX and provide Ω̃ with a Hermitian metric

which is equivalent to π∗h close to the boundary bΩ̃. Let Z := π−1(Ω ∩ SingX) be
the unreduced exceptional divisor (over Ω) and KM the canonical sheaf on M . Let
LZ−|Z| →M be a Hermitian holomorphic line bundle such that holomorphic sections
in LZ−|Z| correspond to holomorphic sections in O(Z − |Z|).

Let 0 ≤ q ≤ n if Ω = X is compact and 0 < q ≤ n otherwise. Then there exists
a natural exact sequence

0→ Hq
E(Ω̃,O(Z − |Z|))→ H0,q

max(Ω̃, LZ−|Z|)→ H0,q
max(Ω

∗)→ 0,

where H∗E is the flabby cohomology with support on the exceptional set E = |Z|. In

case q = n, Hn
E(Ω̃,O(Z − |Z|)) has to replaced by 0.
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Note again that we do not require a strongly pseudoconvex boundary of the
domain Ω, that singularities in the boundary bΩ are permitted and that any regular
metric on M will do the job if there are no singularities in the boundary of Ω. Note
also that H0

E(Ω̃,O(Z − |Z|)) = 0 by the identity theorem.

The idea to identify the kernel of the natural map

H0,q
max(Ω̃, LZ−|Z|)→ H0,q

max(Ω
∗)

as the flabby cohomology of O(Z − |Z|) with support on E is inspired by the work
of Øvrelid and Vassiliadou [OV5] who proved Theorem 2.20 recently in the case
q = n − 1 (see [OV5], Theorem 1.4). Their method is quite different from our
approach over Theorem 2.11.19

2.3.5 L2-cohomology of a complex surface

If X is a complex surface with only isolated singularities (e.g. a normal surface)
and π : M → X a resolution of singularities as in Theorem 2.20, then Øvrelid and
Vassiliadou showed that H1

E(M,O(Z − |Z|)) = 0 (see [OV5], the proof of Corollary
5.2 and Remark 5.2.4).

Combining this with Theorem 2.11 and Theorem 2.20, we obtain the following
result for a Hermitian complex surface like e.g. a normal projective surface which
carries the restriction of the Fubini-Study metric:

Theorem 2.21. Let X be a Hermitian complex surface with only isolated singular-
ities and π : M → X a resolution of singularities with only normal crossings. Then
there exist for all 0 ≤ q ≤ 2 natural isomorphisms

H2,q
max(X − SingX)→ H2,q(M).

Let Z := π−1(SingX) be the unreduced exceptional divisor. Then there exist for all
0 ≤ q ≤ 2 natural isomorphisms

H0,q(M,LZ−|Z|)→ H0,q
max(X − SingX),

where LZ−|Z| → M is a Hermitian holomorphic line bundle such that holomorphic
sections in LZ−|Z correspond to sections in O(Z − |Z|).

This gives an almost complete description of the L2-cohomology of a complex
surface with isolated singularities. Only the middle cohomology H1,1 is missing.
Theorem 2.21 was conjectured and mostly proven by Pardon and Stern in [PS1]
(there was a difficulty with the critical group H0,1

max). This difficulty has been first
overcome completely now by Øvrelid and Vassiliadou in [OV5].

19We may remark that Øvrelid–Vassiliadou also use our representation KsX = π∗(KM ⊗O(|Z| −
Z)) from [R9].
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3 The ∂-Neumann operator

Besides studying the obstructions to solving the ∂-equation in the L2-sense on a
singular space – what we have done above by providing a smooth model for the
L2-cohomology – it is also very interesting to study the regularity of the ∂-equation
in general. On domains in complex manifolds, the close connection between the
regularity of the ∂-equation on the one hand and the geometry of the domain (and
its boundary) on the other hand is one of the central topics of complex analysis.
It is an interesting task to establish such connections also between the regularity
of the ∂-equation at singularities and the geometry of the singularities. In the
present exposition, we study the existence of compact L2-solution operators for the
∂-equation at isolated singularities and compactness of the ∂-Neumann operator in
the presence of such singularities. The material covered here stems mainly from [R8]
and [OR].20

Compactness of the ∂-Neumann operator can be seen as a boundary case of
subelliptic regularity (when the gain in the subelliptic estimate tends to zero) and is
an important property in the study of weakly pseudoconvex domains (see [S10] for
a comprehensive discussion of the topic). Moreover, compactness of the ∂-Neumann
operator yields that the corresponding space of L2-forms has an orthonormal basis
consisting of eigenforms of the ∂-Laplacian � = ∂∂

∗
+ ∂

∗
∂. The eigenvalues of �

are non-negative, have no finite limit point and appear with finite multiplicity. It
might be an interesting question to study wether there is a nice connection between
the eigenvalues and the structure of the singularities.

We will derive compactness of the ∂-Neumann operator not as usually from ellip-
tic or subelliptic estimates, but from the existence of compact L2-solution operators
for the ∂-equation at isolated singularities. It remains to study wether the complex
Laplacian fulfills some subelliptic estimates at isolated singularities. A strong evi-
dence is the gain of regularity of the L2-solution operators for the ∂w-equation of
Fornæss, Øvrelid and Vassiliadou [FOV2], but also the Hölder regularity at isolated
singularities studied by Ruppenthal and Zeron [RZ1] (which we will discuss later in
the context of integral formulas). Given there are some subelliptic estimates, this
would lead to the question of which order they are and wether there is a connec-
tion between the order of the subelliptic estimates and the type of the singularities.
Recall in this context that a domain in Cn with smooth pseudoconvex boundary is
of finite type21 exactly if the ∂-Neumann problem is subelliptic, and that there is
a deep connection between the type of the boundary and the order of subellipticity
(cf. the works of Kohn, Catlin and D’Angelo).

There are other interesting regularity questions concerning the ∂-Neumann op-
erator, particularly in view of the canonical ∂-solution operator ∂

∗
N . Even if the

∂-Neumann operator does not gain (a fraction of) a derivative, it could still be
globally regular22, a property which can be deduced from compactness as Kohn and

20Many of the main ideas originate from [R8], but the material has been set in a more general
context in [OR], so that it seems appropriate to present the more general statements from [OR].

21A smoothly bounded domain Ω is called of finite type, if the order of contact of analytic
varieties to Ω is bounded form above.

22An operator is called globally regular on a domain Ω if it preserves C∞(Ω)
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Nirenberg have shown on smoothly bounded domains (see [KN]).
Such questions are important in the following context, closing the circle to the

L2-theory described above. We have seen that the ∂w-equation is locally solvable for
(n, q)-forms on a Hermitian space X of pure dimension n with arbitrary singularities.
When we consider the ∂s-equation instead, we had to assume that X has only
isolated singularities. But there are many examples which suggest that the ∂s-
equation is also locally solvable for arbitrary singularities.

One way to obtain a solution of the ∂s-equation would be as follows. We know
already that the ∂w-equation is solvable (and ∂s-closed forms are trivially ∂w-closed).
So, we may consider the canonical ∂w solution operator ∂

∗
wN , where N is the ∂w-

Neumann operator. If this operator is sufficiently regular, i.e. if it maps smooth
forms with compact support away from the singular set to bounded forms, then the
solution would be a solution for the ∂s-equation.

3.1 The closed range property

Before we discuss more sophisticated properties of the ∂-Neumann operator, we have
to address the problem wether there exists a bounded (i.e. continuous) ∂-Neumann
operator. This question is closely related to the closed range property of the ∂-
operator. Let X be a Hermitian complex space of pure dimension n. Then the ∂-
operator in the sense of distributions has closed range in L2

p,q at isolated singularities
of X for p+ q 6= n (or q = n).

3.1.1 Canonical solution operators and the ∂-Neumann operator

In this section, we introduce the canonical solution operators for the ∂-equation and
the ∂

∗
-equation and show how they can be used to represent the ∂-Neumann operator

on arbitrary Hermitian manifolds (Theorem 3.3). This gives a nice characterization
of compactness of the ∂-Neumann operator. The material here is well-known but it
seems appropriate to include it here for convenience of the reader and as a foundation
for our later discussion. More details can be found in [OR], section 7.

Let M be a Hermitian complex manifold of dimension n, and let 0 ≤ p, q ≤ n
and q ≥ 1. Let L2

∗(M) be the L2-forms on M ,

∂p,q : L2
p,q−1(M)→ L2

p,q(M)

the ∂-operator in the sense of distributions and ∂
∗
p,q its L2-adjoint. In this chapter,

by the ∂-operator, we always mean the ∂-operator in the sense of distributions which
was also denoted by ∂w or ∂max before. It is well known that ∂p,q has closed range

exactly if ∂
∗
p,q has closed range (see e.g. [H6], Theorem 1.1.1).

We define canonical solution operators for ∂p,q and ∂
∗
p,q even if the ranges of

these operators are not closed by using the orthogonal decomposition

L2
p,q−1(M) = ker ∂p,q ⊕ Im ∂

∗
p,q,

L2
p,q(M) = ker ∂

∗
p,q ⊕ Im ∂p,q.
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Let

Sp,q : Im ∂p,q →
(

ker ∂p,q
)⊥

= Im ∂
∗
p,q,

S′p,q : Im ∂
∗
p,q →

(
ker ∂

∗
p,q

)⊥
= Im ∂p,q,

be given by the following assignments: for u ∈ Im ∂p,q, let Sp,qu be the the unique

element in ∂
−1

p,q({u}) orthogonal to ker ∂p,q, and for v ∈ Im ∂
∗
p,q, let S′p,qv be the

unique element in (∂
∗
p,q)
−1({v}) orthogonal to ker ∂

∗
p,q.

The operator Sp,q is bounded exactly if ∂p,q has closed range. That can be seen
as follows: Assume that Sp,q is bounded, then it is clear that ∂p,q has closed range
because ∂p,qSp,qu = u for all u ∈ Im ∂p,q. Assume conversely that ∂p,q has closed
range. Then we consider the Banach space

B∂ := Dom ∂p,q ∩ (ker ∂p,q)
⊥

with the norm

‖f‖2
B∂

:= ‖f‖2
L2
p,q−1(M) + ‖∂p,qf‖2

L2
p,q(M).

Then ∂p,q : B∂ → Im ∂p,q is a bounded linear isomorphism and the same holds for
the inverse operator Sp,q : Im ∂p,q → B∂.

By definition, Sp,q is bounded if there exists a constant Cp,q > 0 such that

‖f‖L2
p,q−1(M) ≤ Cp,q‖∂p,qf‖L2

p,q(M) (79)

for all f ∈ B∂ (see also [H6], Theorem 1.1.1).

Since ∂p,q has closed range exactly if ∂
∗
p,q has closed range, note that Sp,q is

bounded exactly if S′p,q is bounded, and in that case there also exists a constant
C ′p,q > 0 such that

‖u‖L2
p,q(M) ≤ C ′p,q‖∂

∗
p,qu‖L2

p,q−1(M) (80)

for all u ∈ Dom ∂
∗
p,q ∩ (ker ∂

∗
p,q)
⊥. We will see later that one can take C ′p,q = Cp,q.

Assume from now on that ∂p,q has closed range. Then we extend Sp,q and S′p,q
to bounded operators

Sp,q : L2
p,q(M)→

(
ker ∂p,q

)⊥ ⊂ L2
p,q−1(M),

S′p,q : L2
p,q−1(M)→

(
ker ∂

∗
p,q

)⊥ ⊂ L2
p,q(M),

by setting

Sp,qu = 0 for u ∈ (Im ∂p,q)
⊥ = ker ∂

∗
p,q,

S′p,qv = 0 for v ∈ (Im ∂
∗
p,q)
⊥ = ker ∂p,q.

Now then, S′p,q is nothing else but the L2-adjoint of Sp,q, i.e. S′p,q = S∗p,q. That
follows by symmetry and shows that one can choose C ′p,q = Cp,q.
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Lemma 3.1. Sp,q is compact exactly if there exists a compact ∂-solution operator

Tp,q : Im ∂p,q → L2
p,q−1(M).

Proof. Simply compose Tp,q with the (bounded) orthogonal projection onto (ker ∂p,q)
⊥

and extend this operator by zero to (Im ∂p,q)
⊥. The other direction is trivial.

Now, we draw our attention to the ∂-Neumann operator which we will represent
by use of the canonical ∂-solution operators discussed above. On

Dom�p,q = {u ∈ Dom ∂p,q+1 ∩Dom ∂
∗
p,q : ∂p,q+1u ∈ Dom ∂

∗
p,q+1, ∂

∗
p,qu ∈ Dom ∂p,q},

we define the ∂-Laplacian

�p,q = ∂p,q∂
∗
p,q + ∂

∗
p,q+1∂p,q+1 : Dom�p,q ⊂ L2

p,q(M)→ L2
p,q(M).

It is well-known that this is a densely defined, closed, self-adjoint operator (see e.g.
[R8], Theorem 3.1) such that there is the orthogonal decomposition

L2
p,q(M) = ker�p,q ⊕ Im �p,q

with

ker�p,q = ker ∂
∗
p,q ∩ ker ∂p,q+1,

and the orthogonal decomposition

Im �p,q = Im ∂p,q ⊕ Im ∂
∗
p,q+1. (81)

The ∂-Neumann operator

Np,q = �−1
p,q : Im �p,q ⊂ L2

p,q(M)→ Dom�p,q ∩ (ker�p,q)
⊥ ⊂ L2

p,q(M)

is defined as follows: for u ∈ Im �p,q, let v = Nu be the unique v ∈ �−1
p,q({u}) which

is orthogonal to ker�p,q.
Np,q is a bounded operator exactly if �p,q has closed range. That can be seen

as follows: Assume that Np,q is bounded, then it is clear that �p,q has closed range
because �p,qNp,qu = u for all u ∈ Im �p,q. Assume conversely that �p,q has closed
range. Then we consider the Banach space

B� := Dom�p,q ∩ (ker�p,q)
⊥

with the norm
‖u‖2

B�
= ‖u‖2

L2
p,q(M) + ‖�p,qu‖2

L2
p,q(M).

Then � : B� → Im �p,q is a bounded linear isomorphism and so the same holds for
Np,q = �−1

p,q : Im �p,q → B�. By definition, Np,q is bounded if there exists a constant

C�
p,q > 0 such that

‖u‖Lp,q(M) ≤ C�
p,q‖�p,qu‖Lp,q(M) ∀u ∈ B�. (82)
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Assume from now on that ∂p,q and ∂p,q+1 both have closed range. It follows from
(79) and (80) that there exist constants Cp,q > 0 and Cp,q+1 > 0 such that

‖u‖L2
p,q(M) ≤ Cp,q‖∂

∗
p,qu‖L2

p,q−1(M)

for all u ∈ Dom ∂
∗
p,q ∩ Im ∂p,q, and that

‖u‖L2
p,q(M) ≤ Cp,q+1‖∂p,q+1u‖L2

p,q+1(M)

for all u ∈ Dom ∂p,q+1 ∩ Im ∂
∗
p,q+1. Let

u ∈ B� = Dom�p,q ∩ Im �p,q.

By use of (81) and the assumption that ∂p,q and ∂
∗
p,q+1 have closed range, u has

the orthogonal decomposition u = u1 + u2 with u1 ∈ Dom ∂
∗
p,q ∩ Im ∂p,q and u2 ∈

Dom ∂p,q+1 ∩ Im ∂
∗
p,q+1. So, with

C�
p,q := max{C2

p,q, C
2
p,q+1}

we obtain:

‖u‖2 = ‖u1‖2 + ‖u2‖2 ≤ C�
p,q

(
‖∂∗p,qu1‖2 + ‖∂p,q+1u2‖2

)
= C�

p,q

(
‖∂∗p,qu‖2 + ‖∂p,q+1u‖2

)
= C�

p,q(�p,qu, u) ≤ C�
p,q‖�p,qu‖‖u‖.

Hence, �p,q has closed range and Np,q is bounded by (82).

For the representation of Np,q in terms of Sp,q and Sp,q+1, we need:

Lemma 3.2. Let ∂p,q and ∂p,q+1 have closed range. Then:

∂
∗
p,qNp,q = Sp,q, (83)

∂p,q+1Np,q = S∗p,q+1. (84)

Moreover,

Np,q∂p,qv = S∗p,qv for v ∈ Dom ∂p,q, (85)

Np,q∂
∗
p,q+1f = Sp,q+1f for f ∈ Dom ∂

∗
p,q+1. (86)

Proof. For u ∈ L2
p,q(M) we use the orthogonal decomposition

u = u1 + u2 + u3 ∈ Im ∂p,q ⊕ Im ∂
∗
p,q+1 ⊕ ker�p,q

and the fact that Sp,qu = Sp,qu1 is the unique element in ∂
−1

p,q({u1}) which is orthogo-

nal to ker ∂p,q, and that S∗p,q+1u = S∗p,q+1u2 is the unique element in (∂
∗
p,q+1)−1({u2})

which is orthogonal to ker ∂
∗
p,q+1. On the other hand,

u1 + u2 = �p,qNp,q(u1 + u2) = �p,qNp,qu

= ∂p,q∂
∗
p,qNp,qu+ ∂

∗
p,q+1∂p,q+1Np,qu.
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But u1 ∈ ker ∂p,q+1 = (Im ∂
∗
p,q+1)⊥ and u2 ∈ ker ∂

∗
p,q = (Im ∂p,q)

⊥ so that necessarily

u1 = ∂p,q∂
∗
p,qNp,qu,

u2 = ∂
∗
p,q+1∂p,q+1Np,qu.

