Mathematik 2 (Master Sicherheitstechnik) Übungsblatt 3

Aufgabe 9.

a) Zeigen Sie durch Nachrechnen, dass für jede komplexe Zahl z gilt:

Re
$$z = \frac{1}{2}(z + \overline{z})$$
, Im $z = \frac{1}{2i}(z - \overline{z})$

b) Sei $z \in \mathbb{C}$ und $t \in \mathbb{R}$. Verwenden Sie die Definition der komplexen Exponentialfunktion e^z und die Regeln $\cos(-t) = \cos(t)$ und $\sin(-t) = -\sin(t)$, um folgende Identitäten durch Nachrechnen zu beweisen:

$$\overline{e^z} = e^{\overline{z}}$$
 , $\cos(t) = \frac{1}{2} \left(e^{it} + e^{-it} \right)$, $\sin(t) = \frac{1}{2i} \left(e^{it} - e^{-it} \right)$

c) Verwenden Sie Teil b) und die Funktionalgleichung der Exponentialfunktion, $e^{x+y} = e^x e^y$, um die Additionstheoreme für Kosinus und Sinus durch Nachrechnen zu beweisen:

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b,$$

$$\sin(a+b) = \sin a \cdot \cos b + \cos a \cdot \sin b$$

gilt für alle $a, b \in \mathbb{R}$.

d) Verwenden Sie Teil b), um für $t \in \mathbb{R}$ durch Nachrechnen zu beweisen:

$$\sin^2(t) + \cos^2(t) = 1$$

e) Verwenden Sie Teil d) und eine partielle Integration, um zu berechnen:

$$\int_0^{2\pi} \sin^2(t) dt = \pi$$

Aufgabe 10.

a) Seien $k, m \in \mathbb{Z}$ fest gewählt und $t \in \mathbb{R}$. Verwenden Sie Aufgabe 9, Teil b), um zu zeigen, dass

$$\sin(kt)e^{-imt} = \frac{1}{2i} \left(e^{i(k-m)t} - e^{-i(k+m)t} \right)$$

b) Verwenden Sie Teil a) und $e^{ix} = \cos x + i \sin x$, um zu zeigen, dass:

$$\sin(kt)\sin(mt) = \frac{1}{2}\left(\cos\left((k-m)t\right) - \cos\left((k+m)t\right)\right),$$

$$\sin(kt)\cos(mt) = \frac{1}{2}\left(\sin\left((k-m)t\right) + \sin\left((k+m)t\right)\right)$$

Bitte wenden.

Aufgabe 11.

Berechnen Sie (unter Verwendung von Aufgabe 10) die Integrale

$$\int_0^{2\pi} e^{i(k-m)t} dt \ , \ \int_0^{2\pi} \sin(kt) \sin(mt) dt \ , \ \int_0^{2\pi} \sin(kt) \cos(mt) dt$$

in Abhängigkeit von $k, m \in \mathbb{Z}$.

Aufgabe 12.

a) Seien T > 0 und $y_0 > 0$. Wir betrachten die Funktion $f : \mathbb{R} \to \mathbb{R}$, die sich durch periodische Fortsetzung von $f_0 : [-\frac{T}{2}, \frac{T}{2}) \to \mathbb{R}$,

$$f_0(x) = y_0 - y_0 \frac{x + T/2}{T},$$

nach ganz \mathbb{R} ergibt, d.h.

$$f(x) = f_0 \left(x - T \left[\frac{x + T/2}{T} \right] \right).$$

Dabei bezeichnet [x] die Gauß-Klammer, d.h. $[x] = \max\{k \in \mathbb{Z} : k \leq x\}$. Berechnen Sie die komplexe und die reelle Fourierreihe zu f.

b) Wir betrachten die Funktion $g: \mathbb{R} \to \mathbb{R}$, die sich durch periodische Fortsetzung von $g_0: [0,4) \to \mathbb{R}$,

$$g_0(x) = \begin{cases} 1, & \text{für } 0 \le x < 3, \\ -1, & \text{für } 3 \le x < 4, \end{cases}$$

nach ganz \mathbb{R} ergibt, d.h.

$$g(x) = g_0 \left(x - 4 \left[\frac{x}{4} \right] \right).$$

Berechnen Sie die komplexe und die reelle Fourierreihe zu g.