This proves (83), (84) since ∂
∗
p,qNp,qu ∈ (ker ∂p,q)

⊥ and ∂p,q+1Np,qu ∈ (ker ∂
∗
p,q+1)⊥.

Moreover, for all v ∈ Dom ∂p,q and all u ∈ L2
p,q(M) we have by the use of (83):

(Np,q∂p,qv, u) = (∂p,qv,Np,qu) = (v, ∂
∗
p,qNp,qu) = (v,Sp,qu) = (S∗p,qv, u).

This shows (85), and (86) follows analogously.

This yields:

Theorem 3.3. Let ∂p,q and ∂p,q+1 have closed range. Then:

Np,q = S∗p,qSp,q + Sp,q+1S
∗
p,q+1. (87)

Hence, the ∂-Neumann operator Np,q is compact exactly if the canonical ∂-solution
operators Sp,q and Sp,q+1 both are compact.

Proof. Let u ∈ L2
p,q(M). Then v = Np,qu ∈ Im �p,q = (ker�p,q)⊥. For such a v, we

have:

(Np,q�p,qv, f) = (v,�p,qNp,qf) = (v, f1) = (v, f)

for all f ∈ L2
p,q(M) by use of the orthogonal decomposition

f = f1 + f2 ∈ Im �p,q ⊕ ker�p,q.

Hence Np,q�p,qNp,qu = Np,qu, and so (87) follows from (83) – (86):

Np,qu = Np,q�p,qNp,qu = (Np,q∂p,q)(∂
∗
p,qNp,q)u+ (Np,q∂

∗
p,q+1)(∂p,q+1Np,q)u

= S∗p,qSp,qu+ Sp,q+1S
∗
p,q+1u.

For a bounded operator T , it is well known that T is compact exactly if T ∗ is
compact, and this is the case exactly if T ∗T is compact.

So, assume that Sp,q and Sp,q+1 are compact. Then it follows from (87) that Np,q

is compact. Conversely, assume that Np,q is compact. Then S∗p,qSp,q and Sp,q+1S
∗
p,q+1

both are compact by (87) for they are positive. It follows that Sp,q and Sp,q+1 both
are compact.

This gives a nice criterion for compactness of the ∂-Neumann operator on arbi-
trary Hermitian manifolds which we will apply in the context of isolated singularities,
because we can show that there exist compact solution operators for the ∂-equation
at isolated singularities.
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3.1.2 Line bundles twisted along the exceptional set

It is our aim to relate properties of the ∂-operator on a singular space to properties of
the ∂-operator on a resolution of that space where the problems are well understood.
As a preparation, we need to study properties of the ∂-operator for forms with
values in holomorphic line bundles which are twisted along the exceptional set of a
resolution of isolated singularities.

As before, let X be a Hermitian complex space of pure dimension n with only
isolated singularities and π : M → X a resolution of singularities. Let D be a divisor
onM with support on the exceptional set E of the resolution π : M → X, and denote
by O(D) the sheaf of germs of meromorphic functions f such that div(f) +D ≥ 0.
We denote by LD the associated holomorphic line bundle such that sections in O(D)
correspond to sections in LD. Recall that we used this notation already in the
discussion of the L2-theory in case of the line bundles LZ−|Z| and L|Z|−Z , where
Z = π−1(SingX) was the unreduced exceptional divisor and |Z| = E the underlying
reduced divisor. The constant function f ≡ 1 induces a meromorphic section sD of
LD such that div(sD) = D. One can then identify sections in O(D) with sections in
O(LD) by g 7→ g ⊗ sD, and we denote the inverse mapping by g 7→ g · s−1

D . If D is
an effective divisor, then sD is a holomorphic section of LD and

O(−D) ⊂ O ⊂ O(D).

We have used these inclusions before without mentioning sD explicitly, but in the
following we need to jump between different line bundles so that we should be more
careful with the notation.

If Y is an effective divisor, then there is the natural inclusion O(D) ⊂ O(D+Y )
which induces the inclusion O(LD) ⊂ O(LD+Y ) given by g 7→ (g · s−1

D )⊗ sD+Y . This
also induces the natural inclusion of smooth sections of vector bundles

Γ(U,LD) ⊂ Γ(U,LD+Y ) (88)

for open sets U ⊂M .
We give each LD the structure of a Hermitian holomorphic line bundle by choos-

ing an arbitrary positive definite Hermitian metric on LD. We denote by

Lp,qσ (U,LD)

the space of square-integrable (p, q)-forms with values in LD (with respect to the
metric σ on M and the chosen metric on LD). If U ⊂⊂ M is relatively compact,
then (88) induces the natural inclusion

Lp,qσ (U,LD) ⊂ Lp,qσ (U,LD+Y ) (89)

for any effective divisor Y . This does not depend on the metrics chosen on the line
bundles LD and LD+Y because U is relatively compact in M .

For more details on Hermitian holomorphic line bundles twisted along the ex-
ceptional set of the desingularization, we refer to section 2 in [R9] and section 2 in
[OV4].
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Note that the inclusions (24) and (25) remain valid for forms with values in a
line bundle LD. Moreover, by [R4], Lemma 2.1, or [FOV1], Lemma 3.1, respectively,

there exists an effective divisor D̃ with support on the exceptional set E such that

Lp,qσ (U,L−D̃) ⊂ Lp,qγ (U) ⊂ Lp,qσ (U,LD̃) (90)

for all 0 ≤ p, q ≤ n and open sets U ⊂⊂ M . This follows from the fact that dVγ
vanishes of a certain order (exactly) on E. For simplicity, we assume that X has
only finitely many isolated singularities so that we can choose a fixed positive integer
m such that the effective divisor mE satisfies (90):

Lp,qσ (U,L−mE) ⊂ Lp,qγ (U) ⊂ Lp,qσ (U,LmE) (91)

for all 0 ≤ p, q ≤ n and open sets U ⊂⊂M .
In this chapter, we are generally interested in properties of the ∂-operator

∂ : Lp,qγ (U − E)→ Lp,q+1
γ (U − E),

which we would like to relate to properties of the ∂-operator

∂ : Lp,qσ (U)→ Lp,q+1
σ (U),

where U is a neighborhood of the exceptional set. We denote by ∂D the ∂-operator
acting on L2-forms with values in LD. All operators have to be understood in the
sense of distributions.

As a preparation, we need:

Theorem 3.4. ([OR], Theorem 4.1) Let U ⊂⊂ M be a neighborhood of the
exceptional set E and D1, D2 two divisors with support on E. Then

∂D1 : Lp,qσ (U,LD1)→ Lp,q+1
σ (U,LD1) (92)

has closed range of finite codimension in ker ∂D1 exactly if

∂D2 : Lp,qσ (U,LD2)→ Lp,q+1
σ (U,LD2) (93)

has closed range of finite codimension in ker ∂D2. If this is the case, then there exists
a compact ∂-solution operator

S1 : Im ∂D1 ⊂ Lp,q+1
σ (U,LD1)→ Lp,qσ (U,LD1) (94)

exactly if there exists a compact ∂-solution operator

S2 : Im ∂D2 ⊂ Lp,q+1
σ (U,LD2)→ Lp,qσ (U,LD2). (95)

Both implications of this equivalence follow by a similar argument which we will
use again later when we actually treat the ∂-operator on the singular space. We will
elaborate the argument once here in detail for convenience of the reader. Later we
will only indicate briefly how to adopt the reasoning in different situations.
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Proof. It is enough to prove the statement for two divisors D1, D2 such that D2 −
D1 ≥ 0. The general statement follows then by comparing both bundles, LD1 and
LD2 , with L|D1|+|D2|, because (|D1|+ |D2|)−Dj ≥ 0 for j = 1, 2.

Since E is compact by assumption (because E ⊂ U ⊂⊂ M), it consists of k
pairwise disjoint components Eµ, µ = 1, ..., k, such that each aµ := π(Eµ) is an
isolated singularity. For µ = 1, ..., k choose pairwise disjoint strongly pseudoconvex
neighborhoods Vµ ⊂⊂ U of the components Eµ. Then it is well known that (for
each µ = 1, ..., k) the operators

∂D1|Vµ : Lp,qσ (Vµ, LD1)→ Lp,q+1
σ (Vµ, LD1)

and

∂D2|Vµ : Lp,qσ (Vµ, LD2)→ Lp,q+1
σ (Vµ, LD2)

have closed range of finite codimension in the corresponding kernels of ∂D1|Vµ and

∂D2|Vµ , respectively, and that there are corresponding compact ∂-solution operators
(see e.g. the proof of Lemma 2.2 in [OV4] which implies that the corresponding
∂-Neumann operators are compact). We denote by Hµ

1 and Hµ
2 the range of ∂D1|Vµ

and ∂D2|Vµ in Lp,q+1
σ (Vµ, LD1) and Lp,q+1

σ (Vµ, LD2), respectively, and by

Tµ
1 : Hµ

1 → Lp,qσ (Vµ, LD1) , Tµ
2 : Hµ

2 → Lp,qσ (Vµ, LD2)

corresponding compact ∂-solution operators.

Assume first that ∂D1 has closed range of finite codimension and that

S1 : Im ∂D1 ⊂ Lp,q+1
σ (U,LD1)→ Lp,qσ (U,LD1) (96)

is a corresponding bounded ∂-solution operator. Consider the bounded linear map

Φ2 : ker ∂D2 ⊂ Lp,q+1
σ (U,LD2)→ G2 :=

k⊕
µ=1

ker ∂D2 |Vµ

given by
Φ2(f) := (f |V1 , ..., f |Vk).

Since H1
2 ⊕· · ·⊕Hk

2 is a closed subspace of finite codimension in G2, the same holds
for

H2 := Φ−1
2

(
H1

2 ⊕ · · · ⊕Hk
2

)
=
{
f ∈ ker ∂D2 : f |Vµ ∈ H

µ
2 , µ = 1, ..., k

}
in ker ∂D2 . Now then, choose a smooth cut-off function χ which has compact support
in V :=

⋃
µ Vµ and is identically 1 in a smaller neighborhood of the exceptional set

E. Then we can define a bounded linear map

Ψ2 : H2 → ker ∂D1 ⊂ Lp,q+1
σ (U,LD1)

by the assignment

f ∈ H2 7→
((
f −

k∑
µ=1

∂D2(χTµ
2(f |Vµ))

)
· s−1

D2

)
⊗ sD1
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since

f −
k∑

µ=1

∂D2(χTµ
2(f |Vµ))

is identically zero in a neighborhood of E and suppD1 ⊂ E. By assumption, ∂D1

has closed range Im ∂D1 of finite codimension in ker ∂D1 so that

H ′2 := Ψ−1
2 (Im ∂D1)

has closed range of finite codimension in H2. As we have already seen that H2 in
turn is closed of finite codimension in ker ∂D2 , it follows that H ′2 is a closed subspace
of finite codimension in ker ∂D2 .

On the other hand, since Ψ2(H ′2) ⊂ Im ∂D1 , we can define by use of (96) a
∂-solution operator

S′2 : H ′2 ⊂ Lp,q+1
σ (U,LD2)→ Lp,qσ (U,LD2)

by setting

S′2(f) :=
(
(S1 ◦Ψ2(f)) · s−1

D1

)
⊗ sD2 + χ

k∑
µ=1

Tµ
2(f |Vµ).

Here, we use the natural inclusion Γ(U,LD1) ⊂ Γ(U,LD2), g 7→ (g · s−1
D1

) ⊗ sD2 ,
which exists since D2 ≥ D1 by assumption. Since this inclusion commutes with the
∂-operator,

∂D2

((
(S1 ◦Ψ2(f)) · s−1

D1

)
⊗ sD2

)
=

((
∂D1(S1 ◦Ψ2(f))

)
· s−1

D1

)
⊗ sD2

=
(
Ψ2(f) · s−1

D1

)
⊗ sD2

= f −
k∑

µ=1

∂D2(χTµ
2(f |Vµ)).

Hence, ∂D2S
′
2(f) = f , so that H ′2 ⊂ Im ∂D2 . Summing up, we have

H ′2 ⊂ Im ∂D2 ⊂ ker ∂D2 ,

where H ′2 is closed and of finite codimension in ker ∂D2 . But then Im ∂D2 is also
closed and of finite codimension in ker ∂D2 . We can now extend S′2 easily to a ∂-
solution operator on Im ∂D2 . Choose a basis e1, ..., el of the complement of H ′2 in
Im ∂D2 . Then there exists forms h1, ..., hl ∈ Lp,qσ (U,LD2) such that ∂D2hν = eν for
ν = 1, ..., l. Then each f ∈ Im ∂D2 has a unique representation

f = f ′ +
l∑

ν=1

aνeν , f ′ ∈ H ′2, a1, ..., al ∈ C, (97)

and we define

S2(f) := S′2(f ′) +
l∑

ν=1

aνhν . (98)
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If in addition S1 is compact, then S′2 is compact because all the Tµ
2 , µ = 1, ..., k, are

compact. But then S2 is a compact ∂-solution operator on Im ∂D2 .

Recall the principle of the proof in other words. We assume solvability on a
space of finite codimension in

ker ∂D1 ⊂ Lp,q+1
σ (U,LD1)

and would like deduce solvability on a space of finite codimension in

ker ∂D2 ⊂ Lp,q+1
σ (U,LD2),

and we can use the natural inclusion

L∗σ(U,LD1) ⊂ L∗σ(U,LD2). (99)

So, let f ∈ ker ∂D2 . If we would like to apply the solvability property in Lp,q+1
σ (U,LD1)

to f , we need an inclusion opposite to (99). This can be achieved by solving ∂D2g = f
on the strongly pseudoconvex neighborhood V of the exceptional set and consider-
ing f − ∂D2(χg) instead. This form lies naturally in ker ∂D1 because it vanishes in a
neighborhood of the exceptional set. Now we can apply the solvability property in
Lp,q+1
σ (U,LD1) and go back to L∗σ(U,LD2) by use of the natural inclusion (99). All

this has to be done on subspaces of finite codimension.

Let us consider now the converse direction of the statement of the theorem which
is a bit more complicated. We assume solvability on a space of finite codimension in

ker ∂D2 ⊂ Lp,q+1
σ (U,LD2)

and will deduce solvability on a space of finite codimension in

ker ∂D1 ⊂ Lp,q+1
σ (U,LD1),

We would like to use the natural inclusion (99) similarly as above, but we need to
distinguish the two cases q ≥ 1 and q = 0. Again, all the arguments have to be
considered more precisely on appropriate subspaces of forms. For all the details, we
refer to the proof of Theorem 4.1 in [OR].

Let us first consider the case q ≥ 1. Let f ∈ ker ∂D1 . By modifying f on
the strongly pseudoconvex set V , we can assume as above that f is vanishing on a
neighborhood of the exceptional set (though this may seem superfluous at first sight).
By the natural inclusion (99), we can use the solvability property in Lp,q+1

σ (U,LD2)
to consider the equation ∂D2g = f . Here, we have the problem that such a solution
g cannot be considered as a solution in L∗σ(U,LD1). But we are already prepared
for this problem. Since we have arranged the situation so that f is vanishing in
a neighborhood of the exceptional set, g is ∂D2-closed there. So, we can consider
∂D2h = g on a smaller strongly pseudoconvex neighborhood W of the exceptional set
and consider g− ∂D2(χ′h) instead of g where χ′ is another suitable cut-off function.
Here we need that q ≥ 1. So, we can assume that a solution g of the equation
∂D2g = f is vanishing identically in a neighborhood of the exceptional set, and thus
it is no problem to deduce ∂D1g = f in Lp,q+1

σ (U,LD1).
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It only remains to treat the case q = 0. Since the statement of the theorem
is trivial if the dimension of M is 1, we can assume that dimCM ≥ 2. Hence, let
f ∈ ker ∂D1 ⊂ Lp,1σ (U,LD1). By the inclusion (99), we can consider f as a form in
ker ∂D2 . We can assume that f has compact support in the strongly pseudoconvex
neighborhood V of the exceptional set by the following argument. Let ∂D2g = f be
a solution from the solvability property in Lp,1σ (U,LD2) and χ a cut-off function with
support in V as above. Then we can consider f−∂D2

(
(1−χ)g

)
= f−∂D1

(
(1−χ)g

)
instead of f because (1 − χ)g is vanishing identically in a neighborhood of the
exceptional set. But then there is (as usually on a suitable subspace) a solution
for the equation ∂D1h = f in Lp,1σ (V, LD1) with compact support in the strongly
pseudoconvex set V . By trivial extension, this is clearly also a solution on the whole
set U . Here we need that the dimension of M is not 1 because solvability with
compact support behaves well only for (r, s)-forms with 0 < s < dimCM . Note that
the argument here works for all q < dimCM − 1, not only for q = 0.

As for the opposite direction of the statement of the theorem, it is no problem
to involve the statement about compactness also here, because all the solution oper-
ators that we use on strongly pseudoconvex domains are well-known to be compact
operators.

3.1.3 Closed range of the ∂-operator at isolated singularities

We will now explain the principle behind the proof of the first part of Theorem 2.4.
Recall that our general philosophy is to use a resolution of singularities to obtain a
regular model for the problems that we consider. If this is somehow successful, one
can then deduce properties of the ∂-operator on singular spaces from well-known
properties of the ∂-operator on the resolution. Our strategy is similar to the proof
of Theorem 3.4 above. Instead of the exceptional set, we have to deal with isolated
singularities. Thus, we need a substitute for the nice properties of the ∂-operator
on a strongly pseudoconvex neighborhood of the exceptional set, namely we need
to know something about the ∂-operator in a neighborhood of isolated singularities.
Here, we can use the results of Fornæss, Øvrelid and Vassiliadou [FOV2].

As always, let X be a Hermitian complex space and let a ∈ X be an isolated
singularity. Then, we denote by da(z) the distance distX(z, a) of a point z to the
singular point a in X. Here, distX(z, y) is the infimum of the length of piecewise
smooth curves connecting two points z, y in X.

Theorem 3.5. Let X be a Hermitian complex space of pure dimension n and a ∈ X
an isolated singularity. Then there exists a (strongly pseudoconvex) neighborhood U
of a in X (with U ∩ SingX = {a}) such that the following is true: If p + q < n,
q ≥ 1, then there exists a closed subspace H of finite codimension in

ker ∂max : L2
p,q(U

∗)→ L2
p,q+1(U∗),

where U∗ = U − {a}, and a constant C > 0 such that for each f ∈ H there exists
u ∈ L2

p,q−1(U∗) with ∂maxu = f satisfying∫
U∗
|u|2d−2

a log−4(1 + d−1
a )dVX ≤ C

∫
U∗
|f |2dVX . (100)
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If p + q > n, there exist constants c > 0, Cc > 0 such that for each f ∈ ker ∂max ⊂
L2
p,q(U

∗) there exists u ∈ L2
p,q−1(U∗) with ∂maxu = f satisfying∫

U∗
|u|2d−2c

a dVX ≤ Cc

∫
U∗
|f |2dVX . (101)

Proof. The statement for p + q < n follows from Theorem 1.1 in [FOV2] by the
following observation: There exists a small neighborhood V of a which can be em-
bedded holomorphically in a complex number space CL such that a = 0 ∈ CL and

‖z‖ . da(z),

because the Euclidean distance of a point z to the origin is less or equal to the length
of curves connecting z to the origin in X, if the length of a curve is measured with
respect to the Euclidean metric. But the restriction of the Euclidean metric to X is
isometric to the original Hermitian metric of X.

For U , we can choose the intersection of V with a small ball U := V ∩ Br(0).
So, if the equation ∂maxu = f is solvable on U∗ = U − {a} according to Theorem
1.1 from [FOV2], then:∫

U∗
|u|2d−2

a log−4(1 + d−1
a )dVX .

∫
U∗
|u|2‖z‖−2(− log ‖z‖2)−4dVX

.
∫
U∗
|f |2dVX .

By [FOV2], Theorem 1.1, there are only finitely many obstructions to the equation
∂maxu = f on U∗ with that estimate. The space H is closed because we have the
estimate (100), and so the ∂-operator in the sense of distributions has closed range
in L2

p,q(U
∗).

In the case p + q > n, the statement follows analogously from Theorem 1.2 in
[FOV2]. Here, the ∂max-equation is solvable for all f ∈ ker ∂max.

Theorem 3.5 and Theorem 3.4 are our main ingredients for the proof of Theorem
2.4. Recall the setting of Theorem 2.4. Let X be a Hermitian complex space of
pure dimension n with only isolated singularities and π : M → X a resolution of
singularities as above. Let σ be any (positive definite) Hermitian metric on M . We
denote by L2

p,q the spaces of L2-forms on RegX = X − SingX, and by Lp,qσ the
spaces of L2-forms on M with respect to σ. Let Ω ⊂⊂ X be a relatively compact
open subset of X such that the boundary of Ω does not intersect the singular set of
X, i.e. bΩ ∩ SingX = ∅. Let Ω∗ := Ω− SingX and Ω′ := π−1(Ω).

Thus, the resolution of singularities has the following nice effect: If the original
domain Ω has a ’good’ boundary bΩ, then Ω′ is a domain in a complex manifold
with the same ’good’ boundary. One might consider for example a domain Ω with a
strongly pseudoconvex boundary, or assume that X is a compact space and Ω = X
(no boundary at all). It is thus interesting to relate properties of the ∂-operator on
Ω∗ (which have to be studied) to properties of the ∂-operator on Ω′ (which are well
understood):
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Theorem 3.6. ([OR], Theorem 1.1) Let q ≥ 1 and either p + q 6= n or (p, q) =
(0, n). Under the assumptions above, the ∂-operator in the sense of distributions

∂max : L2
p,q−1(Ω∗)→ L2

p,q(Ω
∗) (102)

has closed range of finite codimension in ker ∂max ⊂ L2
p,q(Ω

∗) exactly if the ∂-operator
in the sense of distributions

∂
M

max : Lp,q−1
σ (Ω′)→ Lp,qσ (Ω′) (103)

has closed range of finite codimension in ker ∂
M

max ⊂ Lp,qσ (Ω′).

The case where Ω is compact or has smooth strongly pseudoconvex boundary
was already treated in [R8]. We will give a sketch of the proof of Theorem 3.6. All
the details can be found in [OR], Theorem 1.1.

Proof. Let E = π−1(SingX) be the exceptional set of the resolution π : M → X.
In the following, we can assume that E = π−1(SingX ∩ Ω) such that Ω′ = π−1(Ω)
is a neighborhood of the exceptional set E. We denote by {a1, ..., ak} the isolated
singularities in Ω, so that the exceptional set consists of the components Eµ =
π−1({aµ}), µ = 1, ..., k, which are pairwise disjoint.

Let γ := π∗h be the pullback of the Hermitian metric h of X to M . γ is positive
semidefinite (a pseudo-metric) with degeneracy locus E. We denote by Lp,qγ the
space of forms which are L2 on M with respect to the pseudo-metric γ. As in (91),
fix a positive integer m such that the effective divisor mE satisfies:

Lp,qσ (U,L−mE) ⊂ Lp,qγ (U) ⊂ Lp,qσ (U,LmE) (104)

for all 0 ≤ p, q ≤ n and open sets U ⊂M .
Instead of (102), it is equivalent to consider instead the ∂-operator in the sense

of distributions

∂max : Lp,q−1
γ (Ω′ − E)→ Lp,qγ (Ω′ − E). (105)

By Theorem 3.4, we can replace the conditions on ∂
M

max by conditions on the ∂-
operator in the sense of distributions for L2-forms with values in the holomorphic
line bundles L−mE or LmE, respectively, which we denote by ∂−mE and ∂mE:

∂
M

max : Lp,q−1
σ (Ω′)→ Lp,qσ (Ω′) (106)

has closed range of finite codimension in ker ∂
M

max ⊂ Lp,qσ (Ω′) exactly if

∂−mE : Lp,q−1
σ (Ω′, L−mE)→ Lp,qσ (Ω′, L−mE) (107)

has closed range of finite codimension in ker ∂−mE ⊂ Lp,qσ (Ω′, L−mE) and that in turn
is the case exactly if

∂mE : Lp,q−1
σ (Ω′, LmE)→ Lp,qσ (Ω′, LmE) (108)

has closed range of finite codimension in ker ∂mE ⊂ Lp,qσ (Ω′, LmE).
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Assume first that ∂
M

max and thus also ∂−mE have closed range of finite codi-
mension. We have to show that ∂max has closed range of finite codimension in
ker ∂max ⊂ Lp,qγ (Ω′ − E). The case (p, q) = (0, n) is easy because

L0,n
γ (Ω′ − E) ∼= L0,n

σ (Ω′)

and

L0,n−1
σ (Ω′) ⊂ L0,n−1

γ (Ω′ − E) (109)

by (24) and (25). Consider the continuous linear map Ψ : L0,n
γ (Ω′ − E)→ L0,n

σ (Ω′).

By assumption, Im ∂
M

max is closed of finite codimension in L0,n
σ (Ω′). Thus, Ψ−1(Im ∂

M

max)

is closed of finite codimension in L0,n
γ (Ω′−E). But Ψ−1(Im ∂

M

max) ⊂ Im ∂max because

of (109), and so Im ∂max is also closed of finite codimension in L0,n
γ (Ω′ − E).

Let p+q 6= n and f ∈ ker ∂max ⊂ Lp,qγ (Ω′−E). We can proceed as in the proof of
Theorem 3.4 and will again omit the details about how to pull-back the closed sub-
spaces of finite codimension under continuous maps. By use of Theorem 3.5, we can
solve the equation ∂maxg = f for such f (in a closed subspace of finite codimension
in ker ∂max) on a suitable neighborhood of the exceptional set. So, we can consider
the forms f−∂(χg) instead, where χ is a suitable cut-off function. Now, these forms
vanish in a neighborhood of the exceptional set so that they can be considered as
∂−mE-closed forms in Lp,qσ (Ω′, L−mE). But if ∂−mEh = f in L∗σ(Ω′, L−mE), then
∂maxh = f also in L∗γ(Ω

′ − E) because of (104). Hence, the closed range property
in L∗σ(Ω′, L−mE) carries over to the closed range property in L∗γ(Ω

′ − E).

For the converse direction of the statement, assume now that ∂max has closed
range of finite codimension in ker ∂max ⊂ Lp,qγ (Ω′−E). We will show that this implies

that ∂mE has closed range of finite codimension in ker ∂mE ⊂ Lp,qσ (Ω′, LmE), which

is then equivalent to the same property for the ∂
M

max-operator. For this direction,
we can treat the two cases p+ q 6= n and (p, q) = (0, n) together.

Let f ∈ ker ∂mE ⊂ Lp,qσ (Ω′, LmE). Let V ⊂⊂ Ω′ be a strongly pseudoconvex
neighborhood of the exceptional set as in the proof of Theorem 3.4. Then the equa-
tion ∂mEg = f is solvable on V for all f in a closed subspace of finite codimension
in ker ∂mE. Again, let χ be a smooth cut-off function with support in V and iden-
tically 1 in a smaller neighborhood of the exceptional set. Then we can consider
the forms f − ∂mE(χg) instead which are vanishing identically in a neighborhood
of the exceptional set. So, such forms are ∂max-closed forms in Lp,qγ (Ω′ − E). But

if ∂maxh = f in L∗γ(Ω
′ − E), then also ∂mEh = f in L∗σ(Ω′ − E,LmE) by (104).

Here, the ∂mE-equation extends over the exceptional set E by the L2-extension the-
orem for the ∂-equation (see Theorem 3.2 in [R4]), so that we obtain ∂mEh = f in
L∗σ(Ω′, LmE). Hence, the closed range property in Lp,qγ (Ω′ − E) carries over to the
closed range property in Lp,qσ (Ω′, LmE).

Note that this proof almost yields the second part of Theorem 2.4 as well (saying

that ∂max is compact exactly if ∂
M

max is compact). Assume that ∂max is compact, then

the proof above shows that ∂mE and so ∂
M

max (by Theorem 3.4) are also compact,
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because the solution operators on the strongly pseudoconvex neighborhood V of
the exceptional set can be chosen to be compact. For the converse direction of
the statement, we would need that the solution operators of Fornæss, Øvrelid and
Vassiliadou are compact. But this can be achieved after a slight modification as we
shall see in the next section.

As an immediate consequence of Theorem 3.6 we obtain (all ∂-operators have
to be understood in the sense of distributions):

Theorem 3.7. Let X be a Hermitian complex space of pure dimension n with only
isolated singularities, and Ω ⊂⊂ X with no singularities in the boundary bΩ. Let
π : M → X be a resolution of singularities as above and σ any (positive definite)
Hermitian metric on M .

Let q ≥ 1 and either p+ q 6= n− 1, n or p = 0. Assume that the ∂-operators in
the sense of distributions with respect to the metric σ on Ω′ = π−1(Ω),

∂
M

p,q : Lp,q−1
σ (Ω′)→ Lp,qσ (Ω′), (110)

∂
M

p,q+1 : Lp,qσ (Ω′)→ Lp,q+1
σ (Ω′) (111)

both have closed range of finite codimension in the corresponding kernels of ∂
M

.
Then the following holds:

i.
�Mp,q = ∂

M

p,q(∂
M

p,q)
∗ + (∂

M

p,q+1)∗∂
M

p,q+1

has closed range and the corresponding ∂-Neumann operator (defined as in section
3.1.1)

NM
p,q = (�Mp,q)

−1 : Lp,qσ (Ω′)→ Lp,qσ (Ω′)

is bounded.

ii. On Ω∗ = Ω− SingX, the operators

∂p,q : L2
p,q−1(Ω∗)→ L2

p,q(Ω
∗),

∂p,q+1 : L2
p,q(Ω

∗)→ L2
p,q+1(Ω∗)

both have closed range of finite codimension in the corresponding kernels of ∂.

�p,q = ∂p,q∂
∗
p,q + ∂

∗
p,q+1∂p,q+1

has closed range and the corresponding ∂-Neumann operator

Np,q = �−1
p,q : L2

p,q(Ω
∗)→ L2

p,q(Ω
∗)

is bounded.

Proof. Statement i. follows from the discussion in section 3.1.1. Moreover, Theorem
3.6 shows that

∂p,q : L2
p,q−1(Ω∗)→ L2

p,q(Ω
∗),

∂p,q+1 : L2
p,q(Ω

∗)→ L2
p,q+1(Ω∗)

also have closed range of finite codimension in the corresponding kernels of ∂. So,
statement ii. also follows from the discussion in section 3.1.1
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3.2 Compact operators on singular spaces

In this section, we will first recall a criterion for precompactness in function spaces on
arbitrary Hermitian manifolds from [R8]. This criterion is quite easy to handle and
leads to a characterization of compactness of the ∂-Neumann operator on singular
spaces with arbitrary singularities.

The criterion is also useful to see that the ∂-solution operators of Fornæss,
Øvrelid and Vassiliadou at isolated singularities yield compact ∂-solution operators.
This can be incorporated into Theorem 3.6 to see that there are compact ∂-solution
operators on a space with isolated singularities exactly if there are such operators
on a suitable resolution. As the ∂-Neumann operator can be represented in terms
of canonical ∂-solution operators (see Theorem 3.3), we get compactness of the ∂-
Neumann operator on such spaces.

3.2.1 Precompactness on Hermitian manifolds

In this section, we recall some statements about function spaces on Hermitian man-
ifolds from [R8], where more details can be found. Let M be an arbitrary Hermitian
manifold. If f is a differential form on M , we denote by |f | its pointwise norm.
For a weight function ϕ ∈ C0(M), we denote by L2

p,q(M,ϕ) the Hilbert space of
(p, q)-forms such that

‖f‖2
L2
p,q(M,ϕ) :=

∫
M

|f |2e−ϕdVM <∞.

Note that we may take different weight functions for forms of different degree. In
the following, one can as well consider forms with values in (holomorphic) vector
bundles, that does not cause any additional difficulties.

We assume that M is connected. For two points p, q ∈M , let distM(p, q) be the
infimum of the length of curves connecting p and q in M . Let Φ : M → M be a
diffeomorphism. Then we call

md(Φ) := sup
p∈M

distM(p,Φ(p))

the mapping distance of Φ. If N is another Hermitian manifold and Φ : M → N
differentiable, the pointwise norm of the tangential map Φ∗ is defined by

|Φ∗|(p) := sup
v∈TpM
|v|=1

|Φ∗(v)|TΦ(p)N .

This leads to the sup-norm of Φ∗:

‖Φ∗‖∞ := sup
p∈M
|Φ∗|(p).

We also need to measure how far Φ∗ : TM → TM is from the identity mapping on
tangential vectors in the case of a diffeomorphism Φ : M → M . As the total space
TX inherits the structure of a Hermitian manifold, distTM is also well defined, and
we set

‖Φ∗ − id ‖∞ = sup
p∈M

sup
v∈TpM
|v|=1

distTM(Φ∗v, v).
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Definition 3.8. Let Ω ⊂M open. A diffeomorphism Φ : (Ω,M)→ (Ω,M) is called
a δ-variation of Ω in M if Φ|M−Ω is the identity map, mapping distance md(Φ) < δ
and ‖Φ∗ − id ‖∞, ‖(Φ−1)∗ − id ‖∞ < 3δ. The set of all δ-variations of Ω in M will
be denoted by Varδ(Ω,M).

A δ-variation Φ ∈ Varδ(Ω,M) will be called δ-deformation, if it can be connected
by a smooth path to the identity map in Varδ(Ω,M), i.e. if there exists a smooth
map

Φ·(·) : [0, 1]×M →M, (t, x) 7→ Φt(x) ∈M,

such that Φt(·) ∈ Varδ(Ω,M) for all t ∈ [0, 1], Φ0 = id, Φ1 = Φ and∣∣∣∣ ∂∂tΦt(x)

∣∣∣∣ ≤ 3δ for all t ∈ [0, 1], x ∈M. (112)

The set of all δ-deformations of Ω in M will be denoted by Defδ(Ω,M).

Now then, precompact sets in L2
p,q(M,ϕ) can be characterized by:

Theorem 3.9. Let M be a Hermitian manifold and A a bounded subset of L2
p,q(M,ϕ).

Then A is precompact if and only if the following two conditions are fulfilled:
(i) for all ε > 0 and all Ω ⊂⊂M , there exists δ > 0 such that

‖Φ∗f − f‖L2
p,q(M,ϕ) < ε

for all Φ ∈ Defδ(Ω,M) and all f ∈ A, i.e. the forms in A behave uniformly under
deformations of Ω.

(ii) for all ε > 0, there exists Ωε ⊂⊂M such that

‖f‖L2
p,q(M−Ωε,ϕ) < ε

for all f ∈ A, i.e. the forms in A satisfy a uniform growth condition ’at the boundary
of M ’.

For the proof, see [R8], Theorem 2.5. The statement remains true for L2-forms
with values in a Hermitian vector bundle. The proof can be copied without any
difficulties, only some notation needs to be added.

Using the G̊arding inequality, one can show that condition (i) in Theorem 3.9 is
automatically fulfilled for subsets of L2

p,q(M,ϕ) ∩ Dom ∂max ∩ Dom ∂
∗
max which are

bounded in the graph norm

‖f‖2
Γp,q(M,ϕ) := ‖f‖2

L2
p,q(M,ϕ) + ‖∂maxf‖2

L2
p,q+1(M,ϕ) + ‖∂∗maxf‖2

L2
p,q−1(M,ϕ).

Here, ∂max is the ∂-operator in the sense of distributions

∂max : L2
p,q(M,ϕ)→ L2

p,q+1(M,ϕ),

and
∂
∗
max : L2

p,q(M,ϕ)→ L2
p,q−1(M,ϕ)

is the Hilbert space adjoint of ∂max : L2
p,q−1(M,ϕ)→ L2

p,q(M,ϕ). Note again that we
can use different weights ϕp,q−1, ϕp,q, ϕp,q+1 ∈ C0(M) for forms of different degrees.
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Theorem 3.10. Let M be a Hermitian manifold and let

A ⊂ L2
p,q(M,ϕ) ∩Dom ∂max ∩Dom ∂

∗
max

be a set of (p, q)-forms which is bounded in the graph norm ‖ · ‖Γp,q(M,ϕ). Then A is
precompact if and only if the following condition is fulfilled:

(C) for all ε > 0, there exists Ωε ⊂⊂M such that

‖f‖L2
p,q(M−Ωε,ϕ) < ε

for all f ∈ A.

Proof. The proof can be found in [R8], Lemma 3.5. We sketch the essential argument
for convenience of the reader.

Let ε > 0 and Ω ⊂⊂ M . Choose Ω1,Ω2 such that Ω ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ M and
a smooth cut-off function χ ∈ C∞cpt(Ω2) with 0 ≤ χ ≤ 1 such that χ ≡ 1 on Ω1. Then
there exists a constant C(Ω, χ, ϕ) > 0 such that

‖Φ∗u− u‖2
L2
p,q(M,ϕ) ≤ C(Ω, χ, ϕ)δ2‖χu‖2

W 1,2
p,q (Ω2,ϕ)

(113)

for all u ∈ C∞p,q(Ω2) and all Φ ∈ Defδ(Ω,M), where we denote by ‖ · ‖W 1,2
p,q (Ω2,ϕ) the

Sobolev W 1,2-norm on (p, q)-forms with respect to our weights.
By use of the G̊arding inequality (see e.g. [FK], Theorem 2.2.1), there exits

another constant C ′(Ω2, χ, ϕ) > 0 such that

‖χu‖2
W 1,2
p,q (Ω2,ϕ)

≤ C ′(Ω2, χ, ϕ)‖u‖2
Γp,q(M,ϕ) (114)

for all u ∈ C∞p,q(M). Estimates (113), (114) and an approximation argument show
that the condition (i) in Theorem 3.9 is fulfilled for a set of forms A which is bounded
in the graph norm, because we can achieve

‖Φ∗f − f‖L2
p,q(M,ϕ) < ε

for all f ∈ A and all Φ ∈ Defδ(Ω,M) by choosing δ small enough in (113).

As before, Theorem 3.10 generalizes immediately to forms with values in a Her-
mitian vector bundle. Note that we intend to use Theorem 3.10 with M = RegX,
the regular set of a singular Hermitian space, or an open subset of RegX.

Theorem 3.10 remains valid for any other closed extension of the ∂-operator on
M , because we only have to prove uniform behavior under deformations in a subset
Ω which is relatively compact contained in M .

From Theorem 3.10, one can deduce the following criterion for compactness
of the ∂-Neumann operator (see [R8], Theorem 1.3). Recall that the ∂-Neumann
operator N is defined as follows: for u ∈ Im �, let Nu be the unique form in
�−1({u}) which is orthogonal to ker�. According to the remark above, we can
consider the ∂-Neumann operator coming from any closed L2-extension of the ∂-
operator.
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Theorem 3.11. Let Z be a Hermitian complex space of pure dimension n, Y ⊂ Z
an open Hermitian submanifold and ∂ a closed L2-extension of the ∂cpt-operator on
smooth forms with compact support in Y , for example the ∂-operator in the sense of
distributions. Let 0 ≤ p, q ≤ n.

Assume that ∂ has closed range in L2
p,q(Y ) and in L2

p,q+1(Y ). Then

� = ∂∂
∗

+ ∂
∗
∂

has closed range in L2
p,q(Y ) and the following conditions are equivalent:

(i) The ∂-Neumann operator N = �−1 : Im �→ L2
p,q(Y ) is compact.

(ii) For all ε > 0, there exists Ω ⊂⊂ Y such that ‖u‖L2
p,q(Y−Ω) < ε for all

u ∈ {u ∈ Dom(∂) ∩Dom(∂
∗
) ∩ Im � : ‖∂u‖L2

p,q+1
+ ‖∂∗u‖L2

p,q−1
< 1}.

(iii) There exists a smooth function ψ ∈ C∞(Y,R), ψ > 0, such that ψ(z)→∞
as z → bY , and

(�u, u)L2 ≥
∫
Y

ψ|u|2dVY for all u ∈ Dom� ∩ Im � ⊂ L2
p,q(Y ).

3.2.2 Compact solution operators for the ∂-equation

We are now in the position to construct compact solution operators for the ∂max-
equation at isolated singularities. Let a ∈ SingX be an isolated singularity and U
a strongly pseudoconvex neighborhood of a as in Theorem 3.5. Let ϕ be the weight

ϕ = − log
(
d−2
a log−4(1 + d−1

a )
)

if p+ q < n or
ϕ = − log d−2c

a

if p+ q > n. For p+ q 6= n, q ≥ 1, let

T1 : L2
p,q−2(U∗)→ L2

p,q−1(U∗, ϕ)

and
T2 : L2

p,q−1(U∗, ϕ)→ L2
p,q(U

∗)

be the ∂-operators in the sense of distributions (ignore T1 if q = 1).
T1 and T2 are closed densely defined operators, T2 ◦ T1 = 0 and T2 has closed

range of finite codimension in ker ∂max ⊂ L2
p,q(U

∗) by Theorem 3.5.
So, the adjoint operators T ∗1 and T ∗2 are closed densely defined operators with

T ∗1 ◦T ∗2 = 0 and T ∗2 has closed range. Thus, we can use the orthogonal decomposition

L2
p,q−1(U∗, ϕ) = kerT2 ⊕R(T ∗2 ) (115)

to define a bounded solution operator for the ∂-equation.
Let H ⊂ L2

p,q(U
∗) be the closed subspace from Theorem 3.5 if p + q < n or

H = ker ∂max ⊂ L2
p,q(U

∗) if p+ q > n.
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Let
L = {u ∈ DomT2 : u ⊥ kerT2}

be the Banach space with the norm

‖u‖2
L := ‖u‖2

L2
p,q−1(U∗,ϕ) + ‖T2u‖2

L2
p,q(U

∗).

So, the mapping
T2|L : L→ R(T2), u 7→ T2u

is a bounded linear isomorphism. Therefore,

S := (T2|L)−1 : R(T2) ⊂ L2
p,q(U

∗) −→ L ⊂ R(T ∗2 ) ⊂ L2
p,q−1(U∗, ϕ) (116)

is a bounded solution operator for the ∂-equation and it satisfies

T ∗1 ◦ S = 0 (117)

because T ∗1 ◦ T ∗2 = 0.
Since L2

p,q−1(U∗, ϕ) is naturally contained in L2
p,q−1(U∗), we can show by use of

the criterion for precompactness Theorem 3.10 that S is compact as an operator to
the latter space. Note that a priori the subspace H from Theorem 3.5 is contained
in Dom S = R(T2), but we can simply assume that H = Dom S = R(T2).

Theorem 3.12. ([OR], Theorem 5.2) Let p + q 6= n. For q ≥ 2, the ∂-solution
operator S is compact as an operator

S : Dom S = H ⊂ L2
p,q(U

∗)→ L2
p,q−1(U∗).

For q = 1, there exists a bounded operator P0 : H → L2
p,0(U∗) such that S− P0 is a

compact ∂-solution operator

S− P0 : H ⊂ L2
p,1(U∗)→ L2

p,0(U∗).

Proof. Let
L = {f ∈ H : ‖f‖L2

p,q(U
∗) < 1}.

We will show that S(L) is precompact in L2
p,q−1(U∗) if q ≥ 2. To do this, we treat

the singular point a and the strongly pseudoconvex boundary bU separately.
So let χ ∈ C∞cpt(U), 0 ≤ χ ≤ 1, be a smooth cut-off function with compact

support in U such that χ ≡ 1 in a neighborhood of the singular point a. Let us first
show that

L1 := {χS(f) : f ∈ L}

is precompact in L2
p,q−1(U∗) by use of the criterion Theorem 3.10 with M = U∗.

Since S is bounded as an operator to L2
p,q−1(U∗, ϕ), there exists a constant CS > 0

such that

‖u‖L2
p,q−1(U∗,ϕ) ≤ CS

for all u ∈ S(L).
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Let K = suppχ, K∗ = K − {a}. Now then, let ε > 0. Choose Uε ⊂⊂ U∗ such
that

e−ϕ ≥ 1/ε2 (118)

on K∗−Uε. This is possible because K∗−Uε is a neighborhood of the point a if Uε
is big enough and e−ϕ(z) → +∞ as z approaches the singular point a. Then

ε−2

∫
U∗−Uε

|χu|2dVX = ε−2

∫
K∗−Uε

|χu|2dVX

≤
∫
K∗−Uε

|χu|2e−ϕdVX

≤
∫
U∗
|u|2e−ϕdVX ≤ C2

S

for all u ∈ S(L) by use of K = suppχ, (118) and |χ| ≤ 1. Hence

‖v‖L2
p,q−1(U∗−Uε) ≤ εCS

for all v = χu ∈ L1. That proves condition (C) in Theorem 3.10 for the set of forms
L1 = χS(L). It remains to show that L1 is bounded in the graph norm ‖ · ‖Γp,q(U∗),
but that follows from the construction of the operator S:

For u ∈ S(L), we have

‖u‖2
L2
p,q−1(U∗,ϕ) + ‖T2u‖2

L2
p,q(U

∗) < C2
S + 1

and T ∗1 u = 0. Since χ is constant outside a compact subset of U∗, there exists a
constant Cχ > 0 such that

‖χu‖2
L2
p,q−1(U∗,ϕ) + ‖T2(χu)‖2

L2
p,q(U

∗) + ‖T ∗1 (χu)‖2
L2
p,q−2(U∗) < Cχ(C2

S + 1). (119)

Since e−ϕ is bounded from below by a constant Cϕ > 0 on suppχ, we also have

‖χu‖2
L2
p,q−1(U∗) ≤ C−1

ϕ ‖χu‖2
L2
p,q−1(U∗,ϕ),

and (119) yields
‖v‖Γp,q(U∗) < (1 + C−1

ϕ )Cχ(C2
S + 1)

for all v = χu ∈ L1. This completes the proof of precompactness of L1 = χS(L) by
use of Theorem 3.10.

The second step is to show that

L2 = {(1− χ)S(f) : f ∈ L}

is precompact in L2
p,q−1(U∗). But this follows from Kohn’s theory since U has smooth

strongly pseudoconvex boundary and (1 − χ) has support away from the singular
point a. We indicate how this can be seen by use of a resolution of singularities.
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Let V be an open neighborhood of a in U such that

N = V ⊂⊂ {z ∈ U : χ(z) = 1} ⊂⊂ U,

and let

π : M → X

be a resolution of singularities as above. Set U ′ = π−1(U) and N ′ = π−1(N). Again,
let γ := π∗h be the pullback of the Hermitian metric h of X to M which is positive
semidefinite with degeneracy locus E.

As above, give M the structure of a Hermitian manifold with a freely chosen
(positive definite) metric σ. Then

γ . σ

on a neighborhood of U ′ and
γ ∼ σ

on U ′ − N ′ since the degeneracy locus E of γ is compactly contained in π−1(V ).
Since γ = π∗h ∼ σ on U ′ −N ′, we have

L2
p,q−1(U −N) ∼= Lp,q−1

γ (U ′ −N ′) ∼= Lp,q−1
σ (U ′ −N ′).

But the forms in L2 have support in U −N . So, it is enough to show that π∗L2 is
precompact in Lp,q−1

σ (U ′), but this is well-known by Kohn’s basic estimate and the
Sobolev embedding theorem. For the details of this step, we refer to the proof of
[OR], Theorem 5.2.

It remains to consider the case q = 1. Let

Π0 : Lp,0σ (U ′)→ ker ∂ ⊂ Lp,0σ (U ′)

be the Bergman projection (the orthogonal projection onto ker ∂).
We can now define the operator

P0 : H → ker ∂ ⊂ L2
p,0(U∗)

as
P0(f) := (π|−1

U ′−E)∗ ◦ Π0 ◦ π∗
(
(1− χ)S(f)

)
.

Since π : U ′ −E → U∗ is biholomorphic, it is clear that ∂P0(f) = 0, so that S− P0

remains a solution operator for the ∂-equation. Since (1 − χ) ≡ 0 on N , it is clear
that

f 7→ Π0 ◦ π∗
(
(1− χ)S(f)

)
is a bounded map H → ker ∂ ⊂ Lp,0σ (U ′).

On the other hand, (23) yields (because E is thin):

‖(π|−1
U ′−E)∗ω‖L2

p,0(U∗) = ‖ω‖Lp,0γ (U ′) ≤ ‖ω‖Lp,0σ (U ′).
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Hence

(π|−1
U ′−E)∗ : Lp,0σ (U ′)→ L2

p,0(U∗) (120)

is bounded, and we see that P0 is a bounded linear map.
It is now easy to see by Kohn’s basic estimates that (1− χ)S− P0 is compact.

Because of (120), it is enough to show that

π∗L2 − Π0

(
π∗L2

)
(121)

is precompact in Lp,0σ (U ′). But this follows as above by Kohn’s basic estimates
and the Sobolev embedding theorem since U ′ is a domain with smooth strongly
pseudoconvex boundary in the complex manifold M .

On the other hand, the operator χS is compact as in the case q ≥ 2. That
completes the case q = 1.

So, there are compact ∂max-solution operators ker ∂max → Lp,q−1(U∗) on a small
strongly pseudoconvex neighborhood of an isolated singularity if p + q 6= n. This
leads directly to the proof of the second part of Theorem 2.4.

Theorem 3.13. ([OR], Theorem 1.1) In the situation of Theorem 3.6, assume
that the ∂-operator in the sense of distributions

∂max : L2
p,q−1(Ω∗)→ L2

p,q(Ω
∗)

has closed range of finite codimension in ker ∂ ⊂ L2
p,q(Ω

∗) so that the ∂-operator in
the sense of distributions

∂
M

max : Lp,q−1
σ (Ω′)→ Lp,qσ (Ω′)

also has closed range of finite codimension in ker ∂
M

max ⊂ Lp,qσ (Ω′) (by the equivalence
in Theorem 3.6). Recall that q ≥ 1 and either p+ q 6= n or (p, q) = (0, n).

Then there exists a compact ∂-solution operator

S : Im ∂max ⊂ L2
p,q(Ω

∗)→ L2
p,q−1(Ω∗)

exactly if there exists a compact ∂-solution operator

SM : Im ∂
M

max ⊂ Lp,qσ (Ω′)→ Lp,q−1
σ (Ω′).

Proof. The proof follows directly from the proof of Theorem 3.6, see the remark
directly after the proof of Theorem 3.6. Note that by Theorem 3.4, one can consider

the operators ∂mE and ∂−mE on the line bundles LmE and L−mE instead of ∂
M

max.
Now then, a solution operator SmE can be constructed as a combination of operators
involving S and compact ∂-solution operators on a strongly pseudoconvex neighbor-
hood of the exceptional set, so that SmE is compact if S is compact. Conversely, S
can be constructed as a combination of S−mE and the compact solution operators
from Theorem 3.12, so that S is compact if S−mE is compact.
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3.2.3 Compactness of the ∂-Neumann operator

It is now easy to treat the ∂-Neumann operator on a singular space with only isolated
singularities because it can be represented by use of canonical ∂-solution operators.

Theorem 3.14. ([R8], Theorem 1.1, [OR], Theorem 1.1) Let X be a Hermi-
tian complex space of pure dimension n with only isolated singularities, and Ω ⊂⊂ X
with no singularities in the boundary bΩ. Let π : M → X be a resolution of singu-
larities as above and σ any (positive definite) Hermitian metric on M .

Let q ≥ 1 and either p+ q 6= n− 1, n or p = 0. Assume that the ∂-operators in
the sense of distributions with respect to the metric σ on Ω′ = π−1(Ω),

∂
M

p,q : Lp,q−1
σ (Ω′)→ Lp,qσ (Ω′), (122)

∂
M

p,q+1 : Lp,qσ (Ω′)→ Lp,q+1
σ (Ω′) (123)

both have closed range of finite codimension in the corresponding kernels of ∂
M

. Let

NM
p,q = (�Mp,q)

−1 : Lp,qσ (Ω′)→ Lp,qσ (Ω′)

be the ∂-Neumann operator for �Mp,q = ∂
M

p,q(∂
M

p,q)
∗ + (∂

M

p,q+1)∗∂
M

p,q+1 which is bounded
as seen in section 3.1.1

On Ω∗ = Ω− SingX, the operators

∂p,q : Lp,q−1(Ω∗)→ Lp,q(Ω∗),

∂p,q+1 : Lp,q(Ω∗)→ Lp,q+1(Ω∗)

have closed range of finite codimension in the corresponding kernels (Theorem 3.6).
Let

Np,q = �−1
p,q : Lp,q(Ω∗)→ Lp,q(Ω∗)

be the ∂-Neumann operator for �p,q = ∂p,q∂
∗
p,q + ∂

∗
p,q+1∂p,q+1 which is also bounded.

Then: Np,q is compact on Ω∗ exactly if NM
p,q is compact on Ω′.

Proof. By Theorem 3.3, NM
p,q is compact exactly if the canonical ∂

M
-solution oper-

ators

SMp,q : Lp,qσ (Ω′)→ Lp,q−1
σ (Ω′),

SMp,q+1 : Lp,q+1
σ (Ω′)→ Lp,qσ (Ω′)

both are compact. By Theorem 3.13 and Lemma 3.1, this is exactly the case if the
canonical ∂-solution operators

Sp,q : Lp,q(Ω∗)→ Lp,q−1(Ω∗),

Sp,q+1 : Lp,q+1(Ω∗)→ Lp,q(Ω∗)

both are compact. Another application of Theorem 3.3 shows that this in turn is
equivalent to compactness of Np,q.

62



4 Integral formulas

Besides the L2-theory, which plays a very prominent role in Complex Analysis be-
cause of the powerful Hilbert space machinery and its various applications, also other
function spaces are of great interest. One may think of Lp, Hölder or Ck-regularity.
Here, integral formulas turned out to be extremely fruitful on complex manifolds
since the beginning of the 1970s. They do not only give access to such function
spaces, but are also very useful to study properties as compactness of operators, and
they also yield a broad spectrum of applications as for example Hartogs’ extension
theorem in Cn or the approximation of holomorphic functions on strongly pseudo-
convex domains due to Henkin, Kerzman and Lieb (see [L2]). Integral formulas have
the big advantage that regularity properties can be derived directly and often quite
easy from the integral kernels involved as soon as an explicit integral representation
is known. For an introduction to the topic, we refer to [R1] and [LM].

We distinguish two kinds of integral formulas on a singular complex spaces X.
On the one hand, there are formulas which can be applied to differential forms
which are defined just on X itself (i.e. on the regular part of X). We will call such
formulas intrinsic. On the other hand, there are formulas which can be applied only
to forms which admit continuous or smooth extensions to neighborhoods of X in
local embeddings. Such formulas are called extrinsic formulas and are not always
applicable because extendibility of functions and forms is a delicate problem. This
starts with the difference between weakly and strongly holomorphic functions on the
level of holomorphic functions, but is much more complicated in general.

In the present exposition, we focus on intrinsic formulas. Such formulas seem
to be more difficult to construct. One reason is that we cannot expect a Bochner-
Martinelli-Koppelman formula for forms which are just defined (and maybe L2) on
the regular part of the variety, as there are obstructions to local solvability of the
∂-equation in the intrinsic sense on RegX. On the other hand, if we are able to
obtain some integral formulas, then they yield very interesting results as we will see
below in some cases. We summarize briefly the main results from [R4], [R5], [R6]
and from [RZ1], [RZ2]

Finally, we will mention the extrinsic Koppelman formulas of Andersson and
Samuelsson [AS1], [AS2], [AS3], which yield a local Grothendieck-Dolbeault lemma
for forms which extend smoothly to neighborhoods of the variety in local embed-
dings. This means that there are no obstructions to ∂-solvability for intrinsic forms
which can be approximated in a suitable sense by extendable forms. This is in some
sense related to [R7], where we treat a generalization of Friedrich’s extension lemma.

4.1 The Dolbeault lemma at normal crossings

In this section, we present a Dolbeault complex with weights according to normal
crossings, which is a useful tool for studying the ∂-equation on singular complex
spaces by resolution of singularities where normal crossings appear naturally. The
major difficulty is to prove that this complex is locally exact. This is done by use
of a local ∂-solution operator which involves only Cauchy’s integral formula and
behaves well for Lp-forms with weights according to normal crossings.
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As before, let X be a Hermitian complex space of pure dimension n, and π :
M → X a resolution of singularities. So, we may assume that M is a complex
manifold of dimension n, π is a proper analytic map which is a biholomorphism
outside the exceptional set

E = |π−1(SingX)|,

and E consists only of normal crossings. Since we will treat a local question, we
can assume that X is an analytic variety in CN and that X∗ = RegX carries the
metric induced by the canonical embedding ι : X ↪→ CN . We denote by dVX the
volume element on X∗, and by dVM the volume element on M . We can assume that
π preserves orientation.

Let Q ∈ E be a point on the exceptional set. Then there is a neighborhood U of
Q in M with local coordinates z1, ..., zn such that we can assume Q = 0 ∈ U ⊂ Cn,
and

E ∩ U = {z ∈ U : z1 · · · zm = 0}

for a certain integer m, 1 ≤ m ≤ n. We can assume furthermore that z1, ..., zn are
Euclidean coordinates.

Then there exists by Lemma 2.1 in [R4] a holomorphic function J ∈ O(U),
vanishing exactly on E ∩ U , such that

|J |2 = det JacR π = det( tJacCπ · JacC π) (124)

We may write J = zw = zw1
1 · · · zwnn , where w = (w1, ..., wn) ∈ Zn is a multi-index

with w1, ..., wm ≥ 1 and wm+1 = ... = wn = 0. (124) has to be understood in the
following sense: π : U \ E → RegX is a diffeomorphism which has a well defined
determinant of the real Jacobian JacR π that extends as |J |2 to U . By choosing local
holomorphic coordinates on RegX one can get the right hand side of (124) where
JacC π is the complex Jacobian of π as a mapping π : Cn → CN . Since z1, ..., zn are
Euclidean coordinates and X carries the metric induced by the Euclidean metric in
CN , it follows that

π∗dVX = (det JacR π) dVM = |J |2dVM . (125)

This is a refined version of (21) where we simply used a continuous function g in
place of the holomorphic function J . For more details on (124) and (125), see section
2 in [R9].

Now, let 1 ≤ p ≤ ∞, and f ∈ Lp(G) where G = π(U)∗ = Reg π(U) ⊂ X∗. Then
it follows from (125) that∫

U\E
|π∗f |p|J |2dVM =

∫
G

|f |pdVX ,

and this yields that (in multi-index notation for |z|2w/p):

f ∈ Lp(G) ⇔ |J |2/pπ∗f = |z|2w/pπ∗f ∈ Lp(U).

This gives reason to the following construction:
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Definition 4.1. Let D ⊂ Cn be an open set, 1 ≤ p ≤ ∞ and s = (s1, ..., sn) ∈ Rn a
real multi-index. Then, we define:

|z|sLp0,q(D) := {f measurable on D : |z|−sf ∈ Lp0,q(D)}.

|z|sLp0,q(D) is a Banach space with the norm

‖f‖|z|sLp0,q(D) := ‖|z|−sf‖Lp0,q(D).

We use the multi-index notation |z|−s = |z1|−s1 · · · |zn|−sn.

The main objective of the paper [R5] was to study the ∂-equation on |z|sLp0,q(D).

But that does not make sense in general for the usual ∂-operator. It is therefore
adequate to introduce the following weighted operator (∂ has to be understood
always in the sense of distributions):

Definition 4.2. Let k = (k1, ..., kn) ∈ Zn be an integer-valued multi-index, and let
f be a measurable (0, q)-form on D ⊂ Cn such that

z−kf ∈ L1
(0,q),loc(D) and ∂

(
z−kf

)
∈ L1

(0,q+1),loc(D).

Then, we set
∂kf := zk∂

(
z−kf

)
∈ |z|kL1

(0,q+1),loc(D).

Note that ∂kf = 0 exactly if ∂(z−kf) = 0. It is clear that ∂k ◦ ∂k = 0. We will
now use the abstract Theorem of de Rham in order to establish a link between the
∂k-equation ∂kg = f in |z|sLp0,∗(D) and certain cohomology groups on D. The right
coherent analytic sheaves to look at are the following:

Definition 4.3. For 1 ≤ j ≤ n, let Ij = (zj) be the sheaf of ideals of {zj = 0} in
Cn . If k = (k1, ..., kn) ∈ Zn is an integer-valued multi-index, let

IkO = Ik1
1 · · · Iknn O

as a subsheaf of the sheaf of germs of meromorphic functions.

Note that we could as well consider the usual ∂-operator on sections of a holo-
morphic line bundle Lk = Lk1

1 ⊗ · · · ⊗ Lknn such that IkO ∼= O(Lk), where O(Lk) is
the sheaf of germs of holomorphic sections in Lk. This point of view is equivalent
and wouldn’t influence the presentation much.

We need to choose the right operator ∂k for given values of p and s. k =
k(p, s) should be the maximal value such that |z|sLploc ⊂ |z|kL1

loc. We will see below
(Theorem 4.6) that this is in fact a good choice. So:

Definition 4.4. Let 1 ≤ p ≤ ∞ and s be real numbers. Then we call

k(p, s) := max{m ∈ Z : |z1|sLploc(C) ⊂ |z1|mL1
loc(C)}

the ∂-weight of (p, s). For s = (s1, ..., sn) ∈ Rn, let k(p, s) = (k1, ..., kn) ∈ Zn be
given by kj := k(p, sj), or, equivalently,

k(p, s) := max{m ∈ Zn : |z|sLploc(C
n) ⊂ |z|mL1

loc(Cn)}.
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Then, we define for 0 ≤ q ≤ n the sheaves |z|sLp0,q by:

|z|sLp0,q(U) := {f ∈ |z|sLp(0,q),loc(U) : ∂k(p,s)f ∈ |z|sLp(0,q+1),loc(U)}

for open sets U ⊂ Cn (it is a presheaf which is already a sheaf).

The ∂-weight can be computed explicitly as follows:

Lemma 4.5. ([R5], Lemma 2.2) Let 1 ≤ p ≤ ∞ and s be real numbers, and
k(p, s) the ∂-weight of (p, s) according to Definition 4.4. Then

k(p, s) =

{
max{m ∈ Z : m < 2 + s− 2/p} , p 6= 1,
max{m ∈ Z : m ≤ 2 + s− 2/p} , p = 1.

(126)

Now then, the main result from [R5] reads as:

Theorem 4.6. ([R5], Theorem 1.5) For 1 ≤ p ≤ ∞ and s ∈ Rn, let k(p, s) ∈ Zn

be the ∂-weight according to Definition 4.4. Then:

0→ IkO ↪→ |z|sLp0,0
∂k−−→ |z|sLp0,1

∂k−−→ · · · ∂k−−→ |z|sLp0,n → 0 (127)

is an exact (and fine) resolution of IkO.

By the abstract Theorem of de Rham, this implies that

Hq(U, IkO) ∼=
ker (∂k : |z|sLp0,q(U)→ |z|sLp0,q+1(U))

Im (∂k : |z|sLp0,q−1(U)→ |z|sLp0,q(U))

for open sets U ⊂ Cn. Thus, we can study the equation ∂kg = f on U by investi-
gating the groups Hq(U, IkO). Due to the local nature of Theorem 4.6, it is easy
to deduce similar statements on complex manifolds, which will be a helpful tool for
studying the ∂-equation on singular spaces as indicated in the beginning. This is
done e.g. in the paper [R6] which we will discuss later.

For the proof of Theorem 4.6, one needs to solve the ∂-equation locally with
weights according to normal crossings. It is adequate to do this by using a weighted
version of the inhomogeneous Cauchy integral formula in one complex variable and
to integrate just over lines parallel to the Cartesian coordinates. Following this idea,
we were able to construct a homotopy formula for the ∂k-equation on polydiscs which
also yields integral solution operators satisfying the regularity properties needed in
Theorem 4.6.

Let us explain briefly the connection between our ∂-weight and the weighted
Cauchy formula. Let D ⊂⊂ C be a bounded domain in the complex plane and
k ∈ Z. For a measurable function f on D, we define

IDk f(z) :=
zk

2πi

∫
D

f(ζ)
dζ ∧ dζ
ζk(ζ − z)

, (128)

provided, the integral exists. Note that

∂

∂z
IDk f = f

in the sense of distributions if f(ζ)/ζk is integrable in ζ over D.
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Theorem 4.7. ([R5], Theorem 2.1) Let D ⊂⊂ C be a bounded domain, 1 ≤
p ≤ ∞ and s real numbers, and let k = k(p, s) be the ∂-weight of (p, s) according to
Definition 4.4. Then IDk is a bounded linear operator

IDk : |z|sLp(D)→ |z|s+1−εLp(D) for all ε > 0. (129)

This statement is the main ingredient in the construction of homotopy formulas
for the ∂k-equation which is based on a quite sophisticated iteration procedure.
Besides that, we can see in Theorem 4.7 that there is a certain gain of regularity
which we do not need for the proof of Theorem 4.6. Nevertheless, this gain of
regularity can be incorporated in the ∂k-homotopy formula (see Theorem 4.4 in [R5]),
and it is sometimes necessary to use this extra information to understand the ∂-
equation in the Lp-sense completely on a singular space. The results from [R5] which
we will discuss in the next section depend on these more precise statements. Note
in this context that the estimate for the boundedness of the operator (129) is not
uniform in ε so that the case ε = 0 cannot be included. There are counterexamples
for that kind of regularity.

4.2 Lp-cohomology of cones with isolated singularities

Let X ⊂ CN be a homogeneous variety of pure dimension n with an isolated singular-
ity in the origin 0 ∈ CN , and let G ⊂⊂ X be a strongly pseudoconvex neighborhood
of 0 in X. One can chose e.g. the intersection of X with a ball centered at the origin.
Let Y ⊂ CPn−1 be the projective variety associated to X, i.e. X is the affine cone
over the projective non-singular variety Y . We consider X as a Hermitian space
with the restriction of the Euclidean metric. Let X∗ = X − {0} and G∗ = G− {0}.

In this section, we present the results from [R6] where we studied the obstruc-
tions to solvability of the ∂-equation in the Lp-sense at the isolated singularity for
0 ≤ p ≤ ∞. This information is described by the Lp-cohomology groups H0,q

(p)(G
∗)

formed as the space of ∂-closed Lp-forms modulo the ∂-Lp-exact forms. By the
∂-equation, we always mean the ∂-equation in the sense of distributions. We have
chosen the domain G to have a strongly pseudoconvex boundary so that there are
no obstructions to solvability of the ∂-equation in the Lp-sense coming from bG.

To be more precise, let | · |X and dVX be the metric and volume form on X∗

induced by the restriction of the Euclidean metric from CN . Now, if V ⊂ X∗ is an
open set and ω a measurable (r, q)-form on V , we set

‖ω‖p
Lpr,q(V )

:=

∫
V

|ω|pXdVX , for 1 ≤ p <∞,

‖ω‖L∞r,q(V ) := ess sup
z∈V
|ω|X(z).

As usually, we denote by Lpr,q(V ) the space of measurable (r, q)-forms ω on V such
that ‖ω‖Lpr,q(V ) < ∞. We are interested in the following cohomology groups, where

the ∂-equation has to be interpreted in the sense of distributions. Due to the incom-
pleteness of the metric, different extensions of the ∂-operator on smooth forms may
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lead to different cohomology groups as we have seen in the case of L2-cohomology.
For an open set V ⊂ X∗, let

Hr,q
(p)(V ) :=

{ω ∈ Lpr,q(V ) : ∂ω = 0}
{ω ∈ Lpr,q(V ) : ∃f ∈ Lpr,q−1(V ) : ∂f = ω}

.

The key for the understanding of these Lp-cohomology groups lies again in a
resolution of singularities which can be achieved in this simple situation by a single
blow up of the origin. We will restrict our attention to the cohomology of (0, q)-forms.
The (r, q)-cohomology can be computed similarly without additional difficulties.

Let π : M → X be the resolution of X obtained by blowing up the origin in
CN . Then the exceptional set E = π−1({0}) is canonically isomorphic to the non-
singular projective variety Y associated to X. M itself is canonically isomorphic to
the universal line bundle U → Y over the projective variety Y . Let D = π−1(G)
and denote by I the sheaf of ideals of the exceptional set E in M .

In this situation, we constructed in [R6] integral operators on X that look like
the weighted Cauchy formulas in (128) on complex lines through the origin in X (or
on the fibers of the universal line bundle U → Y , respectively). The weight one has
to choose depends on p and on the degree of forms (0, q). By use of the estimates
from [R5] (see Theorem 4.7 above), it is shown in [R6] that

H0,q
(p)(G

∗) ∼= Hq(D, IkO), (130)

where k = k(p, q) is an integer which is increasing in p, and IkO is the sheaf of germs
of holomorphic functions which vanish to the order k on the exceptional set E. We
will specify k(p, q) more precisely below.23 In the case p = 2, one has k(2, q) = 0 for
all 1 ≤ q < n − 1, a statement which coincides with our L2-cohomology Theorem
2.14. To understand the connection, note that here |Z| = Z so that L|Z|−Z is the
trivial line bundle. But then KM ⊗O(|Z| − Z) = KM is just the canonical sheaf on
M and Rsπ∗KM = 0 for s ≥ 1 by Takegoshi’s vanishing theorem. This is equivalent
to

Hq
E(D,O(Z − |Z|)) = Hq

E(D,O) = 0

for q < n (see section 2.3.4). Thus, (130) is for p = 2 in fact equivalent to the
statement of Theorem 2.14 where we treated the ∂-equation in the L2-sense of dis-
tributions on Hermitian spaces with isolated singularities.

The motivation to study the groups H0,q
(p)(G

∗) for 1 ≤ p ≤ ∞ in the paper [R6]

was as follows. In view of the large difficulties in computing the L2-cohomology
explicitly, it seems reasonable to gain a broader view and better understanding by
also considering Lp-Dolbeault cohomology groups for arbitrary 1 ≤ p ≤ ∞. Besides
the L2-results mentioned above, only the L∞-case has been addressed in a number of
publications: [AZ1], [AZ2], [FG], [R2], [R4], [RZ1], [SZ]. These papers treat Hölder
regularity of the ∂-equation provided the right-hand side of the equation is bounded.
This implies the solution of the Cauchy-Riemann equations in the L∞-sense. In view
of those results, the paper [R6] is an attempt to embed the L2 and L∞-case into the
broader spectrum of an Lp-theory.

23Some special cases of p, q have to be excluded from the statement as we will see later.
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In this spirit, it is very interesting to understand (130) better. Since D can
be interpreted as a strongly pseudoconvex neighborhood of the zero section in the
universal bundle U → Y , we can represent the groups Hq(D, IkO) as a direct sum
of cohomology groups on the compact projective manifold Y by a method which
appears in [R4], Theorem 5.1:

H0,q
(p)(G

∗) ∼= Hq(D, Ik(p,q)O) ∼=
⊕

µ≥k(p,q)

Hq(Y,O(U−µ)). (131)

Since U−1 = U∗ is a positive holomorphic line bundle24, we know that the groups
on the right hand side of (131) vanish for µ big enough by a well-known theorem of
Grauert (see [G2]).

The representation (131) has nice implications. Since Y is a compact complex
manifold and Hq(Y,O(U−µ)) = 0 for µ ≥ µ0 where µ0 is an index big enough, it
follows that there are only finitely many obstructions to solving the ∂-equation in
the Lp-sense. Furthermore, the index k(p, q) is increasing in p so that the number
of obstructions is decreasing in p. This observation is in accordance with a result
of Fornæss, Øvrelid and Vassiliadou saying that the ∂-equation is solvable in the
L2-sense at arbitrary singularities for ∂-closed forms that vanish to an order high
enough in the singular set (see [FOV1]). The same is true in the Lp-sense as shown
by Andersson and Samuelsson in [AS1], [AS3].

If Y is specified explicitly, then we can use (131) to compute the obstructions
explicitly (see the examples in [R6], section 6). E.g. if Y is a compact Riemann
surface, then we can compute the dimension of the groups on the right-hand side of
(131) by the Riemann-Roch theorem. One can deduce for instance:

Theorem 4.8. ([R6], Theorem 6.3) Let Y ⊂ CPN−1 be a compact Riemann
surface, X its affine cone in CN and G∗ = X ∩B1(0)− {0}. Then:

H0,1
(2) (G∗) = {0} ⇔ Y ∼= CP1.

It remains to explain (130) and the main results from [R6] more precisely, in
particular by specifying the exponent k = k(p, q). By use of the isomorphism in
(131) on the right-hand side, the first main statement from [R6] reads as:

Theorem 4.9. ([R6], Theorem 1.1) Let X, Y and U as above, G ⊂⊂ X strongly
pseudoconvex such that 0 ∈ G, G∗ = G \ {0}, D = π−1(G) and 1 ≤ p ≤ ∞,
1 ≤ q ≤ n = dimX. Set

a(p, q, n) :=

{
max{k ∈ Z : k < 1 + q − 2n/p} , p 6= 1,
max{k ∈ Z : k ≤ 1 + q − 2n/p} , p = 1.

Then there exists an injective homomorphism

H0,q
(p)(G

∗) ↪→ Hq(D, Ia(p,q,n)O) ∼=
⊕

µ≥a(p,q,n)

Hq(Y,O(U−µ)). (132)

24The universal bundle of a projective variety is a negative holomorphic line bundle. This follows
e.g. by a criterion of Grauert (see [G2]) from the fact that the zero section of U has a strongly
pseudoconvex neighborhood.
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Note that the right hand side in (132) is finite-dimensional by Grauert’s theorem
mentioned above because U is a negative holomorphic line bundle. Dimensional
reasons imply that H0,n

(p) (G∗) = {0} for all 1 ≤ p ≤ ∞.
The proof of Theorem 4.9 depends on a quite careful analysis of the behavior

of Lp-forms under the blow up π : M → X (see [R6], Lemma 2.1) and on a spe-
cial extension theorem for extension of the ∂-equation over the exceptional set E
(see [R6], Lemma 3.6). Another essential tool is exactness of the ∂k-complex in The-
orem 4.6 with the weight k = a(p, q, n), and this is the origin of the number a(p, q, n).

The second main statement from [R6] reads as:

Theorem 4.10. ([R6], Theorem 1.2) Let X, Y and U as above, and let G ⊂⊂ X
be an open set such that 0 ∈ G, G∗ = G \ {0}, D = π−1(G) and 1 ≤ p ≤ ∞,
1 ≤ q ≤ n = dimX. Set

c(p, q, n) := max{k ∈ Z : k ≤ 1 + q − 2n/p}.

Then there exists an injective homomorphism⊕
µ≥c(p,q,n)

Hq(Y,O(U−µ)) ∼= Hq(D, Ic(p,q,n)O) ↪→ H0,q
(p)(G

∗). (133)

Note that
a(p, q, n) = c(p, q, n)

if 2n/p /∈ Z or p = 1, and that

c(p, q, d) = a(p, q, d) + 1

in all other cases. So, there remains a little uncertainness about the contribution of
Hq(Y,O(U−a(p,q,n))), for example if p = 2.

On the other hand, this doesn’t matter if a(p, q, n) < 0 and q < n − 1 because
in that case Kodaira’s vanishing theorem implies that Hq(Y,O(U−a(p,q,n))) = {0}
because U is a negative holomorphic line bundle (see e.g. [W], Theorem VI.2.4).
So, we obtain (130) with k(p, q) = a(p, q, n) = c(p, q, n) in the generic cases where
the latter two coincide. For p = 2 and q < n − 1, we can use k(2, q) = 0 because
Kodaira’s vanishing theorem yields Hq(Y, U−µ) = {0} for all µ < 0.

The proof of Theorem 4.10 depends again heavily on the analysis of the behavior
of the ∂-equation in the Lp-sense under the blow-up. Moreover, another crucial tool
enters the proof of Theorem 4.10, namely an integration along the fibers of the
holomorphic line bundle U . We set up an integral solution formula for ∂-closed
forms with compact support which looks like a weighted Cauchy formula (128) on
the fibers. This idea had been used before by E. S. Zeron and the author in [RZ1]
to construct an explicit ∂-integration formula on weighted homogeneous varieties.
For the proof of Theorem 4.10, it is essential to exploit the regularity property of
the weighted Cauchy formula presented in Theorem 4.7.
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The integral formula from the proof of Theorem 4.10 yields as a byproduct:

Theorem 4.11. Let X and Y be as above, G ⊂⊂ X an open subset, G∗ = G \ {0},
and 1 ≤ p ≤ ∞, 1 ≤ q ≤ dimX. Let ω ∈ Lp0,q(G∗) ∩ ker ∂ with compact support in

G. Then there exists η ∈ Lp0,q−1(G∗) such that ∂η = ω.

Using Theorem 4.11 in case q = 1 and Hartogs’ extension theorem on normal
Stein spaces with isolated singularities, a statement that we will discuss later, it is
easy to deduce vanishing of the first cohomology with compact support:

Theorem 4.12. Let X and Y be as above, G ⊂⊂ X an open subset, G∗ = G \ {0},
and 1 ≤ p ≤ ∞. Then:

H0,1
(p),cpt(G) :=

{ω ∈ Lp0,1(G∗) : ∂ω = 0, suppω ⊂⊂ G}
{ ω ∈ Lp0,1(G∗) : ∃f ∈ Lp(G∗) : ∂f = ω, supp f ⊂⊂ G}

= {0}.

4.3 Weighted homogeneous varieties

The idea of integrating along complex lines which we used in the proof of Theorem
4.10 can be applied in much more general situations and leads to solutions of the
∂-equation in the Lp-sense as in Theorem 4.11 on appropriate spaces. This was done
by E. S. Zeron and the author in [RZ1] and [RZ2]. The class of spaces which we
considered are the so-called weighted homogeneous varieties, and we were able to
allow arbitrary singularities.

Definition 4.13. Let β ∈ Zn be a fixed integer vector with strictly positive entries
βk ≥ 1. A holomorphic polynomial Q(z) on Cn is said to be weighted homoge-
neous of degree d ≥ 1 with respect to β if the following equality holds for all s ∈ C
and z ∈ Cn:

Q(sβ ∗ z) = sdQ(z), with the action: (134)

sβ ∗ (z1, z2, ..., zn) := (sβ1z1, s
β2z2, ..., s

βnzn). (135)

An algebraic subvariety Σ in Cn is said to be weighted homogeneous with respect
to β if Σ is the zero locus of a finite number of weighted homogeneous polynomials
Qk(z) of (maybe different) degrees dk ≥ 1, but all of them with respect to the same
fixed vector β.

Let Σ ⊂ Cn be any subvariety. As above, we consider Σ as a Hermitian complex
space with the restriction of the Euclidean metric on Σ∗ = Σ − Sing Σ. We denote
by dVΣ the induced volume form and by | · |Σ the induced pointwise norm on the
Grassmannian ΛT ∗Σ∗. Any Borel-measurable (0, q)-form ω on Σ∗ admits a repre-
sentation ω =

∑
J fJdzJ , where the coefficients fJ are Borel-measurable functions

on Σ∗ which satisfy the inequality |fJ(z)| ≤ |ω(z)|Σ for all points z ∈ Σ∗ and multi-
indexes |J | = q. Note that such a representation is by no means unique. We refer
to Lemma 2.2.1 in [R2] for a more detailed treatment of that point. For 1 ≤ p <∞,
we also introduce the Lp-norm of a measurable (0, q)-form ω on an open set U ⊂ Σ∗

via the formula:

‖ω‖Lp0,q(U) :=

(∫
U

|ω|pΣ dVΣ

)1/p

.
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The main result of the paper [RZ2] is as follows, the ∂-operator has to be un-
derstood again in the sense of distributions:

Theorem 4.14. ([RZ2], Theorem 2) Let Σ be a weighted homogeneous subvariety
of Cn with respect to a given vector β ∈ Zn, where n ≥ 2 and all entries βk ≥ 1.
Consider the class of all (0, q)-forms ω given by

∑
J fJdzJ , where q ≥ 1, the coef-

ficients fJ are all Borel-measurable functions in Σ, and z1, ..., zn are the Cartesian
coordinates of Cn. Let σ ≥ −q be any fixed integer. The operator Sσq below is well
defined on Σ for all forms ω which are essentially bounded and have compact support,

Sσqω(z) :=
∑
|J |=q

ℵJ
2πi

∫
u∈C

fJ(uβ ∗ z)
uσ(uβJ )du ∧ du

u (u− 1)
(136)

with ℵJ =
∑

j∈J,K=J\{j}

βjzj dzK
sign(j,K)

and βJ =
∑
j∈J

βj. (137)

Observe that the multi-indexes J and K are both ordered in an ascending way and
that sign(j,K) is the sign of the permutation used for arranging the elements of the
q-tuple (j,K) in ascending order. The form Sσq (ω) is a solution of the ∂-equation

ω = ∂Sσq (ω) on the regular part Σ∗ of Σ whenever ω is ∂-closed on Σ∗.

Theorem 4.14 for (0, 1)-forms, i.e. the case q = 1, had been treated before in
[RZ1], Theorem 2. Note that Σ is allowed to have an arbitrary singular locus. The
main point of the proof of Theorem 4.14 is to show that ω = ∂Sσq (ω) if ω is ∂-closed.
That is a local statement. So, we cover Σ by charts which we call generalized cones.
When one blows up these cones to complex manifolds, one can realize that the
integral formula (136) looks essentially like the inhomogeneous Cauchy formula in
one complex variable, and one can deduce the statement by use of classical results.

Similar techniques and a slight modification of the equations (136) and (137)
can be used to produce a ∂-solution operator with Lp-estimates on homogeneous
affine varieties with arbitrary singular locus.

Theorem 4.15. ([RZ2], Theorem 3) Let Σ be a pure d-dimensional homogeneous
subvariety of Cn (a cone), where n ≥ 2 and each entry βk = 1 in Definition 4.13. Fix
a real number 1 ≤ p ≤ ∞ and an integer 1 ≤ q ≤ d. Consider the class Lp0,q(Σ) of
all (0, q)-forms ω given by

∑
J fJdzJ , where the coefficients fJ are all Lp-integrable

functions in Σ, and z1, ..., zn are the Cartesian coordinates of Cn. Choose σ ∈ Z to
be the smallest integer such that

σ ≥ 2d− 2

p
+ 1− q. (138)

Then the operator Sσq defined below is well defined almost everywhere on Σ for
all forms ω which lie in Lp0,q(Σ) and have compact support on Σ:

Sσqω(z) :=
∑
|J |=q

ℵJ
2πi

∫
u∈C

fJ(uz)
uσ uq du ∧ du
u (u− 1)

, (139)

where ℵJ =
∑

j∈J,K=J\{j}

q zj dzK
sign(j,K)

.
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The form Sσq (ω) is a solution of the ∂-equation ω = ∂Sσq (ω) on the regular part Σ∗

of Σ whenever ω is ∂-closed on Σ∗.
Finally, if we assume that the support of ω is contained in an open ball BR of

radius R > 0 and center at the origin, then there exists a strictly positive constant
CΣ(R, σ) which does not depend on ω and such that:∥∥Sσq (ω)

∥∥
Lp0,q−1(Σ∩BR)

≤ CΣ(R, σ) · ‖ω‖Lp0,q(Σ). (140)

The L2-version of Theorem 4.15 for (0, 1)-forms, i.e. the case q = 1, had been
treated before in [RZ1], Theorem 4. The case p =∞ in Theorem 4.15 is a corollary
of Theorem 4.14 because the formulas (139) and (136) coincide in the homogeneous
case (where all coefficients βJ = q). The proof of Theorem 4.15 is based on an
analysis of the behavior of norms under blowing up the origin and the Lp-regularity
of the weighted Cauchy formula.

The essential innovation of Theorem 4.15 is that it gives a solution operator
for forms with compact support in the Lp-sense, not only in the L2-sense, on a
homogeneous space with arbitrary singular locus.

4.4 Hölder regularity

Theorem 4.15 is a nice example of how we can derive statements about the ∂-equation
in various function spaces from integral formulas. Besides the statement about the
∂-equation in the Lp-sense, we can also deduce very interesting statements about
Hölder regularity from the integral formulas (136) and (139) in Theorem 4.14 and
Theorem 4.15, respectively. If the equation ∂g = λ is solvable in the L∞-sense for a
∂-closed (0, 1)-form λ at an isolated singularity of a homogeneous variety, then there
exists a solution g which is Hölder-α-continuous for all 0 < α < 1. We will discuss
this result from [RZ1] in this section. In view of what was known about Hölder
regularity of the ∂-equation on singular complex spaces before, this is a surprisingly
strong result. It can be interpreted as an indication that there should hold also some
subelliptic estimates for the complex Laplacian.

Let us shortly recall what was known about the solution of the ∂-equation on
singular spaces in the L∞-sense before [RZ1]. Again, let Σ be a singular subvariety
of the space Cn which carries the restriction of the Euclidean metric, and let λ be
a bounded ∂-closed differential form on the regular part of Σ. Fornæss, Gavosto
and the author of this thesis have developed a general technique for solving the ∂-
equation λ = ∂g in the L∞-sense with some Hölder-α-estimates on the regular part of
Σ, which could be applied successfully to varieties of the form {zm = wk1

1 · · ·w
kn−1

n−1 } ⊂
Cn (see [FG] and [R2]). For such varieties, the best Hölder regularity α that was
obtained is usually << 1. If e.g. m > 1 and one of the kj = 1, then α = 1/m is the
best regularity that was achieved. The method exploits the fact that such a variety
can be considered as an m-sheeted analytic covering of Cn−1, so that one can project
the problem by use of symmetric combinations to that complex number space, solve
the ∂-equation with certain weights in Cn−1, and construct the function g from the
pull-back of such solutions. There is a certain chance for this strategy to work in
general because any locally irreducible complex space can be represented locally as
a finitely sheeted analytic covering over a complex number space (cf. [R2] for more).
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On the other hand, Acosta, Soĺıs and Zeron have developed an alternative tech-
nique for solving the ∂-equation in the L∞-sense with some Hölder estimates at all
kinds of isolated singularities of hypersurfaces in C3, i.e. rational double points (see
[AZ1], [AZ2] and [SZ]). They use the fact that all such varieties can be represented
as quotient varieties in order to pull-back the problem into a complex number space
and solve the equation also by use of symmetric combinations. This strategy has
the drawback that not all varieties admit such a representation. Here again, the
optimal Hölder regularity obtained is << 1.

Then, E. S. Zeron and the author constructed in [RZ1] the following integral
formula on weighted homogeneous varieties. All the notations are taken from the
previous section.

Theorem 4.16. ([RZ1], Theorem 2) Let Σ be a weighted homogeneous subvariety
of Cn with respect to a given vector β ∈ Zn, where n ≥ 2 and all entries βk ≥ 1.
Consider a (0,1)-form λ given by

∑
k fkdzk, where the coefficients fk are all Borel-

measurable functions on Σ, and z1, ..., zn are the Cartesian coordinates of Cn. The
following function is well defined for almost all z ∈ Σ if the form λ is essentially
bounded and has compact support in Σ:

g(z) :=
n∑
k=1

βk
2πi

∫
w∈C

fk(w
β ∗ z)

(wβkzk) dw ∧ dw
w (w − 1)

. (141)

If λ is ∂-closed on the regular part Σ∗ of Σ, then the function g is a solution of the
∂-equation λ = ∂g on Σ∗.

Later, we gave more general formulas in [RZ2], and Theorem 4.16 reappears
then as a special case of Theorem 4.14 as discussed above.

Recall the remarks on the proof of Theorem 4.14. We cover Σ by charts which
we call generalized cones. When one blows up these cones to complex manifolds, one
can realize that the integral formula (141) looks essentially like the inhomogeneous
Cauchy formula in one complex variable, and one can deduce the statement by use of
classical results. On the other hand, this gives also a hint towards Hölder regularity.
Assume that Σ is homogeneous with an isolated singularity at the origin. Then
the formula looks essentially like the Cauchy formula on complex lines through the
origin. Since λ is essentially bounded, one can deduce that g is Hölder-α-continuous
on complex lines through the origin for all 0 < α < 1, and this regularity is uniform
over all such lines. If we like to deduce Hölder regularity for g on Σ, we also
need to investigate the other directions. This can be done conveniently on the
generalized cones mentioned above. Here, a generalized cone looks as follows. Let
Y ⊂ CPn−1 be the projective variety associated to Σ. Then a generalized cone is
simply the affine cone over an open set in Y which is biholomorphically equivalent
to a domain in Cdim Σ−1. On such a cone, we obtain Hölder-α-estimates for all
0 < α < 1 in directions orthogonal to complex lines through the origin, where the
Hölder estimates are bounded by a constant which is vanishing to order 1 when
we approach the origin (cf. the anisotropic Hölder estimates [RZ1], Lemma 5).
Putting all the estimates together, we obtain the Theorem 4.17 below.
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We need to specify the metric on Σ. Given a pair of points z and w in Σ,
we define distΣ(z, w) to be the infimum of the length of piecewise smooth curves
connecting z and w in Σ. It is clear that such curves exist in this situation and that
the length of each curve can be measured either in Σ or in the ambient space Cn

because both measures coincide as Σ∗ carries the induced norm.

Theorem 4.17. ([RZ1], Theorem 3) In the situation of Theorem 4.16, suppose
that Σ is homogeneous (a cone) and has got only one isolated singularity at the
origin of Cn, so that each entry βk = 1 in Definition 4.13. Moreover, assume that
the support of the form λ is contained in a ball BR of radius R > 0 and center at the
origin. Then, for each parameter 0 < ϑ < 1, there exists a constant CΣ(R, ϑ) > 0
which does not depend on λ such that the following inequality holds for the function
g given in (141) for all points z and w in the intersection BR ∩ Σ,

|g(z)− g(w)| ≤ CΣ(R, ϑ) · distΣ(z, w)ϑ · ‖λ‖∞. (142)

The notation ‖λ‖∞ stands for the essential supremum of |λ(·)|Σ on Σ; recall that
λ is bounded and has compact support.

We should mention that Theorem 4.17 is a significant improvement of the known
results about Hölder regularity. Consider for example {z2 = w1w2} ⊂ C3. For
this variety, Fornæss-Gavosto and Acosta–Solis–Zeron were only able to prove the
statement of Theorem 4.17 for each ϑ < 1/2 (see [AZ1, AZ2, FG]). The author
obtained in [R2] also the case ϑ = 1/2 which is still far from the result discussed
above. Also the degrees of Hölder regularity that appear in [R2], [AZ1], [AZ2] and
[SZ] for other varieties are far away from the result in Theorem 4.17.

4.5 Extrinsic Koppelman formulas and Friedrichs’
extension theorem

Finally, some words about extrinsic integral formulas on singular spaces are in order.
By an extrinsic formula we mean an integral formula which applies to differential
forms which have smooth extensions to neighborhoods of the singular space in local
embeddings. Such formulas were first introduced by Henkin and Polyakov for com-
plete intersections in [HP]. A more comprehensive theory has been created recently
by Andersson and Samuelsson in [AS1], [AS2], [AS3]. Their results comprise ex-
trinsic Koppelman formulas which yield a local Grothendieck-Dolbeault lemma for
forms which extend smoothly to neighborhoods of the variety in local embeddings.
So, in contrast to the intrinsic setting (i.e. studying the ∂-equation in the Lp-sense
on the regular part of a Hermitian space), there are no obstructions to solving the
∂-equation locally in an appropriate extrinsic sense. But, this means also that there
are no obstructions to ∂-solvability for intrinsic forms which can be approximated
in a suitable sense by extendable forms. This is in some sense related to [R7], where
we treat a generalization of Friedrich’s extension lemma.

To explain that more precisely, let us recall the Koppelman formulas of Anders-
son and Samuelsson from [AS1]. Let X be an analytic space of pure dimension d
and let OX be the structure sheaf of (strongly) holomorphic functions. Locally X
is a subvariety of a domain Ω in Cn and then OX = O/J , where J is the sheaf in
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Ω of holomorphic functions that vanish on X. In the same way we say that φ is a
smooth (0, q)-form on X, φ ∈ E0,q(X), if given a local embedding, there is a smooth
form in a neighborhood in the ambient space such that φ is its pull-back to Xreg.
It is well-known that this defines an intrinsic sheaf EX0,q. It was proved by Henkin
and Polyakov in [HP] that if X is embedded as a reduced complete intersection in a
pseudoconvex domain and φ is a ∂-closed smooth form on X, then there is a solution
ψ to ∂ψ = φ on Xreg. It has been an open question since then wether this holds
more generally. This question has been answered in the affirmative by Andersson
and Samuelsson for any Stein space X (see [AS1], [AS2] and [AS3]). At this place,
we only mention their main formula on pseudoconvex domains in Cn.

Theorem 4.18. ([AS1], Theorem 1.1) Let Z be an analytic subvariety of pure
dimension of a pseudoconvex domain Ω ⊂ Cn and assume that ω ⊂⊂ Ω. There are
linear operators K : E0,q+1(Z)→ E0,q(ω ∩ Zreg) and P : E0,0(Z)→ O(ω) such that

φ(z) = ∂Kφ(z) +K(∂φ)(z), z ∈ Zreg ∩ ω, φ ∈ E0,q(Z), q > 0, (143)

and

φ(z) = K(∂φ)(z) + Pφ(z), z ∈ Zreg ∩ ω, φ ∈ E0,0(Z). (144)

The operators are given as

Kφ(z) =

∫
ζ

K(ζ, z) ∧ φ(ζ), (145)

Pφ(z) =

∫
ζ

P (ζ, z) ∧ φ(ζ), (146)

where K and P are intrinsic kernels on Z× (Zreg ∩ω) and Z×ω, respectively. They
are locally integrable with respect to ζ on Zreg and the integrals in (145) and (146)
are principal values at Zsing. If φ vanishes in a neighborhood of a point x, then Kφ
is smooth at x.

Note that we called (143) and (144) extrinsic formulas because they can only
be applied to forms φ ∈ E0,∗(Z), i.e. to forms which locally have smooth extensions.
Nevertheless, the sheaf EX0,∗ is an intrinsic object on X in the sense that such a
form φ does depend neither on the choice of the local extensions nor on the local
embedding which we choose for an arbitrary singular space X. In this spirit, also
the integral operators in (145) and (146) are intrinsic operators in the sense that
their value does only depend on φ itself, not on the extensions which we can choose
for φ or on the local embeddings of X which are used.

The knowledge about Theorem 4.18 leads to the natural question wether it is
possible to approximate forms which are in some Lp-space on the regular part Xreg

of X appropriately by forms which extend smoothly to local neighborhoods so that
the formulas of Andersson–Samuelsson can be applied. This is for example possible
if the Lp-forms vanish to an order high enough in the singular set. For such forms
the ∂-equation can be solved locally in the Lp-sense (see [AS1], Theorem 1.7, or
[AS3], Theorem 1.3). In the L2-case this was shown before by algebraic methods by
Fornæss, Øvrelid and Vassiliadou in [FOV1] (see also [OV4]).
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This illustrates the importance of extension and approximation results for forms
given only on Xreg. That is a deep and difficult topic. Such statements depend on the
homological dimension of the variety as can seen by methods of analytic geometry.
We refer to the results of Scheja [S3] and [S4] at this place where holomorphic and
smooth ∂-closed forms are treated. Clearly, there appear additional difficulties when
we are talking about Lp-forms.

There is another reason why it is interesting to study extension and approxima-
tion results on singular spaces. When we consider the ∂-equation in our intrinsic
sense, i.e. simply on the regular part of the variety, we have seen in our treatment
of the L2-theory that we have to distinguish different closed L2-extensions of the
∂-operator due to the incompleteness of the metric on Xreg. This leads to questions
like the following. Assume that ∂wf = g in L2

∗(Xreg), i.e. ∂f = g in the sense
of distributions on Xreg. Under which circumstances does it follow that ∂sf = g,
i.e. does there exist a sequence of smooth forms {fj}j with support away from the
singular set SingX such that fj → f and ∂fj → g in the L2-sense? Or, if there
exists a form f such that ∂wf = g for a ∂s-closed form g, does then also exist a form
h with ∂sh = g?

So, it is interesting to study the connection between the boundary condition of
the ∂s-operator on the one hand and the approximation by smooth forms on the other
hand. One first step in that direction had been made in [R7] where we studied how
Friedrichs’ extension lemma behaves with respect to boundary values of minimal and
maximal closed extensions of differential operators on smoothly bounded manifolds.

Let us recall the results from [R7]. Let D be a relatively compact domain in
a Hermitian complex manifold and ∂∞ : C∞∗ (D) → C∞∗ (D) the Cauchy-Riemann
operator on smooth forms. For 1 ≤ p ≤ ∞, this operator can be considered as a
densely defined graph-closable operator on Lp-forms:

∂∞ : Dom(∂∞) = C∞∗ (D) ⊂ Lp∗(D)→ Lp∗(D)

The ∂∞-operator has various closed extensions. The two most important are the
minimal closed extension ∂min given by the closure of the graph and the maximal
closed extension ∂max, i.e. the ∂-operator in the sense of distributions. Whereas
the two extensions coincide on smoothly bounded domains by Friedrichs’ extension
lemma (see [F2], [H6]), one has to be very careful when considering non-smooth
domains. Especially on regular sets in singular complex spaces, it is crucial to
distinguish the different closed extensions of the ∂-operator for they lead to different
Dolbeault cohomology groups as we have seen above. Clearly, the difference between
the closed extensions occurs at the boundary of the domain. So, a first step is to
study the boundary behavior of ∂min and ∂max on domains with smooth boundary.

Let D ⊂⊂ Cn be a bounded domain with smooth boundary bD, and let f ∈
Lp0,q(D) with ∂f ∈ Lp0,q+1(D) in the sense of distributions for 1 ≤ p <∞. Then, we

say that f has weak ∂-boundary values fb ∈ Lpq(bD) in the sense of distributions if∫
D

∂f ∧ φ+ (−1)q
∫
f ∧ ∂φ =

∫
bD

fb ∧ ι∗(φ) (147)

for all φ ∈ C∞n,n−q−1(D), where ι : bD ↪→ Cn is the embedding of the boundary.
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Weak ∂-boundary values in the sense of distributions are a classical subject
of complex analysis and closely related to the investigation of the so-called Hardy
spaces (cf. [S9]). Starting from results of Skoda [S9], Harvey and Polking [HP],
Schuldenzucker [S5] and Hefer [H3], there has been a considerable progress in the
understanding of weak ∂-boundary values by Hefer in [H4], where boundary values
in the sense of distributions are compared to boundary values which arise naturally
in the application of integral operators. This is interesting because boundary values
defined by restricting the kernel of an integral operator can often be estimated by
direct methods, whereas the abstractly given distributional boundary values are less
tractable but analytically interesting objects linked to the form on the interior of a
domain.

However, in applications the definition of weak ∂-boundary values by means of
the Stokes’ formula (147) turns out to be a bit unhandy and it is more convenient
to have boundary values in the sense of approximation by smooth forms. In fact,
let f ∈ Dom(∂max) ⊂ Lp0,q(D) with weak boundary values fb ∈ Lpq(bD) according to
definition (147), and let r ∈ C∞(Cn) be a smooth defining function for D. Then it
is shown in [R7] that there exists a sequence fj ∈ C∞0,q(D) such that

fj → f in Lp0,q(D) , ∂fj → ∂f in Lp0,q+1(D) (148)

(the classical Friedrichs’ extension lemma) and moreover

fj ∧ ∂r → fb ∧ ∂r on bD in Lpq(bD), (149)

i.e. f has ∂-boundary values in the sense of approximation ([R7], Theorem 4.4).
This phenomenon is not restricted to the Cauchy-Riemann operator, but holds

for arbitrary differential operators of first order with smooth coefficients. So, it
is more convenient to adopt a more general point of view. Let M be a smooth,
compact Riemannian manifold with smooth boundary, E and F Hermitian vector
bundles over M , and Q : C∞(M,E) → C∞(M,F ) a linear differential operator
of first order with C1-coefficients. Let 1 ≤ p < ∞ and f ∈ Lp(M,E). We say
that f ∈ Dom(Qp

min) if there exists a sequence {fj} ⊂ C∞(M,E) and a section
g ∈ Lp(M,F ) such that

fj → f in Lp(M,E) , Qfj → g in Lp(M,F ),

and define Qp
minf := g. The well-defined operator Qp

min is called the minimal exten-
sion ofQ because it is the closed extension ofQ to an operator Lp(M,E)→ Lp(M,F )
with minimal domain of definition. Its graph is simply the closure of the graph of
Q : C∞(M,E) → C∞(M,F ) in Lp(M,E) × Lp(M,F ). Let σQ be the principal
symbol of Q, ν the outward pointing unit normal to bM , and ν[ the dual cotan-
gent vector. Then, we say that f has boundary values with respect to Qp

min if
there exists a sequence {fj} in C∞(M,E) such that limj→∞ fj = f in Lp(M,E),
limj→∞Qfj = Qp

minf in Lp(M,F ), and a section fb ∈ Lp(bM,E|bM) such that

lim
j→∞

σQ(·, ν[(·))fj|bM = σQ(·, ν[(·))fb in Lp(bM, F |bM).

In this case, we call fb weak Q-boundary values of f with respect to Qp
min (i.e. in

the sense of approximation).
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Now, we draw our attention to the maximal closed extension of Q, that is the
extension of Q in the sense of distributions. We say that f ∈ Dom(Qp

max) if Qf =
u ∈ Lp(M,F ) in the sense of distributions, and set Qp

maxf := u in that case. Here
again, we can define weak Q-boundary values with respect to Qp

max. We say that
f has weak Q-boundary values fb ∈ Lp(bM,E|bM) with respect to Qp

max (in the
sense of distributions), if fb satisfies the generalized Green-Stokes formula (cf. [T2],
Proposition 9.1)

(Qf, φ)M − (f,Q∗φ)M =
1

i

∫
bM

〈σQ(x, ν[)fb, φ〉Fx dS(x)

for all φ ∈ C∞(M,F ).
The main objective of the paper [R7] is to compare both notions of Q-boundary

values. It is easy to see that Dom(Qp
min) ⊂ Dom(Qp

max) ⊂ Lp(M,E), and that Qp
min

is the restriction of Qp
max to Dom(Qp

min). Moreover, it is also clear that weak Q-
boundary values in the sense of approximation are weak Q-boundary values in the
sense of distributions as well. It is well-known that in fact Qp

min = Qp
max on smooth,

compact manifolds with smooth boundary. This result, due to Friedrichs (see [F2],
[H6]), is usually called Friedrichs’ extension lemma. In [R6], it is observed that the
two notions of boundary values coincide as well (see [R7], Theorem 3.3). One might
call this Friedrichs’ extension lemma with boundary values. In the particular case
of the Cauchy-Riemann operator Q = ∂, we obtain (148), (149).
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5 Hartogs’ extension theorem

A very nice example for the use of analytic methods on singular complex spaces is
Hartogs’ extension theorem for (n− 1)-complete spaces.

The classical Hartogs’ extension theorem states that for every open subset D ⊂
Cn, n ≥ 2, and K ⊂ D compact such that D \ K is connected, the holomorphic
functions on D \K extend to holomorphic functions on D. Whereas first versions of
Hartogs’ extension theorem were obtained by filling Hartogs’ figures with analytic
discs (Hartogs’ original idea [H1]), no such geometrical proof was known for the
general classical theorem in complex number space Cn for a long time. Proofs of the
general theorem in Cn usually depend on the Bochner-Martinelli-Koppelman kernel
or on the solution of the ∂-equation with compact support (the famous idea due to
Ehrenpreis [E], see also [H7]).

Only recently, Merker and Porten were able to fill the gap by giving an involved
geometrical proof of Hartogs’ extension theorem in Cn in the spirit of Hartogs’
original idea by using a finite number of parameterized families of holomorphic discs
and Morse-theoretical tools for the global topological control of monodromy, but no
∂-theory or integral kernels except the Cauchy kernel (see [MP1]).

Since the key ingredient of this strategy is the existence of a strongly (n − 1)-
convex exhaustion function, it is natural to ask wether the result remains true for
(n − 1)-complete complex spaces.25 In fact, Hartogs’ theorem was generalized to
(n− 1)-complete manifolds by Andreotti and Hill [AH] using cohomological results
(the ∂-method), but no proof was known until now for the more general case of
(n− 1)-complete normal complex spaces. One reason was the lack of global integral
kernels or an appropriate ∂-theory for singular complex spaces. However, Merker
and Porten were able to carry over their geometric strategy and to prove Hartogs’
extension theorem also for (n− 1)-complete normal complex spaces (see [MP2]).

In this chapter, we show how one can use ∂-theoretical considerations for re-
producing the result of Merker and Porten on a (n− 1)-complete complex space X
by the simple and striking strategy of Ehrenpreis. More precisely, one can reduce
the problem to the solution of a ∂-equation with compact support on a resolution
of singularities π : M → X in the spirit of the ∂-technique of Ehrenpreis. But the
∂-equation that we need to consider is actually solvable because H1

cpt(M,O) = 0
if X is cohomologically (n − 1)-complete. That follows from Takegoshi’s vanishing
theorem. This solution of the problem was presented in the joint work with M.
Colţoiu [CR]. For our strategy, it is enough to assume that X is cohomologically
(n − 1)-complete. Note that (n − 1)-complete spaces are cohomologically (n − 1)-
complete by the work of Andreotti and Grauert [AG], but the converse is not known.

25A complex space of pure dimension n is called (n−1)-complete if it has a strictly (n−1)-convex
exhaustion function ϕ : X → R, that is an exhaustion function with at least dimX+1−(n−1) = 2
strictly positive eigenvalues of the complex Hessian onX. IfX is singular, that has to be understood
as follows: If X is locally embedded in a CL, then ϕ is the restriction of a strictly (n− 1)-convex
function in a neighborhood of X. So, the complex Hessian of the local extension has to have at
least L+ 1− (n− 1) = codimX + 2 strictly positive eigenvalues. Hence, there will be always two
positive directions tangent to X. This is the reason why q-convexity is defined that way.
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A first step in that direction had been made in [R3] where the problem was
solved before for Stein spaces with isolated singularities. We include that here be-
cause it is another, somewhat different, nice example of how to use ∂-techniques on
singular spaces.

For a more detailed introduction to Hartogs’ theorem with a full historical record,
remarks and references, we refer to [MP1], [MP2] and [OV3]. Though the method of
Merker and Porten is technically more involved and harder to reproduce than the ∂-
method, it has the advantage that it works as well for meromorphic functions which
is out of scope of the ∂-method. In fact, Merker and Porten proved the extension
theorem even for the extension of meromorphic functions.

5.1 Resolution of singularities

Let X be a connected normal complex space of pure dimension n. Furthermore, let
D be a domain in X and K ⊂ D a compact subset such that D −K is connected.
Let f ∈ O(D −K). Our aim is to find a holomorphic extension of f to the whole
domain D. We can assume that X is non-compact. This assumption is automati-
cally fulfilled if X is a (n− 1)-complete space.

The assumption about normality implies that X is reduced. Let

π : M → X

be a resolution of singularities, where M is a complex connected manifold of dimen-
sion n, and π is a proper holomorphic surjection. Let E := π−1(SingX) be the
exceptional set of the desingularization. Note that

π|M\E : M \ E → X \ SingX (150)

is a biholomorphic map. For the topic of desingularization we refer as above to
[AHL], [BM] and [H2].

In this section, we observe that the extension problem on X can be reduced to
an analogous extension problem on M . Let

D′ := π−1(D), K ′ := π−1(K), F := f ◦ π ∈ O(D′ \K ′).

Clearly, D′ is an open set and K ′ is compact with K ′ ⊂ D′ since π is a proper
holomorphic map. D \K is a connected normal complex space. So, it is connected,
reduced and locally irreducible, hence globally irreducible as well (see [GR2]). But
then, D\K \SingX is still connected. So, the same is true for D′ \K ′ \E because of
(150). But then D′\K ′ and D′ are connected, too. That means that the assumptions
on D and K behave well under desingularization and it is enough to construct an
extension of F to D′, because π∗OM = OX for the structure sheaves of M and X
by normality of X.

But the existence of such an extension of F follows easily by Ehrenpreis’ ∂-
technique (see [H7]) as soon as H1

cpt(M,O) = 0 as we will observe now.
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Let
χ ∈ C∞cpt(M)

be a smooth cut-off function that is identically one in a neighborhood of K ′ and has
compact support

C := suppχ ⊂⊂ D′.

Consider
G := (1− χ)F ∈ C∞(D′),

which is an extension of F to D′, but unfortunately not holomorphic. We have to
fix it by the idea of Ehrenpreis. So, let

ω := ∂G ∈ C∞(0,1),cpt(D
′),

which is a ∂-closed (0, 1)-form with compact support in D′. We may consider ω as
a form on M with compact support. Assume for the moment that H1

cpt(M,O) = 0.
So, there exists g ∈ C∞cpt(M) such that

∂g = ω,

and g is holomorphic on M \ C (where ω = ∂G = ∂F = 0). Let

F̃ := (1− χ)F − g ∈ O(D′). (151)

It remains to show that F̃ is actually an extension of F . To see that, we have to
show that g ≡ 0 on an open subset of D′ \ C. Let

A := supp g.

Then, M \
(
A∪C

)
6= ∅ because A∪C is compact but M is not. If M were compact,

X would be compact as well. So, there exists a point

p ∈M \
(
A ∪ C

)
6= ∅.

Let V be the open connected component of M \ C that contains the point p, and
V c = (M \ C) \ V , which is also open. g is holomorphic on V and vanishes in a
neighborhood of p, hence g ≡ 0 on V . It follows from C ⊂⊂ D′ that D′∪ (M \C) =
D′ ∪ V ∪ V c = M . Let W = D′ ∪ V c. Then M = V ∪W is the union of two open
sets. But M is connected. This yields W ∩V = (D′∪V c)∩V 6= ∅. Thus D′∩V 6= ∅.
So, g ≡ 0 on V ∩D′ 6= ∅, and this implies by (151) that F̃ ≡ F on V ∩D′ (which is
not empty). But

∅ 6= V ∩D′ ⊂ D′ \ C ⊂ D′ \K ′,

where D′ \K ′ is connected, and by the identity theorem we obtain

F̃ |D′\K′ ≡ F

just as needed.
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5.2 Dolbeault cohomology of proper modifications

In its general form, the Grauert-Riemenschneider vanishing theorem (see [GR3],
Satz 2.1) states:

Theorem 5.1. Let X be an n-dimensional compact irreducible reduced complex
space with n independent meromorphic functions (Moishezon), and let S be a quasi-
positive coherent analytic sheaf without torsion on X. Then:

Hq(X,S ⊗ Ωn
X) = 0, q > 0,

where Ωn
X is the sheaf of holomorphic n-forms on X (the canonical sheaf), defined

in the sense of Grauert and Riemenschneider.

This generalization of Kodaira’s famous vanishing theorem is also proved by
means of harmonic theory. The main point in the proof is ([GR3], Satz 2.3):

Theorem 5.2. Let X be a projective complex space, S a quasi-positive coherent ana-
lytic sheaf on X without torsion, and let π : M → X be a resolution of singularities,
such that Ŝ = S ◦ π is locally free on M . Then:

Rqπ∗(Ŝ ⊗ Ωn
M) = 0, q > 0.

Here, Ŝ = S ◦ π denotes the torsion-free preimage sheaf:

S ◦ π := π∗S/T (π∗S),

where T (π∗S) is the coherent torsion sheaf of the preimage π∗S (see [G1], p. 61).
As a simple consequence of Theorem 5.2, one can deduce:

Corollary 5.3. Let M be a Moishezon manifold of dimension n, and X a projective
variety such that π : M → X is a resolution of singularities. Then:

Rqπ∗Ω
n
M = 0, q > 0,

where Rqπ∗Ω
n
M , q > 0, are the higher direct image sheaves of Ωn

M .

Proof. Let F be a positive holomorphic line bundle on X ⊂ CPL, and S the sheaf
of sections in F . So, S ◦ π is a positive locally free sheaf on M ([GR3], Satz 1.4),
and as in [GR3], Satz 2.4, it follows from Theorem 5.2 that

Rqπ∗Ω
n
M ⊗ S = Rqπ∗(Ŝ ⊗ Ωn

M) = 0

for q > 0 which implies the statement.

As Grauert and Riemenschneider mention already in their original paper [GR3],
this statement is of local nature and doesn’t depend on the projective embedding
(whereas their proof does). In fact, the result was generalized later as we have
already seen by K. Takegoshi (see [T1], Corollary I; and also [O1]):
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Theorem 5.4. Let M be a complex manifold of dimension n, and X a complex
space such that π : M → X is a proper modification. Then:

Rqπ∗Ω
n
M = 0, q > 0.

The nice proof consists mainly of a vanishing theorem on weakly 1-complete
Kähler manifolds which is based on L2-estimates for the ∂-operator. As an easy
consequence, we obtain:

Theorem 5.5. Let M be a complex manifold of dimension n, and X a complex
space such that π : M → X is a proper modification. Then:

Hq(M,Ωn
M) ∼= Hq(X, π∗Ω

n
M). (152)

Proof. The proof follows directly by the Leray spectral sequence.

Now, if the space X has nice properties, we can deduce consequences for the
Dolbeault cohomology on M . Here, we are particularly interested in q-complete
spaces. Recall that a complex space X is q-complete in the sense of Andreotti
and Grauert [AG] if it has a strongly q-convex exhaustion function. X is called
cohomologically q-complete if Hk(X,F) = 0 for any coherent analytic sheaf F and
all k ≥ q. Note that q-complete spaces are cohomologically q-complete by the work
of Andreotti and Grauert [AG], but the converse is not known.

Theorem 5.6. Let M be a complex manifold of dimension n, and X a cohomo-
logically q-complete complex space such that π : M → X is a proper modification.
Then:

Hn−k
cpt (M,O) ∼= Hk(M,Ωn

M) = 0, k ≥ q. (153)

Proof. Since X is q-complete, it follows from Theorem 5.5 that

Hk(M,Ωn
M) ∼= Hk(X, π∗Ω

n
M) = 0, k ≥ q, (154)

because π∗Ω
n
M is coherent by Grauert’s direct image theorem (see [G1]). Serre’s

criterion ([S6], Proposition 6) tells us that we can apply Serre duality [S6] to the
cohomology groups in (154), and we get the duality on the left-hand side of (153).

An immediate consequence is Hartogs’ extension theorem:

Theorem 5.7. ([CR], Theorem 1.1) Let X be a connected normal complex space
of dimension n ≥ 2 which is cohomologically (n− 1)-complete. Furthermore, let D
be a domain in X and K ⊂ D a compact subset such that D \K is connected. Then
each holomorphic function f ∈ O(D \K) has a unique holomorphic extension to the
whole set D.

Proof. The proof follows by the procedure described in section 5.1 because here we
have in fact H1

cpt(M,O) by Theorem 5.6. Moreover, also H0
cpt(M,O) = 0 so that M

cannot be compact.
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5.3 Stein spaces with isolated singularities

There is another way to prove Theorem 5.7 that does not depend on Takegoshi’s
vanishing theorem if X is a Stein space with isolated singularities. This method was
presented in [R3] and we include it here because it is another nice application of
∂-methods in singular constellations.

Let us return to the situation in section 5.1, i.e. consider the resolution

π : M → X

and assume that X is a Stein space with isolated singularities. It follows that M
is a 1-convex complex manifold, and that there exists a strictly plurisubharmonic
exhaustion function

ρ : M → [−∞,∞) ,

such that ρ takes the value −∞ exactly on the exceptional setE (see [CoMi]). We
can assume that ρ is real-analytic on M \ E.

Recall that
D′ = π−1(D), K ′ = π−1(K),

and that we are looking for an extension of

F := f ◦ π ∈ O(D′ \K ′)

to the whole domain D′. Choose δ > 0 such that

K ′ ⊂ W := {z ∈M : ρ(z) < δ},

which is possible since ρ is an exhaustion function. But ρ is also strictly plurisub-
harmonic outside E, and it follows that W is strongly pseudoconvex if we choose δ
as a regular value of ρ. We will use the fact that

dimHq(W,S) <∞ (155)

for all coherent analytic sheaves S and q ≥ 1.
Since K ′ ⊂⊂ W , we can choose the cut-off function χ ∈ C∞cpt(M) from section

5.1 so that it has compact support in D′ ∩ W . Recall that we are looking for a
solution g with compact support of the ∂-equation

∂g = ω = ∂
(
(1− χ)F

)
, (156)

where ω has compact support in D′∩W . Hence we would need that H1
cpt(W,O) = 0.

But we only know that W is a strongly pseudoconvex subset of a 1-convex complex
manifold. This is now the place to introduce some ideas from the ∂-theory on
singular complex spaces. We will use a result of Fornæss, Øvrelid and Vassiliadou
presented in [FOV1], Lemma 2.1.
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We must verify their assumptions. So, let

W̃ := π(W ).

That is a strongly pseudoconvex neighborhood of the isolated singularities in X.
Hence, it is a holomorphically convex subset of a Stein space by the results of
Narasimhan (see [N]), and therefore Stein itself.

Let J be the sheaf of ideals of the exceptional set E in M . Now, the result of
Fornæss, Øvrelid and Vassiliadou reads as:

Theorem 5.8. Let S be a torsion-free coherent analytic sheaf on W , and q > 0.
Then there exists a natural number T ∈ N such that

iq : Hq(W,J TS)→ Hq(W,S)

is the zero map, where iq is the map induced by the natural inclusion J TS ↪→ S.

This statement reflects the fact that the cohomology of M is concentrated along
the exceptional set E, and can be killed by putting enough pressure on E. We will
now use Theorem 5.8 with the choices q = n − 1 = dimX − 1 and S = Ωn

W the
canonical sheaf on W . So, there exists a natural number µ > 0 such that

in−1 : Hn−1(W,J µΩn
W )→ Hn−1(W,Ωn

W ) (157)

is the zero map. Note that for ν ∈ Z and 0 ≤ p ≤ n, the sheaf J νΩp
W is isomorphic

to the sheaf of germs of holomorphic p-forms with values in L⊗ν−E, where L−E is
the holomorphic line bundle corresponding to the divisor −E such that O(L−E) ∼=
O(−E) ∼= JOW

We will use Serre Duality (cf. [S6]) to change (157) to the dual statement.
But, can we apply Serre-Duality to the non-compact manifold W? The answer is
yes, because higher cohomology groups are finite-dimensional on W by the result of
Grauert (155), and we can use Serre’s criterion ([S6], Proposition 6). So, we deduce:

ic : H1
cpt(W,OW )→ H1

cpt(W,J −µOW ) (158)

is the zero map, where ic is induced by the natural inclusion OW ↪→ J −µOW . This
statement means that we can have a solution for the ∂-equation (156) with compact
support in W that has a pole of order µ (at most) along E. Let us make that precise.

J −µOW is a subsheaf of the sheaf of germs of meromorphic functionsMW . We
will now construct a fine resolution for J −µOW analogously to the ∂k-complex (127)
from Theorem 4.6. Let C∞0,q denote the sheaf of germs of smooth (0, q)-forms on W .
We consider J −µC∞0,q as subsheaves of the sheaf of germs of differential forms with

measurable coefficients. Now, we define a weighted ∂-operator on J −µC∞0,q. Let
f ∈ (J −µC∞0,q)z for a point z ∈ M . Then f can be written as f = h−µf0, where
h ∈ (OW )z generates Jz and f0 ∈ (C∞0,q)z. Let

∂−µf := h−µ∂f0 = h−µ∂(hµf).
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We obtain the sequence

0→ J −µOW ↪→ J −µC∞0,0
∂−µ−−−→ J −µC∞0,1

∂−µ−−−→ · · · ∂−µ−−−→ J −µC∞0,d → 0,

which is exact by the Grothendieck-Dolbeault Lemma and well-known regularity
results. It is a fine resolution of J −µOW since the J −µC∞0,q are closed under multi-
plication by smooth cut-off functions. Therefore, the abstract Theorem of de Rham
implies that:

Hq(W,J −µOW ) ∼=
ker (∂−µ : J −µC∞0,q(W )→ J −µC∞0,q+1(W ))

Im (∂−µ : J −µC∞0,q−1(W )→ J −µC∞0,q(W ))
,

and we have the analogous statement for forms and cohomology with compact sup-
port. Recall that

ω ∈ C∞0,1(W )

is ∂-closed with compact support in W . By the natural inclusion, we have that

ω ∈ J −µC∞0,1(W ),

too, and it is in fact ∂−µ-closed. But then (158) tells us that there exists a solution
g ∈ J −µC∞(W ) such that

∂−µg = ω,

and g has compact support in W . So, g ∈ C∞(M − E) with support in W , and

∂g = ω = ∂
(
(1− χ)F

)
on D′ − E.

It follows as in section 5.1 that

F̃ := (1− χ)F − g ∈ O(D′ − E)

is a holomorphic extension of F to D′ − E. But then

f̃ :=
(
(1− χ)F − g

)
◦ π−1 ∈ O(D − SingX)

is a holomorphic extension of f to D−SingX. But then f̃ has an extension to D by
Riemann’s extension theorem for normal spaces since dimX ≥ 2 and dim SingX = 0
(see e.g. [GR2]). The extension f̃ is unique because D \K is connected and X is
globally and locally irreducible (see again [GR2]). That completes the proof of The-
orem 5.7 if X is a Stein space with isolated singularities.

In the meantime, Øvrelid and Vassiliadou have used a similar ∂-method to show
the theorem also for Stein spaces with arbitrary singular set in [OV3]. Moreover,
they extended the results from [FOV1] (which are about Stein spaces) also to q-
complete spaces in [OV4]. This gives a statement similar to Theorem 5.8 also on
(n − 1)-complete spaces and leads to another proof of Theorem 5.7 by a method
similar to the procedure described in this section (see [OV4], Theorem 1.3).

On the other hand, the Koppelman formulas of Andersson and Samuelsson yield
another proof of Theorem 5.7 for Stein spaces (see [AS3], Theorem 1.4). This is then
a proof by means of some integral formulas.
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